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SUMMARY
Single-nucleus RNA sequencing (snRNA-seq) is used as an alternative to single-cell RNA-seq, as it allows
transcriptomic profiling of frozen tissue. However, it is unclear whether snRNA-seq is able to detect cellular
state in human tissue. Indeed, snRNA-seq analyses of human brain samples have failed to detect a consistent
microglial activation signature in Alzheimer’s disease. Our comparison of microglia from single cells and sin-
gle nuclei of four human subjects reveals that, althoughmost genes show similar relative abundances in cells
and nuclei, a small population of genes (�1%) is depleted in nuclei compared to whole cells. This population
is enriched for genes previously implicated in microglial activation, including APOE, CST3, SPP1, and CD74,
comprising 18% of previously identified microglial-disease-associated genes. Given the low sensitivity of
snRNA-seq to detect many activation genes, we conclude that snRNA-seq is not suited for detecting cellular
activation in microglia in human disease.
INTRODUCTION

Single-cell approaches allow us to study cell-to-cell heterogene-

ity (Habib et al., 2017). In brain material, however, it is difficult to

dissociate individual cells (Habib et al., 2017; Lake et al., 2016).

This difficulty is further complicated if one is interested in study-

ing the human brain, for which often only frozen material is

available. One alternative to study cellular transcriptional hetero-

geneity in brain tissue is single-nucleus transcriptomics. Single-

nucleus RNA sequencing (snRNA-seq) studies have shown

concordance between single-cell and single-nucleus transcrip-

tome profiles in mice (Bakken et al., 2018; Habib et al., 2017;

Lake et al., 2017; Zhou et al., 2020). It is unclear whether a

snRNA-seq approach is equally effective for identifying dynamic

cellular substates, such as microglial activation in human tissue.

A recent breakthrough in the field of Alzheimer’s disease (AD)

using single-cell RNA-seq (scRNA-seq) demonstrated clearly

that microglia become activated in response to amyloid plaques

in mouse models (Keren-Shaul et al., 2017). This response com-

prises a transcriptional switch to a state called activation

response microglia (ARM) (Sala Frigerio et al., 2019) or dis-

ease-associated microglia (DAM, MGnD) (Keren-Shaul et al.,

2017; Krasemann et al., 2017). Evidence suggests that this mi-

croglial response is also relevant in human AD: microglia are

believed to play a role in amyloid clearance (Efthymiou and
Ce
This is an open access article under the CC BY-N
Goate, 2017) and complement-mediated synapse loss (Fonseca

et al., 2017) and histological studies have demonstrated consid-

erable microgliosis around plaques in humans (McGeer et al.,

1987). In addition, there is significant overlap between those

genes involved in the mouse microglial response and AD risk

genes identified in genome-wide association studies (Efthymiou

and Goate, 2017; Gosselin et al., 2017; Jansen et al., 2019; Kun-

kle et al., 2019; Lambert et al., 2013; Marioni et al., 2018), for

example, APOE, TREM2, APOC1, and CD33 (Sala Frigerio

et al., 2019). Most recently, the engrafting of human microglia

into an AD mouse model, followed by scRNA-seq, identified 66

DAM genes relevant to human activation (Hasselmann et al.,

2019). Although it is not yet clear how amouse brain environment

may influence the development of human microglia, this study

does offer additional evidence for microglial activation in human.

In contrast, a number of high-profile snRNA-seq studies of mi-

croglia in human AD (Del-Aguila et al., 2019; Grubman et al.,

2019; Mathys et al., 2019) have been unable to recover an equiv-

alent activation signature or, possibly more revealing, a consis-

tent activation signature. A recent cluster analysis by Mathys

et al. (2019) of 48 AD patients and controls reported only 28 of

257 orthologous activation genes in common with the DAM

signature. Differential expression analysis between AD and con-

trol patients revealed 22 genes upregulated in AD patients (5

overlapping with the DAM signature). Of these AD genes, only
ll Reports 32, 108189, September 29, 2020 ª 2020 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:bart.destrooper@kuleuven.vib.be
mailto:mark.fiers@kuleuven.vib.be
https://doi.org/10.1016/j.celrep.2020.108189
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2020.108189&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Gene Abundance in Single Microglial Cells versus Single Microglial Nuclei of Human Cortical Tissue

(A) Mean normalized gene abundance in cells (x axis) and nuclei (y axis). A total of 3,721 nuclei and 14,435 cells were extracted from the cortical tissue of 4 human

patients. Red, genes with significantly higher abundance in nuclei (padj < 0.05, fold change > 2); blue, genes that are significantly less abundance in nuclei (padj <

0.05, fold change < �2). Genes were normalized to read depth (per cell), scaled by 10,000, and log-transformed using the natural log. MALAT1 (which had

normalized abundance levels of 6.0 and 6.9, respectively, in cells and nuclei) has been removed for visualization purposes. The black dashed line represents no

(legend continued on next page)
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8 were also upregulated in another snRNA-seq study of human

AD (Grubman et al., 2019), and only 4 were upregulated in a

snRNA-seq study of AD TREM2 variants (Zhou et al., 2020).

The AD TREM2 variant study also only identified 11 DAM genes

enriched in AD patients compared with controls. Del-Aguila et al.

(2019) analyzed single-nucleus transcriptomics from 3 AD pa-

tients and were unable to recapitulate an activation signature

(Del-Aguila et al., 2019). This inconsistency within human studies

and across species has made it difficult to assess the true nature

of human microglial activation.

Here, we compare the performance of snRNA-seq to scRNA-

seq for the analysis of microglia from human cortical biopsies

and demonstrate that technical limitations inherent to snRNA-

seq provide a likely explanation for this lack of consistency in

snRNA-seq studies of AD. We confirm our results using publicly

available data.

RESULTS

snRNA-Seq Recovers Major Cell Types from Human
Tissue but Not Microglial State
scRNA-seq of FACS-sorted microglia was performed on tempo-

ral cortices of four human subjects who had undergone neocor-

tical resection (Mancuso et al., 2019). See Table S1 for subject

data. Mean Unique Molecular Identifier (UMI) count per cell

was 4,527, and mean number of genes per cell was 2,242.

