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Abstract

In recent decades, unmanned surface vehicles (USVs) are attracting increasing
attention due to their underlying capability in autonomously undertaking complex mar-
itime tasks in constrained environments. However, the autonomy level of USVs is
still limited, especially when being deployed to conduct multiple tasks simultaneously.
This paper, therefore, aims to improve USVs autonomy level by investigating and de-
veloping an effective and efficient task management algorithm for multi-USV systems.
To better deal with challenging requirements such as allocating vast tasks in cluttered
environments, the task management has been de-composed into two submissions, i.e.,
task allocation and task execution. More specifically, unsupervised learning strategies
have been used with an improved K-means algorithm proposed to first assign different
tasks for a multi-USV system then a self-organising map (SOM) been implemented
to deal with the task execution problem based upon the assigned tasks for each USV.
Differing to other work, the communication problem that is crucial for USVs in a con-
strained environment has been specifically resolved by designing a new competition
strategy for K-means algorithm. Key factors that will influence the communication
capability in practical applications have been taken into account. A holistic task man-
agement architecture has been designed by integrating both the task allocation and task
execution algorithms, and a number of simulations in both simulated and practical mar-
itime environments have been carried out to validate the effectiveness of the proposed
algorithms.
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1. Introduction

There is an increasing trend in the development of advanced unmanned surface
vehicles (USVs) in recent decades to support demanding and complex maritime mis-
sions, such as search and rescue in post-disaster scenarios, environmental monitoring
and surveying in remote locations and coastal patrol in conflicting areas. It can be5

predicted that in the near future, with the advance in sensor and robotics technolo-
gies, USVs will be capable of executing missions under all kinds of harsh and remote
circumstances and effectively, enhancing the mission efficiency as well as mitigating
unnecessary casualties and human resource cost. However, compared with other types
of unmanned platforms such as unmanned aerial vehicle (UAV), autonomous cars and10

autonomous underwater vehicle (AUV), the autonomy level of USVs is still relatively
low. One solution to address such an issue is to deploy multiple USVs simultaneously
and cooperatively. The benefits of using multi-USV systems include wide mission area,
improved system robustness and increased fault-tolerant resilience.

The deployment of multi-USV systems can be used to deal with various missions,15

among which a multi-task mission or a single complicated mission that consists of
multiple sub-tasks is of the most significance. One of the crucial requirements for
deploying a multi-USV system to autonomously undertake a multi-task mission is to
develop and employ an efficient task assignment strategy to properly allocate different
tasks to different USVs such that the mission can be executed in an optimised and20

balanced way. In addition, while the USVs are undertaking missions, other critical
aspects including the collision avoidance, the system reliability and the effectiveness of
the communication within the system should be taken into account. Based upon these
criteria, Liu and Bucknall [1] proposed a hierarchical structure for the control of multi-
USV fleets. The structure encourages a cooperative operation among different USVs25

by employing a three-layer control scheme including the Task Management Layer, the
Path Planning Layer and the Task Execution Layer. As elaborated in [2], the Task
Management Layer is acting as the central decision making part mainly responsible for
allocating tasks to each USV in conjunction with the vehicle’s capability.

Presently, a number of studies have been carried out to investigate the multi-task30

allocation problem for multi-vehicle systems with the interest not only in marine ap-
plications but wider operation domains including air, sea and ground. Cunningham et
al. [3] proposed an adaptive planning algorithm to operate a multi-UAV system in a
cooperative way such that a large-scale sensor network can be formed. Shetty et al. [4]
solved a multi-task allocation problem for UAVs to conduct reconnaissance missions.35

Missions are prioritised according their importance and the allocation problem is solved
by using a heuristic optimisation algorithm. Kurdi et al. [5] proposed a bio-inspired
multi-task allocation algorithm for a multi-UAV system. The algorithm is proven to
have a linear running time making it suitable for on-line mission planning in complex
scenarios such as the search and rescue mission. In terms of maritime applications,40

the majority work has been focused on multi-AUV applications. Deng et al. [6] in-
vestigated the problem of employing a multi-AUV system for cooperative underwater
surveying. Supported by an underwater acoustic network, a two-layered planning and
control algorithm has been designed for on-line adaptive mission allocation. Zhu et
al. [7] proposed a multi-AUV task allocation algorithm using neural network. By45
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considering the influences generated by ocean currents, the algorithm can effectively
assign tasks to a group of AUVs in favour of the least energy consumption. Inspired
by the work in AUV, algorithms have also been designed for multi-USV systems for
practical maritime applications. For example, Raboin et al. [8] developed a model
predictive control strategy for a multi-USV system for assets guarding. Scerri et al.50

[9] proposed to deploy multiple USVs with high-level decision-making capabilities to
resolve demanding real-work challenges such as the flood disaster mitigation mission.

From mathematical modelling perspective, a multi-task allocation problem is syn-
onymous with the Travelling Salesman Problem (TSP), which is a challenge of finding
the shortest yet most efficient route to take given a list of specific destinations and can55

be mathematically modelled as a complete graph problem. Such a challenge has been
widely investigated from the context of using exact algorithms such as the mathematical
modelling [10] and dynamic programming [11, 12], and heuristic and approximation
algorithms such as the LinâĂŞKernighan heuristics [13, 14], and the metaheuristics
[15, 16]. However, it should be noted that TSP is also a NP-hard problem in combina-60

torial optimisation making the heuristic approach more favourable with regards to the
computational efficiency. Especially, with the advance in machine learning in recent
decades, it becomes increasingly appealing to adopt some classical machine learning
algorithms to solve TSP. For example, self-organising map (SOM), an unsupervised
learning algorithm with a 2-layer-neural-network structure which is first proposed by65

Kohoen [17, 18] for the visualisation of high-dimensional data, has been proven to
be capable of solving TSP with the advantages of relative simplicity and promising
performance [19, 20]. In essence, the SOM will form a neural network structure with a
closed-loop circle topology and iteratively update the neural network to find an optimal
solution in a competitive approach [21] (details of the SOM algorithm will be given70

in Section 4). Such a competitive mechanism can also be used to solve the multi-task
allocation for multi-vehicle systems. For example, in [7], the effectiveness of SOM
in solving the task allocation problem of multi-AUV has been successfully addressed,
where each vehicle can be allocated with certain tasks in a time-varying ocean en-
vironment. However, [7] did not consider balancing the tasks, and thus may lead to75

unbalanced assignment where one vehicle of the system will not be assigned with any
task, whereas other AUVs have to undertake multiple tasks that create a workload and
a longer executive time.

