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Predicting heterogeneous ice nucleation with a
data-driven approach
Martin Fitzner 1, Philipp Pedevilla1 & Angelos Michaelides 1,2✉

Water in nature predominantly freezes with the help of foreign materials through a process

known as heterogeneous ice nucleation. Although this effect was exploited more than seven

decades ago in Vonnegut’s pioneering cloud seeding experiments, it remains unclear what

makes a material a good ice former. Here, we show through a machine learning analysis of

nucleation simulations on a database of diverse model substrates that a set of physical

descriptors for heterogeneous ice nucleation can be identified. Our results reveal that, beyond

Vonnegut’s connection with the lattice match to ice, three new microscopic factors help to

predict the ice nucleating ability. These are: local ordering induced in liquid water, density

reduction of liquid water near the surface and corrugation of the adsorption energy landscape

felt by water. With this we take a step towards quantitative understanding of heterogeneous

ice nucleation and the in silico design of materials to control ice formation.
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There are few, if any, physical processes as ubiquitous as the
freezing of water. It is of fundamental importance to the
environment, technology, and biology. Generally when

water freezes the initial nucleation event takes place at the surface
of some foreign material. A remarkably broad variety of materials
can act as nucleating agents, ranging from minerals1, to carbo-
naceous materials2, to organic molecules and organic matter3.
However, it is still not understood why some materials are better
than others when it comes to promoting ice formation4. Stated
differently, robust connections between the physiochemical
properties of materials and their potency as ice nucleating agents
have yet to be established.

Attempts to understand this issue go back to at least the pio-
neering experiments of Vonnegut in the late 1940s and early
1950s5–7. Working with the hypothesis that effective ice nucleating
agents should offer a template for ice, Vonnegut identified AgI as
one such material. Specifically, he noted that the basal faces of AgI
and ice Ih have lattice constants that fall within 1.5% of each other.
Various studies have now shown that AgI is an effective ice
nucleating agent and it is widely used to this day to seed clouds.
However, counter-examples exist of materials that have an equally
small lattice mismatch with ice and yet are ineffective ice nucle-
ating agents, BaF2 being the most widely studied of these8–10.
Thus, the lattice match alone is not a reliable or robust descriptor
for ice nucleation ability. Beyond the lattice match, in the seventies
Pruppacher and Klett11 introduced a set of requirements for
effective ice nucleating agents. While some of these deal with
macroscopic properties from an atmospheric chemistry viewpoint
(insolubility and aerosol size requirement) the others (chemical
bond, active site and Vonnegut’s crystallographic match) deal with
microscopic characteristics. Pruppacher and Klett’s requirements
are widely discussed. However, there are again many known
exceptions to them and they do not easily lend themselves to
quantitative comparisons between materials12–14.

The last decade or so has been a resurgence of interest in
understanding and obtaining well-defined molecular-level infor-
mation of heterogeneous ice nucleation. From an experimental
point of view insights into ice formation on specific substrates have
been obtained. These have included measurements that reveal
atomic-level structural information on well-defined substrates15–20

as well as measurements of ice nucleation on materials of atmo-
spheric relevance1,3,13,21–23, and more24–27. Computer simulations
have also proven to be a powerful tool in providing insights into
heterogeneous28–33 (and homogeneous34–38) ice nucleation, parti-
cularly at the atomic level. There have also been systematic trend
studies focused on understanding the connections between
nucleation rate or temperature with the lattice constant of the
substrate, surface hydrophilicity, hydroxyl group structure and
symmetry, and surface flexibility39–47. Various other influential
surface characteristics such as charge-distribution48 or nano-
texture49 have also been explored.

While these studies have significantly deepened understanding
of heterogeneous ice nucleation, they have not led to a robust set
of descriptors that can predict the ice nucleating (IN) ability for a
diverse set of substrates. Even the question of how many different
properties of a surface are relevant to ice nucleation is unclear.
Building on the earlier work, methodological developments that
enable the high throughput computational study of hetero-
geneous ice nucleation41,47,50,51, and machine-learning (ML)
approaches for the analysis of large data-sets, the prospect of
understanding such complex relations is now in reach. This is the
approach we take in the current study through the development
of predictive ML models trained on molecular dynamics (MD)
simulations of heterogeneous ice nucleation and random-
structure searches of adsorbed water clusters and overlayers.
From this, we identify four key descriptors that when used

together can accurately predict the ice nucleating potency of solid
substrates. This study deepens our understanding of what makes
materials efficient ice nucleating agents and is a step toward a
comprehensive and predictive set of descriptors which can be
used in future screenings and to guide and interpret experiments.

