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ARTICLE INFO ABSTRACT

Keywords: Diffusion magnetic resonance imaging can reveal quantitative information about the tissue changes in multiple
MRI sclerosis. The recently developed multi-compartment spherical mean technique can map different microscopic
Diffusion magnetic resonance imaging properties based only on local diffusion signals, and it may provide specific information on the underlying

K-means clustering algorithm
MS lesion types
Multiple Sclerosis

microstructural modifications that arise in multiple sclerosis. Given that the lesions in multiple sclerosis may
reflect different degrees of damage, we hypothesized that quantitative diffusion maps may help characterize the
severity of lesions “in vivo” and correlate these to an individual’s clinical profile. We evaluated this in a cohort of
59 multiple sclerosis patients (62% female, mean age 44.7 years), for whom demographic and disease in-
formation was obtained, and who underwent a comprehensive physical and cognitive evaluation. The magnetic
resonance imaging protocol included conventional sequences to define focal lesions, and multi-shell diffusion
imaging was used with b-values of 1000, 2000 and 3000 s/mm? in 180 encoding directions. Quantitative dif-
fusion properties on a macro- and micro-scale were used to discriminate distinct types of lesions through a k-
means clustering algorithm, and the number and volume of those lesion types were correlated with parameters
of the disease. The combination of diffusion tensor imaging metrics (fractional anisotropy and radial diffusivity)
and multi-compartment spherical mean technique values (microscopic fractional anisotropy and intra-neurite
volume fraction) differentiated two type of lesions, with a prediction strength of 0.931. The B-type lesions had
larger diffusion changes compared to the A-type lesions, irrespective of their location (P < 0.001). The number
of A and B type lesions was similar, although in juxtacortical areas B-type lesions predominated (60%,
P < 0.001). Also, the percentage of B-type lesion volume was higher (64%, P < 0.001), indicating that these
lesions were larger. The number and volume of B-type lesions was related to the severity of disease evolution,
clinical disability and cognitive decline (P = 0.004, Bonferroni correction). Specifically, more and larger B-type
lesions were correlated with a worse Multiple Sclerosis Severity Score, cerebellar function and cognitive
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scale; vvp, Extra-neurite microscopic mean diffusivity; vap, Extra-neurite transverse microscopic diffusivity; FA, Fractional anisotropy; fi,, Intra-neurite volume
fraction; Aqif, Intrinsic diffusivity; MC-SMT, Multi-compartment spherical mean technique; MD, Mean diffusivity; MS, Multiple sclerosis; MSSS, Multiple sclerosis
severity score; NAWM, Normal-appearing white matter; RD, radial diffusivity; RR, Relapsing remitting; SP, Secondary progressive
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performance. Thus, by combining several microscopic and macroscopic diffusion properties, the severity of
damage within focal lesions can be characterized, further contributing to our understanding of the mechanisms
that drive disease evolution. Accordingly, the classification of lesion types has the potential to permit more
specific and better-targeted treatment of patients with multiple sclerosis.

1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory autoimmune
disease of the central nervous system (CNS) that is characterised by the
presence of focal lesions, and damage to the normal-appearing white
matter (NAWM) and the grey matter (Lassmann et al., 2007). There is
substantial heterogeneity in the pathological changes among MS le-
sions, with different patterns of demyelination (Lucchinetti et al., 2000)
and a variable degree of neuroaxonal damage having been described
(Ludwin, 2006). In addition, while active plaques are most often found
at early disease stages, smoldering, inactive and shadow plaques sub-
sequently predominate. Chronic active lesions are associated with a
more aggressive disease evolution (Absinta et al., 2019; Lucchinetti
et al., 2000) and indeed, differences in the severity of demyelination,
remyelination and neuroaxonal damage could explain why some pa-
tients recover completely from relapses yet in others, their disability
deteriorates more rapidly.

The changes in lesions and in the NAWM can be visualised through
conventional magnetic resonance imaging (MRI), yet they are poorly
associated with the clinical phenotype and physical disability (Barkhof,
2002), partly reflecting the failure to characterise the pathological
nature of tissue injury in MS. However, diffusion MRI-based techniques
can reveal quantitative and more specific information about the me-
chanisms associated with tissue changes (Rocca et al., 2015). Macro-
scopic diffusion properties have been studied extensively in MS lesions
using diffusion tensor imaging (DTI) features, such as the reduction in
fractional anisotropy (FA) relative to the NAWM. Unfortunately, DTI
findings are strongly influenced by a complex intravoxel fibre archi-
tecture, which limits the ability to accurately estimate the different
pathophysiological features of the disease (Rovaris et al., 2005; Filippi
and Rocca, 2011).

