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ABSTRACT
With a wide use of AIS data in maritime transportation, there is an increasing demand to develop
algorithms to efficiently classify a ship’s AIS data into different movements (static, normal naviga-
tion and manoeuvring). To achieve this, several studies have been proposed to use labeled features but
with the drawback of not being able to effectively extract the details of ship movement information. In
addition, a ship movement is in a free space, which is different to a road vehicle’s movement in road
grids, making it inconvenient to directly migrate the methods for GPS data classification into AIS
data. To deal with these problems, a Convolutional Neural Network-Ship Movement Modes Classifi-
cation (CNN-SMMC) algorithm is proposed in this paper. The underlying concept of this method is
to train a neural network to learn from the labeled AIS data, and the unlabeled AIS data can be effec-
tively classified by using this trained network. More specifically, a Ship Movement Image Generation
and Labelling (SMIGL) algorithm is first designed to convert a ship’s AIS trajectories into different
movement images to make a full use of the CNN’s classification ability. Then, a CNN-SMMC ar-
chitecture is built with a series of functional layers (convolutional layer, max-pooling layer, dense
layer etc.) for ship movement classification with seven experiments been designed to find the optimal
parameters for the CNN-SMMC. Considering the imbalanced features of AIS data, three metrics (av-
erage accuracy, F1 score and Area Under Curve (AUC)) are selected to evaluate the performance of
the CNN-SMMC. Finally, several benchmark classification algorithms (K-Nearest Neighbors (KNN),
Support Vector Machine (SVM) and Decision Tree (DT)) are selected to compare with CNN-SMMC.
The results demonstrate that the proposed CNN-SMMC has a better performance in the classification
of AIS data.

1. Introduction
Automatic Identification System (AIS) is designed to re-

duce the maritime risk by exchanging ship’s movement in-
formation to observe their tactical intention (Harati-Mokhtari
et al., 2007). Each ship can automatically exchange their
state information, like Maritime Mobile Identification Num-
ber (MMSI), latitude, longitude, courses, heading and speed
etc. (Bailey et al., 2008). It is a valuable source for ship’s
collision avoidance studies. Research on collision avoidance
has been developed from themodel-basedmethods (Xue et al.,
2009; Chen et al., 2016; Liu and Bucknall, 2015; Liu et al.,
2017) to data-drivenmethods (Murray and Perera, 2018; Tan
et al., 2018; Hexeberg et al., 2017).

With the prevalent use of AIS devices onboard, AIS data
is easily accessible in large samples for ship movement anal-
ysis. However, a large portion of AIS data reflects the ship’s
normal navigation state that refers to ship sailing along the
established route without changing course and speed. The
manoeuvring state of a ship means that the ship needs to
adopt a variable speed or to change its course to avoid col-
lisions and such a state is only a small part in a whole AIS
sequence (Hexeberg et al., 2017). In order to study on ship
collision avoidance, the first step is to split each ship’s AIS
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data into three parts (static, normal navigation and manoeu-
vring). In summary, dividing an entire sequence of AIS data
for each ship into three movement parts is considered as a
classification problem.

Currently, a variety of trajectory classification problems
are mainly focusing on the road transportation due to the fast
development of mobile Internet and the Internet of Things
(IoTs) (Zhang et al., 2019a), which are generating a mas-
sive amount of spatio-temporal trajectory data and can be
used in the areas such as human travel behaviour research
(Wang et al., 2018), transport planning and traffic manage-
ment (Biljecki et al., 2013; Ke et al., 2020). The studies on
trajectory classification from the previous studies primarily
addressed the problem of manual feature selection (Biljecki
et al., 2013) using some state-of-the-art methods including
machine learning algorithms (Zheng, 2015). The common
steps in these studies is to first convert the raw GPS data into
trajectory-based images that contain the human or vehicle
motion characters (speed, courses and acceleration etc.) and
the trajectory-based images are fed into a deep neural net-
work, which provides final classification results. Because
the AIS devices on ships can provide spatio-temporal infor-
mation similar to the GPS, the trajectory classification meth-
ods on road transportation could be potentially used for AIS
data classification. However, there is an evident difference
between a road and a maritime environment making the di-
rect implementation of methods used in GPS for AIS ap-
plication infeasible. For example, Figure 1(a) is the central
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(a) London road grids

(b) ship movement in English strait

Figure 1: The difference between the road and maritime trans-
portation: (a) London road grids: it shows that vehicles are
limited by the road grids; (b) ship movement in English strait:
ship movement is in a free space and ship can move in all
directions.