We generated snRNA-seq libraries from these same subjects.

Single-cell and single-nucleus libraries were prepared using the

10X Genomics single-cell gene expression v2 kit. Following

quality filtering, principal-component analysis (PCA) analysis,

and clustering of 37,060 nuclei, we identified 7 major cell types

(Figures S1A and S1B): oligodendrocytes (ODCs; 34.0%), excit-

atory neurons (27.0%), interneurons (11.2%), ODC precursors

(OPCs; 9.4%), microglia (11.3%), astrocytes (6.0%), and endo-

thelial cells (1.1%).

We extracted microglia from the main snRNA-seq dataset

(Figures S1A–S1C). After pre-processing, 3,927 microglial nuclei

remained, with a mean UMI count of 1,328 and a mean gene

count of 879 per nucleus. We first checked whether clustering

analysis of single nuclei could recover subpopulations of micro-

glia comparable to the single-cell approach. A comparison of

single-nucleus and single-cell clustering suggested that cyto-

kine clusters and macrophage clusters recovered well by using

single-nucleus methods; however, differences between other

microglial subpopulations were not convincingly recovered

(see STAR Methods and Figures S1D–S1F).

Gene Expression Profiling of Human Nuclei and Cells
To compare gene abundance in single microglial cells (14,823

cells) and nuclei (3,940 nuclei), we performed a differential abun-
fold change; the gray dotted lines represent 2- and 4-fold differences between

available in Table S1.

(B) Scatterplot as in (A), per patient (with the same genes highlighted).

(C) Each bar represents a comparison between two datasets (X versus Y), with th

(top panel) and nuclear-enriched genes (bottom panel) have lower specificity form

depletion of genes, and red bars indicate a statistically significant depletion (padj <

Science. See also Figure S1 and S2A and Table S1.
dance analysis between cells and nuclei from the 4 subjects (Fig-

ure 1A). As demonstrated in previous studies (Bakken et al.,

2018; Gerrits et al., 2019; Habib et al., 2017; Lake et al., 2017),

most genes showed similar normalized abundance levels in cells

and nuclei, with 98.6% of genes falling along the diagonal in Fig-

ure 1A (Pearson’s correlation coefficient = 0.92, p < 2.2e-16).

However, we identified a group of 246 genes (1.1% of all genes

detected) that was less abundant in nuclei (fold change < �2,

adjusted p value (padj) < 0.05; blue in Figure 1A). A second pop-

ulation of 67 genes (0.3%) was found to be more abundant in

nuclei (fold change > 2, padj < 0.05; red in Figure 1A). Additionally,

3,248 genes were only detected in cells, and 5,068 genes were

exclusively detected in nuclei.

The observed differences in abundance between cells and

nuclei were consistent across all four subjects (Figure 1B; Fig-

ure S2A). Downsampling cellular reads indicated that differences

in abundance were not the result of different sequencing depths

(Figure S2B), and downsampling the number of cells indicated

that differences in abundance were not a result of different

numbers of cells/nuclei (Figure S2C). The full differential abun-

dance results can be found in Table S1.

To assess the robustness of this differential abundance, we

used our nuclei-abundant genes and cell-abundant genes to

compare enrichment across all pairs of 8 publicly available sin-

gle-cell or single-nucleus datasets (Table S1; Figure 1C). We

consistently found our nuclei-underrepresented (cell-abundant)

genes to be depleted in other single-nucleus microglia

compared to single-cell microglia (mean microglial Z score of

cell-abundant genes was 7.95 when comparing cells to nuclei,

whereas cell-to-cell comparisons yielded a mean of 0.01, and

nuclei-to-nuclei comparisons yielded a mean of 0.81, for Z

scores with padj < 0.05). We also found our nuclei-abundant

genes to be consistently enriched in other microglial nuclei

compared with microglial cells (mean microglial Z score

of �2.99 compared to �2.33 in nuclei against nuclei, no signifi-

cant enrichment was found in cell-to-cell comparisons with

padj < 0.05).

To assess functional enrichment among genes found to be

more abundant in cells or nuclei, we ranked all genes according

to log fold change (genes with a low abundance in nuclei had a

negative log fold change) and performed a gene set enrichment

analysis (GSEA; Subramanian et al., 2005) against gene

markers from previous studies (Figure 2A). For these analyses,

a positive normalized enrichment score (NES) represented nu-

clear enrichment, and a negative NES represented nuclear

depletion. As expected, cytoplasmic RNA (defined by Bahar

Halpern et al., 2015) was clearly enriched among genes found

to be more abundant in cells (NES = �2.03, padj = 3.6e-05),

as was mitochondrial mRNA (NES = �1.69, padj = 2.7e-04,

gene set extracted from Ensembl’s BioMart; Zerbino et al.,
cells and nuclei. FC, fold change; R2, correlation coefficient. Full results are

e bootstrapped Z scores representing the extent to which cell-enriched genes

icroglia in dataset Y relative to that in dataset X. LargerZ scores indicate greater

0.05, by bootstrapping). KI, Karolinska Institutet; AIBS, Allen Institute for Brain

Cell Reports 32, 108189, September 29, 2020 3



Figure 2. Functional Analysis of Genes That Are Enriched or Depleted in Nuclei

(A) Gene set enrichment analysis (GSEA) of gene sets related to cellular location and gene coding sequence (CDS) length. Background genes were ranked

according to log fold change of nuclei (3,721 nuclei) versus cells (14,435 cells). Red, higher normalized enrichment score (NES), i.e., more genes associated with

nuclear enrichment; blue, negative NES scores (depletion in nuclei). *** represents significance (padj < 0.0005). GC, GC content.

(B) GSEA of super-Gene Ontology gene sets against ranked nucleus-cell log fold changes. Only top and bottom categories (according to NES) are shown. Colors

as in (A). MHCI, major histocompatibility complex class I.