Recently, several microstructure imaging techniques have been
proposed to compute distinct signal contribution patterns with the aim
to provide greater sensitivity and specificity toward the underlying
damage mechanisms (Novikov et al., 2019). Several mathematical re-
presentations from biophysical models have been exploited to under-
stand the contribution of restricted intracellular diffusion components
(Kroenke et al., 2004). The estimation of local diffusion properties
based on multi-compartment spherical mean technique (MC-SMT) has
successfully decomposed the distinct signal components into micro-
scopic tissue features (Kaden et al., 2016). Thus, this approach is only
sensitive to fibre composition, whereas DTI metrics depend on both
intravoxel fibre orientation, distribution and microstructure (Mollink
et al., 2017; Jones et al., 2018). The MC-SMT model computes a multi-
compartment domain, encompassing extra-axonal and intra-axonal
water diffusion spaces, and microscopic diffusion tensor maps to esti-
mate distinct local tissue properties (Kaden et al., 2016). In MS, MC-
SMT seems to be able to distinguish chronic black-holes and thus, le-
sions with greater tissue damage from hyperintense T2 lesions (Bagnato
et al., 2019; Bonet-Carne et al., 2019), and this approach can detect
reductions in the apparent axon volume fraction in the spinal cord (SC)
(By et al., 2018). Therefore, SMT-derived tissue features could be used
as biomarkers to quantify the heterogeneous mechanisms involved in
MS lesion pathogenesis in vivo.

Considering that MS lesions can display different degrees of da-
mage, we hypothesized that the combination of several diffusion
properties may be useful to characterize the severity of the changes in
these lesions. Thus, measuring such variability could provide insights
into the progression of disability and cognitive decline in patients with

MS. Accordingly, the main aims of this study were to characterise MS
lesions through macroscopic and microscopic diffusion information,
and classify them in terms of the degree of damage, also determining
the clinical relevance of the different types of lesions.

2. Materials and methods
2.1. Participants

We prospectively recruited a cohort of 59 MS patients at the MS
Unit of the Hospital Clinic of Barcelona, 53 relapsing remitting (RR)
and 6 secondary progressive (SP) patients according to 2010 McDonald
criteria (Polman et al., 2011). Patients had to be relapse-free and free of
corticosteroids in the month prior to testing. The Ethics Committee of
the Hospital Clinic of Barcelona approved the study, and all participants
provided their signed informed consent.

Demographic and clinical data were obtained from each participant,
which included their score on the Expanded Disability Status Scale
(EDSS) and its sub-scores for pyramidal, brainstem and cerebellum
function (Kurtzke, 1983; Roxburgh et al., 2005). Their Multiple
Sclerosis Severity Score (MSSS, Roxburgh et al., 2005) was also ob-
tained and a cognitive assessment was performed using the Brief Re-
peatable Battery of neuropsychological tests (BRB-N, Rao et al., 1991).
All raw values were transformed into z-scores according to published
Spanish normative data (Sepulcre et al., 2006). The use of moderate-
efficacy (interferon beta, glatiramer acetate, teriflunomide and di-
methylfumarate) or high-efficacy (fingolimod, natalizumab, rituximab,
ocrelizumab or cladribine) disease modifying therapies was registered.