London street spatial distribution from the Google map and
Figure 1(b) is ship movement captured from MarineTraffic
(MarineTraffic, 2007) in English Strait. The different be-
tween two figures is that a vehicle’s movement is limited by
the road grid and provides a fixed space grid to classify the
vehicle’s movement. There are lots of studies based on fixed
space grid structure (Zhang et al., 2019b; Ma et al., 2017;
Ke et al., 2017) to study the city’s traffic. However, Figure
1(a) shows that ships’ movement are in a free space and a
ship can move in all directions. Therefore, the classification
algorithms based on the road grid cannot be directly trans-
ferred into the AIS data classification, and the AIS trajectory
needs a specific method.

In recent years, there are lots of researches on marine
traffic patternmining, ship collision risk assessment andmar-
itime anomaly detection (Aarsæther and Moan, 2009; Sil-
veira et al., 2013; Zhen et al., 2017) by using AIS data, but
few researches focus on ship movement classification. Lee
et al. (2008) proposed a trajectory classificationmethod called
TraClass which generated a hierarchy of features from the
region-based and trajectory-based clustering. The region-
based clustering captured the higher-level region featureswith-
out using ship movement patterns, while the latter captured
the lower-level features using ship movement patterns. By
combining the two types of clustering, it could easily iden-
tify the moving objects. At the same time, the method did
not consider the difference between normal navigation cir-

cumstance and static conditions. De Vries and Van Someren
(2012, 2014) firstly identifiedmovement and static condition
using the linear segmentation. Then, they defined the ship
movement trajectory similarities based on the segmentation
as kernels and used the Support Vector Machine (SVM) for
ship movement classifications. The method could only be
suitable in a small range sea area and the kernel function
needed a lot of sample data to achieve high precision. El-
wakdy et al. (2015) extracted the sub-trajectories as trajec-
tory features after the segmentation and polynomial fitting,
and built a ship classifier based on an Adaptive Neuropathy-
Fuzzy Inference System (ANFIS). The method took advan-
tage of the shipmovement shape to build the classifier. How-
ever, it only extracted the tanker ship and fishing ship shapes
and it was hard to migrate to other types of ship. Sheng et al.
(2018) used the logistic regression model to construct a ship
classifier by using the features directly extracted from ship
AIS trajectories. The method firstly proposed a classifier to
divide the ship movements into three types and built three
types of logistic regression models to classify. The method
was easy to identify the different movements and it had a
good effect on large dataset. The drawback of this method
was that it involves a manual process of slicing one ship’s
movement data into three parts to train making the AIS data
often missing or incomplete. Also, it is difficult to obtain
sufficient training samples from AIS dataset. Chen et al.
(2018) considered the characteristics of the AIS dataset and
they proposed a Least-squares Cubic Spline Curves Approx-
imation (LCSCA) to reconstruct the incomplete AIS move-
ments. A method called Lp-norm sparse representation was
introduced to classify the ship movement patterns. The ad-
vantage of themethod could reduce theAIS data incomplete-
ness while the disadvantage was that it added many manual
features into the AIS data making the reflection of ship’s ac-
tual movement difficult.

With the development of the deep learning, there are lots
of applications based on deep neural network classification
used in the AIS trajectory. The applications on AIS trajec-
tory are divided into future trajectory prediction and ship
type classification. For the ship movment tracking, Chen
et al. (2019) uses differentmethods like Laplacian-of-Gaussian
(LoG) descriptor, Local Binary Patterns (LBP), Gabor filter
and Histogram of Oriented Gradients (HOG) to extract the
geometry structure, texture and contour information. Mur-
ray and Perera (2020) proposes a dual linear autoencoder ap-
proach for vessel trajectory prediction based on the historical
AIS data and it is based on the unsupervised learning to fa-
cilitate trajectory clustering and classification. The problem
is that the autoencoder method belongs to unsupervised or
semi-supervised learning method and it has a lower accu-
racy than the supervised method. Also, the assumption of
the ship movement in this paper is linear model but most of
ship movement is nonlinear. Most previous research for the
ship movement classification are based on hand-crafted fea-
tures. The shortcoming is that it is hard to distinguish similar
characters. Currently, the neural network is proved to have
good classification abilities in many applications. Chen et al.
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(2020) uses the coarse-to-fine cascaded convolutional neu-
ral network to classify the ship images and in their model,
the most common types of merchant ship can be well classi-
fied. Forti et al. (2020) uses the Long Short-Term Memory
(LSTM) encoder-decoder architecture to capture the long-
term dependencies of sequential AI data to predict the dis-
tribution of maritime traffic patterns. The benefit of using
the LSTM embeded in the encoder-decoder network keeps
the AIS data sequential information and the drawback of the
method is that it needs a long time computation. The pre-
dictive ability in the real-time AIS data are not consecutive.
After that, the GPU-accelerated method has been introduced
in the maritime IoT devices in the maritime industry (Huang
et al., 2020). Li et al. (2019) supposes that the long-term
prediction is more useful than the short-term motion predic-
tion considering the restricted manoeuvrability of vessels.
It proposes the LSTM bnetwork combined the longest com-
mon sub-sequence algorithm to find the long term motion.
With the regulation of the fishing in most of countries, iden-
tifying the illegal fishing is a significant work based on the
AIS trajectory. Sánchez Pedroche et al. (2020) uses the his-
torical AIS data spatiotemporal data to investigate the illegal
violation activity. Furthermore, based on the fishing vessel’s
moving features, Kim and Lee (2020) uses the Convolutional
Neural Network (CNN) to classify the different types of gear
to find which types of fishing vessel.