In terms of the employment of the SOM on multiple USVs task allocation, Liu et al.
[22] have successfully improved the SOM by integrating a coordination and prioritising80

scheme to better balance tasks among multi-USV systems. In addition, an important
issue, i.e. the robustness of communication within the system has been well addressed,
where the developed algorithm can intelligently ensure all the allocated tasks for a USV
are well located within the communication range so that information can be transmitted
in real-time. However, it is assumed that the communication is only constrained by a85

simple factor of distance while more complex aspects such as the signal transmission
power, the signal noise power and the signal-to-noise ratio were ignored. Also, in [22]
and [23], the communication is assumed to be between aUSV and a base stationwith the
location of the base station been randomly selected and not optimised. It is evident that
a better selection of the base station location can increase the communication capability90

by minimising the impact caused by obstructions along the communication path.
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This paper therefore endeavours to further research on the multi-task allocation
for multi-USV systems by specifically addressing the above-mentioned communication
issues. The underlying problem still considers a typical marine environment monitor-
ing case, i.e. multiple USVs are deployed for water sampling collection. A real-time95

information transmission is required through a communication channel between a USV
and a base station. The base station can be a mobile platform (for example a mother
ship or a UAV) that will find its best location to ensure a robust and reliable com-
munication. Note that the proposed solution can be further applied onto other vital
practical applications such as AUVs launch and recovery from USVs, where a bilateral100

communication between two platforms is required. The task allocation problem in this
paper is decomposed into two sub-missions as:

• Task assignment: multiple tasks are first grouped into different clusters accord-
ing to various constraints such as vehicle’s capabilities and the communication
between USVs and their according base stations.105

• Task execution: the assigned tasks are further planned to find an optimal task
execution sequence for each USV. Path planning capability can be integrated at
this stage to prevent any collisions.

In the context of task assignment (the number of tasks is normally larger than
the number of vehicles), the clustering concept in machine learning is proven to be110

effective in fast grouping different tasks. Common clustering algorithms include K-
means clustering [24], quality threshold clustering [25] and hierarchical clustering based
on the greedy algorithm [26]. Especially, K-means has properties such as robustness
and computational efficiency, which underpins the requirement of the task assignment
problemmentioned above. Several studies have been conducted in this field, for example115

Cunningham et al. [3] proposed an adaptive path planning algorithm for a formation of
UAVs to arrange a sensor network. In this work, the K-means clustering was employed
at the initialisation stage for generating several sub-networks. Elango et al. [27] also
used the K-means to solve the multi-task allocation for a multi-robot system. Due to
the nature of the investigated problem, tasks in this work were allocated in a balanced120

way and the communication problem was not considered. Note that the conventional
K-means clustering has the drawbacks such as the tendency to form clusters with
similar size, difficulties in dealing with central-symmetric inputs and being apt to local
optimisation, which cannot guarantee an expected result for all circumstances.

With the attempt to accelerate the capabilities of USVs to intelligently conduct125

complex maritime missions, main contributions of this paper can be summarised asïĳŽ

• To facilitate an efficient execution of large-scale maritime missions, the task
allocation has been de-composed into two submissions, i.e. the task assignment
and the task execution with the former focusing on clustering missions into
smaller groups by considering physical constraints while the latter mainly solving130

the refined on-line planning mission;

• The communication constraints between USVs and their base control stations
have been explicitly resolved by using practical telecommunication models. Sig-
nal loss caused by obstacle obstructions are mainly considered such that missions
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can be allocated to maximise the success rate in information communication to135

ensure important data collected by USVs will not be lost;

• Important case studies including usingUSVs for environment monitoring, coastal
patrol and research and rescue have been investigated using the proposed algo-
rithms. This canwell demonstrate the capability ofUSVs in dealingwith practical
complex tasks and greatly promote the research into further ambitious maritime140

missions such as the Ocean of Things project that is well advocated by U.S.
Defense Advanced Research Projects Agency (DARPA) [28].

More specifically, in this paper, a new task allocation algorithm has been proposed
and designed using unsupervised learning strategy. Referring to the decomposition of
task allocation problem (including task assignment and task execution), an improved K-145

means clustering algorithm is developed by considering the communication capability
between a USV and its base station so that tasks can be better assigned to improve
mission efficiency. In terms of task execution, the SOM algorithm has been adopted
to effectively calculate an optimised execution sequence. Different sets of computer-
based simulations have been undertaken to validate the effectiveness of the proposed150

algorithm.
The rest of paper is organised as follows. Section 2 introduces problem formulation

and assumptions. Section 3 describes the proposed task assignment algorithm using
improved weighted competitive K-means clustering method and Section 4 introduces
the developed task execution algorithm for multi-USV systems based on self-organising155

map (SOM). Simulation results are given in Section 5 with detailed discussion on the
effectiveness of the proposed algorithms. Section 6 concludes the paper and suggests
future works.

2. Problem formulation and assumptions

Based upon the authors’ previous work in [2], [22], which investigated the task160

allocation problem of USVs using self-organising map (SOM), a further in-depth study
has been conducted by specifically considering the communication requirement within
a multi-USV system. Specifically, the system consists of k USVs, and each of them has
a corresponding base station, such as a crewed ship, a UAV or any other types of highly
mobile platforms that has compatible communication devices onboard. Each of the k165

vehicles is supposed to visit several targets including its start point, and finally returns
to the start point to form a closed path. During the navigation, it is required that USVs
have to keep a constant communication with their corresponding base stations. In such
a scenario, several underlying assumptions of this work are listed below:

• The distance between every two target points are long enough for the USV to170

complete a required manoeuvre.

• The obstacle data is captured and integrated into an environment map.

• The number of targets is greater than the number of USVs.
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• The energy storage is adaptable to the mission requirement and sufficient to
support missions.175

• The environment changes such as the variations in currents and winds are not
considered in this work.

• The node-to-node telecommunication path is assumed to be a line segment formed
by connecting two nodes.

3. Task assignment using improved weighted competitive K-means clustering180

The task assignment mainly focuses on generating a plan for a multi-USV system
considering three key objectives as: 1) to assign specific tasks to each USV, 2) to
calculate the distribution of each USV’s mission zone and 3) to optimise each base
station’s location. To solve these problems, an improved K-means algorithm with a new
competing strategy has been proposed in this work.185

3.1. Mechanism of the conventional K-means clustering
K-means clustering, also known as the Lloyd’s algorithm, is a widely used unsuper-

vised learning algorithm initially proposed by MacQueen [24] in 1967 for ’similarity
grouping’ and ’relevant classification’. K-means algorithm has played an active role in
feature representations for computer vision and natural language processing [29].190

K-means aims to solve the problem of partitioning m observations or samples into
k clusters with each of observations consists of n features. Such a problem is NP-
hard [30] and K-means can rapidly converge into an optimum rather than providing an
analytical solution. The fundamental of K-means is to minimise the feature difference
within clusters, which is in general characterised as the Euclidean distances. Such a195

concept will be described mathematically in the following paragraph, along with a brief
introduction of its implementation.

During the calculation, K-means (pseudo-code shown in Algorithm 1) employs
three processes: (1) Initialisation, (2) Assignment and (3) Updating. The Initialisation
process is implemented at the very beginning of the algorithm, and the other two200

processes form the algorithm’s iterative part. Given m observations (x(1), x(2), . . . , x(m)),
K-means searches for the nearest local optimum as:

argmin
Cluster

k∑
i=1

∑
x∈Clusteri

x − ¯Clusteri
 (1)

where Cluster denotes the sequence containing k clusters (Cluster1,Cluster2, . . . ,
Clusterk) and ¯Clusteri is the mean of Clusteri . In the first stage, k centroids (or
clusters) are randomly initialised. This process can be done either by the Forgy method205

(Algorighm 1 line 5) [31] or the Random Partition method (Algorighm 1 line 2)
[32]. After the initialisation process, iterations start. In the Assignment process, each
observation x(i) (i = 1, 2, . . . ,m) will be assigned to the centroid that has the smallest
Euclidean distance from the observation (Algorighm 1 line 17), such that every single
observation will have an assigned centroid and the observations assigned to the same210
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centroid form a cluster Clusterj . When it comes to the Updating process, an existing
centroid is updated to the mean value of the observations affiliating to its corresponding
cluster (Algorighm 1 line 21). The Assignment process and Updating process will then
run in iteration until reaching the maximum iteration number.

