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Over 200 million malaria cases globally lead to half‑million deaths annually. The development of 
malaria prevalence prediction systems to support malaria care pathways has been hindered by lack 
of data, a tendency towards universal “monolithic” models (one‑size‑fits‑all‑regions) and a focus 
on long lead time predictions. current systems do not provide short‑term local predictions at an 
accuracy suitable for deployment in clinical practice. Here we show a data‑driven approach that 
reliably produces one‑month‑ahead prevalence prediction within a densely populated all‑year‑round 
malaria metropolis of over 3.5 million inhabitants situated in Nigeria which has one of the largest 
global burdens of P. falciparum malaria. We estimate one‑month‑ahead prevalence in a unique 
22‑years prospective regional dataset of > 9 × 104 participants attending our healthcare services. our 
system agrees with both magnitude and direction of the prediction on validation data achieving 
MAE ≤ 6 × 10–2, MSE ≤ 7 × 10–3, PCC (median 0.63, IQR 0.3) and with more than 80% of estimates 
within a (+ 0.1 to − 0.05) error‑tolerance range which is clinically relevant for decision‑support in our 
holoendemic setting. our data‑driven approach could facilitate healthcare systems to harness their 
own data to support local malaria care pathways.

Human malaria caused by Plasmodium falciparum is a mosquito-borne infectious disease threatening the lives 
of millions of people around the world. The World Health Organization (WHO) estimates that there were 212 
million malaria cases globally in  20171,2, with 429,000 resulting in death. Of these, 90% of cases and 92% of deaths 
occurred in Africa, predominantly in sub-Saharan regions (with 76% and 75% of global cases and deaths occur-
ring in only 13 countries)1,2. Around the world, children under 5 years-of-age are the most vulnerable, accounting 
for an estimated 70.6% of all malaria deaths in  20163. While various control and preventative interventions have 
been implemented over time, malaria still poses one of the greatest threats to human life.

An important set of control measures are the surveillance and estimation of burden of disease, to allow for 
strategic planning of already scanty healthcare and public health resources across endemic regions. Although 
the transformation of malaria surveillance into a core intervention has been designated as one of the three pillars 
of the Global Technical Strategy for malaria 2016–2030 (GTS)4, current surveillance and predictive systems are 
inadequate at accurately capturing and estimating the extent of malaria, particularly in highly endemic  countries5.
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The need for predictive systems that can reliably estimate future burden of malaria disease is particularly 
important for well-defined Plasmodium falciparum malaria in heavily affected countries such as Nigeria in sub-
Saharan West Africa. In Nigeria, the most populous country of Africa with 180 million inhabitants, the entire 
population is at risk of malaria (i.e. no malaria-free areas), with 76% of the population living in all-year-round 
high-transmission  areas6. Nigeria accounts for 29% of worldwide malaria cases and 26% of deaths in 2015 (mostly 
in children under five years of age), the largest proportion from any one  country7. This global health challenge 
is particularly striking in large urban densely populated cities such as Lagos (> 15 million inhabitants) and 
Ibadan (> 3.5 million inhabitants) both under large all-year-round malaria burden where stretched healthcare 
resources will benefit from advance knowledge of malaria prevalence to support their specific malaria clinical 
care pathways (Fig. 1).

Malaria-estimation systems to date have employed classical mathematical-models of disease dynamics with 
varying degrees of success. Such models have been studied extensively, and historically have provided the foun-
dations of reasoning about and formalizing the dynamics of several infectious diseases. They have been pivotal 
to formulation of transmission models aimed at understanding relationships between the malaria parasite, the 
host and the vector. More recently, model-based geo-statistics have provided important contributions to global 
estimates of the burden of malaria  disease8. However, these approaches have been less effective in short-lead 
prevalence prediction in the context of region-relevant (local-scale) clinical pathways.

In contrast to classical models, data-driven supervised Machine Learning (ML) algorithms fit models to a 
given dataset with the key aim of extrapolating or predicting the future based on past observations, without the 
explicit incorporation of biological assumptions about the disease in question. This broad class of approaches are 
useful when the knowledge or concept about the application domain is poorly defined given its complexity such 
as in the case of malaria burden and disease dynamics. Machine learning approaches, as opposed to the explicit 
mathematical-model driven ones, offer a well-established set of data-harnessing algorithms that are well-suited 
for capturing complex data patterns from which to perform generalizable predictive tasks.

A 2012 scoping review on systems for predicting malaria burden of  disease9 identified the use of mathematical 
modeling, regression, autoregressive integrated moving average and neural network approaches in 29 different 
studies spanning 13 countries. However, varying populations, sample sizes and non-openly available data sources 
made systematic comparison unfeasible. All studies differed in key aspects such as input features, prediction 
models, model evaluation measures and their performance. More recent studies have explored machine learn-
ing methods other than neural  networks10, such as generalized linear  models11, fuzzy association rule  mining12, 
random  forests13 and support vector  machines14–16 with varying degrees of success and also using different and 
vastly heterogeneous non-openly available datasets (see Supplementary Table 1). Strikingly, none of the systems 
above have been derived from a care pathway support perspective, nor they have been deployed or are in clinical 
use. One recent  study17 from a very-low seasonal non-holoendemic region reinforces the fact that although there 
have been enormous demands and efforts to develop predictive systems for malaria, no sustainable approach 
has been created. Altogether, this has translated to a lack of understanding concerning how regionally accurate 
short-lead predictions could influence the delivery of clinical malaria care pathways in resource constrained 
urban sub-Saharan healthcare systems. Moreover, our significant experience delivering high quality healthcare 
in a large urban holoendemic setting has provided us the insight that the usefulness of these systems rely not 
solely on accurate predictions, but also on empowering local healthcare providers to use their own data to pro-
duce predictions that can be acted upon within specific regional care pathways. Here, we present a solution that 
addresses both of these needs.