In this paper, a convolutional neural network has been
proposed to effectively classify a ship’s movement into three
types based on AIS data. The main contributions are:

• A data visualisation method to transfer AIS data into
trajectory-based images is proposed to assist with ef-
fective AIS data classifications.

• A ShipMovement ImageGeneration and Labelling al-
gorithm (SMIGL) is proposed to use the pixel values
to represent different ship movements.

• A neural network-based classificationmodel called CNN-
Ship Movement Modes Classification (CNN-SMMC)
is designed for classifying AIS data.

• A series of experiments are designed to find the opti-
mal parameters for the CNN-SMMC and demonstrate
the proposed algorithms have a better capability than
classical methods such as the the K-nearest Neigh-
bourhood (KNN), Support VectorMachine (SVM) and
Decision Tree (DT).

The contents of this paper are organised as follows: Sec-
tion 2 provides details of SMIGL algorithm andCNN-SMMC
network is presented in Section 3. Section 4 describes the
details of CNN training and the comparison with K-Nearest
Neighbour (KNN), Support Vector Machine (SVM) and De-
cision Tree (DT) are shown in Section 5. Conclusions are
presented in Section 6.

2. Methodology
The working process of the proposed methodology is

shown in Figure 2, in which the black arrows represent the
flow of training and test data, the dark red arrows display the
evaluation process using the rest of cleaned AIS data and the
yellow arrows depicts the output data flow. Based on the data
cleaning process, a small sample of AIS data is randomly
selected from the cleaned AIS data. The Ship Movement
Image Generation and Lablelling (SMIGL) is used to gener-
ate the ship movement trajectory images as well as related
labels. After the SMIGL, a small portion of sample data
is divided into the training data and the test data. The train-
ing data firstly passes through the CNN-SMMC network and
then the test data is used to verify the network by assessing
the criteria such as the loss and the accuracy to help find
network’s optimal hyperparameters. The details of prepar-
ing the training and test data flow, SMIGL and CNN-SMMC
are further explained.

Note that the information from the AIS data needed in-
cludes: course of ground, navigational state, time, headings,
speed of ground, MMSI latitude and longitude. The out-
lier data such as the latitude over 90◦ and the longitude over
180◦ is erased. The processed data is saved as a Comma-
Separated Values (CSV) format.
2.1. Ship Movement Image Generation and

Labelling (SMIGL)
The prepared AIS data contains ship movement informa-

tion and the critical step is to link the different types of move-
ment (static, normal navigation, manoeuvring) with the pixel
vales. Endo et al. (2016) and Dabiri and Heaslip (2018) use
the binary value to represent different transportation modes
and their works are regarded as binary classification. How-
ever, the ship movement has three types and needs more
pixel values to represent. Assume Tr = (p1, p2, ..., pn) repre-sents a ships’s trajectory, where n denotes the number of AIS
points. A tuple of pi = (MMSIi, ti, lati, logi, sogi, cogi)represents each AIS point, where MMSIi is the Maritime
Mobile Service Identify for ship i, ti is the time index, latidenotes latitude, logi denotes longitude, sogi denotes the
speed of ground, and cogi denotes course of ground. SMIGL
transforms each AIS trajectory data into image, and the de-
tailed process is presented in Figure 3. The steps of SMIGL
are described as follows:
Step 1 Trajectory sampling -Afixed time interval T_intervalis used to equally split each ship’s AIS data from Tr.Due to the different length of each ship’s AIS data, the

trajectory sampling helps to reduce the long tail effect
Bellingham et al. (2010). The equation for the trajec-
tory sampling is expressed as:

T ∗r = sampling(Tr, T_interval) (1)

Step 2 Calculating the centre and grid ranges of each tra-
jectory images - Once the AIS covering area is con-
firmed, each ship’s movement can be drawn in images.
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Figure 2: The working process of the CNN-SMMC (Convolutional Neural Network-Ship Movement Modes Classification): The
AIS data is firstly cleaned and a small portion of the data is used as the sample data represented by black line. Using the SMIGL
(Ship Movement Image Generation and Labeling) algorithm, the AIS data is converted into images. The images are divided into
the training dataset (blue line) and the test dataset (green line). The training data set is sent to the CNN-SMMC network to
train and then the test data set is used to check the performance of the algorithm. After the algorithm is well trained, the rest
of the cleaned AIS data is used to evaluate the CNN-SMMC algorithm.

