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Abstract  

The high cost of high-resolution computational fluid/flame dynamics (CFD) has hindered its 

application in combustion related research, design and optimization. In this study, we propose a 

framework for turbulent combustion simulation based on the deep learning approach. An optimized 

deep convolutional neural network (CNN) inspired from a U-Net architecture and inception module is 

designed for constructing the deep learning solver, named CFDNN. CFDNN is then trained on 

simulation results of hydrogen combustion in a cavity with different inlet velocities. After training, 

CFDNN can not only accurately predict the flow and combustion fields within the range of the training 

set, but also shows an extrapolation ability for prediction outside the training set. The results from the 

CFDNN solver show excellent consistency with the conventional CFD results in terms of both 

predicted spatial distributions and temporal dynamics. Meanwhile, two orders of magnitude of 

acceleration are achieved by using the CFDNN solver compared to a conventional CFD solver. The 

successful development of such a deep learning-based solver opens up new possibilities of low-cost, 

high-accuracy simulations, fast prototyping, design optimization and real-time control of combustion 

systems such as gas turbines and scramjets. 

Keywords: Deep learning; Convolutional neural network; Computational fluid dynamics; Turbulent 

combustion 
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1. Introduction 

With the rapid development of high-performance computers, computational fluid/flame dynamics 

(CFD) can produce high-resolution simulation results that are of increasing importance to academic 

research and industrial R & D. However, the process of solving the partial differential equations for 

turbulent combustion with realistic chemistry is computationally expensive. Computing costs are still 

the biggest obstacle, when engineers have to repeatedly do simulations to evaluate the performance of 

a combustor or optimize a design for different working conditions. This is especially true in the design 

of complex combustion systems such as gas turbines, ramjets, scramjets and rocket engines. One of 

the alternatives is to construct surrogate models to act as a quick and specialized solver. Over the past 

ten years, deep learning methods have become popular and are regarded as an effective alternative to 

offer the possibility for researchers to make a trade-off between a model’s precision and computational 

time.  

The capability of deep learning has attracted many researchers’ attention for the past few decades. 

Its development resulted from the great progress in the artificial neural network (ANN), which can 

effectively deal with nonlinear relationships. Benefiting from the improvement of algorithms [1] and 

the emergence of various types of ANNs designed for different purposes [2], ANN’s applications in 

the field of deep learning have gradually expanded to the industry, e.g. emission control of engines [3, 

4] and modeling of engine characteristics [5-7]. 

Many attempts have been made to apply ANNs to fluid dynamics simulation [8]. To model the 

turbulence, Tracey et al. [9] presented a landmark proof-of-concept of a new ANN approach to build 

a representation of turbulence modeling closure terms using supervised learning algorithms. Ling et 

al. [10] employed a deep neural network technique to predict the Reynolds stress anisotropy tensor. 

Wang et al. [11] and Wu et al. [12] proposed a comprehensive perturbation strategy to train and revise 
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Reynolds stresses from a DNS database. These results are both exciting and encouraging and the 

applications of deep learning in turbulence modeling are systematically reviewed by Duraisamy et al. 

[13]. In addition to turbulence, application of deep learning in combustion is the focus of this study. 

The developed methods for simulation of turbulent combustion mainly include one or more of the 

following three kinds of strategies. 1) Chemistry representation. 2) Subgrid scale modeling / 

combustion modeling. 3) Surrogate/specialized solver. 

 One of the researchers’ original intentions of applying machine learning to combustion is to 

deeply explore results with reduced computational resources. As the calculation of reactions consumes 

the majority of the computational resources, most efforts are devoted to representing chemical 

reactions by using different topologies of ANN. The application of machine learning in combustion 

starts from reproducing species changes in a three-step chemistry mechanism for hydrogen turbulent 

combustion [14]. Subsequently, Blasco et al. [15] applied the ANNs to a reduced, 5 steps and 8 species 

mechanism for methane–air combustion. They proposed a two-layer network to divide the samples of 

the thermodynamics space into sub-domains by using Self Organizing Map (SOM) and use multiple 

ANNs with the aim to get a dedicated ANN for each sub-domain. The SOM-ANN topology was tested 

by simulating a Partial Stirred Reactor (PaSR) and encouraging results were reported. Furthermore, 

Chatzopoulos and Rigopoulos [16]  and Franke et al. [17] developed a method of combining the Rate-

Controlled Constrained Equilibrium (RCCE) with the SOM-ANN for a mechanism of CH4–air 

combustion with 16 species. After training, the simulation results show that RCCE-SOM-ANN 

topology the ANN approaches have the ability to reduce the computational cost by one to two orders 

of magnitude.  

