
BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

Diffusioosmotic and convective flows induced by a
nonelectrolyte concentration gradient
Ian Williamsa,b,1 , Sangyoon Leeb,c , Azzurra Apricenoa,b , Richard P. Seard , and Giuseppe Battagliaa,b

aInstitute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; bDepartment of Chemistry,
University College London, London WC1H 0AJ, United Kingdom; cDepartment of Chemistry, Seoul National University, Seoul 08826, Republic of Korea;
and dDepartment of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom

Edited by Daan Frenkel, University of Cambridge, Cambridge, United Kingdom, and approved August 27, 2020 (received for review May 7, 2020)

Glucose is an important energy source in our bodies, and its con-
sumption results in gradients over length scales ranging from
the subcellular to entire organs. Concentration gradients can
drive material transport through both diffusioosmosis and con-
vection. Convection arises because concentration gradients are
mass density gradients. Diffusioosmosis is fluid flow induced by
the interaction between a solute and a solid surface. A concen-
tration gradient parallel to a surface creates an osmotic pressure
gradient near the surface, resulting in flow. Diffusioosmosis is
well understood for electrolyte solutes, but is more poorly char-
acterized for nonelectrolytes such as glucose. We measure fluid
flow in glucose gradients formed in a millimeter-long thin chan-
nel and find that increasing the gradient causes a crossover
from diffusioosmosis-dominated to convection-dominated flow.
We cannot explain this with established theories of these phe-
nomena which predict that both scale linearly. In our system, the
convection speed is linear in the gradient, but the diffusioos-
motic speed has a much weaker concentration dependence and
is large even for dilute solutions. We develop existing models
and show that a strong surface–solute interaction, a heteroge-
neous surface, and accounting for a concentration-dependent
solution viscosity can explain our data. This demonstrates how
sensitive nonelectrolyte diffusioosmosis is to surface and solu-
tion properties and to surface–solute interactions. A comprehen-
sive understanding of this sensitivity is required to understand
transport in biological systems on length scales from microme-
ters to millimeters where surfaces are invariably complex and
heterogeneous.

diffusioosmosis | convection | microfluidics |

Gradients in solution concentration are unavoidable in many
areas of research, manufacturing, and materials processing

(1) and are fundamental to the operation of biological sys-
tems, including our bodies (2–4). Gradients may be intentionally
imposed (5–10) or else arise due to chemical reactions (11),
solid dissolution (12), sedimentation (13), or evaporation (14).
Microscopic objects in suspension, such as colloidal particles,
vesicles, viruses, proteins, and cells, may exhibit directed motion
in response to an external concentration gradient due to physico-
chemical processes such as diffusiophoresis (DP) (6, 7, 9, 15, 16),
osmophoresis (10, 17, 18), and chemotaxis (19–21).

Among these phenomena, the most widely studied from a
physical perspective is DP: motion of a particle driven by inter-
actions between a solute and a surface of the solid particle. A
concentration gradient establishes a stress gradient at the par-
ticle surface, resulting in a fluid slip velocity and motion of the
particle relative to the surrounding liquid (1, 22–24). When the
surface is a stationary wall instead of the surface of a freely
suspended particle, the fluid motion is called diffusisoosmosis
(DO) (24, 25), and when it is along a pore it is what Ander-
son and Malone (23) call osmotic flow. In a sealed, thin-channel
geometry, DO flow along the walls can set fluid into circulating
motion (26, 27).

The majority of experiments investigating DO or DP consider
electrolytes (1, 28, 29), for which it is well established that the

speed scales with the zeta potential and with the gradient of the
logarithm of the concentration (30). Investigation into nonelec-
trolyte gradients is much more limited, with only a handful of
studies of aqueous ethanol gradients (6, 31) or polymers (31–34).
Paustian et al. (6) measured diffusiophoretic motion at speeds
∼0.1 to 1 µm/s, comparable to those in gradients of electrolytes.
Very recent simulation work of Wei et al. (35) reports speeds that
decrease at high concentrations due to saturation of the interfa-
cial region, but this remains untested experimentally. While the
dependence of DP and DO speeds on the concentration gradient
is relatively well understood for electrolytes, our understanding
is much poorer for neutral solutes.

But DO is not the only motion created by concentration gra-
dients. The mass density of a solution typically increases with
concentration. Therefore, a concentration gradient is a density
gradient which inevitably induces convective fluid flow (25, 36).
This is analogous to natural convection driven by a tempera-
ture gradient (37, 38). In a thin channel geometry, buoyancy-
driven convective flow results in fluid circulation. There-
fore, whenever a concentration gradient is established in an
attempt to measure diffusiophoresis, osmophoresis, or chemo-
taxis, it is necessary to characterize or mitigate circulating fluid
flows due to both diffusioosmosis and convection to correctly
interpret data.

Researchers have made great progress harnessing chemi-
cal gradients to direct the motion of colloidal-scale suspended

Significance

Our bodies rely on molecular transport within a com-
plex, nonequilibrium environment incorporating gradients of
charged and neutral solutes. Concentration gradients near
solid surfaces are known to induce material transport via
diffusioosmotic fluid flow. These are well understood for
charged molecules, but less so for neutral molecules such
as glucose. Glucose is an important biological energy source
and is often distributed in gradients across cell membranes,
vasculature, tissues, and whole organs. We measure diffu-
sioosmotic flow due to glucose gradients and find its speed
depends only weakly on concentration. Our models can repro-
duce this behavior by accounting for strong interactions,
concentration-dependent viscosity, and heterogeneous sur-
faces. Understanding these flows will allow us to harness
them for improved transport of targeted nanomedicines.