The centre of AIS data and the center of trajectory im-
ages are different. The center of trajectory images can
be calculated using the Equation 2 and Equation 3:

Image_centerlat =
∑

|T ∗r |
i=1 lati
|T ∗r |

(2)

Image_centerlng =
∑

|T ∗r |
i=1 logi
|T ∗r |

(3)

where, |T ∗r | represents the total number of each ship’s
AIS movement after the Step 1 processing, lati and
lngi means the latitude and longitude for each AIS
point.
After calculating the centre of latitude and longitude
of each trajectory image, the Equation 4 and Equation
5 are used to calculate the ship’s movement range.

Wp = maximum(pi.logi) (4)

Hp = maximum(pi.lati) (5)
where, the Wp represents the range of the longitude
and the Hp denotes the range of latitude as shown in

Figure 3 and the pi.logi and pi.lati represent the lon-gitude and latitude in each pi.
Each grid range can be calculated by the Equation 6
and Equation 7.

Wm =
Wp

|T ∗r |
(6)

Hm =
Hp

|T ∗r |
(7)

Wm and Hm represent the each grid length and width
shown in Figure 3.

Step 3 Assigning different pixel values into the grid areas
- The change rates of speed and the change rate of
course between the point pi+1 and point pi are used todetermine which movement types are contained. The
Equation 8 and Equation 9 are used to calculate each
AIS point rate of change of course and speed.

ΔCog =
pi+1.cogi+1 − pi.cogi

ti+1 − ti
(8)

ΔSog =
pi+1.sogi+1 − pi.sogi

ti+1 − ti
(9)
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Figure 3: Illustration of the SMIGL (Ship Movement Image Generation and Labeling). The input is the AIS trajectory for one
ship in the selected time. A fixed time interval in the input trajectory is used to process the different length of each ship’s AIS
data in Step 1. After the sampling process, the center and grid ranges of each ship’s trajectory image is calculated. In each small
grid, the different pixel values are filled. Lastly, two-dimensional ship movement trajectory images and labels are generated.

Then, based on the loop of eachAIS point, if theΔCog
is over the tℎresℎold_COG (the course threshold value
and will be presented in the next section), it means the
current AIS point pi is now in the manoeuvring state.
A pixel value of blue colour is used to represent the
manoeuvring state and fills the grid. Similarly, if the
ΔSog is over the tℎresℎold_SOG, it means the cur-
rent AIS point pi is in the normal navigation state. A
pixel value of green colour is used to represent the nor-
mal navigation state and the grid will be filled with the
green colour. A red colour represents the static state.
By following such a process, ship movement trajec-
tories can be mapped into trajectory images. During
the rendering process, labels for each state at the same
time are recorded.

Step 4 The two-dimensional ship movement trajectory im-
ages Is are generated and related labels Ls are ob-
tained. The final output example is presented in Figure
4.

Figure 4 generates three different types of ship move-
ment. Figure 4 (a) means the ship is in normal navigation
state and the movement labels for normal navigation is ex-
pressed by (0, 1, 0). Similarly, Figure 4 (b) means that the
static and normal navigation states are represented by (1, 1, 0).
The Figure 4 (c) contains three movement types between
1 pm and 2.30 pm using the (1, 1, 1) to represent the ship
movements.

3. CNN Ship Movement Modes Classification
(CNN-SMMC)
The sequential CNN structure is used and the details of

the structure are described below.

3.1. Data flow for training and testing
TheCNNnetwork is built using TensorFlow (Abadi et al.,

2016) backed with Keras (Chollet et al., 2018). The input in
this work is the trajectory images containing 3 RGB chan-
nels. The pseudocode for the data flow preparation is shown
inAlgorithm 1. Raw images are first read based on the pipeline
provided by the TensorFlow and the images are decoded to
Tensor format. In order to reduce the computing complex-
ity, images are scaled into the size of [244, 244]. It is com-
mon known that the more data the CNN-SMMC gains, the
more effective it can be (Perez and Wang, 2017; Taylor and
Nitschke, 2017), which can help reduce the local optimum
problem during training processes (Zhang et al., 2016). Hence,
in this research, in order to augment the data sample diver-
sity, methods such as flipping images in different directions
(from left to right sides, or upside down) has been employed.
Transforming the images and labels into the Tensor format
is the last step in preparing the data flow.
3.2. CNN-SMMC architecture