Algorithm 1 K-Means Clustering
Require: number of the clusters(k), maximum times of iterations(iter_num), set of m

n-dimensional observation vectors (X), method of initialisation (either Forgy
method or the random partition method)

1: procedure Initialisation
2: if random partition method then
3: Centroids← generate a sequence including k random n-dimensional vec-

tors
4: end if
5: if Forgy method then
6:
7: Centroids← generate a sequence by randomly selecting k vectors from X
8: end if
9: |D | ← k . Reserve space for sequence with k entities
10: |Cluster | ← k
11: assign← 0
12: end procedure
13: for iter ← 1, 2, ..., iter_num do
14: procedure Assignment
15: for all x ∈ X do
16: D← euclidean distances between x and all c ∈ Centroids
17: assign← index of min (D)
18: Clusterassign ← x ∪ Clusterassign
19: end for
20: end procedure
21: procedure Updating
22: for j ← 1, 2, ..., k do
23: Centroidsj ← mean( Clusterj )
24: end for
25: end procedure
26: end for
27: return Cluster , Centroids

K-means clustering is an algorithm with several advantages, such as the fast conver-215

gence speed. Also, as K-means has a compact structure, the computational efficiency
is relatively fast compared with other unsupervised learning algorithms [33]. However,
the fast convergence feature makes K-means be apt to the local optimum problem,
which consequently results in a fact that k clusters returned by K-means turn to be
even in dimension. Moreover, when visualising these results using the format of the220

Voronoi diagram, the clustering borders tend to cross the centre of the work space,
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which weakens the adaptability of K-means.

3.2. Weighted K-means
The task assignment for a multi-vehicle system should be conducted in a cooperative

and competitive way that each task should be assigned to a ’perfect candidate’ (a vehicle225

within the system) by considering the availability of candidates as well as the global
objective of the system. Such a strategy is similar to theAssignment process of K-means,
where the assignment of a specific observation depends on the Euclidean distances from
this observation to the k current centroids. Similarly, in a multi-USV system, a target
should be assigned to a base station, which is the closet to this target, in regardless of230

any obstacle or any intrinsic properties of the system. As a result, in an obstacle-free
environment, it becomes viable to directly employ K-means algorithm for multi-task
assignment for a multi-USV system.

However, such an ideal environment does not exist in real world. For example, if one
USV is not as capable as the others due to constraints in fuel, battery or communication,235

less tasks should be allocated for this USV. However, the conventional K-means tends
to generate clusters with even distributions, which will approximately assign the same
number of tasks to each USV. One of the possible improvements is to establish a new
competing scheme to replace the original strategy that is based upon the Euclidean
distances between the centroids and the observation (as shown in Algorithm 1). In240

order to increase the adaptability of K-means, different weights can be integrated to
have a new competing scheme defined in Eq. 2 as:

comp = (1 − p) × ||x − ¯Clusteri | | (2)

where comp is the competing measurement of the Assignment process of the algorithm;
p is the weight parameter with the value ranging from 0 (smallest) to 1 (largest) to
indicate the size of the corresponding clusters, and the optimisation objective now can245

be redefined as:

argmin
Cluster

k∑
i=1

[
(1 − pi)

∑
x∈Clusteri

| |x − ¯Clusteri | |

]
(3)

Fig. 1 provides a comparison result between the conventional K-means and the
weighted K-means. In this example, the dimension of workspace ranges from 0 to 1
on x and y axes, and 100 targets are randomly created. According to the nature of the
conventional K-means algorithm, the generated 4 clusters can roughly be regarded as250

4 sectors with similar size as shown in Fig. 1a. In terms of the weighted K-means,
four weight parameters of 0.5, 0.2, 0.6, 0.6 are given to 4 clusters labelled from No.1
to No.4. Note that cluster No. 1 should be larger than cluster No. 2; whereas, cluster
No. 3 & 4 are supposed to be approximately identical and larger than cluster No. 1. As
shown in Fig. 1b, the clustering result provided by the weighted K-means satisfies the255

requirement and based upon this, a signal-based competing scheme is further designed
by integrating a practical signal-propagation model aiming to solve the communication
problem during the task allocation process.
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(a) (b)

Figure 1: Example of clustering 100 target points. Together with the clustering result, the decision boundaries
are plotted in both sub-figures with black lines and curves, the weight parameters are also marked. (a)
Conventional K-means clustering for 100 targets. (b) Weighted K-means clustering for 100 targets.

3.2.1. Signal propagation mathematical model
As mentioned earlier, the competitive assignment of multiple tasks is highly related260

to locations of stations as they are vital for retaining a good communication. K-means
algorithm derives k centroids with their X-coordinates and Y-coordinates determined as
the mean value of the corresponding coordinates of the assigned targets. The centroid
can be regarded as the ideal location for a base station and in this work, the weighted
K-means has been further improved by replacing the weight parameter p in Eq. 2 with265

a new parameter by considering a real-world signal propagation mathematical model
as proposed in [34] and [35]. The signal-based competing model is able to measure the
probability of successful communication between a base station and its corresponding
USV, considering the extra path loss caused by terrain that is not transparent to the
electromagnetic wave as:270

Pi j
r (Γ ≥ γ) = exp

(
−
σ2
j γDα

i j

Ci jPi

)
(4)

where Pi j
r is the probability subject to the signal-noise ratio (SNR) (Γ), σ2 is the noise

power, Di j is the distance between point i and point j, α is the propagation loss factor, C
is the antenna gain and P is the signal power. According to the general implementation
of this signal propagation model, only when the current SNR level (Γ) is higher than a
threshold (γ) the communication between the node i and the node j can be regarded as275

a definite success and the probability (Pi j
r ) exists.

Note that within the signal propagation model in Eq. 4, the signal power (P) and the
antenna gain (C) depend mostly on the communication capacity of base stations and can
be regarded as constant values. As for the distance (Di j) and the propagation loss factor
(α), they are used to calculate the path loss that will influence the telecommunication280

capability. In particular, α is essential for evaluating the path loss and affected by
several environmental aspects.
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3.2.2. Signal-based competing parameter
In typicalmaritime environments, physical obstacles, such as isles, have a significant

impact on the telecommunication path loss. It is evident that the communication stability285

will be largely impaired if the path between a USV and its base station is blocked by
many obstacles. In order to quantitatively reflect such an influence, the propagation
loss factor (α) in Eq. 4 is redesigned and calculated by considering obstacles’ locations
within an environment.

