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Abstract

Background: A dominant methodology in contemporary clinical neuroscience is the use of dimensional self-report
questionnaires to measure features such as psychological traits (e.g., trait anxiety) and states (e.g., depressed mood).
These dimensions are then mapped to biological measures and computational parameters.
Researchers pursuing this approach tend to equate a symptom inventory score (plus noise) with some latent
psychological trait.

Main text: We argue this approach implies weak, tacit, models of traits that provide fixed predictions of individual
symptoms, and thus cannot account for symptom trajectories within individuals. This problem persists because (1)
researchers are not familiarized with formal models that relate internal traits to within-subject symptom variation
and (2) rely on an assumption that trait self-report inventories accurately indicate latent traits. To address these
concerns, we offer a computational model of trait depression that demonstrates how parameters instantiating a
given trait remain stable while manifest symptom expression varies predictably. We simulate patterns of mood
variation from both the computational model and the standard self-report model and describe how to quantify the
relative validity of each model using a Bayesian procedure.

Conclusions: Ultimately, we would urge a tempering of a reliance on self-report inventories and recommend a
shift towards developing mechanistic trait models that can explain within-subject symptom dynamics.
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Background
Psychopathology, as conceived dimensionally, is typically
assayed in both clinical research and service settings
using self-reporting of symptoms. As long as a symptom
inventory is shown as reliable in relevant samples and
contexts, the instrument is assumed to be sufficient to
make inferences that, for instance, an individual has
“trait anxiety.” This type of inference commits to a weak,

stationary model of that trait: that symptom frequency
suffices when denoting an individual is endowed with a
given pathological trait. We advance an argument that
mechanistic models of what causes symptom fluctua-
tions greatly improve the validity of inferences regarding
psychopathological traits by making predictions con-
cerning symptom trajectories that indicate not only
whether, but also when, clinical symptoms are likely to
occur and recur.
Pursuing mechanistic models of psychopathology is a

core component of an ongoing effort in the psycho-
logical sciences to transition from a descriptive to a
causal science [1]. This approach seeks to mathematic-
ally formalize psychological functions and demonstrate
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how they are implemented in the human brain [2]. This
approach, importantly, does not privilege biological ex-
planations, as full mechanistic models must contain in-
formation processing accounts in order to fully
understand the dynamics of the relevant biology [3, 4].
Taking such a mechanistic approach, however, is ren-

dered difficult by virtue of assumptions regarding psycho-
pathology, arising out of ingrained practices that measure
psychopathological traits via self-report. For instance,
mechanistic claims are frequently made by asking individ-
uals to report how often, or for how long, they experience
symptoms followed by a mapping of this variance onto
some biological dynamics. However, under a simple causal
model of depression [5], we show how durable symptoms
can arise from two entirely different causes, only one of
which would denote a psychopathological trait that pre-
dicts future recurrence of said symptoms.
After outlining how a mechanistic model can reveal

separate causes for self-report stability, we provide a
framework that can help quantify the validity of models
that inform how to infer whether an individual has, for
example, trait depression. The framework is formalized
in a hierarchical Bayesian procedure that validates a trait
model by the likelihood it can predict within-subject
variation in symptoms that the trait ostensibly gives rise
to. The Bayesian procedure states that the probability
that the trait model accounts for symptom variation de-
pends on a prior body of evidence for that model.
Ultimately, we derive three practical consequences of

adopting this Bayesian framework. First, it constrains
scientists and clinicians to be more explicit about the
theoretical models supporting the self-report measure-
ment device they use. Secondly, it reveals assumptions
behind the use of a self-report measure, whose prior
probability of being true can be more clearly evaluated
by an examination of the evidence supporting these as-
sumptions. Thirdly, it encourages clinical scientists to
become aware of, understand, and help improve upon
promising mechanistic models of psychopathology.