(C) GSEA of selected gene sets from previous studies of microglial activation, against log fold change as in (A). *** represents significance (padj < 0.0005). Mic0,

markers of microglial cluster 0 in human brain tissue;Mic1, markers ofmicroglial cluster 1 (activation response to plaques) defined byMathys et al., 2019 in human

brain tissue. ARM, activation response microglia (Sala Frigerio et al., 2019); DAM, disease-associated microglia (Keren-Shaul et al., 2017); LPS, lipopolysac-

charide (Gerrits et al., 2019).

(D) Scatterplot as in Figure 1A, highlighting in green the DAM genes. A regression line for the highlighted genes is shown in green (slope = 0.60).

(E) Scatterplot as in (D), highlighting in green the ARM genes. A regression line for the highlighted genes is shown in green (slope = 0.64).

(F) Scatterplot as in (D), highlighting the DAM genes recovered in the study of human activation in AD (Mathys et al., 2019). Purple, DAM genes not recovered in

their study; orange, DAM genes recovered in their study.

(G) Scatterplot as in (D); green, human activation marker genes defined by Mathys et al. (2019). Gene sets, results of GO clustering, and results of GSEA analysis

are available in Table S1. See also Figures S2B–S2G.
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2018). mRNA found to be more abundant in the nucleus by Ba-

har Halpern et al. (2015) tended toward enrichment in nuclei but

was not significant (NES = 0.86, padj = 8.7e-01), which is to be

expected as scRNA-seq captures both nuclear and cyto-

plasmic RNA. RNA of genes coding for ribosomal proteins

was also depleted in nuclei (NES = �2.37, padj = 3.6e-05), as

previously described (Habib et al., 2017). Genes with shorter

coding sequences (CDSs) were depleted in nuclei (NES =

�1.88, padj = 3.6e-05), whereas longer CDSs were enriched

(NES = 1.91, padj = 3.6e-05), as already observed in earlier

snRNA-seq studies (Bakken et al., 2018). GC content was not

enriched in either direction—low GC content NES was �0.99

(padj = 5.0e-01) and high GC content was �1.16 (padj = 1.7e-
4 Cell Reports 32, 108189, September 29, 2020
01) —suggesting no role for the differences in abundance be-

tween cells and nuclei. Finally, the genes defined by Gerrits

et al. (2019) as cellular enriched in a differential analysis of mi-

croglial cells versus (fresh) nuclei in humans were also enriched

in cells in our data, showing a NES score of �1.92 (padj = 3.6e-

05).

To further characterize genes with higher or lower abundance

in nuclei compared with cells, we performed GSEA, using Gene

Ontology (GO) terms extracted from the Molecular Signatures

Database (MSigDb, Liberzon et al., 2011) against the ranked

log fold change. We selected the 100 terms with the highest

NES and the 100 terms with the lowest NES (padj < 0.05). Given

the high overlap in terms, we clustered ontology terms based on
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the number of shared genes to define super-GO clusters. We

repeated the GSEA analysis by using these super-GO clusters

(Figure 2B; Table S1) and observed an enrichment of neuronal

and synaptic terms in nuclei-abundant genes (also shown in

the red population in Figure 1A). We suspect a synaptosome

contamination during centrifugation. This is supported by the

enrichment of synaptosome genes (NES = 1.82, padj = 3.6e-05,

Figure 2A; Hafner et al., 2019) and ambient RNA—mRNA

originating not from intact cells/nuclei but from free-floating tran-

scripts (Macosko et al., 2015)—(NES = 1.71, padj = 9.2e-05; Fig-

ure 2A; Figure S2D) within the nucleus-abundant genes. The two

gene sets share a strong overlap (Table S1). These genes,

although enriched in nuclei compared with cellular levels, still

show low abundance (most of these genes show a normalized

abundance of no more than 2; Figure 1A). Removal of this

ambient mRNA from our dataset did not affect normalized

gene abundance comparisons between cells and nuclei abun-

dance; we detected 238 genes that were significantly less abun-

dant in cells (fold change <�2, padj < 0.05; blue in Figure S2E), in

comparison to the original 246 genes. No changes were seen in

the number of genes that were underrepresented in nuclei (67).

Activation Genes Identified in Mouse Models of AD Are
Depleted in Human Nuclei
More interesting was the depletion of immune-related genes in

nuclei (Figure 2B). We therefore tested whether microglial activa-

tion genes were also depleted in nuclei (Figure 2C; Table S1).

Remarkably, we found a strong depletion of genes associated

with mouse microglial activation: 45 of 257 orthologous DAM

genes (Keren-Shaul et al., 2017; NES = �2.16, padj = 3.6e-05;

Figures 2C and 2D) and 28 of 200 orthologous ARM genes

(Sala Frigerio et al., 2019; NES = �2.01, padj = 3.6e-05; Figures

2C and 2E), confirming that mouse microglial activation genes

were less abundant in nuclei. Genes upregulated by lipopolysac-

charide (LPS) stimulation in mice (Gerrits et al., 2019) also

showed depletion in nuclei (NES = �1.86, padj = 3.6e-05; Fig-

ure 2C; Figure S2F).

As we observed an enrichment for shorter genes in the nuclei-

depleted population, wewanted to test whether activation genes

were also shorter. We performed a differential expression anal-

ysis of ARM genes against homeostatic genes (Sala Frigerio

et al., 2019) and ranked genes according to this log fold change.

We then performed a GSEA, taking the 200 genes with the short-

est and the longest CDS and the 200 genes with the highest and

lowestGCcontent. FigureS2Gshows that theseactivationgenes

are not enriched for GC content, but they do tend to be shorter

than the general gene population (NES = 1.85, padj = 9.1e-05).

Activation Genes Identified in Human Studies of AD Are
Depleted in Human Nuclei
We next examined genes that were identified as markers of the

human microglial response to AD in the recent snRNA-seq study

by Mathys et al. (2019) (Figures 2C, 2F, and 2G). Markers of this

response (referred to by Mathys et al., 2019 as ‘‘Mic1’’) had a

NES score of �2.14 (padj = 3.6e-05), indicating that they were

depleted in nuclei (Figure 2C). The study identified 28 DAM genes

asmarker genes of theMic1 response cluster (shown in orange in

Figure 2F); however, most DAMgenes were not identified as acti-
vation genes using their snRNA-seq protocol (purple in Figure 2F).