Author contributions: I.W. and A.A. designed research; I.W., S.L., A.A., and R.P.S. per-
formed research; I.W., A.A., R.P.S., and G.B. analyzed data; and I.W., A.A., R.P.S., and G.B.
wrote the paper.y

The authors declare no competing interest.y

This article is a PNAS Direct Submission.y

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).y
1 To whom correspondence may be addressed. Email: iwilliams@ibecbarcelona.eu.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2009072117/-/DCSupplemental.y

www.pnas.org/cgi/doi/10.1073/pnas.2009072117 PNAS Latest Articles | 1 of 9

D
ow

nl
oa

de
d 

at
 U

C
L 

Li
br

ar
y 

S
er

vi
ce

s 
on

 O
ct

ob
er

 3
, 2

02
0 

http://orcid.org/0000-0001-6997-1823
http://orcid.org/0000-0002-9050-8371
http://orcid.org/0000-0003-4321-9427
http://orcid.org/0000-0002-0833-7519
http://orcid.org/0000-0003-3349-6770
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:iwilliams@ibecbarcelona.eu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2009072117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2009072117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2009072117
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2009072117&domain=pdf&date_stamp=2020-09-25


objects and transport materials more quickly than is possible via
diffusion alone (5, 7, 10, 16, 26, 36, 39). And, if human beings
are exploiting this effect, it is incredibly unlikely that it is not
also employed by nature to efficiently transport material within
and between cells and across membranes and barriers (40–42).
Glucose is one of the most important biological energy sources
as it fuels numerous metabolic processes in both unicellular and
multicellular organisms. It is thus expected that glucose gener-
ates gradients across cells, tissues, and whole organs (43). In
humans, the brain consumes up to 50% of the body’s glucose
intake; and in cancer cells, the anabolic demand for glucose often
drives accumulation and the emergence of anomalous gradients
(44). Delivering drugs to the brain is notoriously difficult (45,
46) and we have already demonstrated that glucose can augment
blood–brain barrier crossing in vivo (19).

In this work, we measure circulating flows caused by gradients
of glucose concentration in aqueous solution. In Slip Veloc-
ity and Convection-Driven Flow we briefly recapitulate textbook
analytical flow profiles for slip velocity and convection-driven
flows in thin channels. Experimentally Measured Velocity Profiles
presents our experimental measurements revealing two qualita-
tively distinct fluid velocity profiles, which we compare to the
analytical profiles of Slip Velocity and Convection-Driven Flow.
In small concentration gradients, flow is dominated by the DO
slip velocity at the channel walls, while in large gradients it is
dominated by the density contrast. The cross-over between these
behaviors cannot be explained by the established theory for non-
electrolyte DO (22, 47, 48), but requires a nonlinear scaling of
DO slip velocity with concentration. Model for Diffusioosmosis
Due to Nonelectrolytes develops a simple model for nonelec-
trolyte DO, building in a concentration-dependent viscosity, and
we show that this additional feature is sufficient to qualitatively
reproduce the experimental observations. Finally, our findings
are discussed and summarized in Discussion and Conclusion.
This study represents a first step in understanding the physico-
chemical principles governing DO in glucose gradients and will
lead to improvements in bioinspired targeted nanomedicines
able to “surf” along the glucose gradients present in the body,
potentially locating cancerous cells and crossing the blood–brain
barrier (49–51).

Slip Velocity and Convection-Driven Flow
Experiments are performed in a thin channel of length L= 1 mm
and height H = 70µm, where H �L, as shown schematically
in Fig. 1 A and B. This channel connects two large reservoirs
containing solutions at concentrations c0 and c0 + ∆c such that
a gradient ∆c/L exists in the x direction along the channel
length. Importantly, the reservoirs are sealed, precluding any
overall flow of material through the gradient channel. Complete
details are provided in Materials and Methods. The y dimension
of the channel, W �H , is assumed to be unimportant and is
neglected.

In the low Reynolds number limit and under the Boussinesq
approximation, fluid flow is described by the Stokes equation,

− ~∇p + η∇2~u +~f =~0, [1]

where p is the pressure, ~u = (ux , uy , uz ) is the fluid velocity, η is
its viscosity, and ~f is the net body force acting on the fluid. If the
fluid is incompressible, its velocity also obeys ~∇·~u = 0.

For H �L and H �W , unidirectional fluid flow is antici-
pated, ~u = (ux , 0, 0), and so the incompressibility condition is
∂xux = 0. Implicit in this is the additional assumption that vis-
cosity is uniform. In the case of a glucose solution this is not true
(52), but, to obtain analytical predictions for velocity profiles we
proceed here as if it were.

A

B

C

Fig. 1. Schematics illustrating experimental gradient channel and key
model features. (A) Side view of experimental chamber. Large sealed reser-
voirs containing solutions of concentration c0 and c0 + ∆c are connected
by a thin gradient channel. (B) Detail of thin (L�H) gradient channel of
height H = 70 µm and length L = 1 mm. (C) Zoomed-in schematic illustrating
our model of the microscopic surface–solution interface region. The surface
(black) attracts the solute (red circles), inside an interfacial region (pale blue)
of thickness λσ. Within this region, the surface–solute interaction is ε.