Results
Ice nucleation simulations. As a first step to identify the
important factors for predicting the IN ability of substrates, we
need to have suitable data. We acquire these by performing MD
simulations of supercooled water in contact with a large set of
structurally diverse model substrates. Our dataset comprises the
400 Lennard–Jones substrates of ref. 41, the OH-group patterns of
ref. 47, graphitic surfaces with modulated water–substrate inter-
action strength similar to those used in ref. 43, graphene oxide as
modeled in ref. 40, and several additional OH-group patterns with
different symmetries from those reported in ref. 47. In total we
have 900 substrates. On each system we perform cooling ramps
and establish the temperature at which the liquid freezes, termed
nucleation temperature Tn. Additional information on the
simulations is given in the methods and Supplementary Note 1.

In this study we have used the mW model to represent water50.
This has proven to be an extremely powerful model for
understanding water and ice, see e.g., refs. 29,34,35,39,51. Its
computational efficiency means that we have been able to screen
900 substrates for their nucleation ability. Such a broad study is
barely conceivable with an atomistic model because of the
computational cost of performing nucleation simulations with
such models52,53. Thus, using an atomistic model would have
severely limited the breadth of our study to only a small subset of
substrates or to substrates with a very ice-like geometry such as
AgI54. From such a study we would not have sufficient data
diversity to identify robust descriptors for Tn. Thus, at present, a
coarse-grained model such as mW is most appropriate for a
broad screening study such as the current one. However, it is
important to emphasize that mW does not capture effects such as
polarization, water dissociation or hydrogen bond asymmetry.
Understanding how these and other effects influence the
conclusions reached in the current study—through simulations
with more sophisticated water models—will make interesting
work for the future.

As a first step to analyze our data we looked to see if the
traditional lattice match descriptor could be used to explain the
nucleation temperatures obtained. As an additional potential
descriptor we also considered the water–monomer adsorption
energy on the surfaces; this is considered a proxy for the
hydrophobicity/hyrophilicity of the surface17,43,44,55. The scatter-
plot shown in Fig. 1a summarizes the distinction between good
and bad nucleating substrates in our database. As a guide to the
eye we define good nucleating agents with a relatively high
nucleation temperature (Tn > 225 K) and substrates that are bad
with Tn ≤ 225 K. Although there is a slight preponderance of good
nucleating substrates in the small lattice mismatch regime, the
correlation is clearly not good and there are many substrates
which are effective ice nucleating agents and are poorly lattice
matched to ice. In terms of the water–surface interaction strength
no obvious connection with ice nucleating ability is found in the
data. All other simple linear descriptors considered suffered
similar problems and none was found to be an accurate descriptor
for heterogeneous ice nucleation.

Nucleation temperature prediction. To help identify descriptors
and obtain quantitative insight into heterogeneous ice nucleation
we turned to a data-driven methodology. As summarized in
Fig. 2, our approach involves several steps to select the important
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Fig. 1 Overview of the database examined and the performance of our ML model. a Scatterplot of monomer adsorption energy versus the best
generalized lattice match for all substrates. Zero corresponds to a perfect lattice match between ice and the substrate. Substrates are classified as good ice
nucleators if their nucleation temperature was above 225 K and as bad otherwise. The inset on the bottom right shows a side view of a typical simulation
cell after the nucleation event. Source data are provided as a Source data file. b Exemplary substrates studied in this work (top down view): fcc-crystalline
substrates with Lennard–Jones interaction (gray), graphitic surfaces (light blue) and OH-group patterns (red). The table below indicates measured
nucleation temperatures and the prediction of our best ML model (when the respective substrate was outside of the training set).