Apart from the modelling strategies used and lack of fine-grained openly available data, the development of 
malaria predictive  systems5,9,11,13–16 has been severely hindered as collection of global data on malaria (vector, 
host, and environmental factors) is scanty, inaccurate and largely lacks quality control across all affected  regions5. 
Only 10% of global malaria cases are reported through current  systems5. This is also hindered by the challenges 
of access to reliable and accurate malaria diagnosis across malaria low-and-middle income holoendemic regions 
in the sub-Sahara. This in itself hinders the field, with an impossibility to test systems across regions.

In summary, a paucity of data, a tendency towards attempting universal models (one-fits-all-regions) and a 
focus on long-lead predictions have hindered development and deployment of regionally relevant systems. Here, 
we make a potentially important step forwards by overcoming these previous challenges. We provide a usable 
framework at the care center level, trained on more open data and with comparability of ML modeling strategies, 
that has direct potential for clinical translation.

To anticipate our findings, we designed, developed and validated a malaria prevalence predictive system using 
supervised machine learning on a unique 22-year large quality-controlled and prospectively collected malaria 
dataset that encapsulates a snapshot of the burden of P. falciparum malaria in the large densely-populated city of 
Ibadan, Nigeria. We show that this data-driven ML framework is able to extract complex patterns among features 
of this large malaria burden snapshot to reliably predict next-month malaria prevalence, which in these clinical 
settings is required to provide care pathway support. The proposed Region-specific Elastic-Net based Malaria 
Prediction System (REMPS) shows good generalization performance, both in magnitude and direction of the 
prediction, when tasked to predict short-lead next-month prevalence on previously unseen validation data. To 
the best of our knowledge, this work is the first to exploit the qualities of the elastic net to develop a simple and 
deployable malaria prediction system suitable for a high-transmission sub-Saharan holoendemic (all-year-round) 
setting where it is critical that the system falls within a small and usable error tolerance range.
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Figure 1.  Study site geolocation and its monthly burden of malaria from 1996 to 2017. (a) Left and Centre: 
geographical location of the third largest urban large densely populated setting in Nigeria, the City of Ibadan. 
Right: Ibadan’s urban boundary; dropped-pin shows location of UCH Ibadan; red-balls shows location of 
primary and community centers. Images from Google Map data: Google, Maxar Technologies. By providing 
the previous attribution Google allows publishing of their images for non-commercial open access license as 
specified in their guidelines (https ://www.googl e.com/permi ssion s/geogu ideli nes/). (b) Ibadan dataset 3D 
surface-plot showing monthly mean malaria prevalence (y-axis and heat map); month (x-axis); year (z-axis) 
from 1996 to 2017.

https://www.google.com/permissions/geoguidelines/
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Methods and materials
ethics statement. The internationally recognized ethics committee at the Institute for Advanced Medi-
cal Research and Training (IMRAT) of the College of Medicine, University of Ibadan (COMUI) approved this 
research on the platform of the Childhood Malaria Research Group (CMRG) within the academic Department 
of Pediatrics, University of Ibadan, as well as at school and Primary Care centers throughout the city of Ibadan 
with permit number: UI/EC/10/0130. Parents and/or guardians of study participants gave informed written con-
sent in accordance with the World Medical Association ethical principles for research involving human subjects.

Study site. Data used in this study has been routinely prospectively collected by the Department of Pedi-
atrics of the College of Medicine of the University of Ibadan (COMUI), University College Hospital (UCH), 
Ibadan, Nigeria located in sub-Saharan West Africa (Fig. 1a).

The city of Ibadan is a large urban metropolis with well over three million inhabitants, the third largest city 
in Nigeria, with all-year-round (holoendemic) malaria  transmission18 (Fig. 1b). Urban Ibadan is one of the 
most densely populated areas in Nigeria. The city has a lengthy 8-month rainy season, with an average of 10 
rainy days per month between May and October. Malaria transmission and clinical disease occurs throughout 
the year (Fig. 1b).

Our healthcare system at UCH-Ibadan is the largest and main academic system in urban Ibadan as well as 
the first teaching hospital in Nigeria. Our over seven-decades long experience on providing malaria clinical 
care makes our system a basin-of-attraction for healthcare from all regions of this large city with a catchment 
area of over three million inhabitants. Added to our all-clinical-services 800-bed tertiary-care system, we also 
provide all-specialties secondary-care as well as primary-and-community care services across the catchment 
area (Fig. 1a).

The city of Ibadan has both good road connectivity and wide access to transport to and from our healthcare 
settings across the city. Connectivity via a well-established but congested road network includes a variety of 
transport media with a wide range of affordability. Most individuals access our healthcare system via moto-taxis 
(cheap and avoids traffic congestion) which are ubiquitous across the metropolis. As malaria in Ibadan is truly 
holoendemic (Fig. 1) and our malaria clinical pathways have a track record on low mortality rates, we have a very 
active care-seeking behaviour to our services. Moreover, we also provide the best standard of malaria diagnostic 
services which make us the primary choice by large sectors of the population.

Study design. We routinely screen for malaria and parasite-density using Giemsa blood thick and thin 
films all children up to 16 years-of-age attending any of our well-children or ill-children services. Our clinical 
services are: emergency ward; in-patient wards; out-patient clinics; routine school well-children malaria screen-
ing activities as well as secondary and primary care screening. Every year, we carry-out approximately 5 × 103 
malaria microscopy screens across all our clinical services listed above. The data used in this study includes all 
those screened in all our services from January 1996 to December 2017 inclusive, a total of 22 years (Tables 1, 2 
and Supp. Table 2).

Dataset characteristics. Demographics (year, month and age) and malaria clinical data (malaria diagno-
sis and parasite density) used in this study have been continuously collected between January 1996 and Decem-
ber 2017 as explained in the previous section. Overall demographic yearly aggregates are given in Supp. Table 2.