Diffusioosmosis and Flow Due to a Slip Velocity. Diffusioosmo-
sis is flow due to an externally imposed concentration gradient
near a solid surface. Gradients in velocity are restricted to the
microscopic interfacial region, outside of which, flow can be
modeled using a slip velocity, us (22, 30, 53, 54). The theory of
Derjaguin, Anderson, and Prieve (22, 29, 30, 47, 54), as extended
by Marbach et al. (48), predicts a slip velocity

us = ΓDO

(
dΠ

dx

)
, [2]

where Π is the solution osmotic pressure, and ΓDO is the
diffusioosmotic coefficient given by

ΓDO =−1

η

∫ ∞
0

z

[(
c(x , z )

c(x )

)
− 1

]
dz . [3]

Here c(x ) is the concentration far from the surface at position x ,
and c(x , z ) is the concentration at height z above and near the
surface. The slip velocity is directed toward (away from) lower
concentrations for attractive (repulsive) surface–solute interac-
tions. The original theory of Derjaguin and others (22, 30, 47)
assumes a dilute solution for which ΓDO does not depend on
concentration, and the bulk solution is ideal, with dΠ/dx =
kBT (dc/dx ). Thus, the DO speed is proportional to the concen-
tration gradient. Eqs. 2 and 3 do not assume a dilute solution
and are generally valid. The predicted DO speed depends on the
concentration gradient via dΠ/dx .

For a concentration gradient in a thin channel, in the absence
of body forces, ~f = 0, and subject to slip velocity boundary
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conditions, ux = us at z = 0 and z =H , Eq. 1 can be solved in
the thin channel geometry, yielding

ux (z ) = us

[
6
( z

H

)2
− 6

( z

H

)
+ 1

]
, [4]

where the condition of zero net flow is imposed,
∫ H

0
ux (z ) dz = 0.

This is shown in Fig. 2A. The slip velocity directs flow in the same
direction at the top and bottom walls, and the zero net transport
condition requires a backflow along the channel center, resulting
in a parabolic profile. We plot−u(z )/us to facilitate comparison
with experimental data in Fig. 3.

Convection. Convection is flow driven by mass density gradients.
The mass density of glucose solutions, ρ, increases linearly with
glucose concentration (52). Assuming that c depends only on
x , then ρ(x ) = ρs [1 +βc(x )], where ρs is the solvent density
and β is the solutal expansion coefficient. The body force in
Eq. 1 is then a gravitational force acting on a fluid element
~f = ρsβc(x )~g .

Solving for the velocity profile in the presence of this grav-
itational body force, subject to no slip boundary conditions,
ux (z = 0) = 0 and ux (z =H ) = 0 and the condition of zero net
flow, yields

ux (z ) = ub

[
1

6

( z

H

)3
− 1

4

( z

H

)2
+

1

12

( z

H

)]
, [5]

with ub = [(ρsβgH
3)/η](dc/dx ), which is the textbook solution

for natural convection in a thin channel (25, 28, 36, 37, 55).
This profile is shown in Fig. 2B and is qualitatively distinct

from that driven by a slip velocity. The horizontal density gradi-
ent drives fluid flow from high c to low c in the bottom half of the
channel and in the opposite direction in the top half of the chan-
nel, resulting in a circulating flow. The minimum and maximum
occur at z/H ≈ 0.21 and z/H ≈ 0.79, respectively, and both have
magnitude umax

b ≈ 8× 10−3ub . Therefore, the speed of convec-
tive flow scales linearly with concentration gradient and depends
on the third power of H .

Experimentally Measured Velocity Profiles
Glucose gradients are established in thin channels between
two large reservoirs, as illustrated in Fig. 1A, following the
protocol described in Materials and Methods. Fluid flow near
x =L/2 is measured by tracking the motion of tracer parti-
cles in micrograph series acquired using laser scanning confocal
microscopy. Velocity profiles ux (z ) are constructed from the
average tracer velocity in two-dimensional (2D) videos acquired

A B

Fig. 2. Predicted thin (H� L) channel velocity profiles. (A) Flow due to a
slip velocity, us (Eq. 4). (B) Flow due to convection (Eq. 5). Insets illustrate
the circulating flow patterns.

at different heights, z , in the channel. Velocity profiles do not
depend on the waiting time between gradient initiation and
data acquisition for waiting times between 5 and 40 min (SI
Appendix), suggesting that gradients are quasi-static on this
timescale. Unlike some conceptually similar experiments (6,
9, 39), reservoir concentrations are not maintained. Equilib-
rium in our experiments is uniform concentration throughout
both reservoirs and the gradient channel. However, equilibra-
tion occurs over a much longer timescale than our experimental
duration.

Tracer motion is expected to have contributions from Brow-
nian motion, fluid flow, and diffusiophoresis. However, our
measurements suggest that tracer DP is sufficiently slow that
it cannot be unambiguously distinguished from the experimen-
tal uncertainty (SI Appendix). By contrast, tracer DP is easily
observed in a salt gradient (SI Appendix). Therefore, we pro-
ceed assuming that the dominant contribution to directed tracer
motion is fluid flow.

Experiments with Zero Background Concentration. Initially, the low
concentration reservoir is fixed at c0 = 0 and the high concen-
tration reservoir is varied. Concentration drops between ∆c =
2.5 mM and ∆c = 1 M are applied across the L= 1 mm channel.
The key experimental finding is that, for small concentration gra-
dients (∆c. 100 mM), the velocity profiles have very different
shapes from those measured in large gradients (∆c& 100 mM).
Plots of velocity as a function of height are compared in Fig. 3A
(small gradients) and Fig. 3B (large gradients).