ANNs have also been demonstrated for their power in reformulating and predicting subgrid-scale 

models for combustion modeling. For example, the flamelet models based on tabulations of small 
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flamelet has recently become popular for its efficiency. Kempf et al. [18] applied feed-forward ANNs 

to represent a steady flamelet model in LES with the outputs of species mass fractions, density and 

viscosity as a function of the mixture fraction. A multi-layer perceptrons with two hidden layers were 

employed in the research. Compared with conventional flamelet table integration approaches, the 

ANNs-based tabulation can reduce memory by approximately three orders of magnitude with 

unchanged CPU cost. Similarly, Emami et al. in [19] conducted an analogous study by using an optimal 

ANN-based flamelet framework to model the turbulence-combustion interaction in a turbulent 

CH4/H2/N2 jet diffusion flame for RANS. Compared with numerical integration for the estimation of 

mean thermo-chemical variables in their computational fluid dynamics code, the ANN method yields 

good predictions with decreased computational cost. 

In addition, some efforts have been made in a different context to utilize ANN for combustion 

modelling. Sen et al. in [20] evaluated the applicability of ANNs approach as LES sub-grid model for 

the calculation of chemical reaction rates in reactive flows. With a well-trained architecture, the ANN 

can successfully predict the reaction rates with an accelerated calculation speed and reduced memory. 

In a subsequent study, Sen et al. [21] trained the ANNs with data generated from stand-alone linear 

eddy mixing (LEM) simulations instead of those from DNS of a laminar FVI results as in [20]. Results 

suggest that the ANNs trained by LEM results are able to grasp the correct flame physics with same 

accuracy as direct integration could offer, but with reduced memory and accelerated calculation speed. 

The integrated LEM-ANN LES framework was further applied to a flame-turbulence interaction near 

extinction and reignition of a non-premixed, syngas/air flame, contributing to about 5-fold speedup as 

that from a direct integration [21]. 

Furthermore, Nikolaou et al. [22] developed a data-driven modeling framework for estimating 

progress variables in LES. In their research, a DNS-data-trained CNN was employed to perform 
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deconvolution on two variables, i.e. the filtered density and the filtered density-progress variable 

product. The two variables were further used to approximate the sub-grid scale progress variable 

variance and the filtered reaction rate. Inspired by a U-net technique (a type of CNN for image 

segmentation), Lapeyre et. al [23] applied a CNN method to simulate the subgrid scale flame surface 

density for LES. The training data set is built by DNS data of a premixed turbulent flame stabilized in 

a slot-burner configuration. After training, the CNN-based model was then applied to estimate subgrid 

scale wrinkling and validated by an unsteady turbulent flame. Very recently, Seltz et al. [24] proposed 

a unified modelling framework for all unresolved terms in the filtered progress variable transport 

equation in LES of turbulent premixed flames. The CNN was deployed and trained by a DNS database 

of a turbulent premixed stoichiometric methane/air jet flame. The results showed that the trained 

networks had been shown to produce quantitatively good predictions of all unresolved terms in an a 

priori study without having to resort to solving any additional transport equations. These studies have 

witnessed the excellent predictive performance of ANNs/CNNs in turbulent combustion sub-grid 

modeling.  

Because of the above successful applications, an emerging area of research is to build specialized 

solvers, which is also the point of interest in this paper, but there are only limited results. Rajabi et al. 

[25] pioneered the use of a multivariate Levenberg-Marquardt neural network (LMNN) to predict the 

turbulent flow over a backward-facing step. The LMNN was informed by using DNS data and can 

then be used as a fast surrogate solver to accurately estimate the velocity field. Guo et al. [26] proposed 

a general and flexible approximation model for real-time prediction of non-uniform steady laminar 

flow in a 2D or 3D domain based on CNNs and successfully reduced the total consumed time to two 

orders less than a GPU-accelerated CFD solver. Zhang et al. [27] probed an approach to predict the 

airfoil lift coefficient by training a CNN model of multiple flows with various Mach numbers and 
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Reynold numbers. The model exhibits a competitive prediction accuracy in predicting lift coefficients 

for unseen airfoil shapes. In summary, unlike the first two categories, this paradigm considers the flow 

field as a whole picture, resulting in a more efficient specialized solver for a problem. This kind of 

solver is crucial in R & D such as rapid prototyping, optimal design. However, the above studies only 

focus on turbulent flow and there is no such a precedent for specialized solvers of turbulent combustion 

as far as we know. 