Cluster1 Cluster2
x2
x3
x1
x4

x8
x5
x7
x6Im

po
rt

an
ce

Pick

Feature selection

Creation of
model systems

Assessment of
predictive power

A
cc

ur
ra

cy

n FeaturesFeature
calculation

X

Cooling ramps

Epot

Temperature

Tn

Y

x1

x2

x3

x4
... Physical insight

+
Descriptors

Substrate

Liquid water

Feature importance 

from random forest

             +

Feature cross correlations

             =

Cluster-based selection

x1

x1 x2 x3 x4

x2

x3

x4

Physically motivated
features from MD

and RSS

=�
�ice

�sub — �ice

Y = f (X)

Fig. 2 Overview of the data-driven workflow employed in this study. In brief, we start by creating a diverse set of substrates covered by liquid water. By
performing MD cooling ramps we establish their nucleation temperature Tn, which is later used as dependent variable Y. Separately, we use these model
systems to compute a large set of features, to be tested as independent variables X. We feed these data to a feature selection approach to select the most
important parts of X. This is done by using the feature cross-correlations for distance-based clustering and then selecting from each cluster the most
important feature, where the importance comes from a random forest model using all features. Subsequently, we check the predictive power over Y by
machine-learning the dependence Y= f(X). Last, we employ state-of-the art feature interpretation techniques to gain physical understanding of the
selected features.
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features for predicting Tn. After having measured Tn, a large set of
physically motivated features (e.g., the liquid density, number of
nearest neighbors, adsorption energies etc.) are calculated from
separate simulations. We feed these data to a cluster-based feature
selection approach. This reduces the number of features used in
the model to only a handful, which enables a more in-depth
analysis later on. We subsequently check their predictive power
over Tn. Last, we employ state-of-the art feature interpretation
techniques to gain physical understanding of the selected features.
In the following we will call those selected features descriptors to
distinguish them from the other calculated quantities. A more
detailed overview of the approach is given in the Methods, Sup-
plementary Note 3 and Supplementary Figs. 3 and 4. We note
here that through our cooling protocol for establishing Tn from
repeated cooling ramps on each system we have a natural
uncertainty on Tn of ca. 6 K (±3 K, where 3 K is the average
standard deviation of Tn for all substrates). This represents a
lower bound for the best possible prediction (in terms of the root
mean square error, RMSE) we can achieve.

We have already seen that analysis of the data based on linear
descriptors is unsatisfactory. This is confirmed by testing a linear
baseline model on our data (an elastic net model which is a
version of linear regression). As shown in Fig. 3a this baseline
model is rather insensitive to the number of descriptors
considered and yields a best RMSE of 12.5 K on predictions of
Tn across our entire database. The expected error window can be
approximated by ± the RMSE. Given that the range of nucleation
temperatures observed in this work spans 70 K, this is mediocre
performance at best. Indeed, since the typical experimental range
of ice nucleation temperatures explored is about 35 K21, a
prediction window of 25 K (±12.5 K) is not sufficiently accurate to
make reliable quantitative predictions of the ice nucleating ability
of substrates.

Turning now toward the performance of the best ML model
identified in this study, we find that it performs well with RMSE
values approaching 6 K (Fig. 3a). This yields a prediction window
of 12 K (±6 K), half that of the baseline model, and sufficiently
narrow to be considered a good prediction of Tn. With this
accuracy, substrates could be classified into several classes of
nucleators to reliably distinguish good from bad ice forming
substrates. We are not aware of any previous works that predicted
the IN ability across a diversity of many different (out-of-
training-set) substrates: The closest previous studies47,56 focused
on more qualitative insight, and did not report quantitative
metrics. A representative comparison of predicted and measured
Tn for the best ML model is shown in the inset of Fig. 3a where a
R2 value of 0.856 indicates a good correlation between predicted
and measured values. A common interpretation of this metric is
that the model is able to explain ~86% of the variance of Tn. We
have also used dimensionality reduction to see whether good and
bad nucleators are visually separated, which is indeed the case for
our best ML model (see Supplementary Note 7 and Supplemen-
tary Fig. 8). This provides further evidence that we have identified
meaningful descriptors that can distinguish good from bad ice
nucleators.

