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We report on a novel dynamical phenomenon in electron spin resonance experiments of phosphorus
donors. When strongly coupling the paramagnetic ensemble to a superconducting lumped element
resonator, the coherent exchange between these two subsystems leads to a train of periodic, self-stimulated
echoes after a conventional Hahn echo pulse sequence. The presence of these multiecho signatures is
explained using a simple model based on spins rotating on the Bloch sphere, backed up by numerical
calculations using the inhomogeneous Tavis-Cummings Hamiltonian.
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Pulsed electron spin resonance (ESR) is an essential
spectroscopy technique used in many fields of science, e.g.,
for the study of the structure and dynamics of molecular
systems [1,2], and for material science [3], as well as for
quantum sensing and information applications [4–6]. To
implement this technique, a vast repertoire of sophisticated
pulse sequences exists [7], each of them optimized to
investigate particular spin properties. Nevertheless, the
majority of the sequences is based on a Hahn echo [8],
as schematically shown in Fig. 1(a).
A newly emerging area for ESR experiments is the

processing of quantum information. Using superconduct-
ing microwave resonators, the so-called strong coupling
regime has recently been demonstrated [9–14]. Here, the
coherent exchange of information between the microwave
resonator and the spin ensemble exceeds the individual
decay rates of the two subsystems, which is a requirement
for applications involving the storage and conversion of
quantum information [9,15–17]. Apart from its importance
for quantum technology, a strong coupling rate also
enhances the sensitivity in ESR applications [18,19], going
beyond classical ESR models [7,20]. First seminal experi-
ments in the presence of strong spin-photon coupling
revealed a plethora of new physical effects [13,21–23].
A fascinating question that remains unresolved, however, is
what happens when the Hahn echo is transferred to the
context of a strongly coupled spin ensemble.
To explore this question experimentally, we work with a

superconducting microwave resonator strongly coupled to
a paramagnetic spin ensemble. Specifically, we compare
pulsed ESR measurements of a strongly coupled spin
ensemble based on isolated phosphorus donors in a 28Si

host matrix with a weakly coupled ensemble of P2 dimers
also present in the sample. In the weak coupling case, as in
a conventional ESR experiment, we observe a single Hahn
echo in terms of a photon pulse that is emitted into the
resonator at 2τ when the spins refocus, where τ is the
interpulse delay. In stark contrast, when applying the same
Hahn echo sequence in the strong coupling regime, we
observe a periodic sequence of spin echo signatures spaced
by τ. Although this phenomenon has been reported for up to
two echoes earlier [24], it was not set in context with the
strong coupling regime and a thorough understanding of
the underlying mechanism is missing. Here we show that
the formation of self-stimulated echoes is a robust phe-
nomenon and can be well understood based on the
inhomogeneous Tavis-Cummings model.
Our experimental scheme is shown in Figs. 1(b)–1(d) and

consists of a planar superconducting lumped element res-
onator (LER), which is patterned into a 150 nm thin Nb film
on an intrinsic natSi substrate (see Supplemental Material
[25]). The LER is located next to a microwave feedline,
allowing us to probe the complex microwave transmission of
the device. A 20 μm thin slab of [100] oriented 28Si∶P is
mounted onto the LER [see Fig. 1(d)] and investigated at a
temperature of T ¼ 50 mK. A static magnetic field B0 is
applied parallel to the Nb film to avoid degradation of its
superconducting properties. We perform continuous-wave
(cw) ESR by measuring the microwave transmission jS21j2
of the chip using a vector network analyzer. For pulsed ESR
experiments, we digitize the echo signal using a heterodyne
down-conversion scheme [25].
Continuous-wave ESR spectroscopy.—We first perform

cw ESR spectroscopy to precharacterize the sample.
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Figure 1(e) shows the normalized microwave transmission
jS21j2 for an incident power on the sample of PS ¼
−122 dBm. At B0 ¼ 168.5 mT, we observe a bare reso-
nator frequency of ωc=2π ¼ 4.8116 GHz. Using a robust
circle-fitting algorithm [58], we determine a half width at
half maximum (HWHM) linewidth of κc=2π¼534.85 kHz,
corresponding to a total quality factor of Q ¼ ωc=2κc ¼
4498. The coupling rate of the resonator to the feedline is
κext=2π ¼ 304.15 kHz. Similarly, we extract the spin rela-
xation rate using a Lorentzian fit along the field axis far
detuned from the resonator and find γs=2π ¼ 279.03 kHz.
We observe two distinct avoided crossings at B0 ¼ 170.1