2.2. Magnetic resonance imaging: Acquisition and processing

2.2.1. Structural and diffusion magnetic resonance acquisition

MR images were acquired on a SIEMENS Magnetom Prisma®™ 3 T
scanner with a 64-channel phased-array head/neck coil, and they in-
cluded 3D-Magnetization Prepared Rapid Acquisition Gradient Echo
(MPRAGE), 3D-T2 fluid-attenuated inversion recovery (FLAIR) and
diffusion-weighted images (DWIs). Individual T1 3D-MPRAGE images
had the following acquisition parameters: TR = 1800 ms;
TE = 3.01 ms; TI = 900 ms; 240 sagittal slices with 0.94 mm isotropic
voxel size and a 256 x 256 matrix size. The 3D-T2 FLAIR sequence
parameters were: TR = 5000 ms; TE = 379 ms; TI = 1800 ms; 208
sagittal slices with 0.94 mm isotropic voxel size and a 256 X 256
matrix size. Multi-shell DWIs were acquired with: TR = 5400 ms;
TE = 113 ms; parallel acceleration factor = 4; phase partial
Fourier = 6/8; 100 contiguous axial slices at 1.5 mm isotropic voxel
dimension; a 150 X 150 matrix size; b-values = 1000, 2000 and
3000 s/mm? along 180 diffusion encoding directions; and 5b = 0
images. In addition, field map images were generated to estimate and
correct susceptibility artifacts caused by field inhomogeneities (TE 1/
TE 2 = 4.92/7.38 ms, with the same slice prescription, slice thickness
and field of view as the multi-shell DWIs).

2.2.2. Delineation mask and topography of MS lesions

MS lesions were manually delineated on the T1 3D-MPRAGE image,
supported by a co-registered FLAIR image, using JIM software (Jim
version 6.0 Xinapse System, http://www.xinapse.com/). We char-
acterised each lesion independently through its cluster size and defined
their location automatically. We established the lesions in which > 5%
of their volume was in direct contact with the lateral ventricles as
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“periventricular lesions”, lesions with > 20% of their volume touching
or within the cortex as “juxtacortical lesions”, and brainstem or cere-
bellar lesions as “infratentorial lesions” if > 50% of their volume was
placed in the brainstem or cerebellum. Finally, we considered the re-
maining lesions as “lesions located elsewhere in the deep WM”
(Griffanti et al., 2018). Lesions smaller than 27 mm® were excluded
from the analysis (Filippi et al., 2019).

2.2.3. Processing multi-shell diffusion MRI data

The diffusion imaging data was preprocessed using a combination of
FSL and MRtrix software (Tournier et al., 2019). The low b-value was
used to compute DTI metrics with FSL’s dtifit command by linear least-
squares fitting method (Basser et al., 1994) and all the diffusion shells
were employed to map the microstructural diffusivity (Kaden et al.,
2016). Afterwards, we applied an inverse transformation matrix using
boundary-based registration to place MS lesions into the diffusion space
(Greve and Fischl, 2009). For each patient, the following measures were
assessed for each individual MS lesion, and in the global NAWM: Lo-
cation (periventricular, juxtacortical, infratentorial or deep WM); lesion
volume; DTI-derived metrics (FA, mean diffusivity: MD, radial diffu-
sivity: RD and axial diffusivity: AD); SMT microscopic diffusion coef-
ficients (uFA, pMD, pRD and pAD); and multi-compartment SMT mi-
croscopic diffusion coefficients (intra-neurite volume fraction: fi,
intrinsic diffusivity: Agie, extra-neurite transverse microscopic diffu-
sivity: vap and extra-neurite microscopic mean diffusivity: vyp). The
macroscopic and microscopic diffusion properties were selected to
perform k-means cluster analysis to further extract the specific diffusion
indices able to classify MS lesion types.

2.3. Statistical analysis

2.3.1. Data-driven clustering of MS lesion types

We based the classification of MS lesions on diffusion imaging. We
want to highlight here that clustering techniques may create artificial
groups of data that may not be replicated in new data. To minimise this
possibility, we only considered those sets of diffusion MRI measure-
ments that led to clusters that were independently and consistently
replicated in new data for periventricular, juxtacortical, brainstem,
cerebellar and deep WM MS lesions, as defined by a prediction
strength > 0.8 (Tibshirani and Walther, 2005). The “prediction
strength” is a parameter proposed by Tibshirani and Walther that as-
sesses how well the clustering obtained from one random half of the
overall sample of lesions coincides with the clustering obtained from
the other half of the sample. Specifically, for each set of diffusion tensor
metrics and microscopic diffusion coefficients, we applied a standard k-
means algorithm with k = 2 (i.e.: clustering the data into 2 groups) and
performing a separate centroid-based classification for two random
halves of the MS lesions, thereafter calculating the prediction strength.
We are aware that there might be more than two types of lesions but for
simplicity, we decided to only explore the two-type scenario - we un-
derstood that should there be three or more types of lesions, they might
very well group as two main types. To avoid spurious results related to
unfortunate divisions of the overall sample of lesions into two sets, we
repeated this process 500 times and each time, the overall sample of
lesions was divided randomly into two parts and the prediction strength
was assessed. Subsequently, we averaged the corresponding 500 esti-
mates of the prediction strength. Finally, to evaluate the significance of
the prediction strength, we repeated these calculations after randomly
assigning the diffusion characteristics of each lesion to other different
lesions in order to create the distribution of prediction strengths under
the null hypothesis (i.e.: that diffusion characteristics are not clustered).
The resulting null distribution showed which prediction strengths could
be expected by chance and thus, they allowed us to estimate the p-
value.
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2.3.2. Relationships between clustering and clinical variables