When there is no obstacle between a base station and a USV, the propagation loss290

factor (α) is set to be a constant value of α0; whereas when obstacles exist, α will
increase. Therefore, to determine the probability of a successful connection (Pi j

r ) from
a base station i to aUSV j, it is necessary to determine howmuch the telecommunication
path is obstructed by obstacles. In this work, an obstacle obstruction algorithm (shown
in Algorithm 2) has been proposed to calculate how much a path has been occupied295

obstacles, which subsequently will assist with the calculation of the propagation loss
factor (α) and the probability of a successful connection (Pi j

r ).
More specifically, inAlgorithm 2, it is assumed that the location of obstacle is known

and the environment is formatted as a binary bitmap, in which each pixel has logical
value of ’1’ or ’0’, standing for free and obstacle areas, respectively. As mentioned300

in Section 2, although the signal propagation is regarded as a line segment between
two nodes, in some cases it is difficult to extract a straight line between two nodes in a
grid map (for example, as shown in Fig. 2, there is no perfect straight line containing
complete pixels between base station B and the USV). Therefore, a linear propagation
path algorithm, the Bresenham’s line algorithm [36], is employed to pick out all the305

pixels that lay on a propagation path (Line 3 in Algorithm 2), which subsequently assists
with identifying the number of pixels sitting in obstacle areas (Line 4 - 8 in Algorithm
2). An obstacle-based parameter (terrainarg) can finally be calculated (Line 9 in
Algorithm 2). Note that the calculation of the obstacle-based parameter ((terrainarg))
can be in essence interpreted as:310

terrainarg = Nt ·Wtp (5)
where Nt is the number of obstacle pixels and Wtp is the obstacle position weight,
which is normalised with the minimum length of the bitmap, reflecting the relative
distance from obstacles to a base station (higher value means farther distance). Such
a consideration is mainly proposed to deal with the situation when multiple paths
have been blocked by the same number of obstacles, where relative distances from the315

detected obstacle to the base station will be considered. For example, as shown in Fig.
2, sections of two paths (illustrated by two dashed red lines) occupied by obstacles are
the same, which is 2 pixels. However, the relative positions between obstacles and the
base stations are different, i.e. 1 pixel for base station B and 2 pixels for base station A.
Based upon Eq. 5, station B will have a smaller terrainarg.320

Using the newly introduced obstacle-based parameter (terrainarg), influences to
the propagation loss factor (α) caused by the size and position of obstacles can be
modelled and calculated using a bounded and smooth sigmoud function as:

α =
A

1 + e−ksa(terrainarg−µa)
+ α0 (6)
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Algorithm 2 Obstacle Obstruction Generation
Require: binary 2-dimensional array of the workspace with terrain information (M),

base station and target positions (b and t)
1: Path← 〈 〉
2: Terrain← 〈 〉
3: Path← Bresenham(b, t) . Bresenham function returns a sequence of pixles from

b to t.
4: for all i ∈ indices(Path) do
5: if MPathi is obstacle then
6: Terrain← Terrain ‖ 〈i〉 . Append the index of the obstacle pixel.
7: end if
8: end for
9: terrainarg ← |Terrain| ·

∑
Terrain

min(rows(M), columns(M))
10: return terrainarg

Figure 2: A demonstration of calculating the obstacle-based argument on a 10-by-10 bitmap. Each lattice
stands for a single pixel, and the red bold-stroke pixels also show the effect of the Bresenham’s line algorithm.
In this illustration, the system needs to decide whether the target should be assigned to base station A or B.

where ksa, µa are the parameters of the sigmoid function defining the shape of output
curve, A is the maximum value of the sigmoud function and α0 is the predefined325

propagation loss in obstacle-free environments. By setting ksa << 1, the logistic
function can sensibly reflect the change of terrainarg within a range. In addition, when
the value of terrainarg stays beyond the range, the value of the logistic function can
rapidly converge to either α0 or (α0 + A). Eq. 6 will be subsequently integrated with
Eq. 4 and Eq. 3 to develop an improved K-means algorithm fully considering the330

communication capability. The details of the improved K-means will be discussed in
the next section.

3.3. Multi-task assignment using improved K-means
Based upon the aforementioned competing strategy, an improvedK-means algorithm

considering the signal propagation capability has been developed for efficient multi-task335

allocation.
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3.3.1. Requirement and initialisation
The pseudo-code of the improved algorithm is shown in Algorithm 3 with the

majority of the algorithm’s inputs being the same to the conventional K-means algorithm
including the number of clusters (k), the maximum number of iteration (iter_num) and340

the set of targets (X). There are also some other extra inputs for the improved K-means,
such as the binary bitmap (M) and the telecommunication parameters for calculating
the integrated signal propagation model.

In the initial steps of the improved K-means, the centroids (or the locations of base
stations) are initialised using either the Forgy method or the random partition method.345

Then during the competing procedure, the algorithm first determines the value of the
propagation factor (α) of each candidate centroids based on the pre-described method
introduced in Section 3.2.2.

3.3.2. Competitive Assignment
Within the competitive assignment, referring to Eq. 2 the parameter comp can be350

calculated as:

comp = Di j ×

(
1 − Pi j

sr

)
(7)

where Pi j
sr denotes the signal connection measurement between node i and j, and is

calculated based upon the signal connection probability Pi j
r from Eq. 4. The reason for

such a further process of Pi j
r is to assess the success of the signal propagation in a more

deterministic way. As stated in [34], the signal connection between two nodes should355

be regarded as disconnected if Pi j
r is smaller than a threshold. Therefore, in this paper

Pi j
r is processed by a logistic function to calculate Pi j

sr (see line 24 in Algorithm 3) as:

Pi j
sr =

1

1 + e−ksp
(
P
i j
r −µp

)
)

(8)

where ksp is the logistic growth rate controlling the steepness of the output curve
(sigmoid curve), and the value of ksp should be ksp >> 1 to minimise the blind zone
of distinctness, µp is the threshold of the acceptable Pi j

sr .360

In summary, comp considers both the euclidean distance and the signal-based
competing concept. During each competing assignment episode, a target point will be
assigned to the centroid node with the smallest comp.

3.3.3. Updating
As for the updating procedure, it is largely similar to the conventional K-means365

with the to-be-updated centroid being the mean value of the assigned targets. However,
considering both the above newly proposed competing strategy and some practical
requirements, two vital aspects influence the robustness of the algorithm: (1) when
the base station of a USV is a crewed ship or a fixed platform other than a UAV, the
deployment of the base station could be unrealistic if the output localisation is within a370

terrain. To prevent a centroid being initialised within a terrain, during the initialisation
stage, the Forgymethodwill be employed in thiswork as it only initialises centroids from
the target positions; (2) during the updating process, according to the aforementioned
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Algorithm 3 Improved K-means Clustering
Require: number of USVs (k), maximum times of iterations(iter_num), task set

(X), binary 2-dimensional array of the workspace with terrain information (M),
telecommunication parameters(α0, σ

2, γ,C, P), parameters of sigmoid function for
α (A, ksa, µsa), parameters of sigmoid function for Psr (ksp, µsp), method of ini-
tialisation (either Forgy method or the random partition method)

1: D, Pr, Psr,Comp,Cluster ← 〈 〉 . Initialise utility sequences.
2: initialise c ∈ R2, assign ∈ N
3: |Centroids | ← k . Initialise centroids using either Forgy method or the random

partition method
4: for iter ← 1, 2, ..., iter_num do
5: for all x ∈ X do
6: for i ← 1, 2, ..., k do
7: terrainarg ← Algorithm 2(M, B, x)
8: if terrainarg = 0 then
9: α← α0
10: else
11: α← A/

(
1 + exp

(
−ksa ×

(
terrainarg − µa

) ) )
+ α0

12: end if
13: D← D ‖ 〈‖x − Centroidsi ‖2〉 . Append ‖x − Centroidsi ‖2 to D.
14: Pr ← Pr ‖