Tacit assumptions of using self-report to measure
pathological traits
When we measure trait anxiety, for example, using the
common State-Trait Anxiety Inventory [6, 7], what are
we actually committing ourselves to? By definition, a
trait predisposes an individual to experience certain
symptoms. Thus, denoting an individual as having a trait
entails a relationship between the trait and within-
subject symptom variation, which can be either explicitly
or implicitly modeled. Our aim is to shed light on the
implicit and explicit models that seek to explain the
dynamics relating a trait to within-subject symptom vari-
ation. We argue that the typical implicit model is sub-
optimal at explaining within-subject symptom variation

since its predictions are stationary. By contrast, we dem-
onstrate how a computational model of mood can sup-
port dynamical predictions and, in our chosen example,
better explain the relationship between trait depression
and mood variation over time.
We consider trait depression and examine two models

that describe how mood can vary over time. The first uses
a typical self-report inventory to reveal a trait of depression
by querying how often individuals experience classical
symptoms of depression, such as anhedonia and depressed
mood. We compare this typical model to a computational
model of depression that makes different claims about what
the trait is, including how it predicts variation in negative
mood. Moreover, simulating data using the model demon-
strates under what conditions the internal trait is respon-
sible for temporally stable low mood.

Most self-report trait models do not explain
symptom variation within individuals
In describing a common implicit model adopted when
measuring traits via self-report inventories, we assume
that to denote a subject in a study as having a trait im-
plies that the trait accounts for symptom variation
within an individual over time. Below we formalize a
class of assumptive models that clinical scientists often
adopt when inferring traits from self-report inventories.
In this simple regression model, the goal is to predict
symptom variation for an individual over a short time
period (2 weeks). This implicit model assumes that
mood variation is captured via:

Mood ¼ B1�Trait Depression Scoreþ error ð1Þ
The investigator might also include other variables

that predict symptom variation that is not the result of
the trait. Therefore, we can expand Eq. (1) to predict
symptom variation from the residualized variance of the
trait depression score after removing shared variance
due to non-trait factors, such as negative major life
events (MLE):

Mood ¼ B1�Trait Depression scoreþ B2�MLE
þ error ð2Þ

According to both models, the level of trait depression
adds a fixed quantity to mood at any time point, and,
thus, it does not predict mood fluctuations.
In addition to the problem that the “stationary” trait

models delineated above are likely inaccurate in predict-
ing symptom variation, there is a measurement problem
with equating the self-report trait inventory score with
the trait itself. The true latent trait is an internal param-
eter (e.g., genetic, neurobiological, computational) or a
set of parameters that accounts for the frequency of
symptoms presenting over time. Given that we do not
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have strong theories relating these stable internal param-
eters to symptom fluctuation, variance encoded in the
self-report data may capture the relevant variance in the
true trait highly inaccurately.
This problem is exacerbated by vague queries like,

“how often do you experience low mood in general” to
which one can only respond by choosing a discrete
number on an ordinal scale. Indeed, the myriad ways in
which individuals recall the rate or frequency of symp-
tom presentation, and then idiosyncratically map this
onto the low-dimensional scale, can further obscure the
true signal (i.e., the latent trait). This can help explain,
for instance, why measures designed to indicate trait
negative affect (in general, how often are you sad) have
modest test-retest reliability at short time-scales between
tests (r = 0.65 at 2 months) and even lower reliability
across years (r = 0.41 at 72 months) [8]. This is mirrored
in ostensibly state measures (e.g., Beck’s Depression
Inventory [9]) overlapping almost entirely with trait
measures (Trait subscale of the State-Trait Anxiety In-
ventory; r = .72) [10].
That said, recent work on self-report vs. task-derived

measures of trait constructs has shown that self-report
may in some cases yield higher reliability [11, 12]. Valid-
ating trait models must include a thorough examination
of the reliability of parameters derived from relevant
tasks. Indeed, steps in this direction are increasingly evi-
dent in computational work [13]. Estimating test-retest
reliabilities should also endeavor to capture measure-
ment error inherent to many cognitive tasks [14] which,
if not implemented, will diminish estimates of reliability.
More importantly, even if the self-report score is reli-

ably obtained for an individual over time, it may not be
a valid index of the relevant level of the trait in question.
As such, we intend to demonstrate how an effort to
build trait models can be bolstered by not relying on
trait self-report inventories and instead focusing on
other indicators of latent traits (we focus on computa-
tional parameters). In principle, the development of trait
models can be hindered if the goal is to maximize the
covariance between computational parameters and trait
self-report data. By contrast, we argue that the validity of
trait measures is ultimately determined by a model of
such traits capturing within-subject symptom variation
over time. Doing so does not necessarily require trait
self-report inventories, nor do they necessarily add value
to other methods.