Figure 2G shows in green all the markers of the human activation

cluster Mic1. Clearly, DAM genes and other Mic1 markers

showed a higher abundance in cells relative to nuclei (confirming

the NES score observed in Figure 2C). Furthermore, it seems

likely that the recovered DAM genes (orange in Figure 2F) and

Mic1 markers in general (green in Figure 2G) were detected in

the original snRNA-seq experiment owing to their higher nuclear

abundance than the nuclear abundance of other genes, including

those DAM genes that were not recovered (purple in Figure 2F).

Comparisons with Previous Studies
A recent comparison of snRNA-seq and scRNA-seq in human

microglia (Gerrits et al., 2019) found little difference in abundance

between nuclei and cells, in contrast to our results. In Gerrits

et al. (2019), they FACS-sorted microglia from fresh postmortem

tissue and performed scRNA-seq and snRNA-seq on fresh

nuclei. In addition, they extracted and froze adjacent tissue,

and then they isolated nuclei from it. We downloaded their raw

data and examined the differences in abundance between cells

and fresh nuclei, as well as between cells and frozen nuclei.

Frozen nuclei contained multiple cell types. After clustering of

the frozen nuclei (Figure S3A), we classified clusters into cell

types based on the expression of know markers (Figure S3B)

and isolated 2,659 microglial nuclei.

In agreement with the results of Gerrits et al. (2019), when we

plotted the normalized abundance of fresh nuclei versus cells,

we saw very little difference between the two populations (Fig-

ure S3C). However, when we compared frozen nuclei to fresh

cells, we again observed the same set of nuclei-depleted genes

showing a lower relative abundance in frozen nuclei of Gerrits

et al. (2019) (Figure S3D).

DISCUSSION

In our comparison of nuclear (snRNA-seq) and total cellular tran-

scriptomes (scRNA-seq) of human microglia, we have identified

a set of genes (1.1% of the gene population) with at least 2-fold

lower abundance in nuclei compared to their cellular levels (Fig-

ures 1A and 1B). This small set is strongly enriched for genes pre-

viously associated with microglial activation in mouse models of

AD, for example, APOE, CST3, FTL, SPP1, B2M, PLD3, and

CD74 (Figures 2B–2E). Many these genes have been implicated

in AD, for example, through genetic risk studies (Efthymiou and

Goate, 2017), but have not been consistently detected in

snRNA-seq studies of AD (Del-Aguila et al., 2019; Grubman

et al., 2019; Mathys et al., 2019). Thus, although our work agrees

with previous experiments demonstrating that snRNA-seq can

determine cell type (Figures S1A andS1B), we argue that ameth-

odology that is unable to assess the dysregulation of these

genes in humans is not suitable to answer questions relating to

cellular state in human microglia. These limitations are likely

responsible for the difficulty in identifying a consistent activation

signature in the human brain in snRNA-seq-based studies. We

identified similar patterns of depletion in publicly available sin-

gle-nucleus microglial datasets (Figure 1C).

Re-examination of data from the Mathys et al. (2019) study of

human nuclei in AD shows that only genes with higher nuclear
Cell Reports 32, 108189, September 29, 2020 5
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abundance levels were detected (Figures 2C, 2F, and 2G). This

further suggests that the discordance between human and

mouse microglial activation is at least in part a consequence of

limitations in the technology, rather than biological differences

between the species as current snRNA-seq suggest. Deeper

sequencing (or increased sample size) could possibly compen-

sate for this lack of sensitivity. Both our study and the Mathys

et al. (2019) study relied on the 10XGenomics single-cell expres-

sion v2 kit. Further improvements in snRNA-seq library prepara-

tion will possibly result in better sensitivity and better resolution

of the nuclear transcriptome. The improved v3 chemistry yields

a higher number of reads and genes per cell, as shown in a com-

parison using peripheral bloodmononuclear cells (PBMCs) (Ding

et al., 2020). The study, however, did not assess the ability of this

deeper sequencing to detect additional cell populations or

states. The sparse nature of snRNA-seq and the high level of het-

erogeneity in human samples, combined with the fact that many

relevant genes have a more than 2-fold lower abundance in

nuclei (e.g., APOE fold change = 2.57, CST3 fold change =

3.44, FTL fold change = 6.53), suggest that this lack of sensitivity

may remain a problem.

It appears that CDS may play a role in the ability of snRNA-

seq to capture genes (genes underrepresented in nuclei tended

to be shorter; Figure 2A). However, we are unable to attribute

the differences in cellular and nuclear abundance to a biological

mechanism (for instance, mRNA trafficking) or a technical arti-

fact of the methodology. Droplet-based methods do not appear

to suffer from length bias (Phipson et al., 2017); thus, we cannot

not attribute differences in capture efficiency to a preference for

capturing longer genes. For our single-cell protocol, we per-

formed dissociation at 4�C to mitigate potential activation (Man-

cuso et al., 2019), so it is unlikely the dissociation procedures

account for the differences. Our lab has previously used the

same protocol to study microglial activation in mice, and no

activation due to technical artifacts was seen (Sala Frigerio

et al., 2019).

One caveat of the present study is that we have used non-

diseased tissue, and we cannot dismiss the possibility that

mRNA localization distributions change in more activated popu-

lations of microglia.

In a previous comparison of human microglial cells and nuclei

(Gerrits et al., 2019), little difference in abundance between

genes was observed comparing fresh cells with fresh nuclei.

However, using their data to compare fresh cells to frozen nuclei

(Figure S3D), we observed a depletion of nuclear genes, similar

to the depletion seen in our data. The reason for this difference

between fresh and frozen nuclei is unclear. It may be the

freezing/thawing process; however, Gerrits et al. (2019) also

employ a different extraction protocol for fresh and frozen nuclei.