Typically, a CNN architecture contains a sequence of
layers (such as convolutional layer, pooling layer, dense layer
and dropout layer) that each layer transform the input into an
output based on a series of operations.
3.2.1. Input layer

The input image has three dimensions: width, height and
channels. Training a large number of images based on CNN
needs a lot of time and the common way of speeding up
the CNN training is to add more computational sources such
as GPU nodes. Using data-parallel Stochastic Gradient De-
scent (SGD) in the computing nodes where each computing
units can receive a chunk of global mini-batch (Krizhevsky,
2014; Goyal et al., 2017; You et al., 2017) is another effec-
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Figure 4: The output example of the SMIGL (Ship Movement Image Generation and Labeling). The output images and labels
of the SMIGL are shown. The details of MMSI, Time and range area are shown in each images. The static state for the ship is
represented by the red color. The normal navigation state is indicated by the green color and the manoeuvring is represeted by
the blue color. The label indicates or represents whether the image includes the static, normal navigation and manoeuvring state.
If the image contains the movement state, the value is set to ’1’, and ’0’ means the image do not have this type of movement.

Algorithm 1 Data flow preparation algorithm
Input: trajectory images Is and labels Ls
Output: image tensors M

1: function CONVERT RAW IMAGES TO TENSOR(Is, Ls)
2: for i=1 to Range(LS ) do
3: image ← tf .io.read_file(i); ⊳ tf is the abbreviation of Tensorflow.
4: Decode_image ← tf .image.decode_jpeg(image, cℎannels = 3);
5: Resize_image ← tf .image.resize(Decode_image, [244, 244]);
6: Random_flip_image ← tf .image.random_flip_lef t_rigℎt(Resize_image);
7: Random_flip_image ← tf .image.random_flip_up_down(Resize_image);
8: Random_crop_image ← tf .image.random_crop(image, [244, 244, 3]);
9: T ransfer_type ← tf .cast(image, dtype = tf .f loat(32)∕255.;
10: Standarised_image ← tf .image.per_image_standardization(image);
11: Label_image_to_tensor(M)← tf .convert_to_tensor(i).
12: end for
13: end function

tive way to accelerate the CNN training speed. So, the input
layer for CNN-SMMC is a four dimensional data structure:
batch, width, height, channels.
3.2.2. Convolutional layer

The convolutional calculation uses a small convolutional
kernel to extract the local features from the input image. For

example, input images are shown in Figure 5 with the convo-
lutional kernel size being 3x3. By sliding the convolutional
kernal over input images, the convolutional operation can be
summarised as - using the convolutional kernel elements to
multiply the corresponding images elements, and then sum
them up and save the result to the corresponding position. If
we denote the x as the input images, ℎk as the ktℎ featuremap
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Figure 5: An illustration of the convolutional calculation. The slide window is shaded gray and the size is 3 x 3. The kernel
size is shown in the middle of the figure. The convolutional operation is that the related filter element is multiplied by the input
image element to calculate the sum. The result is saved until the entire image is processed by the filter kernel.

and the filters are given by the weightswk with bias bk. The
action function is Rectified Linear Units (ReLU) (Simonyan
and Zisserman, 2014). The calculating process is expressed
in Equation 10:

ℎk = activation((wk ⊗ x) + bk) (10)
Where the⊗ denotes convolutional operator (Koushik, 2016).
The mathematical equation of the convolutional operator is
presented in Equation 11.

(f ⊗ g)(x) =
∞
∑

u=−∞
f (u)g(x − u) (11)

The output size of feature map is calculated by Equation 12.

outputs =
Inputs − kernals + 2 ∗ Paddings

stride
+1 (12)

Where, the s means the image size. The illustration of the
convolutional operation is shown in Figure 5, which the stride
step is 1 and the kernel size is 3x3. Based on the convolu-
tional operation, each neuron in the CNN layers’ output is
connected to the receptive filed of the previous layers.
3.2.3. Max-pooling layer

The pooling layer is to narrow the width and the length of
images to reduce the computing complexity and avoid over-
fitting. The max-pooling is the most common way to reduce
the dimensionality of each feature map by getting the maxi-
mum value in local feature maps. The max-pooling process
is presented in Figure 6, using a target area with the size of
2x2 and a stride step of 2 to find the target area’s maximum
pixel value.

3.2.4. Fully connected layer
The objective of the fully connected layer is to get the

results of the convolutional process and use the results to
classify the image into different related labels. The output
of convolution is flattened into a single vector of values with
each value representing a probability that a feature belongs
to a label. For example, if the output feature map is related
to normal navigation, features representing the normal navi-
gation should have a higher probability of green pixel value.