For ∆c. 100 mM (Fig. 3A) velocities are largest and codirec-
tional at the top and bottom walls and are reversed in the center
of the channel. Positive velocity indicates flow toward high glu-
cose concentration. So the flow adjacent to walls is directed away
from high glucose concentrations.

For ∆c& 100 mM (Fig. 3B), fluid flows away from high glu-
cose concentration in the bottom half of the channel and toward
high glucose concentration in the top half. Any slip velocities are
at most a small fraction of the maximum velocities.

In the smaller gradients, the profile shape is close to that pre-
dicted for slip velocity-driven flow (Eq. 4 and Fig. 2A), while in
the larger gradients the profile has the form predicted for con-
vection (Eq. 5 and Fig. 2B). Judging by the profile shapes, slip
velocity-driven flow dominates in small glucose gradients, and
convection dominates in larger gradients. We postulate that the
slip velocities are due to DO induced by the glucose–wall inter-
action, which must be attractive based on the direction of the
slip velocity. This implies that the surface free energy is lower
at high glucose concentration. However, despite the small gra-
dient experiments exhibiting the qualitative features of a slip
velocity-driven flow, the profiles in Fig. 3A differ from the ana-
lytical profile in Fig. 2A. The experimental profiles flatten in the
vicinity of the walls, while the analytical profile approaches the
walls as a steep parabola.

The particles experience the same gradient as the channel
walls so why might we observe DO at the walls but find that
particle DP is too slow to measure? First, the existence of DO
at the wall is inferred from the shape of the entire velocity
profile, which makes it easier to distinguish than DP, which
would manifest only as an offset in the velocity profile. But, per-
haps more importantly, the particles are amine functionalized
polystyrene, while the channel walls are coated with ibiTreat, giv-
ing a different surface chemistry. Since nonelectrolyte DO and
DP depend on the solute–surface interaction, a stronger interac-
tion between glucose and the channel walls than between glucose
and the particle surface could explain these observations. We
do not yet have a good understanding of these interactions, but
clearly the differences between the channel walls and the parti-
cles are sufficient to create very different fluid flows in the same
gradient.

Williams et al. PNAS Latest Articles | 3 of 9
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A B C

Fig. 3. Flow in glucose gradients between reservoirs at c0 = 0 and c = ∆c. (A) Velocity profiles for ∆c< 100 mM showing the characteristic shape of slip
velocity-driven flows. (B) Velocity profiles for ∆c> 100 mM showing the characteristic shape of convection. Profiles are averages over all experiments and
waiting times. Error bars represent the SEM. Insets show the shape of circulating flow in the x-z plane. (C) Estimated slip velocities (average velocity in wall-
adjacent optical sections) as a function of ∆c. Pink shaded region represents convection-dominated experiments. Open points are individual experiments
and solid points show the average over all experiments at each ∆c. Inset shows peak velocity in buoyancy-driven flows in B compared to analytical prediction
for peak velocity according to Eq. 5 (dashed gray line).

The qualitative difference in the flow profiles at low and at
high glucose concentrations is not predicted by conventional the-
ory. Models for diffusioosmosis and convection predict speeds
that increase linearly with the gradient. Approximating the slip
velocity, us , by the average tracer velocity in the wall-adjacent
optical sections, we see that us is between 0.3 and 0.7µm·s−1

over nearly two decades in ∆c and that us decreases as ∆c
increases. This is shown in Fig. 3C. Slip velocities are absent
without a glucose gradient so must ultimately tend to zero for
sufficiently low ∆c.

The measured scaling of DO speed with concentration gradi-
ent is surprising. However, our convective speeds are consistent
with the work of Gu et al. (25) and (mostly) with the model
shown in Fig. 3 C, Inset. The gray dashed line shows the peak
velocities predicted by Eq. 5, using the solutal expansion coef-
ficient, β= 6.8× 10−5 m3/mole, and the kinematic viscosity of
water, ν= η/ρ= 8.9× 10−7 m2·s−1 (25). These are parameter-
free predictions and capture the scale of the measurements
accurately. However, as ∆c increases, the analytical prediction
increasingly overestimates the peak velocity. This is attributed to
effects that are neglected in the theory, including the increase in
solution viscosity with concentration.

Experiments with a Background Concentration. In their studies of
polystyrene colloids in aqueous ethanol gradients, Paustian et al.
(6) measured diffusiophoretic velocities that varied as uDP∝
∇ lnX , with X the ethanol mole fraction. This amounts to a non-
linear dependence of slip velocity on concentration gradient. In

the experiments described in Experiments with Zero Background
Concentration, ∇ lnX =∇X /X is independent of ∆c and is
always ∇ lnX = 2/L at the observation location, assuming a lin-
ear gradient. This predicts a DO slip velocity independent of ∆c,
which should be measurable even in the experiments exhibiting
convection, contrary to our observations.

Although the scaling of Paustian et al. (6) seems incompatible
with our observations, it is prudent to test this with a second set
of experiments in which the concentration difference between
the reservoirs is fixed at ∆c = 5 mM, and the background con-
centration is varied between c0 = 0 and c0 = 10 mM. The results
are shown in Fig. 4.