For this study, our Ibadan dataset was processed to consist of the monthly aggregated variables from larger 
datasets collected under our standardized routine malaria-screening which is linked to our clinical care pathways 
and departmental surveillance  figures18–24 (Tables 1, 2 and Supp. Table 2). Our prospectively collected dataset is 
linked to and amalgamates our childhood malaria case–control and longitudinal studies and bio-banks18–25, as 
well as our research and development of an fast automated machine-learning-driven optical-malaria-diagnostic 
 microscope26. The aggregated data used in this study is described in Tables 1, 2 and Supp. Tables 2 and 3. All 
data from our different clinical services are centralised in our malaria clinical pathways database ledger which 
is weekly processed to provide anonymised aggregates for the REMPS system. In the cases where an individual 
is tested several times within a day, we use the last test of that day to define her/his malaria parasite status. As 
malaria in Ibadan is truly holoendemic, we allow the aggregate script to count an instance every time that an 
individual is sampled for malaria parasites (either attending well-clinics, community sampling or attending to 
clinical services) except in the case of severe malaria in-patients that are counted only-once for the length of stay 
of that severe episode in the month that started. Readily usable aggregates are available at the end of month so 
short-lead prediction could be obtained.

We assembled our full Ibadan dataset, denoted by D, by aggregating data for each month from January 1996 
to December 2017 (22 years), creating thus a total of 264 (22 × 12) entries (Table 1), each containing the fol-
lowing 15 variables (Table 2) namely: (1) year (not aggregated); (2) month (not aggregated); (3) total number 
screened (sum); (4) median age (months) of malaria-negative; (5) median age (months) of malaria-positive; (6) 

Table 1.  Overall characteristics of training (DTRAS) and validation (DVALS) of Ibadan dataset.

Ibadan dataset Number years Dates Months M row-vector instances N variables

Training set (DTRAS) 19 1996–2014 Jan–Dec 228 15

Validation set (DVALS) 3 2015–2017 Jan–Dec 36 15
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age (months) inter-quartile range of malaria-negative; (7) age (months) inter-quartile range of malaria-positive; 
(8) mean blood parasite density (MPs/μl); (9) standard deviation of blood parasite density (MPs/μl); (10) total 
rainfall (mm); (11) proportion of that year total rainfall; (12) minimum temperature (°C); (13) maximum tem-
perature (°C); (14) mean temperature (°C) and (15) malaria prevalence (proportion of those who were screened 
and have confirmed malaria).

Our full Ibadan dataset is therefore a matrix D where each entry or row-instance of D is represented by a 
1 by N = 15 vector d encoding the variables [year; month; number-screened = month total number screened for 
malaria parasites; median-age-neg = month median age of malaria parasite negative; median-age-pos = month 
median age of malaria parasite positive; iqr-age-neg = month interquartile range of malaria parasite negative; 
iqr-age-pos = month interquartile range of malaria parasite positive; x-pd = month mean malaria parasite density; 
sd-pd = month standard deviation of malaria parasite density, mm-rf = month total rainfall; mmP-rf = month 
proportion of that year total rainfall; min-temp = month minimum temperature, max-temp = month maximum 
temperature; x-temp = month mean temperature; prep = month malaria prevalence] (Tables 1 and 2).

Malaria screening. Malaria parasites (MPs) were detected and counted by microscopy following Giemsa 
staining of thick and thin blood  films8–24,27. The criterion for declaring a participant to be malaria parasite-
free was no detectable parasites in 100 high-power (100×) fields in both thick and thin films. We validated the 
diagnosis outcome by randomly selecting one in ten thick blood films for independent review by local external 
experienced senior malaria-microscopy technologists. Parasite Density (PD), malaria parasites per microliter 
(MPs/μl), are calculated by dividing the number-of-observed MPs by the number-of-counted White Blood Cells 
(WBC) and then multiplied by 8 × 103 as per widely  established18–24,27.

environmental variables. All of Ibadan’s weather variables (rainfall, temperature) were acquired from 
the International Institute for Tropical Agriculture (IITA) Ibadan, Nigeria; (https ://www.iita.org) that has kept 
Ibadan’s records since 1967.

Dataset features and encoding of prediction tasks for supervised machine learning. The full 
Ibadan dataset D comprises of the two following datasets: (1) a Training Set (DTRAS) containing all the instances 
from the years 1996 to 2014 (19 years) as a M × N matrix where M = 19 × 12 = 228 row-vector instances and N = 15 
variables (Tables 1 and 2) and; (2) a Validation Set (DVALS) containing all the instances from the years 2015 to 
2017 (3 years) as a M by N matrix where M = 3 × 12 = 36 row-vector instances and N = 15 (Tables 1 and 2). The 
encoding of predictions task are described in detail in the “Supplementary Information” and Supp. Table 3.

Supervised machine learning regression approaches. To build the predictive regression system we 
used Generalized Linear Models (GLM), Ensemble Methods (EM) and Support Vector Machines (SVM) within 
a supervised learning framework (Figs. 2 and 4) and explained in the next section. Technical details of these 
algorithms are presented in the “Supplementary Information”.

Table 2.  Ibadan dataset monthly aggregated variables. IQR Inter-Quartile-Range, STD Standard Deviation. 
a Parasite density (pd) = malaria parasites per microliter (MPs/μl) = (number-observed-malaria-parasites/
number-observed White Blood Cells (WBC)) × 8000. b Proportion of screened with confirmed malaria. c Row-
vector d of D (variable 1)–(variable 2) form the unique year-month key for that instance.

Instance variables (N = 15)

Index x Variable name Description Units Aggregate

1 Year Year i i  = 1996–2017 No

2 Month Month j j = 1–12 No

3 Number-screened Total number screened Integer Sum Monthi,j

4 Median-age-neg Median age of malaria-negative Age (months) Median Monthi,j

5 Median-age-pos Median age of malaria-positive Age (months) Median Monthi,j

6 IQR-age-neg IQR age malaria-negative Age (months) IQR Monthi,j

7 IQR-age-pos IQR age malaria-positive Age (months) IQR Monthi,j

8 x-pd Mean of blood parasite  densitiesa MPs/μl Mean Monthi,j

9 sd-pd STD of blood parasite  densitiesa MPs/μl STD Monthi,j

10 mm-rf Month total rainfall mm Sum Monthi,j

11 mmP-rf Proportion of that year i  total rainfall Proportion

12 Min-temp Monthi,j minimum temperature Celsius

13 Max-temp Monthi,j maximum temperature Celsius

14 x-temp Month mean temperature Celsius Mean Monthi,j

15 Prep Monthi,j malaria  prevalenceb Proportion

Each row-vector d of D (index x)c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