Self-report trait models explaining within-subject
symptom variation
Not all models in which traits are measured via self-
report assays assume that a trait predicts static symp-
tomatology. For example, models using techniques such
as dynamic structural equation modeling and ecological

momentary assessment relate traits measured via self-
report to within-subject symptom variation [15–17]. In-
deed, such models improve upon the ubiquitous implicit
model described above in which traits are defined by
symptom stability.
However, most self-report trait models lack mechanis-

tic detail. A hypothetical construct measured by self-
report, such as trait anxiety, is rarely defined with re-
spect to information processing, making it difficult to re-
veal how it might be instantiated in the brain and its
functional role in larger circuits. By contrast, the compu-
tational model of mood variation we advance rests on
well-evidenced dynamics of learning and decision-
making as implemented in dedicated neural circuits [18].
Taken together, the mere use of self-report assays to

measure a trait is not inherently problematic. It is an
empirical question as to the extent a given self-report
trait measure is predictive of symptom dynamics and
generative of novel therapeutic interventions when fea-
tured in a trait model. The aim of this paper is to argue
for an alternative way of measuring traits and formaliz-
ing their role in mechanistic models, an enterprise still
in its infancy.

A mechanistic model of trait depression: learning
and mood formalized
A mechanistic model of depression, unlike a self-report
approach, specifies a causal system that gives rise to
mood. As such, it is an explicit trait model. The mechan-
ism is an internal process that takes information from
the world and processes it for specific purposes (with
complex bidirectional dynamics). Here we focus on a
system that learns how valuable different options are in
the world in order to inform what are the best decisions.
In this model, different aspects, both internal to the
mechanism and in the environment, affect what the indi-
vidual learns about their world, which ultimately influ-
ences fluctuations in mood. This process can result in
periods of low mood because of internal computational
parameters or external dynamics. We denote the former
case as an internal trait causing depressive symptoms.
We adopt a pragmatic approach to differentiate psy-

chological states from traits, wherein traits are stable
properties over medium to long time scales, whereas
states endure for much shorter time scales, such as
symptoms of a disease. Importantly, a trait is validated
only within a model, wherein a hypothesized stable
property of an organism explains variation in symptoms
within an individual over time. The model should de-
scribe the function of a trait with respect to relevant in-
ternal mechanisms, as well as bidirectional influences
between these mechanisms and the environment in
which an organism is embedded. This conception of a
trait is consistent with other functional models of traits,
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as articulated by [19]. However, we stress that ultimately
a mechanistic perspective is needed to describe how a
trait is realized in an organism, where this entails a com-
putational understanding of relevant brain mechanisms.
The model we describe and compare to a more typical

approach is predicated on developments in computer
science that formalize how individuals learn and make
decisions. On the surface, these so-called reinforcement
learning algorithms may have little to do with mood, but
a body of evidence suggests otherwise. Momentary hap-
piness [20] is predicted well by fluctuations in variables
involved in decision-making algorithms, while more re-
cently a classical reinforcement-learning process has
been extended to model how mood is directly computed
from what is learned [21].
Below we present a computational model of depressed

mood that is built on these learning algorithms. The
model is instantiated in two individuals whose parame-
ters within the model are set to different levels. We
highlight which of these internal parameters can be
thought of as the relevant trait conferring risk for de-
pression. This trait becomes predictive of mood vari-
ation within subjects when situated within a sufficiently
described set of dynamics of the internal cognitive
process and the environment in which the individual is
situated. As such, an explicit trait model comprises the
trait (internal parameter), the mechanism within which
the trait resides (e.g., modified model-free reinforcement
learning) and the environment affecting the dynamics of
the mechanism (e.g., the pace and levels of reward).
In this example, consider two individuals who take a

new job and must learn how trustworthy two new col-
leagues they will work closely with are. Each time they
interact with one of these new colleagues, they receive
feedback they can use to update the trustworthiness of
the colleague. The trustworthiness goes up when they
see their colleagues responding in line with their expect-
ation, and it goes down when the colleague ignores or
acts against the expectation. The overarching goal is to
learn which colleague is more trustworthy, so they can
avail themselves of the more reliable relationship. This
can be modeled using simple learning equations.