Application of the selected clustering recognised two types of MS
lesions, type A and B. We assessed whether the overall number or the
volume of each type of lesion was correlated with the variables of
disability. To do that, we fitted linear models with the clinical disability
as the dependent variable, and the independent variables composed by
the number or volume of each type of lesions, age and gender. Given
that the residuals of some numeric variables may not follow a normal
distribution, we found the statistical significance using the Freedman
Lane permutation procedure, a common permutation test in neuroi-
maging studies due to its robustness to gross deviations of normality
(Winkler et al., 2014). For binary variables of disability, we fitted lo-
gistic linear models, in which again the dependent variable was the
variable of disability, and the independent variables were the number
or volume of lesion types, age and gender. For the sake of compre-
hensiveness, we reassessed the correlations that proved to be statisti-
cally significant, on this occasion performing the analysis separately for
the MS lesions at each brain location.

All the statistical analyses were carried out using the “fpc” (flexible
procedures for clustering) package: https://cran.r-project.org/web/
packages/fpc/index.html, implemented in the R platform (https://
www.r-project.org/).

3. Results

Clinical, demographic and cognitive data was collected from the 59
MS patients included in the study (as summarised in Table 1), and the
cohort had a mean age of 44.7 ( = 9.3) and 12.8 ( = 9.16) years of
disease duration. Most patients were diagnosed with the RRMS form of
the disease (90%).

3.1. Characterization and classification of the MS lesions based on their
diffusion properties

We analysed 1,236 lesions in total, with a mean brain lesion volume
of 11.37 ( * 15.30) cm®. We computed the mean DTI values and the
microscopic properties of all lesions, both globally and at the distinct
locations, as well as in the NAWM (Table 2). These diffusion imaging
properties were weakly correlated, and we discarded the pAD and AD
measures given their small variation in the lesions (38% of the values
corresponded to the maximum value of this measure). Two sets of

Table 1
Demographic, clinical and cognitive data of the included participants.

Multiple sclerosis patients

n = 59
Age, years 44.7 (9.3)
Female, n (%) 37 (63)
MS type, n (%)
Relapsing-remitting 53 (90%)
Secondary progressive 6 (10%)
Disease modified treatment, n (%):

Moderate-intensity therapy 40 (77)
High-intensity therapy 12 (23)
Disease duration, years 12.8 (9.16)
EDSS score, median (range) 2.0 (0.0-7.5)

Cerebellar FS, median (range) 0 (0-4)
Pyramidal FS, median (range) 1 (0-5)
Brainstem FS, median (range) 0 (0-3)

MSSS, median (range)
Global cognitive z-score
Visual memory z-score
Verbal memory z-score
Attention z-score
Fluency z-score

2.28 (0.13-8.55)
—0.707 (1.011)
—0.429 (1.071)
—1.045 (1.559)
—0.492 (1.371)
—0.770 (1.125)

Continuous variables are given as the mean (standard deviation), except if
defined otherwise. EDSS = Expanded Disability Status Scale; FS = Functional
System; MSSS = Multiple Sclerosis Severity Score.
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Table 2
Description of diffusion properties in MS lesions and normal-appearing white matter.
MS lesions NAWM
Whole brain Periventricular Juxtacortical Brainstem Cerebellum Deep WM