We elected to compare frozen nuclei because such archival

frozen tissue remains the main source of material for transcrip-

tomic studies of AD. For their cluster analysis, Gerrits et al.

(2019) scaled cell and nuclei expression to mitochondrial reads.

Such methods may inadvertently mask differences between

cells and nuclei, thereby making it difficult to assess their claim

that single nuclei are a good proxy for single cells based on the

ability of (frozen and fresh) nuclei to co-cluster with cells. A

more suitable confirmation would be to determine whether, us-
6 Cell Reports 32, 108189, September 29, 2020
ing single nuclei, the same level of clustering resolution can be

achieved as when using single cells.

Alternative approaches may be more suitable for generating a

brain atlas of human disease such as AD, particularly where we

are limited to frozen material. In situ spatial transcriptomics (STs)

negates issues related to tissue dissociation and cell or nucleus

isolation (Ståhl et al., 2016), while at the same time retaining

spatial information. This approach has recently been applied to

examine transcriptomic changes and identify genes that are

co-expressed across multiple cell types in the amyloid plaque

niche of the mouse brain (Chen et al., 2020). In humans, a similar

methodology was recently applied to identify pathway dysregu-

lation and regional differences in cellular states of the postmor-

tem spinal tissue of amyotrophic lateral sclerosis (ALS) patients

(Maniatis et al., 2019). Its application to AD patients may shed

light on transcriptomic changes occurring in microglia that

localize near plaques and may also provide insights into the

crosstalk occurring between neighboring cells.

In conclusion, although snRNA-seq offers a viable alternative

to scRNA-seq for the identification of cell types in tissue for

which cell dissociation is problematic, caution should be applied

when using snRNA-seq for the assessment of cellular states in

disease.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Resected cortical brain tissue Mancuso et al., 2019 N/A

Chemicals, Peptides, and Recombinant Proteins

D-(+)-Sucrose, ultrapure DNase RNase free VWR 0335; CAS 57-50-1

Calcium chloride Sigma-Aldrich 449709; CAS 10043-52-4

Magnesium acetate tetrahydrate Sigma-Aldrich M5661; CAS 16674-78-5

Tris (1 M), pH 8.0, RNase-free Invitrogen AM9855G

Ethylenediaminetetraacetic acid

disodium salt solution

Sigma-Aldrich E7889; CAS 139-33-3

IGEPAL CA-630 Sigma-Aldrich I8896; CAS 9002-93-1

Phenylmethylsulfonylfluoride Thermo Fisher Scientific #36978; CAS 329-98-6

2-Mercaptoethanol (50 mM) Thermo Fisher Scientific 31350010; CAS 60-24-2

UltraPure DNase/RNase-Free Distilled Water Invitrogen 10977035

OptiPrep Stemcell #07820

Potassium chloride Sigma-Aldrich P4504; CAS 7447-40-7

Magnesium chloride Sigma-Aldrich M8266; CAS 7786-30-3

PBS - Phosphate-Buffered Saline (10X)

pH 7.4, RNase-free

Invitrogen AM9624

Bovine serum albumin (BSA) VWR 0332; CAS 9048-46-8

RNasin Plus RNase Inhibitor Promega N2615

Critical Commercial Assays

Chromium Single Cell 30 Library & Gel,

Bead Kit v2, 16 rxns

10x Genomics 120237

Deposited Data

Raw count data and fastq files This paper GSE153807

Raw count data and fastq files Mancuso et al., 2019 GSE137444

Software and Algorithms

Cellranger v2.1.1 10x Genomics https://support.10xgenomics.com/single-cell-gene-

expression/software/overview/welcome

R v3.6.3 https://cran.r-project.org/ https://cran.r-project.org/

Seurat v3.0.2 Butler et al., 2018;

Stuart et al., 2019

https://satijalab.org/seurat/install.html

EWCE package Skene and Grant, 2016 https://github.com/NathanSkene/EWCE

MicroglialDepletion package This paper https://github.com/NathanSkene/MicroglialDepletion

Other

Plain Plunger Head For PTFE Tissue Grinder Fisherbrand 10709382

Glass Vessel for PTFE Tissue Grinder Fisherbrand 10075911

EASYstrainer 70 mM, for 50 ML tubes, for tubes

227XXX/210XXX, blue, sterile, single packed

Greiner Bio-one 542070

OPTIMA XPN – 90 Beckman Coulter A94468

SW 41 Ti Swinging-Bucket Rotor Beckman Coulter 331362

13.2 mL, Open-Top Thinwall Ultra-Clear Tube,

14 3 89mm - 50Pk

Beckman Coulter 344059

Pasteur pipette VWR 612-1681

Falcon 5 mL Round Bottom Polystyrene Test Tube,

with Cell Strainer Snap Cap, 25/Pack, 500/Case

Corning 352235

(Continued on next page)
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LUNA Cell Counting Slides Westburg LB L12001
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Lead Contact
Further information and requests for resources should be directed to andwill be fulfilled by the Lead Contact, Mark Fiers (mark.fiers@

kuleuven.vib.be).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
Sequencing data from single microglial cells and nuclei are available at GEO: GSE137444 for single cells, and GEO: GSE153807 for

single nuclei).

Analysis of previous datasets (see Figure 1C) was performed using the EWCE package (Skene and Grant, 2016) and the Micro-

glialDepletion package (https://github.com/NathanSkene/MicroglialDepletion).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Resected tissue samples were obtained from the lateral temporal neocortex of 4 epilepsy patients during neurosurgery (amygdalo-

hippocampectomy for medial temporal lobe seizures). Patients were aged 7 (male), and 20,24, and 50 (female). Patient metadata

(age, gender and epilepsy diagnosis) are presented in Table S1. Biological samples and personal data were collected in full compli-

ance with the ethical principles of free donation, informed consent and protection of privacy according to theGeneral Data Protection

Regulation (GDPR) 2016/679 (Section 5.1.3). All procedures followed protocols approved by the local Ethical Committee at UZ

Leuven (protocol number S61186).