The∇ lnX scaling predicts that maintaining ∆c while increas-
ing c0 should decrease us . The data show that even at c0 = 1 mM,
the slip velocity is greatly reduced compared to c0 = 0. The pro-
file shape is preserved, with backflow along the channel center,
but its scale is reduced. Further increasing c0 to 5 or 10 mM
gives a flat profile indicative of complete suppression of circu-
lating flow. Estimated slip velocities are shown in Fig. 4B as a
function of c0 (main panel) and ∆X /Xmid (Inset), where ∆X
is the difference in glucose mole fraction between the reservoirs
and Xmid is the mole fraction at the observation location. If us ∝
∇ lnX describes our system, the Inset plot would show a linear
increase in us with ∆X /Xmid, which it clearly does not. There-
fore, while we measure qualitatively similar behavior to that in
Paustian et al. (6), their ∇ lnX dependence does not describe
our DO slip velocities. Although both sets of experiments reveal
a decrease in speed on increasing concentration, the physical

A B

Fig. 4. Flow in glucose gradients between reservoirs at c0 and c = c0 + 5 mM. (A) Velocity profiles averaged over all experiments and waiting times. Error
bars represent the SEM. (B) Estimated slip velocities (average velocity in wall-adjacent optical sections) as a function of c0. Inset shows same data as a
function of ∆X/Xmid, where ∆X is the difference in glucose mole fraction between the reservoirs and Xmid is mole fraction at the channel center. Open
points are individual experiments and solid points show the average over all experiments at each c0.
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origin of these effects may differ between glucose and ethanol
gradients.

In the remainder of this article, we seek to understand the
concentration dependence of the DO slip velocity and present a
plausible physical mechanism for its origin, capable of explaining
the cross-over to convection-dominated flow in large gradients.

Model for Diffusioosmosis due to Nonelectrolytes
In this section we develop a simple model for diffusioosmosis and
qualitatively compare its predictions to experimental measure-
ments. First, we account for a concentration-dependent solution
viscosity, and subsequently we provide a simple description of
a heterogeneous surface. Many models of DO conceptually sep-
arate the system into an interfacial region and the bulk, as
illustrated in Fig. 1C. We follow this convention and define an
interfacial region of width λσ, where σ is an estimate of the
solute molecular size, and λ controls the width of the interface.
Within the interfacial region, a solute molecule experiences an
effective attractive interaction ε< 0. All properties of the solu-
tion within the interfacial region are assumed to be uniform
across its width.

Diffusioosmosis with a Concentration-Dependent Viscosity in the Sur-
face Region. The model for DO as written in Eqs. 2 and 3 assumes
the same viscosity in both interfacial and bulk regions, equal to
that of the solvent. However, the viscosity of a glucose solution
increases with c and there is an upper limit to glucose solubility.
The concentration dependence of viscosity can be incorporated
into Eq. 3 by noting that η= η(c) means η= η(x , z ) and moving
the viscosity inside the integral.

We assume that the solution is ideal up to the solubility
limit. Osmotic pressure measurements (56) of glucose solutions
show that this is an acceptable approximation. Then dΠ/dx =
kBTdc/dx . Ideality also means that the concentration in the
interfacial layer is enhanced by a Boltzmann factor compared to
the bulk, cSL(x )/c(x ) = exp(−ε/kBT ). When the surface layer
concentration exceeds the bulk glucose solubility limit, cmax =
3.2 M (52, 57), we assume that the interface solidifies, and the
slip velocity becomes zero. We also assume that the viscosity in
the interfacial region is the viscosity of a bulk glucose solution,
but at the interfacial region concentration.

With these modifications, Eq. 3 becomes

ΓDO =
fMN [exp(−ε/kBT )− 1](λσ)2

2ηg(cSL)
cSL< cmax [6]

and ΓDO = 0 for cSL> cmax. The factor fMN = 103NA converts
between molar concentrations and number densities. This is

equivalent to Eq. 3 calculated using a square-well solute–wall
attraction of depth−ε and range λσ and using the concentration-
dependent bulk viscosity of glucose solutions, ηg given in
Materials and Methods.

We assume a linear gradient, ∆c/L, at the midpoint glucose
concentration, cmid = c0 + ∆c/2. Thus, for a given ∆c, we use
the solute chemical potential equilibrium between the surface
layer and the bulk to determine cSL and hence the viscosity,
osmotic pressure gradient, and slip velocity.

Slip velocities predicted by this model are compared with
experimental data in Fig. 5 A and B where they appear as solid
lines. We do not expect this model to be truly quantitative so
we do not fit it to the data, but we do compare trends by set-
ting λ= 1 and ε=−5 kBT . The characteristic size of a glucose
molecule is estimated to be σ= 0.8 nm. For reference, the dot-
ted lines show the prediction when viscosity is independent of
concentration and equal to that of water.

From Fig. 5A, it is clear that the increase in viscosity in the
surface layer reduces the slip velocity compared to the conven-
tional model with uniform viscosity. Glucose solution viscosity
increases nonlinearly with concentration and this is sufficient to
create a nonlinear dependence of us on ∆c. The result is a broad
peak in the slip velocity, with maximum speeds in the range 0.1
to 1 µm/s—the same as in experiment. The speed goes to zero
both as ∆c goes to zero and at large ∆c. The peak spans two
orders of magnitude and is centered around a ∆c that scales as
exp(−ε/kT ); i.e., strong surface–glucose interactions give rise to
strong DO at lower bulk concentration gradients. SI Appendix
explores the ε and λ dependence of the model predictions
and the viscosity dependence of the uniform viscosity model of
Eqs. 2 and 3.