Trustc;t ¼ Trustc;t − 1 þ ηpositive δtð Þ ð3Þ

Trustc;t ¼ Trustc;t − 1 þ ηnegative δtð Þ ð4Þ

δt ¼ Outcomet −Trustc;t − 1 ð5Þ
Trust in a colleague (c) is an internal variable that in

practice is inferred from the colleague’s behavior and is
updated over time (t) according to Eqs. 1 and 4. The
previous level of trustworthiness for a given colleague
(c) either increases or decreases after choosing to inter-
act with them. This update depends on how different

the colleague’s response (outcome at time t) is from how
one expects that colleague to respond (the value of Trust
at t − 1). The difference between the actual response and
the expected response (called the “prediction error”) is
highlighted in Eq. 5. Again, the variable Trust represents
how often one expects the colleague to respond in line
with one’s request, such that the greater the trustworthi-
ness, the more one expects a colleague to respond well.
The η parameters that multiply this prediction error de-
termines to what degree one’s trustworthy estimate for
the colleague is updated based on the most recent pre-
diction error. When η is small, expectations are updated
slowly. When it is large, they are updated rapidly. η is
bounded between 0 and 1, where 0 reflects no updating
and 1 reflects that a new trustworthiness value takes into
account only the most recent prediction error.

Moodt ¼ Moodt − 1 þ ϕmood δt −Moodt − 1ð Þ ð6Þ
The reason that there are two different η parameters,

differentiating Eqs. 1 and 2, is that this model asserts
that the update of one’s trust in a colleague depends on
whether one is positively or negatively surprised. When
one’s expectation is lower than the most recent outcome
(positive surprise), that prediction error updates one’s
estimate at a different rate than if one’s expectation was
greater than the most recent outcome (negative sur-
prise). As will be shown, the difference between these
two update rates, known more commonly in the compu-
tational literature as “learning rates”, can result in de-
pressive symptoms.
How does this all relate to mood? As specified in Eq.

6, current mood is a function of how surprised one has
been in the recent past. That is, mood goes up when one
experiences a series of positive surprises, and the oppos-
ite is the case when one experiences negative surprises.
The expected amount of surprise is updated by its own
learning rate, ɸ. Surprise, or more technically, the “predic-
tion error”, has been shown to relate to fluctuations in
mood over short [20] and long [22] time scales. Situating
this in the context of the running example, one’s mood
will be low to the extent one experiences surprisingly poor
outcomes from one’s colleagues. We stick to this simple
model, but in principle, these learning rules, and the mood
computed from the outcomes of these decisions, can be
generalized over many decision domains that capture more
realistically how mood is related to an amalgam of deci-
sions in one’s daily life.

PðNextDecisionjc1Þ ¼ e
Trustc1P
ce
Trustc

ð7Þ

Finally, when one faces a decision about which col-
league to interact with, the decision is made in accord-
ance with Eq. 7. Here, the probability one interacts with
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the first colleague, which we call “c1”, is determined by
its proportion of the total trustworthiness of all col-
leagues with the slight caveat that each trustworthiness
is scaled exponentially. All probabilities for interacting
with colleagues are derived in this in this way, and the
resultant categorical distribution is then randomly sam-
pled from to determine which colleague one interacts
with. Parameters can be added that relate how willing
one is to explore interacting with less trustworthy col-
leagues, which is advantageous when one has not ac-
crued much experience with them. We focus less on this
decision process, as it is more centrally the learning
rules that govern how mood fluctuates that is of present
interest.

Simulating how persistent low mood can result
from intrinsic traits and external causes
We now present simulations of two individuals in two dif-
ferent work environments. One individual has what we
denote as trait depression, defined by a greater learning
rate for positive surprises than for negative surprises. This
sounds counter-intuitive, but we consider depression
emerges as a function of more slowly learning about nega-
tive outcomes [23]. That is, the individual fails to update
their expectations about negative events and therefore be-
lieves their co-workers to be more trustworthy than they
truly are. In doing so, their elevated expectations lead to
disappointment in the form of negative surprises, which
accumulate over time to account for more prolonged pe-
riods of low mood. The second individual, designated
“healthy” in the figure, has no bias to experience depressed

mood due to an imbalance in the learning process. How-
ever, the healthy individual can exhibit the same pro-
longed period of depressed mood when in a “bad
environment” in which they are repeatedly treated poorly.
When the depressed agent interacts with two colleagues

who are somewhat trustworthy (one 40% of the time, the
other 70% of the time), their mood can go through periods
of extended depression due to learning much more from
positive than from negative surprise. This imbalance in
learning rate means that their estimates of the trust-
worthiness of colleagues are overly optimistic, to a degree
that they are setting themselves up for disappointment.
For this example, we define a significantly low mood as
less than − 2 on the scale of mood in Fig. 1. If time is mea-
sured in weeks, then there are periods in which the de-
pressed individual has low mood for several weeks. By
contrast, a “healthy” individual interacts with the same
two individuals but possesses the same learning rate for
both positive and negative surprises. Figure 1 indicates
that they never endure long periods of depressed mood.
In Fig. 2, we compare the same depressed individual in