METHOD DETAILS

Isolation of human primary microglial cells
Human primarymicroglial cells from theMancuso et al. (2019) studywere used. Fresh brain tissuewas collected at the time of surgery

and immediately prepared for sequencing. Microglia were FAC-sorted from the tissue. The full protocol is described in the original

study. Sequencing was performed as described for the nuclei.

Isolation of nuclei from human subjects
Nuclei from frozen biopsy tissue were isolated as follows: brain tissue was sliced on dry ice, then homogenized using a glass dounce

tissue grinder (15 gentle strokes) in 1mL of ice-cold Homogenization Buffer (HB; Sucrose (320mM), Calcium chloride (5mM), Magne-

sium Acetate (3mM), Tris (10mM), Ethylenediaminetetraacetic acid (0.1mM), Igepal (0.1%), Phenylmethylsulfonylfluoride (0.1mM), 2-

Mercaptoethanol (1mM), UltraPure water) with 5mL RNasin Plus. The homogenate was strained with a 70mm strainer and washed

with 1.65mLHB toa final volumeof 2.65mL. 2.65mLofGradientmedium (Calciumchloride (5mM),Optiprep (50%),MagnesiumAcetate

(3mM), Tris (10mM), Phenylmethylsulfonylfluoride (0.1mM), 2-Mercaptoethanol (1mM)) was added (Vf = 5.3mL). To isolate the nuclei,

first an Optiprep Diluent medium (ODM; Potassium chloride (150mM), Magnesium chloride (30mM), Tris (60mM), Sucrose (250mM))

was prepared. The sample was added to a 4mL 29% cushion (Optiprep (29%), ODM) using a P1000 pipette, and the weight adjusted

with HB. The samplewas centrifuged in a SW41Ti rotor at 7,700 rpm for 30minutes at 4�C. The supernatant was removedwith a plastic

Pasteur pipette, followed by removal of the lower supernatant with P200 pipette. Nuclei were resuspended in 200mL of resuspension

buffer (10xPBS (1x), BSA (1%), RNasin Plus (0.2U ml-1)), transferred to a new tube, washed again with 100-200mL resuspension buffer,

and pooled with the previous solution. Clumps were disrupted by pipetting with P200 pipette, then filtered through a Falcon tube with

0.35mmstrainer. 9mL of samplewasmixedwith 1mL of propidium iodide (PI) stain, loaded onto a LUNA-FL slide and allowed to settle for

30 s. We viewed nuclei with the LUNA-FL Automated cell counter to check numbers and shape.

Single nucleus sequencing
RNA sequencing was performed using the 10x Genomics Single Cell 3‘ Reagent Kit (v2) according to manufacturer protocols. cDNA

libraries from fresh-frozen nuclei were sequenced on an Illumina HiSeq platform 4000. Table S1 provides sequencing information per

sample (for cells and nuclei).
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Single nucleus analysis
Alignment. Cellranger v2.1.1 was used to demultiplex and align sequencing output to a human reference genome (assembly hg38

build 95). We used a ‘‘pre-mRNA’’ database to align sequencing data to exons as well as introns (10x Genomics). Following align-

ment, nuclei from one patient sample (RM101.1) were removed due to poor quality (low read and gene count). See Table S1 for sam-

ple information. Unfiltered count matrices were used for downstream analysis.

Extraction of microglial nuclei. Data was processed using the Seurat v3.0.2 package (Butler et al., 2018; Stuart et al., 2019) in R

v3.6.1. For each patient, the count matrix was filtered to exclude nuclei with fewer than 100 genes. Counts were normalized for library

size, scaled by 10,000 and log-transformed using the natural log. FindVariableFeatures was run using a variance-stabilizing transfor-

mation (‘‘vst’’) to identify the 2,000 most variable genes in each sample. Data from the 4 patients was then integrated using Seurat’s

FindIntegrationAnchors with default parameters, and IntegrateData using 40 principal components (PCs). The dataset consisted of

37,060 nuclei, with a mean UMI count of 4,305 counts per nucleus, and 1,791 genes per nucleus. Integrated data was scaled (default

Seurat parameters). We ran a Principal Components Analysis (PCA), then calculated UniformManifold Approximation and Projection

(UMAP) embeddings using 40 PCs. We identified clusters using Seurat’s FindNeighbors and FindClusters functions, again using 40

PCs. Based on abundance of known celltype markers, we assigned each cluster to a cell type. We identified 7 main cell types in

37,060 nuclei: oligodendrocytes (ODC, 34.0%), excitatory neurons (27.0%), interneurons (11.3%), oligodendrocyte precursors

(OPC 9,4%), microglia (11.3%), astrocytes (6.0%), and endothelial cells (1.1%). Figures S1A and S1B show UMAP embeddings

for all nuclei, colored by cell type, and selected markers for each cell type, respectively.

Figure S1C, highlighting known microglial markers (P2RY12, CSF1R, DOCK8 and CX3CR1) as well as markers for other celltypes

(MBP for oligodendrocytes, GRIA1 for neurons, AQP4 for astrocytes and CLDN5 for endothelial nuclei), confirms that we extracted

only microglial clusters from the original data.

Microglial nuclei were then isolated and reclustered.We identified 3,721microglia (expressingMEF2A,P2RY12,CX3CR1,CSF1R),

a macrophage cluster (enriched for CD163 andMRC1, 67 nuclei), a neutrophil cluster (72 nuclei), and a cluster containing microglial

as well as astrocytic markers (marked by GFAP, 68 nuclei). The neutrophil and ambiguous clusters were discarded, leaving only mi-

croglia and brain macrophages for downstream analysis (Figure S1D). Cluster markers are provided in Table S1.

Pre-processing of microglial nuclei per patient.Microglia from each patient sample were analyzed individually as described for all

cell types above, with the following modifications: raw counts were filtered to remove genes and counts that were ± 3 standard de-

viations away from the median value. After normalization, doublets were identified using DoubletFinder v2.0.2 (McGinnis et al., 2019)

using 40 PCs, assuming a 7.5%doublet rate. Following removal of doublets, filtering and Seurat normalization were performed again.