Fig. 5B compares the second set of experiments with model
predictions when the background glucose concentration is
increased. The model predicts that the slip velocity decreases
with increasing c0, but this effect is weaker than is measured
in experiment. The model correctly predicts that the maximum
speed is of order kTσ2/η multiplied by the gradient in num-
ber density. However, when compared to our measurements,
the predicted slip velocity varies more strongly with the gra-
dient and more weakly with the background concentration.
Importantly, simply augmenting the conventional DO model with
a concentration-dependent solution viscosity in the interfacial
layer is sufficient to give slip velocities that decrease as con-
centration gradient increases for concentration gradients larger
than the peak in Fig. 5A. This allows the experimentally observed
cross-over between DO-driven flow and convection at some finite
gradient.

A B C

Fig. 5. Comparison of experimental estimates of slip velocity (points) with model predictions. (A) In glucose gradients between reservoirs at c0 = 0 and ∆c.
(B) In gradients between reservoirs at c0 and c0 + 5 mM. Solid black point is average over repeated experiments, open circles are individual experiments.
Solid line shows model prediction for ε=−5 kBT . Dashed line shows heterogeneous model predictions with mean ε̄=−5 kBT and SD σε = ε̄/3. Dotted
line is prediction for ε= 5 kBT , according to Eqs. 2 and 3 neglecting the concentration-dependent viscosity. (C) Velocity profiles calculated in Navier–Stokes
simulations with heterogeneous patchy slip velocities at the top and bottom walls. Patch size is 1µm. Thin blue lines show local velocity profiles at x = 480,
490, 510, and 520 µm. Dashed magenta line shows velocity profile averaged over 10 µm in x (10 patches). Dotted-dashed green line shows analytical profile
from Eq. 4 using the patch-averaged slip velocity. Inset shows velocity field in the vicinity of the channel center.
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Diffusioosmosis at Heterogeneous Surfaces. So far, we have perfect
uniformity in the plane of the interface, down to the nanometer
length scale of glucose molecules. This is certainly unrealistic.
So, in our final development, we introduce a laterally heteroge-
neous surface. Surface heterogeneity will cause variations in slip
velocity over a characteristic, small length scale. As the glucose
molecule is about a nanometer across, DO will be sensitive to
nanoscale heterogeneity. To understand the effect of a spatially
varying slip velocity, we perform (2D, incompressible) Navier–
Stokes simulations with nonuniform slip velocities. We use a
modified version of the cavity flow code of Hau and Ohl (58),
which is in turn based on that of Barba and Forsyth (59). Full
simulation details are provided in SI Appendix.

Example velocity profiles obtained from these simulations are
shown in Fig. 5C. If the slip velocity varies over a length scale
λP, flow is perturbed within a comparable range from the wall.
Over longer length scales, flow appears as if it were driven by
a uniform average slip velocity. With heterogeneity on the scale
λP = 1µm, local velocity profiles (thin blue lines) relax to the
average profile (dashed magenta line) over a few micrometers.
This profile is the average of individual profiles over a length of
10 times λP and is virtually indistinguishable from the analytical
profile (green) obtained according to Eq. 4 using a uniform slip
velocity equal to the average slip velocity.

Therefore, our micrometer-sized tracer particles are insensi-
tive to nanometric heterogeneities in slip velocity and sensitive
only to the spatially averaged slip velocity. Within our model,
the surface–solute interaction is characterized by ε. We model
nanometric heterogeneity by assuming a distribution of ε and
average the resulting distribution of slip velocities, assuming our
experiments measure the average slip velocity.

The average slip velocities for heterogeneous surfaces are
shown as dashed curves in Fig. 5 A and B. The mean inter-
action strength is ε̄=−5kBT and the SD σε = |ε̄|/3. This is
described in Materials and Methods. The heterogeneous model
predictions are closer to the experimental data for both the
variations with gradient (Fig. 5A) and with background con-
centration (Fig. 5B). They reproduce the qualitative features of
our experiments, but still disagree quantitatively for low ∆c and
intermediate c0.

This suggests that surface heterogeneity might play an impor-
tant role in determining DO flows in gradients of nonelectrolytes,
a conclusion supported by computer simulation (60). The major-
ity of research into DO and DP assumes flat surfaces, simple
interactions, and electrolyte gradients, assuming surface unifor-
mity may be a much better approximation for electrolytes than
for nonelectrolytes. Resolving this question is crucial to under-
stand and exploit DP or DO in living systems where surfaces are
invariably highly heterogeneous (61).

Discussion and Conclusion
Our results show that concentration gradients of nonelec-
trolytes can drive flows as fast as those of electrolytes (∼0.1
to 1 µm/s). This is in agreement with previous results (6,
31). Our model predicts the correct flow velocities, and we
obtain the best reproduction of concentration dependence by
assuming a strong, several kBT , surface–solute attraction and
a heterogeneous surface. Both assumptions are physically rea-
sonable but systematic experiments varying surface chemistry
and heterogeneity will be needed to definitively test these two
assumptions.