4. Training the CNN-SMMC
The training of a CNN can be varied by adjusting values

of parameters such as the number of layers in a neural net-
work, the number of filters in each convolutional layer and
the order of layers. At present, there is no established theory
to determine the optimal values of these parameters as well
as some inherent training parameters such as the learning
rate and batch size (Albelwi and Mahmood, 2016). How-
ever, these parameters can be tuned in a iterative way to find
a near-optimal configuration. For example, by starting the
training with a small number of neurons and filters, changes
are gradually made to these number until the accuracy and
loss of the training process are converged. (You et al., 2017).
Following such an approach, in this paper, in order to find the
optimum number of layers, filters, learning rate and batch
size, 7 different sets of experiments are designed with spe-
cific experiments parameters shown in Table 1. Each state
label information are shown in Figure 7. All the labelled
data and code are attached in the Supplementary.

To be more specific, the training data in this paper uses
the historical AIS data obtained from the Tianjin seaport.
All data processing is coded in Python programming lan-
guage. TheCNN-SMMCstructures are implemented inKeras
(Chollet et al., 2018) with 4 GPUs (Nvidia Telsa V100 se-
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Figure 6: An illustration of the max-pooling operation. The max-pooling operation is used to reduce the dimension. In the fiugre,
the kernel size is 2 x 2 in the gray shadow. And the max pooling means that it selects the maximum value. The maximum value
is saved and the rest of value is dropped off. Until the entire image has been processed by the max pooling operation.

Figure 7: Label information. The labelled data for each MMSI is explained. It includes static, normal navigation and manoeuvring
states. Each state uses a binary value to represent. The value is 1, it means that the ship contains this type of movement.
Otherwise, it does not have the movement.

ries) used to train and test the model. The total number of
sample trajectory images are 23,123. 85% of the sample tra-
jectory images are used as the training set and the rest are
used as the testing data with the details shown in Table 2.
The batch sizes are 16, 32, 64. This paper uses one of the
SGD optimiser called Adaptive Moment (Adam) estimation
optimiser to train these models.

5. Results and analyses
The performance of the CNN-SMMC is evaluated by

different performance measures such as accuracy, precision,
recall and F1 score et al. (Sokolova and Lapalme, 2009).
These evaluation indexes are related with the confusion ma-
trix (Visa et al., 2011) as shown in Table 3. The threemetrics
chosen for evaluating the proposed CNN-SMMC are:

(1) Average accuracy: it represents the average effective-
ness of the classifier, as shown in Equation 13.

(2) F1 score: it is called harmonic mean of precision (an
index of exactness in Equation 14) and recall (an in-
dex of completeness in Equation 15) to represent the
effectiveness of the classifier to identify positive class
(Zhou et al., 2019), which is shown in Equation 16.

(3) Area Under the Curve (AUC): it is also called balanced
accuracy to represent the classifier’s ability to avoid
false classification and the equation for AUC calcula-
tion is presented in Equation 17.

Average_accuracy =

∑k
i=1(

TPi+TNi
TPi+TNi+FPi+FNi

)

k
(13)
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Table 1
Multiple experiments for CNN-SMMC (Convolutional Neural
Network- Ship Movement Modes Classification). These seven
experiments are designed to find the optimal parameters for the
CNN-SMMC network. The calculation in CNN have different
effective for extracting the details of the ship movement. The
’Yes’ and ’No’ in the below table indicate the existence or non-
existence of a layer and the number like ’32’, ’64’, ’128’ and
’256’ in the convolutional layers is the numbers of filters.

Layers A B C D E F G

Conv1 32 32 32 32 32 32 32
Batch Norm Yes Yes Yes Yes Yes Yes Yes
Conv2 32 32 32 32 32 32 32
Batch Norm Yes Yes Yes Yes Yes Yes Yes
Max-pooling No No Yes No Yes Yes Yes
Dropout No No No Yes Yes Yes Yes
Conv3 64 64 64 64 64 64 64
Batch Norm Yes Yes Yes Yes Yes Yes Yes
Conv4 64 64 64 64 64 64 64
Batch Norm Yes Yes Yes Yes Yes Yes Yes
Max-pooling No No Yes No Yes Yes Yes
Dropout No No No Yes Yes Yes Yes
Conv5 No 128 128 128 128 128 128
Batch Norm No Yes Yes Yes Yes Yes Yes
Conv6 No 128 128 128 128 128 128
Batch Norm No Yes Yes Yes Yes Yes Yes
Max-pooling No No Yes No Yes Yes Yes
Dropout No No No Yes Yes Yes Yes
Conv7 No No No No No 256 256
Batch Norm No No No No No Yes Yes
Conv8 No No No No No 256 256
Batch Norm No No No No No Yes Yes
Max-pooling No No No No No Yes Yes
Dropout No No No No No Yes Yes
Conv9 No No No No No No 512
Batch Norm No No No No No No Yes
Conv10 No No No No No No 512
Batch Norm No No No No No No Yes
Max-pooling No No No No No No Yes
Dropout No No No No No No Yes
Flatten Yes Yes Yes Yes Yes Yes Yes
Dense Yes Yes Yes Yes Yes Yes Yes