https://www.iita.org
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Figure 2.  Machine learning algorithms parametrization, evaluation and model selection on the Ibadan 
training DTRAS dataset. DTRAS, Ibadan Dataset Training Set [from 1996 to 2014]; EN, elastic net; LASSO, 
least absolute shrinkage and selection operator; RR, ridge regression; LARS, least angle regression; AIC, akaike 
information criterion; BIC, Bayesian information criterion; SVR, support vector regression; α , regularization 
strength parameter; C, SVR margin parameter; γ , SVR sigma gaussian-kernel parameter; MAE, mean absolute 
error; MSE, mean square error; X, features; y, true prevalence; ŷ , predicted prevalence. 1Using fivefold cross 
validation; 2L1Ratio = 0.5.
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Supervised learning algorithm parametrization, evaluation and model selection. For algo-
rithm parametrization and evaluation, each of the training DTRAS datasets encoding the DT1M1 to M6 regres-
sion tasks, DT1M1-DTRAS to DT1M6-DTRAS (Supp. Table 2), were randomly split  103 times into a Train Set 
(TS) containing 75% of the instances and a Held-Out Test Set (HOTest) containing 25% of the instances (Fig. 2). 
The TS is a M × N matrix where M = ceiling (0.75 × number-of-instances) and N = (number-of-variables per each 
T1M1 to M6 tasks) Supp. Table 3. The HOTest is a M × N matrix where M = (rest of the number-of-instances not 
in TS) and N = (number-of-variables per each T1M1 to M6 tasks).

Each TS [X, y] was then used for the parameterization of each regression task algorithm within the frame-
work (Fig. 2). For tuning the hyper-parameter alpha (regularization strength) for RR, a set of alphas = [1–3, 10, 
102] were used and the best alpha selected by fivefold cross-validation on the TS (Fig. 2). For alpha selection in 
LASSO, EN, LARS, LASSO-LARS, we used model-specific iterative fitting along regularization path and select-
ing the best model by fivefold cross-validation on the TS (Fig. 2). Selection of best parameters was carried out 
using MSE as implemented in the scikit-learn Python  library28. We parametrized the meta-estimator RF with 
number-of-trees = 10; maximum-features = number-of-features; nodes are expanded until all leaves are pure or 
until all leaves contain less than 2; using bootstrap when building trees (Fig. 2). For SVR we used a Gaussian 
kernel and carried out fivefold cross-validation to parametrize C and γ with the following grid search C = [1, 
10,  102,  103,  104] and γ = [1,  10–1,  10–2,  10–3,  10–4] respectively. After each parametrization, the algorithm was 
trained on the TS with the optimal parameters and predictions were made on the target outcome ŷ (prevalence 
of following month) on the X instances of HOTest (Fig. 2). The trained algorithm test performance was then 
measured by MAE and MSE (Fig. 2) and mean ± SD of MAE and MSE over the  103 random splits of DT1M1-
DTRAS to DT1M6-DTRAS (Fig. 3).

error measures and parameter tuning. Mean absolute error (MAE), mean square error (MSE), Pearson 
correlation coefficient (PCC) measures were used when evaluating the quality of predictions of malaria preva-
lence (“Supplementary Methods”). For assessment on validation set see following section.

L1–L2 ratio and regularization strength elastic net parametrization. After selecting EN as the 
main ML algorithm for the system, we parametrized both α (regularization strength) and the L1-norm to 

Figure 3.  MAE and MSE errors of used machine learning approaches on training DTRAS dataset. (a) Mean 
and Standard Deviation MAE. (b) Mean and Standard Deviation MSE. Algorithms in order from left to right 
per each regression task DT1M1–DT1M2: EN (filled circles); LASSO (filled squares); RR (filled up-triangles); 
LASSO-LARS (filled down-triangles); LASSO-LARS-AIC (empty circles); LASSO-LARS-BIC (empty squares); 
RF (empty up-triangles) and SVR (empty down-triangles). DTRAS Ibadan Dataset Training Set [from 1996 to 
2014], EN elastic net, LASSO least absolute shrinkage and selection operator, RR ridge regression, LARS LEAST 
ANGLE REGRESSION, AIC Akaike information criterion, BIC Bayesian information criterion, SVR support 
vector regression, MAE mean absolute error, MSE mean square error.
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L2-norm ratio (L1Ratio) as illustrated in Fig. 4a as follows. Each of the training DTRAS datasets encoding the 
DT1M1 to M6 regression tasks, DT1M1-DTRAS to DT1M6-DTRAS, were randomly split  103 times into a Train 
Set (TS) containing 75% of the instances and a Held-Out Test Set (HOTest) containing 25% of the instances 

Figure 4.  The Region-specific Elastic Net based Malaria Prevalence prediction System (REMPS). (a) REMPS 
regularization strength and L1-norm ratio model selection on training DTRAS dataset. (b) REMPS validation 
on DVALS dataset. DTRAS, Ibadan Dataset Training Set [from 1996 to 2014]; DVALS, Ibadan Dataset 
Validation Set [from 2015 to 2017]; α , regularization strength parameter; MAE, mean absolute error; MSE, 
mean square error; X, features; y, true prevalence; ŷ , predicted prevalence. 1Using fivefold cross validation.



9

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:15918  | https://doi.org/10.1038/s41598-020-72575-6

www.nature.com/scientificreports/

(Fig. 4a). The TS is a M × N matrix where M = ceiling (0.75 × number-of-instances) and N = (number-of-variables 
per each T1M1 to M6 tasks). The HOTest is a M × N matrix where M = (rest of the number-of-instances not in 
TS) and N = (number-of-variables per each T1M1 to M6 tasks).