Fig. 1 who works in a relatively good work environment
to a healthy individual in a bad work environment. The
bad work environment is a function of the colleagues
the healthy colleague interacts with being highly untrust-
worthy (95% and 98% of the time). As a result of this
bad environment, from week 3 to week 40, the healthy
individual experiences a persistent low mood. If this in-
dividual were queried with a trait self-report measure of
depression, they may answer such that they qualify as
having trait depression. However, in the present

Fig. 1 Two individuals in a relatively good work environment. Time on the X axis is in weeks, whereas mood is a function of the running weighted
average of surprise (e.g., average negative surprise relates to low mood). A depressed agent (blue line) learns much more from positive surprises than
negative surprises and, as a consequence, is set up for chronic disappointment. This fosters persistent low mood and can be thought of as an
instantiation of “mood-reactive depression” [24]
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framework, given their learning-rate parameters, they do
not possess the internal trait (mechanistically, difference
in learning from positive and negative surprises) of de-
pressive symptoms that predicts the recurrence of low
mood. One might argue that requiring high test-retest
reliability prevents such false positives from substantially
impacting one’s self-report assay. However, the time
period of test-retest likely bears heavily on these infer-
ences, as does taking account of the likelihood that en-
vironmental influences can be persistent over time.
Furthermore, although the focus has been on latent

computational traits predicting within-subject variation,
they, too, affect between-subject differences in mood.
For example, in the relatively normal working environ-
ment (Fig. 1), having the depressive trait results in both
a lower mean and higher standard deviation of mood.
This comports with latent trait models of psychopath-
ology that suggest that traits affect both first and second
moments of symptom distributions [25].

Probabilistic inferences about traits depend on
model validity
A probabilistic inference regarding the level of trait
depression an individual possesses should be adjusted
by evidence. To do so would require a formal model
comparison procedure that defines a suitable target
dataset that the model can account for. Moreover, the
comparison procedure should be cumulative, aggre-
gating across studies that attempt to model the rele-
vant data. Below, we formalize a hierarchical Bayesian
procedure that fits trait models to within-subject

symptom variation. Moreover, the model1 itself de-
pends on the prior body of evidence regarding its
ability to explain relevant symptoms.

pðSymptomDatajmodelÞ
¼

Z
dθPðSymptomDatajmodel; θÞPðθjmodelÞ

ð8Þ

In the above, θ refers to the parameters of the trait
model, which for instance could be an individual’s learn-
ing rates. To derive validity for the model, also called
model evidence, the equation averages all possible indi-
vidual instances of the model (i.e., all the kinds of indi-
viduals with different individual parameters that could
be utilizing that model).
Thus, to calculate the validity of the trait model re-

quires collecting data from many subjects that ensures
sufficient within-subject data on the relevant dynamics
to which the hypothetical trait predisposes an individual.
In the example above, we simulated far fewer interac-
tions than those that present the totality of interactions
with colleagues. Moreover, there are likely other types of

Fig. 2 A healthy individual in a bad environment compared to a depressed individual in a good work environment. The time series for a depressed
individual (blue line) is the same as in Fig. 1. Again the X axis is on the scale of weeks, whereas the Y axis represents mood as a function of surprise. A
healthy individual (orange line), by contrast, learned about their colleagues in a terrible work environment. As such, their initial dip in mood follows
closely that of a depressed individual in a healthy environment, but they recover

1Importantly, the model above can be thought of as an abstraction of
the cognitive process relating learning and decision-making to mood.
The parameter values for theta define specific instantiations of the
model. When the model is fit to individual subject data, some or all of
the parameters (in the running example here, learning rates for posi-
tive and negative surprises) that best account for their data can be
thought of as approximations to the latent trait. However, both the
model and its parameters are not equivalent to the cognitive process
actually implemented in an individual.
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interactions between the person and aspects of their en-
vironment (other individuals, other states and outcomes)
that, if modeled, may improve model validity.
Even though it is not possible to exhaust the measure-

ment of the relevant factors influencing symptoms dy-
namics, two generative approaches may help. The first is
to collect and model relevant real-life interactions when
possible; indeed, this requires more intensive sampling
of non-laboratory daily-life dynamics than is typical cur-
rently in attempts to formally model symptom variation
computationally. The second is to obtain a weighted
average over all possible life events that are relevant and
go unmeasured, along with assumptions regarding how
these factors impact the relevant symptom dynamics.
When possible, these assumptions should be encoded as
empirical priors.
Although the field has only begun to model symptom

variation with computational models, there are now
good examples of success in modeling ecologically valid
temporal patterns of symptom variation in daily life. For
instance, [22] mapped mood variation within subjects to
physiological signals generated by two co-occurring
learning systems that internalize statistical quantities
about rewards along different timescales. Moreover,
large-scale smartphone-based approaches have validated
models of decision-making with varying levels of happi-
ness in daily life [26].