Data from patients was then integrated and clusters were identified as above. We discarded small clusters than contained markers

for microglia as well as other cell types. After pre-processing, 3,927 nuclei remained, with a mean UMI count of 1,328 and a mean

gene count of 879 genes per nucleus.

Single cell analysis
Full details of single cell processing are available inMancuso et al. (2019). Count data was obtained by aligning rawCellranger data to

both introns and exons using a pre-mRNA database, as for the nuclei. Only cells from the four patients included in the single nucleus

study were used here.

Comparisons of single cells and single nuclei
Cluster analysis

In order to identify microglial cell states in the nuclei data we calculated gene markers for each cluster using Seurat’s FindMarkers

function, selecting only markers with a positive fold change. Genemarkers for cell clusters were extracted from the original Mancuso

et al. (2019) study.Markers for nuclei and cells are available in Table S1. For the analysis, we kept the top 40 significant markers (padj <

0.05) based on log fold change for the nuclear clusters and cellular clusters. For each nucleus, we calculated the mean abundance

levels of each cell cluster marker set against the aggregated abundance of random control gene sets, using Seurat’s AddModule-

Score function. This gave us the MS40 score for each cell marker set (Figure S1E). We performed two-sided Fisher’s Exact tests

with Benjamini Hochberg corrections to determine the overlap of cell cluster markers with nuclear cluster markers (selecting the

top 40 markers for each set), using the union of all genes in the cell and nuclei datasets as a background (padj < 0.05 was considered

significant). Our nuclei were able to recover a cytokine response cluster (CRM), marked by CCL3, CCL4, and an activation-like clus-

ter, equivalent to the ‘‘in vitro microglia’’ identified in the original study (original markers included APOC1, GPNMB, SPP1, APOE).

Homeostatic markers appeared ubiquitously through-out the nuclei dataset, and we were not able to distinguish a reduction of these

markers in the activation-like response cluster, as we would expect from transcriptomic profiling of microglia in mice (Keren-Shaul

et al., 2017; Sala Frigerio et al., 2019). Finally, the CAM (macrophage) cluster (CD163,MRC1), separated out from the bulk of the mi-

croglia, and was easily-recognizable based on its MS40 score. Cluster markers are provided in Table S1.

In order to quantify the differences between cells and nuclei in more detail, we examined the overlap of the top 40markers between

nuclei clusters and cell clusters (Figure S1F). The cell macrophage (CAM) and cell cytokine (CRM) clusters showed the largest over-

laps with Nuc1 and Nuc5 (27 and 24 of 40 markers, respectively). Other clusters only showed overlaps of between 1 and 5 genes.
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Cluster Nuc3 showed similar overlaps between ‘‘in vitro 1’’ and ‘‘in vitro 2’’ (5 genes). Cluster Nuc0 showed an overlap of 5 genes with

‘‘in vivoHM,’’ and cluster Nuc2 showed an overlap of 2 genes with ‘‘in vivoHM.’’ Cluster Nuc4 showed similarities with the ‘‘in vitro 2’’

cluster, suggesting it could be a cluster of activation, however all 5 overlapping genes were mitochondrial genes. Cluster Nuc3

markers RPS12, TPT1, FTL, RPS18 and EEF1A1 also appeared as markers of ‘‘in vitro 2.’’

We performed similar analyses using more markers, however we found that introducing more markers resulted in nuclei markers

overlapping with more than one cell cluster. We also noticed that introducing more markers resulted in overlaps between markers of

the cellular clusters with each other. Selecting 40 markers allowed us to align cellular and nuclear clusters in an almost one-to-one

fashion (see Figure S1F).

Differential Abundance

We discarded all non-microglial clusters (brain macrophages, neutrophils), leaving 3,721 nuclei and 14,435 cells. Differential abun-

dance analysis was performed with the Seurat package, using a two-sided Wilcoxon rank sum test, with a Bonferroni correction for

multiple testing. Genes with padj < 0.05 and fold change > |2| were considered significant. As Seurat applies a pseudocount of +1 to

data before calculating natural log fold changes, a fold change of 2 corresponds to a log fold change of 0.63. Log fold changes calcu-

lated by Seurat were used for further analysis in gene set enrichment analysis.

Scatterplots

We calculated the mean of the normalized abundance levels for cells and for nuclei, and log-transformed these values.

Assessment of nuclear-enriched or cell-enriched gene sets in public scRNA-Seq and snRNA-Seq datasets

We followed the methodology described in Skene et al. (2018): genes that were significantly more abundant in nuclei or more abun-

dant in cells (see Differential abundance methodology above) were used, creating two gene sets. 8 public datasets (see Public data-

sets below) were reduced to contain six major cell types: pyramidal neurons, interneurons, astrocytes, interneurons, microglia and

oligodendrocyte precursors. Within each dataset, for each gene in our gene sets, we calculated a celltype specificity score using the

EWCE R package (Github version committed July 29, 2019; Skene and Grant, 2016). For each pair of datasets, X and Y, we sub-

tracted themeanmicroglial specificity score of Y from X.We then calculated the same scores for 10,000 random gene sets: the prob-

ability and z-score for the difference in specificity for the dendritic genes is calculated using these. Finally, the depletion z-score for

each gene set was equal to: (mean subtractedmicroglial specificity score – bootstrappedmean) / (bootstrapped standard deviation).

A large positive z-score thus indicated that the gene set was depleted in microglia of dataset Y relative to dataset X. Benjamini-Hoch-

berg multiple testing corrections were applied.