Table 2
The details of the training and test data

Ship Movement type
Number of segments

Training dataset Test dataset

Static 19655 3468
Normal navigation 15314 2297

Manoeuvring 15653 1120

Average_precision =

∑k
i=1

TPi
TPi+FPi
k

(14)

Table 3
Confusion Matrix

Movement Predicted as Predicted as
modes class i other classes

Class i True Positive (TP) False Negative (FN)
Other class False Positive (FP) True Negative (TN)

Table 4
Test accuracy based on Table1

CNN Configuration Test Accuracy (%)

A 37.85
B 54.32
C 64.88
D 63.65
E 53.80
F 79.23
G 63.58

Average_recall =

∑k
i=1

TPi
TPi+FNi

k
(15)

F1score =
2 ∗ Average_precision ∗ Average_recall
Average_precision + Average_recall

(16)

AUC = 1
2
(

k
∑

i=1

TPi
TPi + FNi

∕k+
k
∑

i=1

TNi
TNi + FPi

∕k) (17)

where, the k means the total number of class i.
5.1. Identifying the optimal parameters for CNN

The experiment has been conducted from Table 1 A to
G in terms of the CNN-SMMC layer’s patterns, the exist or
non-exist of layers, the CNN-SMMC layers’ depth and the
numbers of filters in each layer. The test accuracies for dif-
ferent CNN-SMMC layers in Table 1 are set out in Table 4.

The epochs of all experiment in Table 4 are 20 and the
batch size is 32 for every training steps. In the first two exper-
iments (Experiment A and Experiment B in Table 1), there
are only convolutional layers. Increasing the number of con-
volutional layers from 2 to 4, the accuracy of CNN-SMMC is
enhanced by nearly 17%. It indicates that the convolutional
layers in Experiment A cannot extract the depth feature in-
formation and also demonstrates that it needs to add more
convolutional layers. In order to assess the effect of the max-
pooling layers, Experiment C adds two max-pooling layers
under the basis of Experiment B, where the test accuracy is
increased evidently from 54.32% in Experiment B to 64.88%
in Experiment C. Based on Experiment A to C, it can be seen
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that the convolutional layers and themax-pooling layers have
a significant effect on improving the accuracy.

Comparing Experiment C and Experiment E, the differ-
ence is that whether the dropout layers are considered. In
Table 4, the test accuracy has a dramatic drop to 53.80%.
The rational reason is that using 2 dropout layers cuts off
CNN-SMMC parameters too much in case where the con-
volutional layer itself is not deep enough. It demonstrates
that the dropout layer must have a trade-off in convolutional
layers’ depth and the number of itself.

Comparing Experiment D and Experiment E, there is no
max-pooling layer in Experiment D. However, the test accu-
racy has also a sharply decrease from the 63.65% to 53.80%.
Experiment C (no dropout layers) and Experiment D (no
max-pooling layers) show that there is a little changes for
the test accuracy. Comparing with the above two experi-
ments, conclusions can be drawn that the max-pooling lay-
ers and dropout layers should be used in combination, while
the number of dropout layers should not be excessive.

In order to find the optimal layers, Experiment F and Ex-
periment G are designed. The only difference between the
two models is the depth. Experiment F has 8 convolutional
layers but Experiment G has 10 convolutional layers. From
Table 4, the test accuracy in Experiment F has reached to
79.23%, which is more accurate than Experiment G.
5.2. Comparison with different evaluation metrics

In this section, the classification performance is evalu-
ated. Based on the structure of CNN-SMMC in Table 1,
parameters in Experiment F are selected as the extraction
structure. Figure 8 provides the test accuracy of the Exper-
iment F using different batch sizes. It can be seen that the
batch size number of 32 gets the highest accuracy around
89%. However, it cannot completely reflect the actual clas-
sification ability, especially using the data given in Table 2,
where the number of the ship movement modes is not a bal-
anced dataset.