〈
exp

(
−
σ2γDα

i

CiP

)〉
15: Psr ← Psr ‖

〈
1/

(
1 + exp

(
−ksp

(
Pi
r − µp

) ) )〉
16: comp = Di

(
1 − Pi

sr

)
. See Eq. 7

17: Comp← Comp ‖ 〈comp〉
18: end for
19: assign← index of min (Comp)
20: Clusterassign ← {x} ∪ Clusterassign
21: if Clusteri = ∅ then
22: reinitialise Centroids
23: Break For Loop
24: end if
25: end for
26: for i ← 1, 2, ..., k do
27: c← mean( Clusterj )
28: if Mc is NOT obstacle then
29: Centroidsi ← c
30: else
31: reinitialise Centroids
32: Break For Loop
33: end if
34: end for
35: end for
36: return Cluster,Centroids
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competing strategy, if a centroid is located in a terrain, it becomes difficult that this
centroid can be assigned with any target because its propagation factor, α, is higher375

than the other centroids. As a consequence, the centroid can hardly get out of this
circumstance, which will eventually result in a problem of local minima. In order to
solve this problem, all the centroids will be reinitialised using the Forgy method as
stated in line 28 -30 in Algorithm 3.

4. Task execution for Multi-USV systems based on self-organising map (SOM)380

The focus of task execution is to generate a reasonable execution sequence for
each USV in the system to visit the assigned tasks. Such a problem, for each USV, is
intrinsically a graph traversal problem. To entirely execute the tasks, USVs are supposed
to visit all tasks at least once, so the graph traversal problem can be mathematically
subdivided into the travelling salesman problem (TSP). In thiswork, based upon author’s385

previous work in [2] and [22], an unsupervised learning approach, the self-organising
map (SOM), is adopted.

4.1. Introduction to the self-organising map (SOM)
Self organising map (SOM) is a two-layer artificial neural network firstly proposed

by Teuvo Kohonen [17]. It is an unsupervised learning algorithm and is widely used390

for clustering problem with the feature of being capable of dimensionality reduction.
SOM can efficiently abstract the relationships among high-dimension analytical data.
SOM can also be employed to solve the 2-dimension problems like the TSP, which is
an NP-hard problem. A notable highlight of the SOM employed in this work is that
its output topology could be predefined, which distinguishes SOM from other similar395

self-organising networks like Neural Gas [37] and Growing Neural Gas Network [38],
both of which generate adaptive output topology according to the input layer.

4.2. Implementation of SOM for USV Task Planning
4.2.1. Requirement and Initialisation

When employing SOM network for TSP (the pseudocode is provided in Algorithm400

4), the input is a set of the location vectors, x ∈ R2, of the tasks (X), and the output
neurons (W) is composed of neurons with a specific topology. For this case, a circular
topology is used to conduct the network to derive a closed-loop path. The structure
of network deployed in this work is illustrated in Fig. 3. The working space of this
USV planning algorithm is a 2-D plane, so entities in both target set X and sequence W405

that forms the result execution order should be two-dimensional, consisting of x and y
coordinates.

After initialisation, the following heuristic iterations including the winner neuron
selection and the weight updating will be activated. Neurons in the output layer
compete to be the winner neuron, which will be updated along with their neighbour410

neurons according to the chosen neighbourhood function.
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Algorithm 4 Self Organising Map for TSP

Require: targets set (X ⊆ R2), maximum times of iterations (iter_num), multiplier for
output layer size (multi), learning rate and its decay (λ, ∆λ), decay of neighbour-
hood radius (∆G)

1: procedure Initialisation
2: neuron_num← multi · |X |
3: |W | ← neuron_num . Randomly initialise a set of output neurons, W ⊆ R2.
4: R← (W, E) . Create a RING-topology graph with vertices W and edges E .
5: d ← 0
6: G← 0.1 · neuron_num . Initialise neighbourhood radius.
7: end procedure
8: for iter ← 1, 2, ..., iter_num do
9: procedure Winner Neuron Selection
10: randomly select one x ∈ X
11: find the winner neuron (Wwinner ), with Eqs. 9 and 10
12: end procedure
13: procedure Neighbourhood updating
14: for all w ∈ W do
15: d ← min(|path (w { Wwinner ) |)

16: w← w + ·h(d,G) · (x − w)
17: end for
18: end procedure
19: G← G · ∆G
20: λ← λ · ∆λ
21: end for
22: return W

4.2.2. Winner Selection and Neighbourhood Function
Winner neuron selection is the beginning procedure of the iteration process. Firstly,

an input target x ∈ R2 is randomly selected from X . Then, its euclidean distances from
all existing neurons in W is calculated with Eq. 9 as:415

Distj = ‖x −Wj ‖ (9)

where the weight or coordinate of the specific Wj corresponding to the minimum
Euclidean distance, disti j , is determined as the winner neuron, as:

Wwinner = argmin
Wj ∈W

(
Distj

)
(10)

4.2.3. Updating
After the selection of a winner neuron, the neighbourhood function is employed

to process the updating. There are two major types of neighbourhood function for420

SOM including the Gaussian neighbourhood function and the Bubble neighbourhood
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Figure 3: Structure of the deployed SOM network with a circular-topology output layer and an input layer.

function [39], which are presented in Eq. 11 and Eq. 12, respectively:

h(d, G) = exp
(
−d2

G2

)
(11)

and

h(d, G) =

{
0 d > G
1 d ≤ G

(12)

where d is the topological lattice distance between the updated neuron and the winner
neuron, andG, the gain parameter could be regarded as the radius of the neighbourhood.
Mathematically, the Gaussian neighbourhood function, Eq. 11, has a smoother kernel-425

shape distribution, compared with the Bubble neighbourhood function. The Bubble
neighbourhood function is, in a sense, an approximation of the Gaussian neighbourhood
function with less demand for computational resources. In this work, the Gaussian
neighbourhood function is used.

Weightings of the output layer neurons will be updated as shown in Line 16 in430

Algorithm 4, where λ is the learning rate with a decaying rate of ∆λ. Similarly, the gain
parameter G also decays in iterations with a decaying factor of ∆G . The tuning of these
four parameters in SOM (λ, ∆λ, G and ∆G) has been well studied in [40], [41] and
[20], which include a number of invaluable empirical parameter tuning works. Accord-
ing to the provided recommendations in these works, four aforementioned parameters435

configured as shown in Table 1. It is noteworthy that these parameters are configured
based on the assumption that the number of input targets for the SOM is no more than
1000 (namely maximum 1000 missions are required to be executed by USVs), and
parameters should be reconfigured if the demand for input targets is different.

4.2.4. Redundant neuron deletion440

SOM returns the order which a USV will follow to visit their assigned tasks. Such
a task execution order is extracted from the output neurons of SOM with the neurons
keeping their initialised topology, a ring topology. In regard to the updating mechanism
of SOM, after convergence, each task should coincide with a corresponding neuron.
However, as the number of output neurons of SOM is larger than the number of the445
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Table 1: Configuration of the parameters of SOM for TSP. λ and ∆λ are learning rate and its decay; G and
∆G are neighbourhood radius and its decay; neuronnum indicates the number of neurons of the output
layer of the SOM.