Total number of lesions analysed 1236 357 343 44 60 432 -
Mean lesion volume [cm®] 11.37 (15.30) 9.75 (14.90) 0.82 (0.59) 0.20 (0.20) 0.47 (1.14) 1.54 (5.02) -
DTI-derived tensor metrics:
FA 0.32 (0.11) 0.31 (0.12) 0.27 (0.10) 0.36 (0.08) 0.36 (0.12) 0.36 (0.11) 0.36 (0.04)
MD** 0.57 (0.09) 0.60 (0.08) 0.62 (0.08) 0.43 (0.07) 0.48 (0.08) 0.54 (0.08) 0.46 (0.03)
RD** 0.47 (0.10) 0.49 (0.09) 0.53 (0.09) 0.34 (0.07) 0.38 (0.09) 0.43 (0.09) 0.37 (0.04)
AD** 0.77 (0.11) 0.80 (0.10) 0.79 (0.11) 0.61 (0.10) 0.67 (0.09) 0.76 (0.11) 0.64 (0.03)
SMT microscopic diffusion tensor:
UFA 0.83 (0.09) 0.78 (0.12) 0.82 (0.06) 0.93 (0.04) 0.91 (0.03) 0.87 (0.07) 0.90 (0.03)
uMD** 1.30 (0.19) 1.40 (0.23) 1.30 (0.13) 1.09 (0.08) 1.13 (0.08) 1.23 (0.14) 1.04 (0.06)
HRD** 0.44 (0.26) 0.60 (0.33) 0.47 (0.16) 0.18 (0.09) 0.23 (0.09) 0.35 (0.18) 0.23 (0.07)
HAD** 2.99 (0.11) 3.02 (0.07) 2.97 (0.14) 2.92 (0.12) 2.92(0.12) 3.01 (0.09) 2.66 (0.07)
Multi-compartment microscopic diffusion coefficients:
fin 0.34 (0.13) 0.29 (0.10) 0.28 (0.09) 0.56 (0.02) 0.47 (0.15) 0.38 (0.13) 0.50 (0.06)
Naiee™ ™ 2.09 (0.35) 2.19 (0.32) 1.93 (0.31) 2.25 (0.40) 2.10 (0.48) 2.11 (0.34) 2.02 (0.16)
Vap** 1.35 (0.32) 1.54 (0.33) 1.40 (0.23) 0.92 (0.30) 1.10 (0.21) 1.27 (0.28) 0.91 (0.13)
Vmp** 1.60 (0.28) 1.75 (0.30) 1.60 (0.23) 1.36 (0.18) 1.40 (0.20) 1.55 (0.24) 1.28 (0.10)

Continuous variables are given as the mean (standard deviation). The numbers are the lesion counts in the first row and the mean metrics across the lesions in the
other rows. FA = Fractional anisotropy; MD = Mean diffusivity; RD = Radial diffusivity; AD = Axial diffusivity; f;, = intra-neurite volume fraction; Aqi¢ = intrinsic
diffusivity; Vap = extra-neurite transverse microscopic diffusivity; Vyyp = extra-neurite microscopic mean diffusivity. **units mm?/s x 102

diffusion MRI indices at macro- and micro-scale were computed to
identify different MS lesion profiles, the clustering of which showed
prediction strengths > 0.8, irrespective of the lesion localization. The
first set were distinguished on the basis of the parameters FA, RD, uFA
and f;, (Fig. 1), while the second set was defined by the same para-
meters in the same directions, except that pFA was replaced by pRD
(which was higher in B-type lesions). The groups of lesions defined by
the two clusters were 99% identical and as such, we decided to limit the
study to the first cluster as this had a slightly higher prediction strength
(0.931).

Compared to A-type lesions, B-type lesions had a lower FA, uFA and
fin, yet a higher RD, irrespective of the lesion location (P < 0.001,
Table 3 and Supplementary Table 1). Moreover, the lesion number of
both types were similar at all the locations, except at the juxtacortical
regions where the B-type lesions predominated (P < 0.001). Most
patients had both types of lesions, with between 40 and 70% of B-type
lesions (Supplementary Fig. 1). Moreover, 27% of patients had 80% or
more of one specific type of plaque, with a predominance of A-type
lesions in 15% of the subjects, while 12% had mostly B-type lesions (see
Fig. 2). However, there was no correlation between the overall number
of A and B type lesions. By contrast, 64 and 63% of the lesion volume
corresponded to B-type lesions in the whole brain and periventricular
areas, respectively, suggesting that the plaques of this type were larger
(Table 3, Supplementary Fig. 2). The proportional volumes of B-type
lesions but not their number was higher in the SPMS patients (mean
percentage 90%) than in the RRMS patients (mean percentage 61%:
95% CI —0.48 to —0.10; P < 0.01).