For EN α and L1Ratio we used model-specific iterative fitting along regularization path and selecting the 
best model by fivefold cross-validation on the TS (Fig. 4a). Selection of best parameters was carried out using 
MSE as implemented in the scikit-learn Python  library28. After each parametrization, the EN was trained on the 
TS with the best parameters and predictions for target outcome ŷ (prevalence of following month) were made 
on the X instances of HOTest (Fig. 4a). The trained algorithm test performance was then measured by MAE 
and MSE (Fig. 4a). The mean ± SD of MAE, mean ± SD of MSE, mean ± SD of α s and median ± IQR of L1Ratio 
were plotted over the  103 random splits of DT1M1-DTRAS to DT1M6-DTRAS (Fig. 5). The yi (true prevalence 
value of all instances i ) versus the mean of ŷi (mean predicted prevalence value over the times the instance i was 
included in the HOTest) is plotted in Fig. 6 for all regression tasks.

Figure 5.  REMPS performance and best parameters range on training DTRAS dataset. (a) Mean and Standard 
Deviation MAE. (b) Mean and Standard Deviation MSE. (c) Mean and Standard Deviation of regularization 
strength parameter α . (d) Median and Interquartile Range of L1/L2 norm ratio parameter L1Ratio. DTRAS 
Ibadan Dataset Training Set [from 1996 to 2014], MAE mean absolute error, MSE mean square error, pre 
prevalence.
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Validation of the region‑specific elastic‑net based malaria prediction system (REMPS) frame‑
work. We show the validation of the trained EN on the regression tasks DT1M1-DTRAS to DT1M6-DTRAS 
datasets using respective validation datasets DT1M1-DVALS to DT1M6-DVALS (Figs. 4b, 6, 7 and 8) by using 
the best task specific α and L1Ratio parameters (Fig. 5c,d). Added to assessment of MSE (Fig. 6a), MAE (Fig. 6b) 
and Pearson Correlation Coefficient (Fig. 6c) we also assessed scatter plots of observed vs. REMPS predicted val-
ues (Fig. 7). Although widely used, current regression loss metrics (e.g. MAE, MSE, PCC, R2) have weakness on 
providing bounds of robustness which are exacerbated as dimensionality increases. We therefore used a problem 
domain context-relevant measure of how well the REMPS prediction falls within a clinically relevant range that 
allows the system to provide decision support in our holoendemic setting. In our settings the error-tolerance 
range of + 0.1 to − 0.05 is relevant and usable as a short-lead prediction (Fig. 8) to adapt our clinical pathways 
preparedness on a monthly basis.

Figure 6.  REMPS performance on validation set DVALS. Final REMPS system yearly MAE, MSE and PCC on 
2015 (filled orange circles), 2016 (filled orange squares) and 2017 (filled orange triangles) DVALS validation set 
on all regression tasks DT1M1–DT1M6. DVALS Ibadan Dataset Validation Set [from 2015 to 2017], MAE mean 
absolute error, MSE mean square error, PCC Pearson correlation coefficient, pre prevalence.
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Figure 7.  Scatter 2D plots of REMPS true and predicted prevalence on validation set DVALS. For all validation 
years 2015, 2016, 2017 and all regression tasks DT1M1–DT1M6. x-axis: true prevalence value y ; y-axis: EN 
predicted prevalence value ŷ ; red dots = dry season; blue dots = rainy season. DVALS Ibadan Dataset Validation 
Set [from 2015 to 2017]. Continuous black line = simple linear regression best fit line. Curved non-continuous 
lines = 95 CI of best fit line.
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Figure 8.  (a) REMPS predicted prevalence on validation set within regionally relevant tolerance-error. REMPS 
predicted prevalence for all validation years 2015, 2016, 2017 and all regression tasks DT1M1 to DT1M6 
(orange, blue, red, purple, green, yellow filled squares respectively) plotted against the true prevalence value 
(black circles) and true prevalence value + 0.1 to − 0.05 tolerance-error (shaded grey area). (b) Mean REMPS 
prediction performance in % (y-axis) on validation set for each of the regression tasks DT1M1–DT1M6 (x-axis).
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Results
Study participants. We have coupled our clinical and community malaria screening services with data 
collection protocols and malaria diagnosis quality standards to ensemble a large and fine-grained dataset that 
encapsulates the burden of malaria disease within an urban densely-populated all-year-round high-malaria-
transmission setting, the city of Ibadan, in the sub-Saharan West African  region18 (Fig. 1a,b). The city of Ibadan 
is the third largest city in Nigeria, with over three million inhabitants. The city experiences a lengthy 8-month 
rainy season, with an average of 10 rainy days per month between May and October where malaria transmission 
and clinical disease occurs throughout the year (Fig. 1b).

In urban high-transmission holoendemic settings such as Ibadan, the burden of malaria vastly falls on chil-
dren (Supp. Table 2). Although malaria predominantly affects children under 5 years-of-age, there is also a large 
burden in children up to 16 years-of-age. Therefore, we routinely screen for malaria all children attending any of 
our well-children or ill-children services across the city of Ibadan (Fig. 1a). Data used in this study comes from 
those screened in our services from January 1996 to December 2017 inclusive, a total of 22 years (Fig. 1b and 
Supp. Table 2). This Ibadan 22-years dataset is supported by the screening of > 9 × 104 study participants (Supp. 
Table 2, Fig. 1b). Overall yearly aggregates of clinical demographics are described in Table 1. The Ibadan dataset 
D consists of a training set DTRAS with > 8 × 104 subjects and a validation set DVALS with > 1 × 103 subjects 
(Tables 1 and 2, Supp. Tables 2 and 3). Figure 1b shows that Ibadan’s malaria burden has decreased over the last 
22 years. However, the city of > 3 million inhabitants (predominantly children) is still under a significantly large 
all-year-round burden of the disease, currently > 5% at its lowest during dry-season months of December and 
January.

The elastic net consistently estimates with low error next‑month prevalence across all regres‑
sion tasks on training dataset. To select a supervised machine learning approach suitable for the task 
of predicting the malaria prevalence of the next month, we parametrized and trained nine algorithms [EN, 
LASSO, RR, LARS, LASSO-LARS, LASSO-LARS-AIC, LASSO-LARS-BIC, RF, SVR] (Fig. 2) on six regression 
tasks DT1M1 to DT1M6 (Supp. Table 3) using the DTRAS dataset (DT1M1-DTRAS to DT1M6-DTRAS) carry-
ing out held-out test over  103 random splits of the datasets (Fig. 2). The mean ± SD of MAE and mean ± SD MSE 
for each algorithm and for each regression task is shown in Fig. 3.