SOM parameters Value

λ 0.7
∆λ 0.999
G 1/10 of the output neuron number
∆G 0.995

(a) (b)

Figure 4: Redundant neuron deletion in a regularised workspace. The red stars are the target points and the
blue circles are the output layer neurons of the SOM. (a) Output of the SOM with redundant neurons. (b)
Output of the SOM with redundant neurons deleted.

tasks, there will be redundant neurons in the output layer, as illustrated in Fig.4a. To
address such an issue, the neuron deletion method proposed in [22] has been used and
the refined result is presented in 4b.

5. Simulation results and discussions

5.1. Simulations set-up450

In this section, the proposed task assigned algorithm using the improved K-means
and the task execution algorithm based upon SOM are validated in computer-based
simulations. In order to carry out the simulations in a systematical way, two algorithms
have been interconnected using a system structure illustrated in Fig. 5, which consists
of four primary layers:455

• Green layer: The requirement & input layer.

• Blue layer: The global task assignmentwhere the improved algorithms developed
in section 3 are executed to assign tasks to each USV-base-station pair and also
optimise the location of the base stations.
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• Orange layer: The task execution and planning layer where the task allocation460

and the collision avoidance processes are carried out.

• Purple layer After all above is completed, the reference paths and optimised
localisation of the base stations will be spread to every pair within the system
from the central control.

The algorithms have been validated on a 64-bit laptop with a 2.2 GHz Intelr CoreTM465

i7-8750H processor. The source codes are developed and tested on MATLAB R2019a.
Two different sets of simulations are carried out as: 1) a comparison between the
conventional and the improved algorithms is undertaken in a simulated environment;
2) simulations are carried out in two practical maritime environments validating algo-
rithms’ capability in dealing with two important tasks, i.e. the coastal patrol and the470

research and rescue missions.
Note that to test algorithms’ capability in dealing with challenge missions, which

is normally the case in maritime environments, the mission points have been randomly
configuredwith some extreme cases existed, where the conventional K-means algorithm
is incapable of producing a reasonable clustering result by considering communication475

constraints. Also, different to other works ([2], [22], [23]) where only small-scale maps
are used, high-resolution maps are used in this paper with the results showing that the
proposed algorithm is able to efficiently to work.

5.2. Comparison results between the conventional and the improved algorithms
In this section, tests will be carried out in a 500 × 500 pixels map. 70 target points480

together with two isle-shaped obstacles are randomly placed. The distribution of the
target points is shown in Fig. 6. It can be seen that all the targets stay in obstacle-free
areas. However, in order to test the performance of the algorithm in some extreme
cases, several target points are configured to be laid in bay areas as circled out by
blue dash lines. In this tests, 4 USVs are used to cooperatively execute 70 tasks, and485

each USV needs to maintain a communication link with a base station for transmitting
information. It is assumed that 4 USVs are identical in terms of vehicle’s capability
and are equipped with sufficient energy to support missions.

5.2.1. Parameter configurations
Precise tuning of two logistic functions (Eq. 6 and Eq. 8) in the improved K-means490

algorithm (Line 11 and 15 in Algorithm 3) is important for solving the problem in the
map above as they determine the telecommunication capabilities between USVs and
their base stations. As highlighted previously, the telecommunication model is adopted
from [34] and their model parameters are first used as the basis in this paper to describe
the communication capacity in obstacle-free environments. Then the sigmoid function495

is used to evaluate how the communication will be affected by obstacles.
More specifically, in [34], the propagation factor α has the value of 3 to reflect the

communication capability unaffected by any obstacles, therefore α0 in Eq. 6 is 3. Then
by setting Asa = 3, α will vary within a range of [3, 6], where the higher the value is,
the more loss the communication propagation. Note that the maximum value of α does500

not influence the final results in a drastic way as long as there is an evident difference
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Figure 5: System integration structure.
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Figure 6: 500 × 500 workspace with 70 target points marked with red stars.

between the maximum and minimal values of α. In addition, a gradual variation of α is
preferred to reflect a smooth propagation loss change affected by obstacles. Therefore,
ksa (slope) and µa (midpoint) are assigned with value of 10−2 and 300, respectively,
with the final relationship revealing how α is affected by obstacles shown in Fig. 7a.505

For the second sigmoid function (Eq. 8), it is important to tune a proper value
for µp as the communication threshold so that any value below this threshold will be
regarded as an unsuccessful communication and should be discarded. Improper settings
of µp would lead to an unsatisfactory clustering result. For example, as shown in Fig.
8, where µp = 0.5, it is clear that two mission points highlighted in blue should be510

allocated to the base station in red and there is only one mission point assigned to the
base station in purple which is evidently unacceptable. On the contrary, if the value
of µp is too high, it becomes difficult to identify successful communication as most
of channels will be regarded as invalid. By undertaking a set of trial-and-error tuning
processes of µp , it is found that µp = 0, 85 would give the most balanced clustering515

results with ksp assigned with the value of 100 to better distinguish successful and
unsuccessful communication. The final output of Eq. 8 is shown in Fig. 7b.

The discussed parameter settings are summarised in Table 2. It is noteworthy that
all these parameters are tuned only to accommodate the simulations in this section, and
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Figure 7: Two sigmoid functions used in the algorithm (a) is the sigmoid function mapping from the
obstacle-based parameter to propagation factor, and (b) is the sigmoid function mapping from the probability
of successful connection to the signal connection measurement.
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Figure 8: The result of improved K-means when µp = 0.5

in the cases of practical implementations, these parameters should be set based on the520

specific requirements.

Table 2: The tuned parameters of the system (Logistic function)

Parameters Value

Asa 3
ksa 10−2

µa 300
α0 3
ksp 100
Asp 1
µp 0.85
Pr0 0
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5.2.2. Simulation results
By using the tuned parameters in Table 2 the improved algorithm will be tested

against the conventional K-means algorithm. The results returned by the conventional
and the improved K-means algorithms are shown in Fig. 9. Note that there is no differ-525

ence in USV numberings within two sub-figures. It can been seen that both algorithms
are able to successfully generate four clusters of tasks (clusters are distinguished by
different colours) for 4 USVs. Assigned tasks are further processed by SOM algorithm
to have an optimised task execution sequence, which is connected by dash lines in
different colours in Fig. 9. It also should be noted that the straight line connecting530

two tasks should be considered as an ideal trajectory for a USV to track if the line
does not violate any obstacle area. With the existence of obstacles, the ideal path (the
straight line) needs to be accordingly modified to eliminate any collision risks. For
example, as highlighted for USV 2 in Fig. 9a, two dash line already cross an obstacle
and a possible replanned trajectory is suggested in Fig. 9a. Note that such a trajectory535

can be calculated using typical path planning algorithms such as A*, rapidly-exploring
random tree (RRT) and fast marching method, which will not be discussed in this paper.
It is also worth emphasising that apart from successfully assigning tasks for 4 USVs,
locations of 4 base stations can be provided as well, which are represented as diamond
marks in Fig. 9.540

By further analysing the results in Fig. 9, superiority provided by the improved K-
means is evident. First, the conventional K-means cannot prevent the base stations from
falling into obstacles. For example, in Fig. 9a, it is clear that the suggested location
for the base station for USV 3 is located in an obstacle area, which is unacceptable
if the base station is a vessel. Even though in the cases where a UAV, which is able545

to fly over the obstacle area, is used as the base station, the terrain obstacle still has
a high possibility to significantly influence the communication connectivity. A better
solution to such an issue is to place base stations in obstacle-free areas. As presented in
Fig. 9b, the improved K-means can achieve this by keeping all base stations away from
obstacles.550