For charged surfaces and electrolyte gradients, modeling the
surface via a zeta potential gives good agreement between exper-
iment and theory (6, 28). Experiments confirm DP speeds are
proportional to ∇ ln c (6) which is well understood and follows
from the concentration dependence of the interfacial width, the
Debye length. Studies of DO and DP due to nonelectrolytes are
much less frequent and these phenomena are less well under-

stood. However, nonelectrolyte DO along nanoscale membrane
pores (referred to as osmotic flow) was described theoretically
in a pioneering study by Anderson and Malone (23). They con-
sidered long pores only nanometers across. This is much smaller
than our channels, but the physics of slip velocities were shown to
be relevant at these length scales, and thus our results may prove
relevant to transport through nanoscale pores. Experimental
(24, 62) and modeling (63) studies have investigated electrolyte-
driven flows in nanoscale pores where the solute is much closer
in size to the channel dimension. We speculate that the effects
of surface heterogeneity will be much more prominent in these
geometries.

For glucose, we find only a weak dependence of the DO
speed on the gradient, but this may be specific to our system.
It seems likely that the concentration dependence of DO flows
is not universal as it is for electrotytes. However, our experi-
ments and model, and the simulations of Wei et al. (35), all
find a speed that decreases at sufficiently high concentrations
and strong attractions. As the speed must tend to zero as the
concentration tends to zero, a maximum in speed at some con-
centration may be common for nonelectrolytes. With strong
attractions, the concentration in the interfacial region is much
larger than in the bulk, and this region may become very vis-
cous. Therefore, DO flow speeds depend sensitively on both the
solute–surface interaction [in the manner described by the theory
of Derjaguin, Anderson, Marbach, and others (22, 47, 48)] and
on any changes in solution properties as a consequence of this
interaction. Indeed, Lee et al. (31) found that even understand-
ing the direction of DO flows in ethanol and polymer gradients
requires carefully accounting for the structure and solute mobil-
ity in the interfacial region. This means that DO slip velocities
and velocity profiles depend on both the concentration gradient
and the concentration, suggesting that we may expect to measure
position-dependent velocity profiles. However, within the limits
of our data, acquired close to the channel center, we discern no
such dependence (SI Appendix).

Predicting the DO speed for a given combination of non-
electrolyte solute and surface is difficult, but this problem can
be inverted. A readily observable property (flow) is a sensitive
probe of the surface–solute interactions. The concentrations at
which flow speeds increase and/or saturate should scale with the
surface–solute attraction strength and allow the interaction to be
estimated. In our case it appears to be ∼5kBT . This approach
has already been employed using electrolyte DO and DP to
measure zeta potential (8).

In contrast to DO, the convective flow profiles are accu-
rately described by the standard, parameter-free, theory. In
70 µm-high channels, switching between DO-dominated and
convection-dominated flow is achieved simply by varying the
concentration gradient. A consequence of these two competing
effects is that experimentalists must proceed with caution when
generating gradients in channels of height ∼100 µm, as flows
may arise due to a combination of factors. Convective speeds
vary as the cube of the height, while diffusioosmotic speeds are
independent of height. Thus, convection will always dominate in
deep channels, while for shallower channels, diffusioosmosis will
dominate.

Concentration gradients are ubiquitous in living systems (4,
64), and we expect them to drive transport in our bodies (41).
Living organisms rely on transport over many length scales,
including those in the 10- to 100-µm range where phoretic
transport can be faster than both diffusion (41) and fluid flow.
Biological surfaces and particles are complex, heterogeneous,
and dynamic (61, 65–67). We have shown that for nonelec-
trolyte DO, even simple properties like the concentration depen-
dence of viscosity can surprise. We expect many more surprises
as we develop our understanding of diffusioosmosis in living
systems.

6 of 9 | www.pnas.org/cgi/doi/10.1073/pnas.2009072117 Williams et al.

D
ow

nl
oa

de
d 

at
 U

C
L 

Li
br

ar
y 

S
er

vi
ce

s 
on

 O
ct

ob
er

 3
, 2

02
0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2009072117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2009072117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2009072117


BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

Materials and Methods
Experimental Samples. Solutions of glucose (Sigma-Aldrich) are prepared
in deionized water (milliQ) at concentrations between 0 (pure water) and
1 M. Fluorescently labeled amine-modified polystyrene spheres of diameter
σ= 1 µm are obtained from Sigma-Aldrich in aqueous suspension at∼2.5%

solids, and 4 µL of this stock suspension is added for each milliliter of glucose
solution or pure water.

Gradient Generation. Glucose gradients are established in commercially
available ibidi µslide chemotaxis chambers (photograph in Fig. 6A), which
consist of two 1 mm-deep triangular reservoirs connected by a H = 70 µm
deep gradient channel, as illustrated in Figs. 1A and 6B. The length, L, of the
gradient channel (the distance between the reservoirs) is L = 1 mm, and the
reservoir openings have width W = 2 mm, as shown in the close-up detail
in Fig. 6B. The channel walls are polymer coated with ibiTreat, rendering
them hydrophilic. Six inlets allow loading and unloading of the reservoirs
and gradient channel using a micropipette and provide outlets for air, so no
bubbles are trapped in the device during experiments. These inlets may be
sealed with plastic stoppers.