b) RD

3.2. Association between MS lesion type and the clinical outcome

At the patient-level, we detected several significant correlations
between the overall number of B-type lesions and the clinical variables
(P < 0.05 controlling for the effect of age and gender: Table 4). By
contrast, we did not find any significant correlation between A-type
lesions and the clinical data. Thus, a higher number of B-type lesions
was associated with a higher MSSS, worse cerebellar function and
worse cognition (Bonferroni-corrected P threshold = 0.004). Juxta-
cortical and cerebellar lesions had the strongest correlation values.
However, we failed to detect significant correlations with clinical data
when the number of periventricular B-type lesions was considered.

In terms of lesion volume, the volume of B-type lesions was corre-
lated with cerebellar function and cognitive disability. In particular,
stronger correlations with clinical disability were found for periven-
tricular lesions (Table 5). However, there were no significant correla-
tions with EDSS, brainstem and pyramidal functional systems, verbal
fluency, visual memory deficits and the type of treatment after a Bon-
ferroni correction.

4. Discussion

In this study, we demonstrate that MS lesions can be classified into
two types based on the severity of the changes in terms of macroscopic
DTI parameters and microscopic diffusion properties. We found that
most patients had both types of lesions, although in nearly a quarter of
the cohort there was a clear predominance towards a given lesion type.

C) LFA

PN -

d) fin

T,

Fig. 1. Diffusion measurements that classified lesions in two types. Diffusion maps from the DTI (a, b) and MC-SMT models (c, d) can distinguish A and B types MS
lesions: FA = fractional anisotropy; RD = radial diffusivity; yFA = microscopic fractional anisotropy; fi, = intra-neurite volume fraction.
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Table 3
Description of the B-type lesions compared to A-type lesions.
Whole brain Periventricular Juxtacortical Brainstem Cerebellum Deep WM

Prediction strength of lesion classification 0.931 0.822 0.820 0.925 0.820 0.824
Percentage of B-type lesions 52% 54% 60% (P < 0.001) 50% 53% 46%
Percentage of B-type lesions volume 64% (P < 0.001) 63% (P < 0.001) 50% 48% 50% 55%
Differences between DTI-derived tensor metrics and microstructural diffusion properties comparing MS lesion types
AFA -0.15 —-0.16 -0.13 -0.10 -0.18 —-0.14
ARD** 0.17 0.15 0.15 0.12 0.15 0.15
AUFA —-0.12 —-0.14 —-0.14 —0.05 —0.05 —0.09
Afin -0.20 —-0.16 —-0.14 —-0.27 —0.22 -0.19

Continuous variables are given as the mean (standard deviation). All diffusion metrics showed significant differences (P < 0.001) between A and B types lesions:
FA = fractional anisotropy; RD = radial diffusivity; tFA = microscopic fractional anisotropy; f;, = intra-neurite volume fraction. A = delta/difference. **units of

mm?/s x 103,

B-type lesions are thought to present more severe tissue damage, and in
terms of number and volume, the study demonstrates that their pre-
sence is related to a worse clinical evolution. Specifically, a larger
number of B-type lesions in the juxtacortical, cerebellar and deep WM
areas was more strongly associated with disability, as was a larger
volume of these lesions in periventricular regions. All in all, the results
support the usefulness of diffusion MRI to obtain information in vivo on
the heterogeneity of the pathological changes in MS plaques.

Our findings indicate that the combination of two diffusion-based
models, DTI (FA and RD) and MC-SMT (uFA and f;,), which can capture
how water moves in the tissue over distinct timescales, enables two
distinct types of MS lesions to be classified with high predictive value.
Lesions with larger modifications in diffusion imaging properties are
crucial to characterize the two MS lesion types (A-type lesions show
higher FA, pFA and fi,, and smaller RD values; while B-type lesions
display lower FA, pFA and f;,, and higher RD values on Supplementary
Fig. 3). B-type lesions are thought to be associated with more severe
demyelination and axonal damage (Yu et al., 2019). Therefore, the
classification proposed would provide information regarding in-
flammatory destruction or the ability for neurorepair in a given patient,
potentially representing a useful biomarker for phase II clinical trials.