and B0 ¼ 174.3 mT, which are associated with the two
hyperfine-split lines of phosphorus donors in silicon. The
presence of the avoided crossings suggests that the spin
ensembles of these isolated phosphorus donors couple
strongly to the LER. We determine the corresponding
coupling rate geff=2π ¼ 1.54 MHz from the vacuum Rabi
splitting at B0 ¼ 170.19 mT, corresponding to a cooper-
ativity C ¼ g2eff=ðκcγsÞ ¼ 12.2. Note that the single spin-
resonator coupling rate is not spatially uniform [25,59].
We obtain information about further spin species present

in the sample by analyzing the resonator linewidth κc as a
function of the magnetic field outside the avoided crossings
from the data in Fig. 1(e). We find in Fig. 1(f) a broad
structure at B0 ¼ 171.5 mT, which is assigned to dangling
bond defects at the ð100ÞSi=SiO2 interface, also known as
Pb0=Pb1 defects [60,61], and a sharp signature at B0 ¼
172.2 mT corresponding to statistically formed exchange-
coupled donor pairs, called P2 dimers, with a concentration
½P2� ≪ ½P� [62–65]. The analysis of this P2 dimer peak [66]
yields a spin relaxation rate γs;P2=2π ¼ 1.74 MHz and an
effective coupling rate geff;P2=2π ¼ 0.35 MHz. This sets
the P2 dimers in the weak coupling regime with C ¼ 0.13,
as expected from the

ffiffiffiffi
N

p
scaling of geff [14,67]. Hence, we

can use these two spin ensembles to directly compare the
dynamics in the weak and strong coupling regime under the
same experimental conditions.
Pulsed ESR spectroscopy.—In a next step, we now apply

a Hahn-type echo sequence based on two Gaussian-shaped
pulses with a width of 1 and 2 μs and a pulse spacing of
τ ¼ 80 μs. We use a fixed frequency ωp=2π¼4.8116GHz,
even though ωc slightly shifts with B0 [see Fig. 1(e)].
Figure 2(a) shows the Hahn echo-detected field sweep of
the first echo in the time domain, where we have set the
origin of the time axis to the maximum of this first echo.
Note that all data shown here are single-shot measurements
and no signal averaging is performed. The time interval
between measurements at subsequent field points is 300 s,
chosen to be long compared to the spin relaxation time
T1 ¼ ð32.4� 0.8Þ s (see Supplemental Material [25]).
From an analysis of the collective coupling rate, we
estimate the absolute number of spins addressed in the
spin echo to be ≈1.06 × 1010 [25]. For the spin sensitivity,

we obtain ≈1.15 × 105 spins=
ffiffiffiffiffiffi
Hz

p
assuming a repetition

time of 5T1 and a signal-to-noise ratio of 1 [18,19].
Figure 2(b) displays the echo area Aecho ¼

R
echo jS21jdt

using the data from Fig. 2(a) showing three peaks corre-
sponding to the hyperfine as well as the P2 dimer transition.
Evidently, the linewidths of the hyperfine transitions are
much wider than expected from γs. Because of the presence
of strong coupling, the spin system hybridizes such that the
linewidth should also reflect geff . Additionally, both peaks
are asymmetric with a tail toward larger magnetic fields,
which we attribute to the excitation with a fixed ωp without
compensating for the dispersion of the avoided crossing.

(c) (d)

(e)

(f)

(b)

(a)

FIG. 1. (a) Schematic of the Hahn echo sequence and the
associated states in the Bloch sphere (exterior black arrows
indicate the ensuing spin dynamics). A π=2 pulse is applied
between (1) and (2) and an imperfect π pulse between (3) and (4),
leading to the first (conventional) Hahn echo between (5) and (6).
For the subsequent pulse train observed in the strong coupling
limit, the spin packets indicated by blue and red arrows are
crucial, which lie in opposite Sy directions when the first π pulse
arrives at (3) (see text). In (5)–(7) only these two spin packets are
shown for better visibility. (b) Circuit diagram and (c) microscope
image of the LER. (d) Schematic of the 20 μm thin 28Si∶P sample
mounted on top of the LER, also indicating the in-plane magnetic
field direction B0. (e) Normalized transmission jS21j2 as a
function of frequency and magnetic field. Two avoided crossings
are visible, indicating strong coupling between the hyperfine-split
transitions of the phosphorus donors and the resonator. (f) Ex-
tracted linewidth κ=2π (HWHM) as a function of magnetic field.
Two additional spectroscopic features are observed, which are
attributed to dangling bond defects Pb0=Pb1 and P2 dimers,
respectively (see text).
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Moreover, the absence of a clear echo corresponding to the
Pb0=Pb1 defects is related to their small T2 ¼ 22 μs [25].
The conclusion we draw from this analysis is that one

observes the first conventional Hahn echo (at t ¼ 0) for
both the weakly and the strongly coupled spin ensembles.