Second, as shown in Fig. 9a, for USV 3, the communication between the circled
out tasks and the base station will be largely constrained as the communication links
cross most part of the obstacle. The main reason for such a disadvantage is that the
competing process for the conventional K-means only considers the Euclidean distance,
and tasks are grouped in terms of the shortest distance to the base station. As for555

the improved K-means, by integrating the weighted competing process based upon the
signal propagation model, such an issue can be well addressed. As shown in Fig. 9b,
by assigning the highlighted tasks in Fig. 9a to USV 1 (the same to USV 4 in Fig.
9a), tasks have been rearranged in a way that situations where communication channels
violate obstacles areas are minimised.560

Additionally, it is worth noticing that USV 1 in Fig. 9a and USV 3 in Fig.9b are
assigned with the same number of target points, but the task planning result is different.
This is mainly due to the inherent feature of SOM, i.e. SOM is prone to converge
to a nearest local optimum, which may lead to a slight different result. However, the
influence of such a low repeatability is minimal, especially when regarding the increase565

of computational efficiency.
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Figure 9: Task assignment and planning results in a 500 × 500 workspace with obstacles, where (a) is the
result returned by the system integrated with the conventional K-means algorithm and (b) is the result using
the improved K-means algorithm.
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5.3. Simulations in practical environments
In this section, simulaions have been carried out in two pratical environments to

further validate algorithm’s capability. First, a coastal patrol mission is simulated in
Southampton port estuary, UK, with 6 USVs been deployed to visit a large number of570

afloating checkpoints along the coastal line. The distribution of checkpoints is shown
in Fig. 10 and the simulation environment is a 3460 × 4800 pixels map. To facilate
the running of algorithms, the simulation map is further converted into a binary map
represented in Fig. 11. The underlying system configuration is still the same to previous
simulations, where each USV needs to maintain a constant and reliable communication575

with a base station, and the location of the base station will be optimised within the task
allocation process.

Figure 10: The 3460 × 4800 map of Southampton port estuary, with patrol checkpoints marked with red
stars.

Figure 11: The binary format of the 3460 × 4800 map of Southampton port estuary.

Using the binarised geographical information, the proposed algorithms can success-
fully generate an optimised task allocation result for 6 USVs as shown in Fig. 12. Also,
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the location of each base station can be optimised, which is shown as the diamond mark.580

It can be see that all checkpoints are visited by 6 USVs, which forms 6 circular patrol
routes for monitoring the coastal areas. It also can be observed that because the coastal
patrol mission is undertaken in an area with limited obstacles, 90 tasks are allocated in a
relative balanced way. As shown in Fig. 13a, about the same number of tasks are given
to USV 1, 3 and 6; whereas, USV 2 and 5 are executing 11 and 10 tasks, respectively.585

Such an balanced allocation result can be further elaborated when considering the total
distance covered by each USV. As shown in Fig. 13b, apart from USV 5 all the other
USVs travel relatively the same distance to visit each assigned tasks. This computing
process takes about 11.4 seconds to generate the results, which is efficient enough for
a real-time operation. Note that there is a segment marked by dashed red circles in590

Fig. 12 indicating that proper modifications are required. This can be well addressed
by integrating some path planning algorithms to generate collision-free paths. Works
in [2] and [22] can be well referred to show how path planning algorithms can be well
combined with the algorithms proposed in this paper. Instead of applying the path
planning algorithms for each pair of nodes, a collision check algorithm should be used595

and routes will only be re-planned when there is a collisions risk. Such a strategy can
well increase the computational efficiency of the algorithms.

Figure 12: Result of the first practical environment simulation, at the estuary of Southampton port. 90
checkpoints are assigned to 6 USVs and the order to visit them for each USV has been provided. The
optimised positions of the base stations have been mark with the diamonds, segment that needs modifying to
achieve collision-free status has also been marked out with red circle.

Apart from coastal patrol mission, another important utilisation for multi-USV
system is search and rescue and in the second practical simulation, such a scenario is
considered for searching debris of the missing flight, Malaysia Airlines Flight 370. The600
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Figure 13: Statistical data of the patrol simulation result, reflecting the task amount assigned to each USV, (a)
is the number of checkpoints assigned to each USV, and (b) is the distances (without modification) of each
USV to travel.

Figure 14: The workspace and checkpoints of the searching mission near Réunion, the checkpoints are
marked with red stars.

simulation area is selected near French Réunion, where autonomous underwater vehicle
Bluefin-21 was used by US Navy to search for debris evidence. The simulation map is
shown in Fig. 14 with three hundred checkpoints representing possible debris locations
been randomly picked from the adjacent sea area. The size of the map is 3113 × 4800
pixels and further converted into a binary map as shown in Fig. 15.605

Seven USVs are assumed be deployed with their corresponding base stations to
execute this searching mission. Because of the large scale of the area, the searching
mission will last for a long period and will be completely autonomous. The base station
will be attached to floating chambers to ensure the stability and robustness. The whole
multi-USV system is expected to be equipped with multiple power sources to support610

such a long endurance mission, and a possible power solution is to use a hybrid strategy
consisting of electrical batteries, solar powered panels and other energy converters
which can harvest energy from the environment.
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Figure 15: The binary bitmap of the workspace in Fig. 14

Figure 16: Result of the second practical environment simulation, at the adjacent sea area close to the French
Réunion, 300 checkpoints are assigned to 7 USVs and the order to visit them for each USV has been provided.
The optimised positions of the base stations have beenmark with the diamonds, segment that needs modifying
to achieve collision-free status has also been marked out with a red dashed circle.

The simulation result is shown in Fig. 16 with its statistical results shown in Fig.
17. In Fig. 16, it can be observed that all the 300 checkpoints can be successfully615

assigned and visited by the USVs. None of the 7 USVs needs to detour around an isle
to reach its assigned target point. In addition, the returned base station positions are
reasonable such that the communication between each USV and its base station can be
largely retained. However, it also should note that there is one segment that has been
marked with a red dashed circle crossing the obstacle. and such an issue can be rectified620

by using path planning algorithms, which are not discussed in this paper.

28



USV 1 USV 2 USV 3 USV 4 USV 5 USV 6 USV 7
0

10

20

30

40

50

60

70

80

nu
m

be
r 

of
 a

ss
ig

nm
en

t

(a)

USV 1 USV 2 USV 3 USV 4 USV 5 USV 6 USV 7
0

2

4

6

8

10

12

14

16

di
st

an
ce

 o
f c

on
ne

ct
io

n 
lin

es
 (

un
it:

 m
)

105

(b)

Figure 17: Statistical data of the searching simulation result reflecting the task amount assigned to each USV,
(a) is the number of checkpoints assigned to each USV, and (b) is the distances (without modification) of
each USV to travel.
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5.4. Discussions
To further evaluate the performance of the proposed algorithms, discussions on

algorithm’s convergence capability aswell as its computational time have been provided.
The convergence capability is mainly discussed from the perspective of mitigating local625

minimum of K-means and the computational time is analysed by evaluating the running
time for four different simulations.