In previous studies, focal MS lesions display very heterogeneous DTI
abnormalities, with a persistent decrease in FA values and an increase
in the other diffusion coefficients compared to the NAWM (Inglese and
Bester, 2010). FA values preferentially reflect changes in axon density,
whilst RD is a measure sensitive to myelin injury (Beaulieu, 2002) .
However, these diffusion features alone are not sufficiently specific to
estimate the severity of damage. Moreover, their association with
clinical disability is mild to moderate due to the large variability of DTI
indices and the complex processes lesioned tissues undergo (Filippi
et al., 2001). Conversely, UFA and f;, provide information regarding
more specific features at the microstructural level, depicting restricted
anisotropic diffusion into the intracellular water domain (Kaden et al.,
2008). Accordingly, despite the MC-SMT model does not allow the
quantification of non-monoexponential behavior to describe the de-
viation of diffusion displacement from the Gaussian profile specifically
(Jensen et al., 2005), a significant decrease of uFA and f;, have been
demonstrated for different degrees of brain and SC tissue damage in MS
compared with normal WM tissue (By et al., 2018; Lakhani et al.,
2020). Furthermore, such microscopic features seem to be able to dis-
tinguish MS lesions with more axonal damage from the lesions that are
hyperintense in T2-weighted sequences (Bagnato et al., 2019; Bonet-
Carne et al., 2019), identified as black-holes in T1-spin echo sequences
(van Walderveen et al., 1998). When compared with the observation of
black holes, the use of quantitative diffusion metrics increases the ac-
curacy and reproducibility of the results. Thus, our findings highlight
the complementarity of DTI and SC-SMT metrics to define the char-
acteristics of MS lesions.

The proportion of A and B type lesions was similar across the brain,
except in juxtacortical areas where B-type lesions predominate. In

periventricular regions, most of the lesion volume corresponds to B-
type lesions, and such regional differences could reflect the nature of
MS lesions in terms of their formation and evolution. This hypothesis is
supported by the predominance of B-type lesions in SPMS patients
(mean = 90%). Nevertheless, further longitudinal studies will be re-
quired to decipher the chronicity of those lesions and to assess whether
they are related to slowly expanding plaques.

Previous studies showed that focal MS lesions, a hallmark of the
disease, are weakly correlated with clinical disability (Barkhof, 2002)
and disease severity (Mostert et al., 2010). However, our findings de-
monstrate that the number and volume of specific B-type lesions were
strongly associated with a more severe disease evolution (correlation
coefficients between 0.4 and 0.67), with a worse physical (mainly re-
lated to cerebellar functions) and cognitive disability. The lack of cor-
relation with the EDSS after correcting for multiple comparisons could
be influenced by the strong influence of SC integrity on the EDSS (Rocca
et al., 2017), a fact that was not assessed here. Specifically, the number
and volume of B-type lesions in juxtacortical and cerebellar areas, and
their volume in periventricular regions, were the features that were
most strongly correlated with disease evolution and disability. Indeed,
periventricular damage may affect large white matter tracts, such as the
cingulum and frontoparietal connections, potentially contributing to
the cognitive deficits in patients with MS (Tiemann et al., 2009; Solana
et al.,, 2018). Previous studies reported results consistent with the
present findings, correlating brain lesion with a worsening in clinical
disability, particularly for T1 hypointense lesions (Giorgio et al., 2014).
Together, the presence of lesions with larger diffusion changes could
reflect a destructive pattern of chronically demyelinated axons and
more neuroaxonal damage, which is related to more severe disease
evolution.

This study has several limitations that should be considered for
future research. First, our findings should be validated through histo-
logical studies to characterize the underlying tissue changes in the A
and B type lesions, and their correspondence with active, chronic or
chronic active lesions. Second, diffusion metrics are highly dependent
on acquisition and scanner parameters, although they are very re-
producible in scan-rescan experiments (By et al., 2018). Consequently,
it is important to harmonize the techniques for clinical trials that focus
on different sites and protocols (Fortin et al., 2017). Finally, we did not
evaluate the specific microscopic and macroscopic changes in new T1-
enhancing lesions, in black holes or over time, and thus, longitudinal
studies would be useful to understand the MS temporal evolution and
their predictive value in a prospective manner.