The fundamental difference between weak and strong
coupling manifests itself only on longer timescales, as
shown in Fig. 2(c). Subpanels ① and ③, corresponding to
the strong coupling case, deserve particular attention,
corresponding to the strong coupling case. Here, the first
Hahn echo is followed by a periodic sequence of echo
signatures, which are timed with a delay equal to the pulse
delay τ. In contrast, only the first conventional Hahn echo is
present for the weakly coupled P2 dimers shown in
subpanel ② [68].
This marked difference is even more apparent in

Fig. 2(d), where we show time traces recorded at the fixed
magnetic fields of B0 ¼ 172.20 and 170.18 mT [dashed
lines in Fig. 2(c)] corresponding to the weak and strong
coupling regime. While only the first conventional Hahn
echo appears for the P2 dimers [T2;P2 ¼ ð4.67� 0.13Þ ms;
Supplemental Material [25] ], we observe 12 echoes sep-
arated by τ for the strongly coupled hyperfine transitions
[T2;P ¼ ð2.37� 0.08Þ ms [25] ]. The echo signatures in the
echo train exhibit an underlying substructure going beyond
the scope of this Letter. Although several mechanisms of
multiple echo generation are known in the literature, the
absence of multiple echoes for the P2 dimers excludes these
for a possible explanation (see also the Supplemental
Material [25] for more details). This suggests that the
detection of the multiple echoes is, indeed, related to the
strong coupling regime.
The relevant mechanism leading to this unique dynami-

cal evolution can be best understood when revisiting the
conventional Hahn echo sequence shown in Fig. 1(a). For
simplicity, we assume here that all spins end up in the xy
plane after the first π=2 pulse (see panels 1–3), although the
spatial variation of the excitation field B1 and the frequency
distribution of the spin ensemble inevitably lead to rotation
errors. Realistically, the net dipole moment generated in the
xy plane during this first pulse leads to a strong collective
coupling with the resonator and, hence, rapid deexcitation
of the spin system. However, dephasing quickly reduces
this dipole moment and thereby effectively suppresses this
spin decay channel. After an evolution time τ, the second
pulse is injected to start the refocusing process. A perfect π
pulse would lead to a refocusing of all spins after another
time span τ, creating the first (conventional) Hahn echo
without any subsequent echoes. With the rotation angle
realistically deviating from π, however, the refocusing is
imperfect and the spins end up at different latitudes on the
Bloch sphere, depending on their detuning δω from the
average Larmor frequency (see panels 3–5). This mecha-
nism can also be understood as a frequency encoding of
spin packets depending on their orientation on the Bloch
sphere at the arrival time of this imperfect π pulse.
Specifically, we identify spin packets that point in opposite
directions on the Sy axis when the imperfect π pulse arrives
using red and blue arrows in the panels in Fig. 1(a). These
will be particularly relevant for the subsequent pulse train.
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FIG. 2. (a) Echo signal as a function of acquisition time and
magnetic field of the first echo. Dashed lines indicate the
subpanels in (c). (b) Integrated echo area Aecho ¼

R
echo jS21jdt

as a function of magnetic field, showing the two hyperfine
transitions as well as the P2 dimer peak. (c) Microwave signal
intensity jS21j2 displaying several echo signals after the con-
ventional first echo for the strongly coupled hyperfine lines
[① and ③], while only one echo is visible for weakly coupled P2
dimers [②]. (d) Microwave signal intensity jS21j2 for fixed
magnetic field [cf. dashed lines in (c)] for the hyperfine transition
(green) and P2 line (blue). (e) Temporal evolution of the average
resonator photon number jhaij2=N (upper), the average spin
expectation values Sx;yav ¼ P

jhσx;yj i=N (middle), and Szav ¼P
jhσzji=N (lower) calculated from the semiclassical Maxwell-