Therefore, Table 5 provides a more detailed performance
evaluation by considering the accuracy, precision, recall, F1
score and the AUC values of the test dataset. Accuracy is the
common metric for evaluating the classification ability for
the dataset and it works well on balanced datasets. The recall
represents the percentage of total relevant results correctly
classified (Magdy and Jones, 2010) and in this research it
means whether the three types of ship movement modes are
classified correctly based on the ground truth labels. Preci-
sion is the fraction of relevant instances among the retrieved
instances (Davis and Goadrich, 2006) and it reflects the pre-
diction ability when you give a new trajectory images with-
out labels. The F1 score here is themacro-average of the pre-
cision and recall, which is a comprehensively metric. Table
5 does not have an obvious change in terms of the average ac-
curacy, recall, F1 score andAUCvalues using different batch
size number. In order to make a higher prediction ability for
new trajectory images, a higher precision value is the best
choice. Therefore, the batcℎ_size = 32 is the optimum.

Table 6 shows the results of three types of ship move-

Figure 8: The test accuracy for different batch size

ment classification and the precision for each ship movement
modes varies around 90%. The manoeuvring’s recall value
is lower than the other two movement modes. The reason is
that the samples in the test dataset are fewer than the other
two ship movement modes. Compared with the recall val-
ues, the precision vales for the three types of movement are
more important. It proves that the CNN-SMMC can be ef-
fective in classifying the trajectory images (generated from
the AIS data) into three types.
5.3. Comparison with other machine learning

algorithms
In order to further assess the performance of the pro-

posed CNN-SMMC, some typical classification algorithms
including theK-nearest Neighbourhood (KNN), Support Vec-
tor Machine (SVM) and Decision Tree (DT) are selected to
compare the classifier’s ability.

The data for the comparison are trained and tested with
the same as the CNN-SMMC models. After setting the pa-
rameters, the algorithms for KNN, SVM and DT are con-
structed by using themachine learning package SKlearn (Pe-
dregosa et al., 2011). Table 7 presents the performance of
these algorithms for the four metrics: test accuracy, average
precision, average recall and average F1 score. The compari-
son indicates that the advantage of the CNN-SMMC model,
in which the test accuracy on the test dataset is 6% higher
than the SVM. Based on the precision and recall metrics, it
proves that the proposed CNN-SMMC has a strong ability
to predict ship movements.

6. Conclusions and future research
In this research, a newCNN-SMMCarchitecture has been

proposed and designed to extract ship movements from AIS
data. First, in order to use the CNN-SMMC extraction abil-
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Table 5
Average accuracy, precision, recall, F1 score and AUC values for the Experiment F

Batch Size Average Accuracy (%) Average Precision (%) Average recall (%) F1 Score (%) AUC (%)

16 70.25 91.48 62.00 76.35 81.08
32 77.66 92.35 61.96 76.38 81.15
64 71.51 93.57 64.72 76.34 81.20

Table 6
Confusion matrix, recall and precision on test dataset

CNN-SMMC
Predicted class

Static Normal Navigation Manoeuvring Sum Recall (%)

Actual class

Static 3120 126 37 3283 95.03

Normal Navigation 207 2108 74 2389 88.23

Manoeuvring 141 63 1009 1213 83.18

Sum 3468 2297 1120 6885 /
Precision (%) 90.1 91.2 90.08 / /

Table 7
Comparison with other classification algorithm

Model
Test Average Average Average
acc (%) precision (%) recall(%) F1 (%)

CNN-
77.66 92.35 61.96 76.38SMMC

KNN 62.45 70.23 40.38 53.48
SVM 72.35 80.43 63.23 65.90
DT 67.54 76.90 61.89 67.07

ity, the SMIGL is proposed to transform ship movement tra-
jectories into trajectory images considering the ship’s head-
ing change rate and speed change rate. The SMIGL algo-
rithms includes four steps: trajectory sampling, calculating
the center and grid ranges of each trajectory images, fill-
ing different pixel values into the grid areas and generat-
ing the images and related labels. Then, a series of exper-
iments for CNN-SMMC with different convolutional layers,
max-pooling layers and dropout layers are carried out to find
the most suitable configuration for CNN. The trajectory im-
ages generated from the AIS data are imbalanced and the
recall, precision, F1 score are introduced to identify which
is the best option. Themetrics indicate that the optimal CNN
can fully realise the ship movement classification and also it
shows a better performance than other classical classification
algorithms such as KNN, SVM and DT.

Future research will be carried out considering the fol-
lowing directions: (1) testing the CNN-SMMC with more
AIS dataset to validate algorithm’s scalability and its po-
tential in dealing with complex maritime traffic scenarios;
(2) expanding the algorithm with new network structures to
classify different manoeuvring situations such as crossing,
head-on and overtaking situations, and this will lead to a

more efficient and intelligent interpretation of ship encounter
situations; 3) exploring other data augmentation methods
such as rotation, scale or conditional Generative adversarial
networks (GANs) etc to increase the variety of the training
data.

A. Supplementary material
The CNN-SMMC and data associated with this article

can be found online at repository: Ship Movement Classifi-
cation from AIS dataset.
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