EN (Fig. 3, filled circles); LASSO (Fig. 3, filled squares); LASSO-LARS (Fig. 3, filled rhomboid) and LASSO-
LARS-AIC (Fig. 3, empty circles), predictors performed consistently with low MAE (≤ 6.1 × 10–2) and low MSE 
(≤ 6.8 × 10–3) across all the regression tasks. RR predictors (Fig. 3, filled up-triangles) slightly decreased perfor-
mance at regression tasks DT1M3 to DT1M6. LARS predictors (Fig. 3, filled down-triangles) were worst at the 
largest dimensionality of the task DT1M6. LASSO-LARS predictors using the BIC information measure (Fig. 3, 
empty squares) consistently performed worse than LASSO-LARS-AIC. RF predictors (Fig. 3, empty up-triangle), 
despite being consistent across tasks, performed slightly worse than EN, LASSO and RR. SVR predictors (Fig. 3, 
empty down-triangle) were also consistent across all regression tasks, but repeatedly had the worst performance 
when compared to all other algorithms on each of the tasks DT1M1 to DT1M2 with MAE (1.1 × 10–1) and MSE 
(1.8 × 10–2). For tasks DT1M1 and DT1M2, all predictors (except SVR) performed with MAE (≤ 6.8 × 10–2) and 
MSE (≤ 8 × 10–3) Fig. 3.

Building a region‑specific elastic‑net based malaria prediction system (REMPS). Using our 
Ibadan DTRAS dataset, we show that EN regularization-strength and L1-norm parametrization produce next-
month prevalence estimates with low error and allows us to build a regionally adaptable Region-specific EN 
based Malaria Prediction System (REMPS).

We chose to concentrate our predictive model REMPS on the EN algorithm firstly because: (1) EN achieved 
consistently good performance across all DT1M1–DT1M6 (Fig. 3, Fig. 5) in the DTRAS data with MAE 
(≤ 6.1 × 10–2) and MSE (≤ 6.8 × 10–3) and (2) the L1-norm Ratio (that controls L1-norm vs L2-norm regulariza-
tion) could be indeed useful in fine-tuning the system as the dynamics of the burden of disease change and/or 
it is used in another locality. For building REMPS, the EN was parametrized for [ α , L1Ratio] on the six regres-
sion tasks DT1M1 to DT1M6 using the DTRAS datasets (DT1M1-DTRAS to DT1M6-DTRAS) and carrying 
out held-out test over  103 random splits of the datasets (Fig. 4a). The mean ± SD of MAE, mean ± SD MSE, 
mean ± SD of α and median ± IQR of L1Ratio for each regression task are shown in Fig. 5. L1Ratio tuned EN 
achieved similar consistent performance to those shown in the previous section with MAE ≤ 6 × 10–2 and MSE 
≤ 6.5 × 10–3 (Figs. 3, 4a, 5a,b). For each task DT1M1 to DT1M6 the performance was achieved by a unique range 
of α and L1Ratios (Figs. 4a, 5c,d) and these parameters were used for building and validating the final REMPS 
system as described in the next section.

For each regression task DT1M1 to DT1M6 the y (true prevalence value) and the mean ŷ (predicted preva-
lence value) over  103 random splits of DTRAS was plotted (Supplementary Fig. 1a–f dotted-black line and red line 
respectively). Over  103 random splits of DTRAS each instance fell into the HOTest between 225 and 285 times. 
The mean of an instance predicted prevalence value, over the times that instance fell into the HOTest shows an 
overall good alignment with the true prevalence value of such instance across all tasks (Supp. Fig. 1a–f). This 
is consistent with the low MAE and MSE values observed (Supp. Fig. 1a,b). However, there are small subsets of 
instances that carry most of the error as follows: (1) labeled as (1) in Supp. Fig. 1a–f, from the 1996 to the 2000 
period rain-season where the trained REMPS, despite agreeing with the direction, underpredicted prevalence; (2) 
labelled as (2) in Supp. Fig. 1a–f, during 1996 period dry-season, despite agreeing with the direction, the trained 
REMPS underpredicted prevalence and; (3) labelled as (3) in Supp. Fig. 1a,b (only DT1M1 and DT1M2), during 
the 2011 dry-season period, the trained REMPS did not agree with the direction and overpredicted prevalence.
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Validating the locality‑specific elastic‑net based malaria prediction system (REMPS). The 
Elastic Net based system trained on best hyper-parameters estimates next-month prevalence with low error 
across all regression tasks on the 2015, 2016 and 2017 validation datasets. For each task DT1M1–DT1M6 the 
performance was achieved by a unique range of α and L1Ratios (Fig. 5c,d), information that was then used for 
building and validating the final system (Fig. 4b). The REMPS mean of α and the median of L1Ratio values 
obtained in the previous section (Figs. 4a, 5c,d) were chosen to build and validate the final REMPS system on a 
previously unseen set of instances from the 2015, 2016 and 2017 period, the DVALS dataset, as shown in Fig. 4b. 
For each DT1M1 to DT1M6 task an EN was trained using the full DTRAS dataset with selected parameters 
and its monthly performance was assessed on the 2015, 2016 and 2017 DVALS (Figs. 6, 7 and 8). On all regres-
sion tasks, the REMPS monthly prevalence predictions achieved consistently low MAE (≤ 6 × 10–2), low MSE 
(≤ 7 × 10–3) with Pearson Correlation Coefficients (PCC) ranging between 0.4 and 0.8 (Fig. 6).