Another important observation to make from Fig. 3a is that
there are four main contributors to predicting Tn, since the model
performance does not improve significantly after including more
than four descriptors. The first and most important descriptor
found is the lattice match between the substrate and ice. Given
previous work, this is not unexpected5,41,57. However, its
identification in a purely data-driven manner is a verification of
the efficacy of the approach developed here. The other descriptors
are essentially measures of the following physical properties: (i)
the local ordering in liquid water; (ii) the local density reduction
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Fig. 3 Model performance and descriptor identification. a Performance of
the linear baseline model and the best ML model identified in this study as a
function of the number of included descriptors. The inset shows the
correlation of predicted and measured Tn for the ML model using nine
descriptors. Error bars represent the standard deviation over 20
independent train-test splits. Source data are provided as a Source data file.
b SHAP values (model impact) for the first four included descriptors from
panel (a). These are (i) the lattice match to the basal face of ice; (ii) the
mean lq3 (as defined in the text); (iii) the mean number of nearest
neighbors within 3.4 Å; and (iv) the variance of water tetramer adsorption
energies. The color scale goes from the lowest (blue) to the highest (red)
value present in our dataset for each descriptor, respectively. c Sketch
illustrating substrates (top view on the left) that are structurally similar.
The water–monomer adsorption energies (Eads shown schematically on the
right) for different positions are not very different in the case on the top
substrate while in the bottom substrate they are very different, leading to a
more corrugated adsorption energy landscape.
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in the liquid near the surface; and (iii) the corrugation of the
adsorption energy landscape felt by water. When these additional
descriptors are taken into consideration, the prediction error is
reduced by half, compared to just lattice match-based predictions
alone. This result is encouraging and suggests that we can find the
missing contributions that help to predict whether a substrate is
good or bad at ice nucleation. We note that although different
feature selection methods can yield slightly different results (see
Supplementary Note 4 and Supplementary Fig. 5), the descriptors
identified always came from these broad physical families,
indicating that our findings are robust. In the following sections
we discuss all four of the key descriptors identified in detail.

Physical interpretation of descriptors. We have established that
we can build predictive models (with a low number of descriptors)
for the IN ability of different substrates. To extract physical insight
and guide our interpretation of the black-box decision of the ML
model we apply SHapley Additive exPlanations (SHAP)58. SHAP
values come from a step-wise decomposition of the model deci-
sion rooted in game theory, by essentially comparing the outcome
difference of including or not including a certain feature. This
means that a feature impact of, e.g., +30 for the lattice match
feature means that the model’s prediction for Tn was increased by
30 K due to that feature. SHAP values are always for a specific data
point (i.e., in our case substrate) and must be regarded as a dis-
tribution per feature.

In Fig. 3b, we display the SHAP value distribution for the first
four descriptors included in Fig. 3a. Each colored point
corresponds to a substrate, while its color relates to the values
(low or high) of the corresponding descriptor for that row (the
color is not to be confused with high or low Tn). Whether a point
is to the right or left of the graph indicates whether for this
substrate the descriptor of that row caused a positive or negative
impact on the value of the predicted Tn. We now discuss what we
have learned from the SHAP analysis and the four key descriptors
that have been identified.

Lattice matches. The most familiar descriptor that proves to be
important in predicting Tn is the lattice match of the substrate
with the basal face of ice, specifically the 2-dimensional in-plane
lattice match. If we examine the SHAP values for this descriptor
(first row in Fig. 3b) we can see that low values (blue dots, cor-
responding to a good match) often contribute to predicting a
much higher Tn. This is in agreement with previous results41,56,57

which show that a good lattice match to the basal face can result
in a good IN substrate. However, as noted already, we find many
exceptions where a good lattice match to ice does not lead to an
efficient ice nucleating substrate.

To capture also the match to other ice faces we calculated a
generalized lattice match ζ:

ζ ¼ min
r0;θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
NM

XN ice

i¼1
riðr0; θÞ � rsð Þ2

s
 !

ð1Þ

Here, r0 is the position vector of the center of mass of a randomly
displaced ice crystallite (corresponding to a certain ice face), θ is
its rotational orientation relative to the surface normal, Nice is the
number of water molecules in the ice crystallite, ri(r0, θ) is the
position of oxygen atom i at a given r0 and θ and rs are the closest
substrate atom to water molecule i. If water molecule i does not
have a substrate atom close by (threshold: 3.3 Å), then this water
molecule is omitted from the calculation. By choosing different
ice crystallites as reference we can probe the match to different
faces of ice. Here, we have focused on the basal, prism and
secondary prism faces of Ih and the (111) and (001) faces of Ic.
The results for the generalized lattice match have been discussed

previously and are shown in Fig. 1a. Upon considering the
relative importance of the different faces in predicting IN ability
we find that the lattice match to the basal face is the most
important, with the match to the prism face being the next most
important.