5.4.1. Mitigating local optimum of the improved K-means
Similar to conventional K-means, the proposed improved K-means algorithm is

also possible to suffer from local minimum problem. In order to avoid such poor-630

quality solutions, common methods (the initialisation and restart techniques proposed
in [42, 43]) have been applied in this paper including: 1) iterating the algorithm with
random initialisation and 2) selecting the high-quality result from the batch of the
outputs. During iterations, the quality of clustering outputs is tightly assessed by
defining a scoring function to evaluate the quality of results. The scoring function is635

defined by following the objective function in conventional K-means as:

Q =
∑
x∈X

min(Compx) (13)

where Compx = (comp1
x, comp2

x, ... , compkx ) with k being the number of clusters. The
lower the Q is, the better the clustering outputs.

Tests in a simulated map with 70 target points have been conducted. By assuming
4 USVs are deployed, 6 tests of the improved K-means algorithms were repeated 5, 10,640

20, 50, 100, 400 times, respectively, with random initialisation strategy. The minimum
Q and its corresponding iteration where the value is first reached are recorded and
shown in Table 3. It can be seen that, a minimal Q value of 2.289 × 10−5 can be found
in most cases except in the first test where the algorithm has only been run 5 times.
Additionally, for the worst outputs, the associated Q = 2.0. A comparison between the645

best and the worst clustering results are presented in Fig. 18. It is evident that the worst
case (large value of Q) encounters with the local optimum (Fig. 18b), where clusters
separated by obstacles (marked by dashed circles) are not acceptable. On the contrary,
a small Q gives a better clustering results as shown in Fig. 18a.

Note that to better address the local minimum, especially when the complexity of650

problem is high, a perturbation strategy has been used. A random disturbance is given
to the location of centroid so that the algorithm can ’move out’ the local minimum point
and continues to iterate until the whole iteration number reaches a pre-set number or no
new local minimum can be found. It also can be seen that, by executing the algorithms
repetitively, there is a high possibility that the algorithm can reach the best results (or655

converge to the best results) within 30 times. Therefore, in this paper, to largely avoid
the local minimum problem, the proposed improved K-means will be run 50 times and
returns the result with the smallest Q.

5.4.2. Computational cost
The improved K-means algorithm and the conventional K-means have the same time660

complexity which is O (tk × n × k × d), where tk is the iteration times; n is the input
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Figure 18: The best and worst solutions evaluated with the quality score Q (lower value indicates a better
result) in a simulated environment with 70 targets. Targets assigned to the same cluster are circled with the
same colour and their centroid is marked with a diamond marker. (a) The best solution, Q = 2.289 × 10−5.
(b) The worst solution, Q = 2.0.
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Table 3: A series of 6 tests over 70 target points in a same map, Qmin is the minimum value of the quality
scoreQ throughout a number of repeats of the improved k-mean algorithm, and the first occurrence ofQmin

happens at the ith try.

Test Repeats Qmin(×10−5) i

1 5 30.97 4
2 10 2.289 7
3 20 2.289 17
4 50 2.289 24
5 100 2.289 20
6 400 2.289 27

size and each input is d-dimensional; k is the number of clusters. In this work, as the
workspace is two-dimensional, d equals to 2. tk is configured to be 200 to ensure the
convergence rate. Therefore, the time complexity of the improved K-means is O (kn),
where k and n are the number of base stations and targets, respectively. The time665

complexity of SOM is O
(
ts

(
pn + qn2) ) [22], where ts is the iteration steps; p and q are

the dimensions of inputs and outputs, respectively. In the scenario of this paper, p and
q equal to 2, and ts is set to 5000 for a good convergence rate. Hence the overall time
complexity of the SOM-based task execution algorithm is O

(
n2) . Because the task

execution algorithm is run once for each base station (in total there are k base stations670

in the system), the time complexity of the entire algorithm is O
(
kn2) .

In this section, the computational cost of running four simulations (the conventional
K-means in the simulated map (KM), improved K-means in the simulated map (IK),
simulation in Southampton estuary (S), and simulation in Réunion adjacent sea area
(R)) has been analysed. The computational time records the time of running both the675

task assignment part (improved K-means) and the task execution part (SOM) with the
results shown in Table 4.

It can be observed that when the simulation environments has a small dimension
(in a map with 500*500 pixels in both KM and IK simulations), the computational time
is relatively fast with 0.97s for KM simulation and 2.61s for IK simulation, which are680

suitable for on-line decision making. Although the proposed improved K-means share
the same inherent structure with conventional K-means, the added computational time
for the improved K-means is mainly caused by the inclusion of obstacle obstruction
algorithm (Algorithm 2).

However, when the algorithms are implemented for large-scale environments on685

high-resolution maps (3460*4800 pixels in simulation S and 3113*4800 pixels in
simulation R), more time will be taken with 11.40s for simulation S and 50.46s for
simulation R. Such a computational time is suitable for an off-line decision-making
in refined maps, and proper improvements can be made to reduce the time cost. For
example, high-resolution maps can be compressed to a smaller size on which the690

computation will take less time. Also, when the algorithm is implemented for the on-
line decision making, more computational efficient languages such as C++ should be
used. In addition, current algorithms are coded in single-threaded execution structure,
some subroutines could be parallelised so that the multi-core processor can be used to
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Table 4: The computational time of the simulations of 1) the conventional K-means in the simulated map
(KM), 2) improved K-means in the simulated map (IK), 3) simulation in Southampton estuary (S), and 4)
simulation in Réunion adjacent sea area (R).

Simulation USVs Targets Map size (pixel) Computational time (s)

KM 4 70 500*500 0.97
IK 4 70 500*500 2.61
S 6 90 3460*4800 11.40
R 7 300 3113*4800 50.46

improve the computational efficiency.695

6. Conclusions and future work

In this paper, an unsupervised learning based multi-task allocation algorithm has
been developed for multi-USV systems. When using the unsupervised learning algo-
rithms, the conventional K-means method has been improved by introducing a weighted
competing strategy to better accommodate the requirements in communications. The700

underlying communication is established upon the case that a USV needs to maintain
a stable and robust communication with its base station, and by integrating a practical
signal propagation model into the weighted competing strategy, tasks can be assigned
by minimising the obstruction to communication by obstacles and the locations of base
stations can also be optimised. By taking the assigned tasks, another unsupervised705

learning algorithm, self-organising map (SOM), is adopted to plan an efficient task
execution sequence for USVs to follow. The proposed algorithms have been validated
in computer-based simulations, especially by using two practical simulation environ-
ments, algorithm’s implementation to support vital maritime missions such as coastal
patrol and search and rescue has been verified.710

In terms of future work, the low repeatability of the algorithm needs to be improved.
Because both K-means and SOM algorithms belong to heuristic algorithm, which is
prone to local minima problem, a new guidance strategy can be integrated into the
algorithm to assist with searching for global rather than local optimum. Although
proper local minimum mitigation methods have been applied in this work, further715

global optimum searching strategies such as the convex optimisation [44], random
swap [45] and variable neighbourhood search [46] should be explored especially when
the proposed multi-task allocation algorithm is used with a high dimensional input
space. Also, in this work, one of the assumption has been made that each USVs have
sufficient energy onboard. An adaptive energy strategy that considers the variations720

in available energy should be incorporated in the algorithm to better address practical
issues. Finally, the tuning of parameters should be improved and by using some real-life
data, supervised learning algorithm can be used to find a better tuning strategy, which
will potentially improve the algorithm’s effectiveness.
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