Public datasets

For the Karolinska Institutet (KI) dataset (Skene et al., 2018), we used S1 pyramidal neurons. For the Zeisel 2018 dataset (Zeisel et al.,

2018) we used all ACTE* cells as astrocytes, TEGLU* as pyramidal neurons, TEINH* as interneurons, OPC as oligodendrocyte pre-

cursors andMGL* asmicroglia. For the Saunders dataset (Saunders et al., 2018), we used all Neuron.Slc17a7 celltypes from the fron-

tal cortex (FC), hippocampus (HC) or posterior cortex (PC) as pyramidal neurons; all Neuron.Gad1Gad2 cell types from FC, HC or PC

as interneurons; Polydendrocye as OPCs; Astrocyte as astrocytes, and Microglia as microglia. The Lake datasets both came from a

single publication (Lake et al., 2018) which had data from frontal cortex, visual cortex and cerebellum. The cerebellum data was not

used here. Data from frontal and visual cortices were analyzed separately. All other datasets - Dronc Human (Habib et al., 2017),

Dronc Mouse (Habib et al., 2017), Allen Institute for Brain Science (AIBS) (Hodge et al., 2019), Tasic (Tasic et al., 2016) and Habib

(Habib et al., 2016) – were used as described previously (Skene et al., 2018). Table S1 lists all public datasets used. An R package

is available for the analysis at https://github.com/NathanSkene/MicroglialDepletion.

Functional analysis

We performed Gene Set Enrichment Analysis (GSEA) using the R package fgsea v1.8.0 (Sergushichev, 2016), using default param-

eters. Gene sets were mapped against a list of genes ranked according to fold change between cellular abundance and nuclear

abundance. Gene ontology (GO) sets were obtained from MSigDB (Liberzon et al., 2011; Subramanian et al., 2005). Other gene

sets were obtained from previous studies (see Table S1). padj < 0.05 (Benjamini-Hochberg correction) was considered significant.

Clustering of gene ontology terms

GSEA of GO terms resulted in many functional categories with overlapping genes. In order to reduce this redundancy, the top and

bottom 100GO terms according to normalized enrichment score (with padj < 0.05) were clustered as follows: a Jaccard index (the size

of the intersection of the two datasets, divided by the size of the union of the two datasets, multiplied by 100) of the overlapping genes

was calculated between each significant GO set. The resulting similarity matrix was converted to a dissimilarity matrix, and hierar-

chical clustering was performed on thematrix. We selected a k value of 16 to group the GO terms based on the hierarchical clustering

(see Table S1). Gene sets were merged, and each new ‘‘super’’ GO was assigned an annotation manually. GSEA analysis was per-

formed on these super-GO gene sets as described above.

Gene sets from previous studies

Weextracted gene sets fromprevious studies for this analysis. A full list of gene sets is available in Table S1.Where data was selected

frommouse datasets, we converted the mouse gene to its human ortholog using R’s BioMaRt package v2.40.5 (Drost and Paszkow-

ski, 2017), selecting only orthologs that displayed 1-to-1 orthology. For the ARM gene set we selected the top 200 ARM genes based

on log fold change (Sala Frigerio et al., 2019). For the Gerrits human gene set, we took the union of all genes that showed significant

differential abundance between cells and nuclei (microglia) from donor 1 and donor 2 (Gerrits et al., 2019). For the LPS gene set, we

took the union of all genes significantly upregulated in LPS in cells and in nuclei (microglia) from the Gerrits study (Gerrits et al., 2019).
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For GSEA of coding sequence (CDS) length we took the 200 genes with the longest CDS and the 200 genes with the shortest CDS

from Ensembl (Zerbino et al., 2018). For GSEA of GC content, we took the top 200 genes with the highest GC content and the top 200

geneswith the lowest GC content fromEnsembl (Zerbino et al., 2018). Ensembl was accessed using BioMartR v0.92 (Drost and Pasz-

kowski, 2017).

Downsampling of cell counts

To match cell sequencing depth to nucleus sequencing depth (see Figure S2B), we sampled without replacement the number of

reads in the cells by a proportion of 0.32, using the downsampleMatrix function of the DropletUtils R package v1.4.3 (Griffiths

et al., 2018; Lun et al., 2019). This resulted in 1,304 mean reads per cell, compared with the original count of 3,979 reads per cell.

Downsampling of cells

To ensure the high number of cells relative to nuclei did not affect the result (Figure S2C), we randomly sampled 3,927 cells from the

count matrix.

Definition of ambient RNA profile in nuclei

We extracted nuclei with less than 700 counts from the original unfiltered raw count matrix of all cell types (resulting in 2,414 nuclei

with amean read depth of 590), and summed the gene counts, under the assumption that these were empty drops rather than nuclei.

We took the top 300 genes to represent the ambient RNA profile.

GSEA analysis of ARM gene length

From the Sala Frigerio et al. (2019) study, we calculated the log fold change between ARM cells and homeostatic cells for each gene

(Seurat’s FindMarkers function). For each gene, we extracted the CDS length from Ensembl, using BioMartR as described above.We

took the 200 genes with the longest CDS and the 200 genes with the shortest CDS as input into a GSEA analysis against the ARM log

fold change.

Analysis of Gerrits data

Wedownloaded the human data fromGEO (accession number GSE135618). Each sample (fresh nuclei, frozen nuclei, and cells, each

from 2 donors) was processed to remove genes that were found in less than 10 cells, and cells that contained less that 100 genes or

more than 2,000 counts (nuclei) or more than 3,500 counts (cells), and cells that contained more than 20% mitochondrial reads.

Counts were normalized for library size, scaled by 10,000 and log-transformed. Data from the 2 patients was then merged to create

a frozen nuclei dataset, a fresh nuclei dataset, and a cellular dataset. FindVariableFeatureswas run using a variance-stabilizing trans-

formation (‘‘vst’’) to identify the 2,000 most variable genes in each dataset. We ran a Principal Components Analysis (PCA), then

calculated UniformManifold Approximation and Projection (UMAP) embeddings using 12 PCs. We identified clusters using Seurat’s

FindNeighbors and FindClusters functions, again using 12 PCs. Based on abundance of known celltype markers, we assigned each

cluster to a cell type. In the frozen nuclei dataset, microglial clusters (clusters 3,5 and 6 in Figures S3A and S3B) were identified using

known markers including P2RY12, CSF1R, CX3CR1 (resulting in 2,659 microglial nuclei), and extracted for downstream analysis. In

the fresh nuclei and cells, examination of these markers in the clustering confirmed that all cells were microglial. Scatterplots were

then then generated from the normalized data of these datasets.
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