Local ordering. We find that the local order of the liquid is
another important descriptor of a good ice nucleating substrate.
Local order can be conveniently defined as:

qlmðiÞ ¼
1

NbðiÞ
X

NbðiÞ

k¼1

Ylmðθik; ϕikÞ ð2Þ

where Ylm are spherical harmonics and θik and ϕik are the relative
orientational angles between the molecule i and k. The sum goes
over the Nb(i) neighbors of molecule i (i.e., within 3.4 Å). For a
given l we then compute the quantity for all possible values of m
and store them in a vector q!lðiÞ containing 2l+ 1 components.
From this we calculate values lql according to:

lqlðiÞ ¼
1

NbðiÞ
X

NbðiÞ

k¼1

q!lðiÞ � q!lðkÞ
q!lðiÞ
�

�

�

� � q!lðkÞ
�

�

�

�

ð3Þ

Of the various local order parameters evaluated (see Supple-
mentary Note 2 and Supplementary Fig. 2), we find that lq3 is a
particularly good descriptor. For lq3, lower values indicate a tet-
rahedral environment, and as shown in Fig. 3b (second row),
substrates with a low mean lq3 are predicted as good nucleators
while mixed and higher values tend to be associated with poor
nucleators.

Further, in addition to the mean, the standard deviation of lq3
values appears as the sixth selected descriptor, with higher values
being favorable for nucleation. We can interpret this in a practical
sense: Since these statistics come from MD trajectories, an
increased variability of lq3 indicates a higher fluctuation of
ordered structures due to the influence of the substrate. This is
consistent with our earlier suggestions that pre-critical fluctua-
tions28 are indicative of the IN ability as well as the type of ice
that will form. Thus, the variability of local ordering can be seen
as a measure of pre-critical fluctuations, an aspect that could be
studied by time-resolved experiments.

We note that we have calculated the various order parameters
from MD trajectories at the coexistence temperature for all
substrates. This is interesting because the order within the liquid
at the coexistence temperature can readily be computed with
more sophisticated water and substrate models than those used
here and it can also be established experimentally with techniques
such as surface X-ray diffraction59.

Liquid density reduction. The third descriptor appearing in
Fig. 3b is the average number of nearest neighbors (third row)
that we count within a sphere of radius 3.4 Å. This descriptor is
connected to the density of the liquid. We find that substrates that
are able to decrease the number of nearest neighbors (i.e., the
local density, blue points) due to structuring of the liquid are on
average better nucleators. This has a straightforward physical
interpretation: If the average density is higher in the liquid than in
the crystal (which is true for water), then upon nucleating the
emerging crystal has to push out the excess molecules in its
vicinity, and this likely contributes to the nucleation barrier. If a
surface is able to reduce the liquid density in its proximity, this
will therefore benefit this regions’ ability to nucleate ice.

We are not aware of previous discussions of this microscopic
density principle for heterogeneous ice nucleation, despite its
straightforward physical basis. For homogeneous nucleation, Li
and coworkers34 observed a similar trend with the density,
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presumably for the same physical reason. In addition, our result
shows that the density reduction is also a vital component of good
heterogeneous nucleators and could thus potentially be used to
control heterogeneous nucleation.

From all the substrates considered, we find substrates that both
decrease and increase the average number of neighbors in the
adjacent liquid. This means that the density descriptor could also
be used to screen for both nucleation-promoting and nucleation-
inhibiting (these may be overly dense at the interface) surfaces.

Corrugation of the adsorption energy landscape. Finally, we
find that adsorption energies (Eads) play an important role as
descriptors. However, unexpectedly it is not absolute values, but
rather the diversity of possible adsorption energy values that is
important. We computed these descriptors by performing a large
set of random-structure searches for diverse ice-like structures on
each substrate to characterize their Eads landscape. The statistics
that appear as important (e.g., for water tetramers in Fig. 3b) are
measures of the spread of Eads values (such as variance, range or
(Shannon-)entropy) and not absolute values (such as mean or
median). We interpret this as the corrugation of the adsorption
energy landscape being measured, with a less rugged environment
(smaller variance) being more beneficial to IN. In Fig. 3c, we
show an illustrative sketch of different adsorption energy land-
scapes, depending on the variability of the adsorption strengths of
the different sites. It is important to realize that this measures not
the absolute (average) adsorption strength but rather the diversity
of the Eads distribution.