In this paper, we explore the feasibility of deep learning to predict turbulent combustion and 

construct a specialized solver in terms of physical properties and species distribution. An optimized 

architecture was developed and then validated in a hydrogen flame in a cavity in the terms of accuracy 

and efficiency.  

2. Methodology 

2.1 Overview 

The results of numerical simulation of combustion are usually obtained by iteratively solving a 

large number of equations, whereas the deep learning technique provides an alternative way to reach 

the same end goal at a significantly reduced complexity and computational cost. Deep ANN has been 

shown to approximate any complex continuous functions [28], without actually solving the set of 

equations governing combustion. In this study, a framework of a specialized solver for combustion 

simulation based on an optimized deep convolutional neural network is proposed. Furthermore, the 

approach is applied to establish a fast solver for turbulent combustion in a cavity. Since deep learning 

is a purely data-driven approach that deconstructs the data in its own way, which is not based on any 

prior-knowledge, data generation is needed for the neural network. In the following, we describe the 

key components in turn. 
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2.2 Deep learning architectures 

 

Fig. 1. Architecture of CFDNN framework. 

Inspired by the U-net approach, we aim to develop a deep learning architecture for combustion, 

named CFDNN. U-net was first proposed by Ronneberger et al. [29], and has been proven to be an 

effective tool for complex segmentation tasks in the area of biomedical imaging through accurately 

extracting the characteristics of input data at different scales [30, 31]. Furthermore, U-net can not only 

convert the feature map into a vector, but also reconstruct the feature from this vector while greatly 

reducing sample requirements. Therefore, when considering the complex multiscale problem of 

combustion, a natural choice would be to us U-net as the basis and some successful attempts have been 

made [23, 32]. However, the original U-net is meant for a segmentation task, the output layer is 

designed to represent a categorical distribution. In the present combustion case, the U-net was adapted 

for the regression task by rectifying linear unit activation in the output layer. Furthermore, this structure 

has been further expanded upon by embedding the inception modules [33]. The concept of the 

Inception was firstly proposed by a group from Google, where they discussed how to extract more 

features with the same amount of computation. As shown in Fig. 1 (lower left), it is composed of 

parallel paths with different sizes convolutional layers. When input is coming in, these multiple paths 

can extract features of different scales than a single path without increasing too much computation. 
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Finally, as shown in Fig. 1, the newly developed network consists of the contraction and 

expansion sections. The contraction section can effectively learn complex features by step-by-step 

dimensionality reduction and decomposition using the inception module. It is composed of parallel 

paths with convolutional layers of different sizes. When input is coming in, these multiple paths can 

extract features of different scales rather than a single path, without increasing much computational 

load. After that, all feature maps at different paths are concatenated together as the input of the next 

module. This section can therefore be formulated as: 

 : ={ ( , , )} ={ ( , , )}k
i i iConvNN D x y z H f x y zϕ →  (1) 

where 3( , , )x y z ∈  is the 3-dimensional coordinate system of the simulation. i is an index for the 

flow field variables, e.g. temperature, velocity, mass fraction of species etc. ConvNN  denotes the 

mapping from the simulation result to a convolutional space with k features (user defined parameter) 

using multiple convolution. 

The heart of this architecture lies in the expansion section, which, as you can see, is completely 

symmetric with the contraction section, and can be represented as:  

 : ={ ( , , )}k
i i iDeConvNN H D x y zϕ→ 

  (2) 

The prediction of field variables iϕ   is extracted by the DeConvNN   operation. This action 

would ensure that the features that are learned while contracting the image will be used to reconstruct 

it. After these local optimizations, the overall framework requires a much smaller number of samples 

with acceptable amount of computation, allowing us to complete training and simulation even on a 

personal computer. 

 ( )
2

1

1 n

n
MSE D D

n =

= −∑   (3) 

The training procedure is an optimization for minimizing the mean squared error (MSE) between 

D  and D , the Eq. (3). In this study, the Adam optimizer [34] is used to do this optimization . Adam 
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is an extension of stochastic gradient descent (SGD) algorithm. The method is computationally 

efficient and straightforward to implement and has been proved to have good performance in 

processing large amounts of data and parameters [35, 36]. The training of the network was conducted 

using the TensorFlow (www.tensorflow.org) library.  