The x direction is defined along L, between the reservoirs from low to
high concentration, and gravity acts in the negative z direction. Experiments
are initialized by first filling and sealing the low concentration reservoir
and then filling and sealing the high concentration reservoir. We allow
5 min for the concentration gradient to establish itself before observing
at the center of the channel (yellow box in Fig. 6B). Diffusive mixing in
this setup will eventually lead to a uniform concentration throughout the
device. However, the reservoirs are sufficiently large and the gradient chan-
nel is sufficiently small that this occurs over a timescale much longer than
the experimental duration. This is conceptually distinct from experimen-
tal protocols using flushed microfluidic channels as reservoirs in which a
true steady-state gradient is established (6, 9). To estimate the concen-
tration gradient, we simulate a 2D model of the chamber in COMSOL
Multiphysics. This neglects convective flow and concentration-dependent
viscosity and simply considers the diffusive transport of glucose from the
high concentration reservoir across the channel. Simulated concentration
profiles in the midplane of the channel (z = 35 µm above the bottom) as
a function of time after initiation with c = 1 M in the high concentration
reservoir are shown in Fig. 6C. These data are calculated using a glu-
cose diffusion constant D = 0.67× 10−9 m2·s−1 (25). This modeling suggests
that the concentration gradient is quickly established and is linear over
the central observation region. Furthermore, the gradient is fairly stable
with time. Fig. 6 C, Insets show linear fits to the gradient as a function
of time.

Data Acquisition. Measurements are made using an inverted laser scanning
confocal microscope (Leica TCS SP8). Data are acquired following an xytz
protocol, whereby a 2D video is recorded at 15 different heights separated
by ∆z = 5 µm, spanning the 70-µm deep gradient channel, working from

the bottom to the top. At each height, z, a 200-frame video is acquired
in resonant scanning mode at a rate of ∼14 frames per second. We image
using a 10× objective, giving a 2D image size of 258× 258 µm. Acquisition
of the whole stack of 15 videos takes ∼3.5 min, and so in a given experi-
ment, there is a time delay between data acquired at the bottom and the
top of the channel.

Since there is a density contrast between the polystyrene tracers and
the glucose solutions, the tracer particles sediment. One hour after ini-
tiating the experiment, the top half of the channel is typically depleted
of tracers, and so the full velocity profile cannot be measured beyond
this time.

Data Analysis. Particle trajectories are obtained in each 2D video using
standard particle-tracking algorithms (68) implemented in the R program-
ming language (69). From particle trajectories, displacements over 10 frame
intervals are calculated. Probability histograms for displacements in the x
direction are shown in Fig. 6D for an experiment with no concentration
gradient (black line) and an experiment with ∆c = 2.5 mM (gold line). In
the no gradient case, the histogram is symmetric about zero, indicating
no preferred displacement direction; i.e., motion is Brownian. With a gra-
dient, the histogram shape is preserved, but it is no longer centered at
zero. Brownian motion remains a significant contribution to tracer par-
ticle motion, but it is superposed over a directed drift velocity, which is
interpreted as the underlying fluid velocity. Example particle trajectories
are shown in Fig. 6 D, Insets when there is no gradient (left) and in the
∆c = 2.5 mM gradient (right). In the gradient case, directional drift is clearly
evident.

Velocity profiles are constructed by finding the mean of the x displace-
ment distribution in each of the 15 2D videos acquired in each experiment.
Therefore each point in the velocity profiles represents a spatial average
over the 258-µm square at the center of the gradient channel and a time
average over the ∼14 s of video acquisition at each height. Each of the
average profiles in Figs. 3 and 4 is the average over at least three inde-
pendently prepared experiments and multiple observations after different
waiting times.

Physical Properties of Aqueous Glucose Solutions. Osmotic and activity
coefficients of aqueous glucose solutions have been measured by Miya-
jima et al. (56). These data are shown in SI Appendix and show that
the solution is close to ideal, i.e., that the osmotic pressure is close
to Π = ρkT , with ρ= cNA/10−3, the glucose number density. Lewis (70)
gives Π = 23.6 atmospheres or 2.4× 106 Pa as the osmotic pressure of
1 M glucose. An ideal solution at 1 M has an osmotic pressure of
2.5× 106 Pa.

The CRC Handbook of Chemistry and Physics (52) has data for glucose
solutions at 293 K. We fit these data and obtain

ηg = η (1− c/6.2586)
−3.1828, [7]

A B C D

Fig. 6. Experimental details. (A) Photograph of experimental device and centimeter ruler scale. Circular inlets allow loading of reservoirs and the gradient
channel and provide outlets for air. Inlets are sealed with plastic stoppers after loading. (B) Top view schematic of sample chamber and close-up detail
of central gradient channel. Yellow box indicates observation region. (C) Concentration gradient at z = 35 µm in the center of the gradient channel, at
10-min intervals after initiation as extracted from 2D COMSOL model of the experimental geometry. Inset shows ∇c as a function of time. (D) Probability
distribution for tracer displacement ∆x in interval ∆t = 1 s in experiment with no gradient (black) and glucose gradient 2.5 mM/mm (gold). Insets show
examples of single-particle trajectories without a gradient (left) and with a gradient (right).
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where η= 1.0002 mPa (52) is the viscosity of water at 293 K. This fit is shown
in SI Appendix.

Surface Heterogeneity. Based on the findings of cavity flow Navier–Stokes
simulations, we model surface heterogeneity in a simple way by assum-
ing that the measured slip velocity is an average over a DO velocity that
varies over the surface due a spatially nonuniform surface–solute inter-
action. Fixing the width of the surface layer to be λσ everywhere, the
surface can only vary through changes in ε. Thus, we implement surface
heterogeneity via

us =

∫
P(ε) uDO (ε) dε, [8]

where P(ε) is the probability density that a part of the surface attracts solute
with a strength ε. We choose a Gaussian P(ε), with mean ε and SD σε.

Data Availability. Data for this article are available online in Figshare at
https://doi.org/10.6084/m9.figshare.12643205.v2 (71).
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