Another unexpected finding is that it is not the most ice-
similar structures that are the most relevant structures for this
measure. We see that the adsorption uniformity for tetramers and
pentamers is most important, followed by monomers and dimers.
The hexamers or cages investigated received a lower importance
rating. This perhaps indicates that interfacial structures that are
not necessarily ice-like play an important role and a good ice
nucleator does not require the interfacial water layers to be
precisely ice-like. The potential role of interfacial structures to the
nucleation process has been noted. For instance a defect structure
with 5-fold symmetry was observed during homogeneous
nucleation60. We have not directly observed any particular
nucleating structures in this work, but the connection to Eads of
pentamers is possible.

Remarks on non-selected features. After having discussed the
most important descriptor types for predicting Tn, it is interesting
to consider the features that have not been selected by our
algorithm. First, we note that if a feature has not been selected it
does not mean that it is entirely unimportant. This is because our
approach takes into consideration both the feature importance
and the correlation with already selected features, so a feature not
being selected could also come from redundancy with other
descriptors. In practice it will be a combination of both effects.
Second, the number of non-selected features vastly outnumbers
the ones that are selected (for a listing see Supplementary Note 2),
so in the following we focus on a few examples that are surprising
or are related to previous studies.

We have also computed the layering as defined in ref. 39 and
refs. 43,44, where the absolute deviation from bulk number density
is measured and integrated, treating increased and decreased
densities the same. Our results indicate that rather than an
absolute change in density, a density reduction is desirable, hence
making a measurement for this the better descriptor. Also, a
certain correlation between the layering and density reduction is
expected, which might also contribute to layering not being
selected.

Most work on heterogeneous nucleation in general focuses on
structural aspects of the substrate or the interfacial water. Recent
work, however, has highlighted the role of heterogeneous
dynamics for supercooled water in the homogeneous case36.
Despite this, the dynamics near liquid interface remain largely
unexplored. To have a simple measure for liquid dynamics near
the interface we computed mean displacements at timescales
ranging from 1 to 150 ps. A distinction between different layers
perpendicular to the surface was also made. None of these
features has been selected in the end, which is somewhat of a
surprise. A possible explanation is the following: Most of our
substrates will decrease the mobility of interfacial water
molecules, thus measures of displacements will offer little
distinction between them. For hydrophobic surfaces this would
not be the case, displacements possibly being higher. However,
for those substrates then also trivially other descriptors would
indicate the trend with Tn, such as the local ordering, hence
making displacements unhelpful.

A large group of features not appearing useful are velocities
and forces (distinguished in layers and perpendicular/parallel to
the surface normal). These are expected to differ from bulk near
the interface, potentially carrying information about Tn. However,
this was not the case.

Discussion
In this work we started by establishing the IN ability of a large
number of diverse substrates in contact with water. We then
developed a data-driven approach based on machine-learning
methods to identify descriptors for heterogeneous ice nucleation
and established that the resulting models are indeed predictive. A
key conclusion is that no single descriptor has been identified that
can reasonably well predict the IN ability. For each of the
important descriptors there are exceptions where they are not
predictive if used on their own. However, by using the following
four microscopic principles in conjunction, we can reliably pre-
dict the IN ability of a given substrate. They are:

● Lattice match of the substrate to a low-index face of ice;
● Local tetrahedral ordering of the liquid near the surface,

ideally measured with lq3, as well as pre-critical fluctuations
(measured as the variability of lq3);

● Density reduction of the liquid near the surface;
● Corrugation of the adsorption energy landscape, with a

smooth energy landscape preferred to a rugged one.

With this we have shown that a ML model can be developed
that is capable of learning the important contributions for a
quantitative prediction of heterogeneous ice nucleation. This has
revealed the particular characteristics beyond the lattice match
that help to make a surface a good or bad ice nucleator. While the
rediscovery of the importance of lattice match is not new, the fact
that it falls out of the ML model serves as a verification of our
method. Of the three other descriptors identified, local ordering
has received limited prior attention, and the descriptors on the
corrugation of the adsorption energy landscape and the density
reduction near the surface are new concepts in heterogeneous ice
nucleation.