Bloch equations. The inset shows an enlargement of the gray
shaded area.
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Their frequency detunings are determined by those multi-
ples of π rotations that the spins already undertook at the
arrival of the refocusing pulse: δω ¼ 2nπ=τ (red spins) and
δω ¼ ð2nþ 1Þπ=τ (blue spins) with n ∈ Z. In this way,
spins with significantly different individual detuning values
δω are now encoded in the same packet. At a time τ after
the imperfect π pulse, when spins (partially) refocus, they
emit the first (conventional) Hahn echo through the
coupling to the resonator. Notably, the net dipole moment
in the xy plane created in this refocusing process, together
with the strong coupling to the microwave field, also leads
to a significant spin decay. Importantly, this decay is
realized on the Bloch sphere as a spin rotation during this
first Hahn echo that affects the projection of the dipole
moment on the xy plane differently for the blue and red spin
packets (see panels 5 and 6). This rotation becomes
significant at a time τ after the first Hahn echo, where
these spin packets again point in opposite Sy directions (red
and blue arrows in panel 7): with the xy projection of these
two spin vectors now having different lengths, they give
rise to another net dipole moment that produces the
(unconventional) second Hahn echo. Here, the process
starts all over again, producing the third echo, etc.
Note that, without the spin rotation during the first Hahn

echo, the red and blue spins would maintain the same xy
projection, such that no net dipole is created and therefore
also no subsequent echoes. In this way, one not only
understands how the generation of one echo gives rise to
the next one, but also why the strong coupling regime is
essential: for weak coupling also the spin rotation by
deexcitation through the resonator is weak, such that all
unconventional echoes are negligibly small. Moreover, also
imperfect rotation angles are essential (as induced, e.g., by
the inhomogeneities in the system), as no frequency
encoding of spin packets would occur otherwise (for more
information, see the Supplemental Material [25]).
Theoretical description.—To underpin this heuristic

explanation, we set up a theoretical model based on the
inhomogeneous Tavis-Cummings Hamiltonian,

H ¼ ℏΔca†aþ ℏ
2

XN

j¼1

Δjσ
z
j þ

XN

j¼1

ℏ½gjσ−j a† þ g�jσ
þ
j a�

þ iℏ½ηðtÞa† − η�ðtÞa�; ð1Þ

where Δc ≡ ωc − ωp and Δj ≡ ωj − ωp are the detunings
of the resonator frequency ωc and of the individual spin
frequencies ωj from the carrier frequency ωp of the
incoming microwave pulse with amplitude ηðtÞ. Here, a†
(a) is the creation (annihilation) operator for the resonator
mode coupling with gj to the jth spin, which is described
by the standard Pauli operators σzj, σ

þ
j , and σ

−
j . Note that (1)

does not include direct dipole-dipole interactions, which—
although present in the actual sample—do not seem to
play a fundamental role for the formation of the echo pulses

in our model. For large spin ensembles, we can use a
mean-field formulation in the form of the Maxwell-
Bloch equations for the resonator and spin expectation
values [25,69],

d
dt
hai¼−½κcþ iðΔcÞ�hai− i

XN

j¼1

gjhσ−j iþηðtÞ; ð2Þ

d
dt

hσ−j i ¼ −½γ⊥ þ iðΔjÞ�hσ−j i þ igjhσzjihai; ð3Þ

d
dt

hσzji ¼ −γkðhσzji þ 1Þ þ 2igjðhσ−j iha†i − c:c:Þ: ð4Þ

Here, γ⊥ ¼ 1=T2 (γk ¼ 1=T1) is the transverse (longi-
tudinal) spin relaxation rate. We account for the dephasing
of the spin ensemble by introducing the phenomeno-
logical Lorentzian spin spectral density, ρðωÞ ¼ fπγs½1þ
ðω − ωsÞ2=γ2s �g−1, with width γs and mean frequency ωs,
characterizing the frequency distribution of the spin
ensemble [23,25,70]. For simplicity, we assume for the
calculations presented in Fig. 2(e) that all spins couple
with the mean coupling strength gj ¼ g0 ¼ geff=

ffiffiffiffi
N

p
(in the

Supplemental Material [25], we discuss the impact of a
distribution of gj).
To calculate the dynamics of the spin-resonator system,