3. Application of CFDNN 

3.1 Data preparation 

In this study, turbulent combustion in a cavity was chosen as an example for demonstrating the 

capability of the new proposed framework. The cavity commonly serves as a flame stabilizer in 

combustors, especially for transonic and supersonic combustion systems. It is also a simplified 

prototype of gas turbine combustors. This configuration contains complex physical phenomena, such 

as strong interaction between turbulence and combustion, ignition, etc. Therefore, unsteady RANS 

simulations are carried out to generate data sets for CFDNN. Figure 2 shows the detailed configuration 

of the chosen cavity. At the inlet, a hydrogen jet is injected into the combustion chamber. For hydrogen 

combustion, a widely used 9-species mechanism [37] was employed.  

 

Fig. 2. Configuration of the cavity. 

There are many parameters that can be changed as variables. Currently, as a proof of concept, the 

data set for training was generated by only changing the inlet velocity. The inlet velocity is varied in 

the range of 50 ~ 202 m/s with a step change of 4 m/s (i.e. …54, 58, 62…). Finally, the flow field data 

(including temperature, pressure and mass fraction of 9 species) of 38 cases are converted into matrixes, 

forming the training set. Furthermore, a data set for testing the performance of CFDNN was also 
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generated with an inlet velocity of 45 to 210 m/s and a step change of 5 m/s (i.e. …50,55,60…), 

resulting in a total of 25 cases (excluding the same study as the training set). 

All simulations were conducted with the OpenFoam platform. The partially stirred reactor (PaSR) 

combustion model and the k-Omega SST model were employed to model turbulence-chemistry 

interaction and turbulence, respectively. The time step is set to 2×10-8 s, resulting a maximum CFL 

number < 0.3. 

3.2 Training and simulation 

Figure 3 illustrates how the information of combustion flow field is fed into CFDNN for training. 

In order to achieve the goal of predicting combustion, all flow field data, including temperature, 

velocity and mass fraction distribution of the 9 species, are converted into a vector matrix, and then 

sample pairs (consisting of inputs and targets for inputs) are formed in a specific order. For example, 

the input at t0 is the flow field data at time t0, while the target is the flow field information at the next 

time step t0 +Δt, which is then transmitted back to CFDNN as another input. 

  

Fig. 3. Illustration of (a) training and (b) simulation procedures of CFDNN. 

 

t0 +Δtt0

T,
O

2,
H

2,
 …

CFDNN

t0 +3Δtt0 +2Δt

…

（a）

（b）

t0 +Δt

T, O2,H2, …

U

U

T, O2,H2, …

t0

t0 +2Δt

U

T, O2,H2, …

… …

t0 +Δt

U

T, O2,H2, …

In
pu

t

Ta
rg

et

CFDNN



 12 / 19 
 
 

Moreover, the data set is divided into two parts, a training set (80%) and a validation set (20%). 

The validation set is used to check if an overfitting or underfitting has occurred. This is the so-called 

cross-validation technique commonly used in deep learning. When the MSE is less than 1×10-4, the 

training is considered complete and a CFDNN-based solver for this situation is established. Finally, 

we tested the solver with the 25 unseen cases, the results of which are discussed in the next chapter. It 

is worth noting that, as shown in Fig. 3 (b), the simulation process, unlike the training process, only 

needs to input data of t0 to complete the prediction of the entire time series. Because the prediction 

obtained in the previous step can be used as the input in the next step. 

4. Results and discussion  

The main motivation for our CFDNN-based solver is that CNN prediction of unsteady 

combustion is considerably faster than traditional solvers, potentially allowing the development of a 

rapid design tool and real-time simulation. In this section, the performance of the new method, 

including accuracy and efficiency, is fully demonstrated.  

Figure 4(a) shows the temperature distribution of several moments obtained by Openfoam and 

CFDNN when the inlet velocity is 45 m/s. It is important to note that this inlet velocity is not within 

the range included in the training set. The results show that CFDNN is comparable to OpenFoam in 

that it accurately calculates the temperature distribution and captures the curvature of the flame surface 

caused by turbulence throughout the flow field. Meanwhile, from the perspective of time series, 

CFDNN well captures the process of flame ignition, development and finally formation of a stable 

turbulent flame under the influence of turbulence. In this case, since the inflow velocity is low, the fuel 

jet penetration depth (The vertical axis value of the hydrogen jet when the horizontal axis = 0.5) is 

large, and thus a strong interaction with the mainstream occurs. However, when the inlet velocity rises 

to 145 m/s, as shown in Fig. 4(b), the penetration depth is greatly reduced, and the flame needs to be 
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stabilized by the cavity to continue to develop. High consistency between the OpenFoam and CFDNN 

results is shown. The third row of the two figures shows the difference between the two by introducing 

a percentage error, which is defined as follows: 

 OpenFoam CFDNN

OpenFoam

Error
ϕ ϕ

ϕ

−
=  (4) 

 

Fig. 4. Comparison of temperature distributions between OpenFoam and CFDNN results at inlet 

velocity (a) 45 m/s; (b) 145 m/s. 