Two out of the four descriptors we found are more directly
related to intrinsic surface properties (lattice match and adsorp-
tion energy landscape) while the others describe interfacial water.
Overall, it is more desirable to have descriptors that relate to
surface chemistry alone. This goal, however, is much more
challenging and for future work we propose to split the process of
understanding heterogeneous IN into two steps: (i) relate IN
activity to interfacial water properties and then (ii) relate surface
chemistry to interfacial water properties.
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An important question is whether the descriptors identified in
this study will apply if ice nucleation is explored with other
simulation approaches (e.g., other water models) or in experi-
ment. The nature of the ML model means that there is unlikely to
be a numerical one-to-one correspondence between the descrip-
tors identified in this study and those obtained with other water
models. In other words, a covariate shift between descriptor
values of different water models is to be expected. However, with
this in mind, we have refrained in the current study from
reporting specific threshold values for descriptors. Instead, we
have reported and discussed broad categories or families of
descriptors. The categories of descriptors are all clear and phy-
sically motivated quantities that can be probed and tested with
other water models and with experiment. In addition, we note
that the descriptors were obtained from simulations at the
coexistence temperature (where ice and liquid are equally stable).
Hence, there is no need to study further any system at or close to
its actual (and initially unknown) freezing point. This drastically
simplifies computational and experimental investigations probing
the descriptors identified here, since substrates can be compared
based on single temperature studies.

Before closing, we give some perspective on connections with
experiments. There are a variety of experimental techniques
already available to study many of the physical properties dis-
cussed in this study. The lattice match can already be probed by
crystallographic methods. Density and local ordering could be
probed by surface X-ray59 or sum-frequency generation
spectroscopy61,62. The adsorption uniformity could be studied
with atomic force microscopy63 or scanning tunneling
microscopy17,64. Our study also calls for time-resolved methods
that do not average out structural fluctuations on short time-
scales, to being able to investigate pre-critical fluctuations. Given
our findings we are confident that any such investigation can be
done at constant temperature (e.g., close to coexistence), even
when two materials with drastically different IN ability are
compared.

Finally, we note that this study deals with the microscopic
influences on IN, i.e., essentially regarding the substrate as infinite
and flat (on the order of a few atomic distances). There are other
potentially influencing factors such as macroscopic hydro-
phobicity and large-scale roughness. In this sense, we regard our
results as being of primary relevance to the so-called active sites
in IN. This viewpoint can connect our work to more macroscopic
studies and experiments in which the existence and location of
active sites has been demonstrated23 but their structure and
composition remain elusive.

To conclude, with this work we have identified a predictive set
of microscopic descriptors for the IN ability of substrates and
have shown that the quantitative predictions of heterogeneous IN
can be made. We expect that our findings will be useful in
interpreting future ice nucleation experiments and as a guide for
the development of substrates with targeted ice promoting/inhi-
biting abilities.

Methods
Systems and simulations. We start by giving a brief overview of the workflow
developed in this study. For a more detailed description the reader is referred to
Supplementary Notes 3 to 8, where we discuss more aspects of the ML methods
employed. A sketch describing our general approach can be found in Fig. 2. As a
first step, we combine a set of model systems for heterogeneous ice nucleation both
from the literature as well as newly added substrates. Our dataset comprises of 900
diverse substrates, partly inspired by refs. 40,41,43,47 as outlined in the main text. For
the MD simulations, the water–water interactions are represented by the coarse-
grained mW model50, while the water–substrate interaction varies depending on
the substrate type, but mostly employs variations of the water–water interaction as
well as Lennard–Jones-like interactions. More simulation details can be found in
Supplementary Note 1 and Supplementary Fig. 1.