To assess the quality and direction of these monthly validation predictions, a scatter 2D plot of predicted 
prevalence value versus true prevalence value for all DT1M1–DT1M6 prediction tasks is shown in Fig. 7 where 
red and blue dots represent rainy and dry season months respectively. The plots highlight the importance of 
interpreting the validation of the predictions in relation to the problem domain. For example, validation year 2017 
shows very good prediction agreement (i.e. dots closer to the diagonal) except for two months (one rainy season 
and one dry season) which impairs its overall yearly PCC (Fig. 6). Therefore, to further evaluate these predictions 
within an error-tolerance which is relevant for making the system suited and usable for a high-transmission 
holoendemic setting, we plotted the predicted monthly prevalence for all tasks against the true prevalence with 
a + 0.1 to − 0.05 tolerance error (Fig. 8a). Overall, across all 216 monthly predictions on the 2015 to 2017 valida-
tion set (3 years × 12 months × 6 tasks), 80% were within the tolerance error + 0.1 to − 0.05 (Fig. 8b) which is 
operationally relevant for this holoendemic region and makes our system extremely usable for decision support 
in the Ibadan setting. During the long Ibadan rainy season (April–November), the REMPS is extremely robust 
(95% of predictions within range) in estimating monthly prevalence within the error-tolerance range (Fig. 8a), 
except during the month of September 2017 where extreme prediction outliers (Fig. 8a see**) made us suspect 
a critical event. We discovered that during that month, a country-wide general Nigerian Federal Government 
healthcare system strike had a nation-wide effect on our clinics. This reinforces the usefulness of our proposed 
system as a novelty detection system as in years 2015 and 2016 the REMPS was robust in estimating September’s 
month prevalence (Fig. 8a). During the dry season (December–March) the system also performs consistently 
within the error tolerance boundaries during the months December to February. However, during the month 
of March, for all validation years some prediction tasks underpredicted below the − 0.05 range, an effect that is 
most extreme on 2017 prediction (Fig. 8a see*). The month of March is the transition boundary from the dry 
to the rainy season and despite the trained REMPS mostly agreeing with the direction of the prediction, the 
magnitude of the estimates for year 2017 were on the − 0.1 range instead of − 0.05. We could not find a critical 
event explanation for such observation.

Although REMPS good generalization performance and low dimensionality of our dataset does not neces-
sarily require us to adopt a feature selection strategy, we nevertheless explored how the system performed in 
those scenarios where a regional healthcare centre does not have records of the actual parasitaemia (Supp. 
Fig. 2). Despite harnessing the standard of malaria care features (age, sex, malaria diagnosis by gold standard 
microscopy and parasitaemia) plus readily available environment variables, parasite density is the least available 
feature variable of them all. We observed that the newly trained REMPS can indeed provide estimates within a 
range that can provide useful information for regional decision support (Supp. Fig. 2).

Use cases and deployment analysis of locality‑specific elastic‑net based malaria prediction 
system (REMPS). The REMPS system is easily deployable using current off-the-shelf hardware and thus 
opens the door to sustainable digital global health. The system could be further trained, deployed and developed 
using free open-source Python and ML tools provided within the freely available Anaconda Navigator environ-
ment. We propose a use case where each regional health center is a regionally trained EN node (harnessing such 
local data at its best) within an interconnected network of EN predictors, via a distributed ledger, where new 
nodes could use closer regional predictors while they refine their own predictors (Supp. Fig. 3).

The simplicity of REMPS provides an incentive for sub-Saharan centers by giving decision-support value to 
their own routinely collected malaria data. This in turn should encourage those centers to transfer such data 
(15 variables in this study) into simple digital format that can be exploited by themselves and by the network 
of REMPS predictors (Sup. Fig. 3). As the network of locally specialized REMPS predictors grows, it opens the 
possibility of meta-learning and novelty detection algorithms to be applied for tasks such as early epidemic 
prediction and more efficient distribution of resources across malaria affecting regions.

Discussion
We have designed, developed and validated a machine-learning based system that is able to reliably predict next 
month malaria prevalence within urban densely-populated holoendemic malaria Ibadan with low error. The 
Region-specific Elastic Net based Malaria Prediction System (REMPS) shows good generalization performance, 
both in magnitude and direction of the prediction, when tasked to predict monthly prevalence of previously 
unseen data from years 2015, 2016 and 2017.

To the best of our knowledge, our work is the first to exploit the tradeoff qualities of the EN to predict malaria 
prevalence one-month ahead (short-lead time forecast) in an all-year-round malaria urban setting. Previous 
malaria studies in different world regions (summarized in Supplementary Table 1) and our 60-years Ibadan 
academic healthcare system knowledge formed the basis to select the variables incorporated into REMPS. Our 
system exploits 19 years [1996–2014] of host information (age, malaria status, parasite densities); temporal 
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information (year, month) and; environmental information (rainfall, temperature), from a predominantly Yoruba, 
largely populated well-defined spatial urban setting living under high all-year-round malaria burden. Apart from 
environmental variables, the host variables used are derived from the gold-standard of malaria clinical care that 
has been in place for decades.

We used our region-specific data, the Ibadan dataset, to train a relevant REMPS which currently contributes 
to decision making on managing our clinical site malaria healthcare and surveillance resources. The trained 
REMPS has an error-tolerance within + 0.1 to − 0.05 across all prediction tasks which is appropriate for a system 
to be usable in the high-transmission holoendemic setting of Ibadan. The qualities of the ML approach include 
its simplicity and performance. Moreover, the low dimensionality (small number of variables) of the proposed 
feature dataset suggests that a feature selection strategy is not critical or desirable. While in classical modelling 
there is a tendency to remove variables from a model to assess their relative importance, the variables used by our 
system are established as part of the complex dynamics of the malaria lifecycle. The machine learning methods 
used are well theoretically suited to deal with the low dimensionality of the system proposed. We nevertheless 
present how the system performs in those scenarios where a regional healthcare centre does not have records of 
the host parasitaemia. We therefore propose to move away from a one-fit-all-regions approach where the EN is an 
excellent and simple enough tool, with its L1/L2 ratio trade-off, to allow to find a predictor customised for other 
regions such as catchment areas of healthcare centres in nearby Lagos. What we show with the performance of the 
REMPS with or without host-parameters that parametrising L1/L2 will result in a usable system that can handle 
local characteristics were these be on what data is available and/or their dynamics. Unfortunately, the diversity 
and lack of open data from previously published studies makes it hard to test our proposed approach in those 
previously published settings. However, our knowledge of the region makes us confident to expect that REMPS 
open availability and simplicity of deployment, retraining and parametrisation of our system will encourage 
sub-Saharan care centres to capitalise on their routinely collected data to inform their pathways.