The maximum difference between the OpenFoam and CFDNN results is less than 0.2%. The error 

distribution illustrates that the difference between the two is mainly in the small area of the flame root. 

This is mainly due to the large gradient in a relatively small area, which is tricky for feature recognition.  
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Fig. 5. Comparison of velocity distributions between OpenFoam and CFDNN results at inlet velocity 

(a) 45 m/s;(b) 145 m/s. 

Figure 5 plotted the velocity distributions at the two inlet velocities. The position of the airflow 

front during the unsteady process of high-speed airflow entering the cavity was accurately simulated 

by CFDNN as well as OpenFoam, which indicates the possibility of predicting the shockwave. 
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Fig. 6. Comparison of OpenFoam and the CFDNN results of mass fraction of selected species at 

inlet velocity (a)~(c) 45 m/s; (d) ~ (f) 145 m/s. 

A key point of this paper is to realize the prediction of the mass fraction distribution of species. 

The mass fraction profiles of three representative species (H2, O2 and H2O) at the two inlet velocities 

were selected and shown in Fig. 6. The time instant is selected at t = 4.2 ms because the flow has 

entered a steady state. Due to page limitations, the detailed contours are displayed in the supplementary 

material. Again, the result of CFDNN is highly consistent with that of OpenFoam, demonstrating the 

excellent performance of CFDNN in predicting the distribution of mass fraction. Furthermore, as the 

inlet velocity increases, the consumption of O2 and the generation of H2O gradually shifted to the 

inside of the cavity. This indicates that as the combustion is increasingly concentrated within the cavity, 

the role of the cavity as a flame holder becomes more and more indispensable. Besides, the contours 

of OpenFoam and the CFDNN results of mass fraction of selected species at inlet velocity 45 m/s and 

145 m/s in the Supplementary material. The results at 210 m/s were also given in the file, which 

supports the above speculation.  

 

Fig. 7. Average percent error of all parameters. 

Moreover, the average percent error of each parameters in all testing cases is displayed in Fig. 7 

to evaluate the accuracy of CFDNN. The error of all parameters is less than 1%, which is completely 

acceptable. 
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Table 1 Computational cost of two methods. 

 OpenFoam CFDNN 

Training (s) - 14400 
(24 cores) 

Simulation (s) 5799 
(24 cores) 

51 
(4 cores) 

In addition to accuracy, computational cost is another concern. Table 1 listed the costs for the two 

methods at the training and simulation phase. The new CFDNN framework requires advanced training, 

which is computationally intensive. However, once the training is finished and the deep learning solver 

is established, CFDNN can simulate a complete time series of combustion at hundreds of times faster 

than traditional methods. This feature will provide tremendous support for scenarios that require real-

time calculation, such as rapid design, and even real-time control of combustion systems. 

5. Conclusions 

In this study, a deep learning-based framework for combustion simulation was established, which 

was realized by integrating an optimized deep convolutional neural network, CFDNN. A hydrogen 

flame in a cavity was used as an example to demonstrate the performance of the proposed method in 

terms of both accuracy and efficiency. By training CFDNN with data from the cavity flame at several 

different inlet velocities, CFDNN demonstrated the feasibility of simulating the results both within 

and even beyond the inlet velocity range of the training data. The CFDNN results of both spatial 

distributions and temporal dynamics show excellent agreement with conventional CFD results. In 

terms of efficiency, CFDNN is characterized by bringing the huge amount of computation forward to 

the training phase, while reducing the cost of simulations by hundreds of times. 

To the best of the author’s knowledge, this is the first application of deep learning to reconstruct 

turbulent combustion fields. Generally speaking, our study can be seen as a proof of concept, 

demonstrating that the prediction of turbulent combustion and species distributions can be 
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reformulated as a machine learning problem. The application of this framework will make real-time 

numerical simulation possible, thus accelerating the development of technologies such as digital twins, 

rapid prototyping and emission control, with applications to complex systems such as gas turbines and 

scramjets. The robustness and versatility of the proposed CFDNN framework will be further tested for 

a wide range of combustion problems in follow-on research. 
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