On these systems we perform five cooling ramps each (at 1 K ns−1) from 273 to
200 K. Cooling ramps are widely used to characterize the IN ability of a given
system in simulations39,40,47 and experiments13,21,24. We define as the nucleation
temperature Tn the temperature at which a significant drop in the potential energy
(Epot) is seen. This identifies the onset of nucleation as the drop is much more
pronounced than the slope caused by the cooling. Tn correlates well with IN ability
since a nucleation event at a higher temperature means a larger reduction of the
homogeneous nucleation barrier (which increases with higher temperature). See
ref. 47 for a comparison of Tn with nucleation rates. With this approach we have a
measure to rank the substrates by their IN ability as well as a measure for the
uncertainty in the IN ability (the standard deviation of the 5 runs). With 5 runs we
strike a balance between precisely knowing Tn and computational efficacy. In
hindsight, we see that our best model RMSE is larger than the uncertainty from
calculating Tn, suggesting that there is little value of establishing Tn with higher
precision.

Computation of features. To find descriptors that can predict the IN ability we
first compute a large selection of features. We have generally taken into account
forces, displacements, densities, generalized lattice matches, velocities, adsorption
energies of different ice structures, and local structuring measures. We also dis-
tinguish different liquid water layers regarding their vicinity to the surface, and
where applicable also different timescales (e.g., for average diffusion distances).
These features are gathered by post-processing data from either MD or the
random-structure-search approach used in ref. 65. The various combinations
amount to about 3000 initial features that will be assessed. All features we compute
and the methods used to obtain them are described in more detail in Supple-
mentary Note 2 and Supplementary Fig. 2.

Feature ranking and selection approach. To identify the most relevant features
out of the ~3000 considered, we couple two important components. First, we
calculate an importance score for each feature. This is extracted from fitting a
random forest model66 including all features. This model type has the advantage
that it can easily be trained for a large number of features and comes naturally with
a measure for feature importance. The measure is related to the performance of the
model (on out-of-sample data points) compared to the performance after ran-
domly permuting the values in that feature. We train the random forest to classify
whether the system is a bad or good nucleator (threshold 225 K).

By construction, we expect many of the features to carry similar, if not identical,
information (take for instance the average density in two adjacent layers). Thus, as
a second step, we perform hierarchical clustering between the features to deal with
correlations among them. As the distance d(f1, f2) between two features f1 and f2 for
the clustering we choose d(f1, f2)= 1− MIC(f1, f2), where MIC is the maximum
information criterion67, an information-theoretical measure similar to correlation
that is capable of capturing non-linear associations, which is also bound to the
interval [0, 1].

We then combine these two components to pick a set of n features, by forming
n clusters and selecting from each the feature with the highest importance (see the
central part of the workflow in Fig. 2). Various approaches are used for this (see
Supplementary Note 4 and Supplementary Fig. 5). Here, we show results using an
average linkage approach for the clustering.

Model performance assessment. After selecting relevant features we check
whether they are actually able to predict the IN ability of substrates in a satisfactory
manner. We do this through a regression of Tn and use the root mean square error
(RMSE) as a performance indicator. In the Supplementary Note 5 and Supple-
mentary Fig. 6 we also discuss a simpler classification task where we split all
nucleators into good or bad ones according to Fig. 1a.

The choice of ML model presents a potential bias when assessing the predictive
power of the selected features. While the feature set might contain all necessary
information to predict Tn, a model that for instance cannot capture non-linearities
might nonetheless yield bad scores. We choose as the estimator model a widely
adopted variant of gradient boosting with trees, xgboost68. While it is beyond the
scope of this study to benchmark many different ML models, we note that the
accuracy assessment was repeated with random forests66 and support vector
machines69, yielding worse results but consistent trends (these results can be found
in Supplementary Note 6 and Supplementary Fig. 7).

We calculate the corresponding model score on a 30% hold-out set, repeated
20 times. The standard deviation of this is reported as the error of the score. As
stratification for the splits we divide the Tn range into five sub-ranges (each
about 14 K). On the other 70% of the data we train the model after performing 5-
fold cross-validation to select the best hyperparameters. This split is done prior
to the feature selection to avoid the test set influencing the selection process. The
hyperparameter search was done utilizing the Bayesian tree-structured Parzen
estimator70. As a baseline to compare this with we use the linear elastic
net model.

Data availability
The data that support the findings of this study are published under the https://doi.org/
10.6084/m9.figshare.12855563.
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Code availability
The simulation software package is open source71, the scripts to perform random-
structure search were published along with ref. 47 and the data analysis was done using
open-source python packages (pandas, shap, xgboost).
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