we numerically solve the Maxwell-Bloch equations (2)–(4)
for two rectangular driving pulses with a width of 1 and
2 μs, a pulse delay of τ ¼ 80 μs, and a pulse amplitude
of η=κc ¼ 1.08 × 105. Furthermore, we set ωc ¼ ωp,
while the mean frequency of the spin ensemble is slightly
detuned from the resonator frequency by ðωs − ωcÞ=2π ¼
0.14 MHz to match the experimental conditions in the
strong coupling regime (at B0 ¼ 170.18 mT).
The calculated average resonator photon number

jhaðtÞij2=N following an ordinary Hahn echo sequence
is presented in the upper panel of Fig. 2(e). Most impor-
tantly, we find that these numerical results nicely reproduce
the multiple echo signatures found experimentally [see
Fig. 2(d)], using only minimalistic assumptions. Addi-
tionally, these simulations provide the average spin expect-
ation values Sx;y;zav ≔

P
jhσx;y;zj i=N, which are not directly

accessible in the experiment. From these quantities, we
can directly evaluate the macroscopic dipole momentP

jhσ−j i ¼ NðSxav þ iSyavÞ, which couples the spin dynam-
ics to the resonator field via (2). Hereby, we can directly
confirm, e.g., that the arrival of the first conventional Hahn
echo, at t ¼ 0, is accompanied by peaks in the average
dipole moments Sxav and Syav, leading to a resonator-
enhanced decay of the spin excitation Szav [see also gray
inset of Fig. 2(e)]. Confirming our heuristic model from
above, the same coincidence between peaks in the dipole
moments of Sxav, S

y
av, the steps in the decay of Szav, and the

emission of a photon pulse into the resonator is observed
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for all subsequent (unconventional) Hahn echoes. This
reduced model thus already reproduces all salient features
of the experiment. As shown explicitly in the Supplemental
Material [25], the spin rotations on the Bloch sphere
occurring during the emission of a Hahn echo are essential
to produce the subsequent echo, a feature which is con-
nected to strong spin-resonator coupling. We also checked
in [25] that imperfections in the second applied (π) pulse
are required for the observation of multiple echoes. Next
steps in the improvement of the model shall include the
dipole-dipole interactions between the spins, as well as the
inclusion of the exact shape of the spectral spin and spatial
coupling distributions.
In conclusion, we compared continuous-wave and

pulsed ESR measurements on a weakly and strongly
coupled spin ensemble using superconducting lumped
element resonators. We observed a self-sustained train of
periodic echo signatures after applying a Hahn echo
sequence to the spin ensemble in the strong coupling
regime and explain this effect using a simple model based
on the inhomogeneous Tavis-Cummings Hamiltonian.
Our Letter establishes a robust and self-sustained dynami-
cal phenomenon in strongly coupled hybrid spin-photon
systems, which may be relevant for quantum memory
protocols.
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*Present address: London Centre for Nanotechnology, Uni-
versity College London, London WC1H 0AH, United
Kingdom.

†hans.huebl@wmi.badw.de
[1] T. Prisner, M. Rohrer, and F. MacMillan, Pulsed EPR

spectroscopy: Biological applications, Annu. Rev. Phys.
Chem. 52, 279 (2001).

[2] S. S. Eaton and G. R. Eaton, Multifrequency pulsed
EPR and the characterization of molecular dynamics, in
Methods in Enzymology (Elsevier, New York, 2015),
Vol. 563, p. 37.

[3] P. G. Baranov, H. J. von Bardeleben, F. Jelezko, and J.
Wrachtrup, Magnetic Resonance of Semiconductors and
Their Nanostructures, Springer Series in Materials Science
Vol. 253 (Springer, Vienna, 2017).

[4] R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen,
Nitrogen-vacancy centers in diamond: Nanoscale sensors
for physics and biology, Annu. Rev. Phys. Chem. 65, 83
(2014).

[5] M. H. Devoret and R. J. Schoelkopf, Superconducting
circuits for quantum information: An outlook, Science
339, 1169 (2013).

[6] F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y.
Simmons, L. C. L. Hollenberg, G. Klimeck, S. Rogge,
S. N. Coppersmith, and M. A. Eriksson, Silicon quantum
electronics, Rev. Mod. Phys. 85, 961 (2013).

[7] A. Schweiger and G. Jeschke, Principles of Pulse Electron
Paramagnetic Resonance (Oxford University Press,
Oxford, England, New York, 2001).

[8] E. L. Hahn, Spin echoes, Phys. Rev. 80, 580 (1950).
[9] Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D.
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