The pervasiveness of the “self-report=trait” model
The problem identified regarding a reliance on self-
report as indices of latent traits impacts much research
at the forefront of mechanistic model development,
which we, like most in the field of cognitive and compu-
tational neuroscience, frequently rely upon. That is, it is
often the case that computational parameters, such as
those defined above (learning rates for positive and
negative surprises), are mapped onto psychological traits
derived from self-report. This practice de facto treats
self-reports as the gold-standard measure of a trait, pos-
sibly hindering a potential for discovery of alternative,
more powerful, measures.
We have endeavored to demonstrate how manifest

symptoms measured by the self-report device may, but
equally may not, be the expression of a relevant latent
trait. State measures of depressed mood like the Beck’s
Depression Inventory [9] may fail to detect the trait be-
cause, as shown in a mood variation model, low mood is
not omnipresent. Similarly, a trait depression measure is
often accompanied by an implicit model of mood vari-
ation that cannot explain dynamic fluctuations that exist
even when an individual experiences “persistent low
mood.” Moreover, similarly high scores on the trait de-
pression inventory for different individuals may have dif-
ferent meanings, either because they map differently to

the latent computational trait, or due to the difficulty in
accurate reporting which can result in false positives.
These validity issues are not unique to trait self-report

inventories. Additional assumptions in computational
models might be equally invalid. For instance, the model
above assumes that learning rates for positive and nega-
tive surprise are stable across time. The ultimate test of
whether or not this is veridical is to compare models
where these parameters are either time-varying or not,
wherein the former might predict under what conditions
they change. However, this serves again to emphasize a
strength of a formal modeling approach, which can it-
eratively update model validity via a model’s ability to
explain within-subject symptom variation.

Explaining symptom variation via mechanisms
can inform a network approach
The network approach to modeling psychopathology ad-
dresses some of the concerns laid out here, not by pro-
posing models of latent traits, but by proposing and
testing causal models of symptoms. On the surface, this
seems incompatible with the approach offered here.
However, we regard both approaches as part of a large
family of causal models of symptoms, which, if appropri-
ately designed, can be fit to individual symptom trajec-
tories. Thus, we argue that the two approaches can work
in tandem to further elucidate how traits feature in
within- and between-subject models of symptom
dynamics.
More specifically, we propose that the network ap-

proach can be strengthened by mechanistic models of
internal processes in computational neuroscience. For
instance, in a network model of panic attacks [27], the
symptom of “perceived threat” has a causal and dynamic
relationship with levels of arousal. Although this symp-
tom is indicated via self-report, the phenomenon of per-
ceived threat can be explained more deeply by parsing
the process of how we designate stimuli as threatening
based on experience. For example, contextual cues previ-
ously associated with threat might bias sampling from
one’s memory to evaluate whether a current stimulus is
threatening [28]. Such models could infer changing con-
textual influences on perceived threat from trajectories
of choices and thus provide greater insight into the un-
derpinnings of perceived threat than those offered by
self-report alone. Such integration of mechanistic
models with network approaches can add dynamical
predictions regarding symptom trajectories, which some
network models (unlike [27]) lack. Moreover, computa-
tional theories can spur advances in testing causal claims
(for example converting a computational model to a di-
rected acyclic graph in line with Pearl [29]) in regard to
what aspects of one’s internal environment may affect
symptom patterns.
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Conclusion
Inferences about psychopathological traits are inextric-
ably tied to models of those traits, and we argue that the
standard approach serves to hinder further model devel-
opment. Indeed, examples of this dominant approach
pervade areas of psychological, neuroscientific, and com-
putational approaches to cognition. We highlight the
benefits from formalizing trait models that allow predic-
tion of within-subject symptom trajectories and show
how such models can be evaluated using a Bayesian
model comparison approach.
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