5. Conclusions

Microscopic features of the intracellular water domain (uFA and f;,)
and macroscopic DTI-derived metrics (FA, RD) together contribute to
define the amount of damage within MS lesions. In turn, these features
provide a specific pattern of lesion severity that helps understand the
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a) T1 3D-
MPRAGE

b) FLAIR

c) MS lesion

Fig. 2. Example of two patients that presented a predominant lesion type. Most
lesions were classified as A-type (in green) in the patient in the left column,
while the majority of lesions were B-type (in red) in the patient in the right
column: FA = fractional anisotropy; RD = radial diffusivity;
WFA = microscopic fractional anisotropy; f;, = intra-neurite volume fraction.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

mechanisms underlying clinical disability and cognitive impairment in
MS patients. Accordingly, the classification of lesion types has the po-
tential to ensure MS patients receive more specific and better-targeted

NeuroImage: Clinical 28 (2020) 102411
therapies.
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Table 4
Association between number of B-type lesions and the clinical variables, controlling for the effects of age and gender.
Global Periventricular  Juxtacortical Brainstem Cerebellar Deep WM
MSSS Positive (P = 0.004)* n.s Positive (P = 0.006) n.s Positive (P = 0.001)* Positive (P = 0.042)
EDSS Positive (P = 0.015) n.s Positive (P = 0.025) n.s Positive (P = 0.001)* Positive (P = 0.029)
Cerebellar functional system Positive (P < 0.001)* n.s Positive (P = 0.001)* n.s Positive (P < 0.001)* Positive (P = 0.003)*
High-efficacy therapy Positive (P = 0.008) n.s Positive (P = 0.017) n.s Positive (P = 0.017) Positive (P = 0.016)
Neuropsychological test battery
Global cognitive score Negative (P < 0.001)* n.s Negative (P < 0.001)* Negative (P = 0.001)* Negative (P < 0.001)* Negative (P = 0.002)*
zAttention Negative (P < 0.001)* n.s Negative (P = 0.001)*  Negative (P = 0.005)  Negative (P = 0.001)*  Negative (P = 0.002)*
zFluency Negative (P = 0.033) n.s n.s. Negative (P = 0.014) Negative (P = 0.007) n.s
zVerbal memory Negative (P = 0.001)* n.s Negative (P = 0.001)* Negative (P = 0.016) Negative (P = 0.004) Negative (P = 0.003)*
MSSS = Multiple Sclerosis Severity Score; EDSS = Expanded Disability Status Scale; n.s. = not statistically significant; *, significant after a Bonferroni correction.
Table 5
Associations between the volume of B-type lesions and the clinical variables controlling for the effects of age and gender.
Whole brain Periventricular Juxtacortical Brainstem Cerebellar Deep WM
EDSS Positive (P = 0.021) Positive (P = 0.025) n.s n.s n.s n.s
Cerebellar functional Positive (P < 0.001)*  Positive (P < 0.001)*  Positive (P = 0.014) n.s Positive (P = 0.001) n.s
system
Brainstem functional system  Positive (P = 0.016) Positive (P = 0.014) n.s. n.s. n.s. n.s.
Pyramidal functional Positive (P = 0.010) Positive (P = 0.008) n.s. n.s. n.s. n.s.
system
High-efficacy therapy Positive (P = 0.022) Positive (P = 0.022) n.s n.s n.s n.s
Neuropsychological test battery
Global cognitive score Negative (P < 0.001)* Negative (P < 0.001)* Negative (P = 0.029) Negative (P = 0.003) n.s n.s
zAttention Negative (P < 0.001)* Negative (P < 0.001)* Negative (P = 0.034) Negative (P = 0.037) n.s n.s
zFluency Negative (P = 0.015) Negative (P = 0.019) n.s n.s n.s n.s
zVerbal memory Negative (P < 0.001)* Negative (P < 0.001)* n.s Negative (P = 0.019) n.s Negative (P = 0.016)
zVisual memory Negative (P = 0.012) Negative (P = 0.009) n.s n.s n.s n.s

EDSS = Expanded Disability Status Scale; n.s.
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