During the long Ibadan rainy season (April–November) the system is extremely robust in estimating monthly 
prevalence within the error-tolerance range. The system has also shown novelty-detection capabilities by high-
lighting prediction outliers observed in collection of validation data from September 2017 which was affected by 
a personnel strike in the healthcare system. Interestingly, the system has shown the complexity of the dynamics 
of the burden of disease near the dry-to-rainy season transition period (i.e. March). This may be due to emerging 
patterns across this seasonal transition period as we have observed recent dramatic changes of environmental 
factors in the city of Ibadan. Furthermore, recent investment on Ibadan’s infrastructure may be playing a role 
in these changes. We expect that feature enrichment refinements focused on transition periods will allow the 
system to further improve its accuracy. These adjustments will have to take into account that, despite Ibadan’s 
malaria burden decreasing over the last 22 years, the city is still under a currently changing but still significantly 
large all-year-round burden of the disease (Fig. 1b).

We have shown that a data-driven machine learning approach offers an alternative that allows predictive 
systems to be created that do not rely on an explicit formulation of the disease process. We focused our system 
on the Elastic Net, as it produced stable results across all prediction tasks while also providing flexibility of tuning 
regularization strength as well as the L1- to L2-norm ratio. The EN is well suited for problems such as malaria 
prediction, where there are multiple features which are correlated with one another, and trading-off between 
L1-norm (LASSO) and L2-norm (RR) allows the system to retain stability. We show that the EN based system 
provides an efficient, yet flexible, system for all the regression tasks relevant to the clinical and epidemiological 
context within the region.

Previous ML  systems11,13–16 have used significantly smaller datasets and none have harnessed features such 
as host-age and host-parasite-density. These host-features are thought to provide information on the not yet-
understood complex relationships between host-immunity, host-genetics, parasite load and transmission burden. 
If these variables are available, our system can indeed allow a regional health center to harness such information. 
If not, we have shown that a REMPS can still perform within the proposed parameters for this holoendemic 
high-transmission setting and therefore enables these centers to benefit from our easily deployable approach 
while a distributed-ledger network of regional-predictor-experts can open the door to other machine learning 
approaches such as transfer learning to further assist in multiscale surveillance.

Historically the tendency has been to build monolithic predictive systems, despite malaria data being scanty 
and unprecise, that have been unable to provide accurate performance across different malaria regions. These 
monolithic systems cannot fairly be tasked with predicting good local estimates of prevalence while at the same 
time being able to accurately detect extreme pattern-changes globally. On the contrary, our results show the 
feasibility of a data-driven region-specialized malaria prevalence predicting system for a large metropolis of 3 
million inhabitants in sub-Saharan West Africa. Our system can be used as a starting point to support the deploy-
ment of regionally specific systems across malaria affected regions such as the densely populated metropolis of 
Lagos and Kano in Nigeria. At our tertiary level, REMPS supports the readiness of our blood bank to sustain the 
near-zero mortality of our severe malarial anemia care pathways. At our primary community and peri-urban 
level, REMPS supports readiness for diagnosis and treatment of uncomplicated malaria. Our REMPS could be 
fine-tuned to support regionally dependent adaptability and readiness of healthcare pathways, each with their 
own critical bottlenecks, which is well recognised by the WHO as key for the global technical strategy for malaria. 
In rural settings, REMPS could facilitate the use of regionally specific data to tackle their own critical bottlenecks 
as well as allowing the interaction with urban settings to achieve this. In this context, our REMPS is a realisable 
step towards achieving truly data-driven open and distributed digital global health.

In view of the complexities faced with one-fit-all-regions explicit models, more emphasis could be placed on 
building meaningful multivariate data-driven region-specific systems designed to harness local data as the one 
presented in this study. Machine learning meta-models that take input from these regionally specialized systems 
could be most suited to provide vast regional epidemiological decision-support. We propose a deployment 
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scenario where many regional centers, each a regionally trained REMPS node (harnessing such local data at its 
best), push their data and predictions into a distributed ledger that ensures consensus, consistency and immu-
tability of information across participating nodes. New REMPS nodes could use closer regional predictors while 
they gear up to produce their own refined predictors. As the network of locally specialized predictors grows, 
it opens the possibility of meta-learning and novelty detection algorithms to be applied for tasks such as early 
epidemic prediction. Our system provides a step towards supporting efficient distribution of resources that takes 
into account the different locality-specific characteristics of malaria affected regions. Equally important, such a 
distributed ledger should provide an interface by which global healthcare authorities, policy makers and malaria 
control programs interact and support their decisions with regionally relevant data.

Finally, our validated REMPS system shows that local good-quality malaria longitudinal-data can be har-
nessed by current data-driven machine learning approaches to deliver locality-relevant predictions on burden 
of malaria. Reliable and adaptable malaria prediction systems can play key roles when deployed within a well-
defined resource-stretched healthcare network as in the case of the large Ibadan metropolis where our system is 
deployed. In our large urban population settings, the system provides relevant short-lead next month prevalence 
estimates that are used for aiding decision making on critical aspects of urban to peri-urban care pathways. The 
deployment simplicity of our REMPS provides an incentive for other sub-Saharan centers, by enabling decision-
support using their own routinely collected malaria data, to consider sustainable digital global health approaches 
to tackle challenges on healthcare provision in the region.

Data availability
The dataset and code used in this study are openly available upon publication for ten years at the UCL open 
data platform following this link https ://doi.org/10.5522/04/12369 137. Links to REMPS data and code are also 
openly available with the open-access publication via (1) COMUI website; (2) by emailing the Childhood Malaria 
Research Group (CMRG), Department of Paediatrics, College of Medicine of University of Ibadan, University 
College Hospital, Ibadan, Nigeria. Emails: CMRG-Nigeria (paedcomui@yahoo.com) or; (3) by emailing the 
corresponding author (delmiro.fernandez-reyes@ucl.ac.uk).
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