
1

Accelerated Learning-Based MIMO Detection
through Weighted Neural Network Design

Abdullahi Mohammad∗, Christos Masouros∗ and Yiannis Andreopoulos∗
∗Department of Electronic and Electrical Engineering, University College London, WC1E 7JE UK

e-mail: (abdullahi.mohammad.16; c.masouros; i.andreopoulos)@ucl.ac.uk

Abstract—In this paper, we introduce a framework
for a systematic acceleration of deep neural network
(DNN) design for MIMO detection. A monotonically
non-increasing function is used to scale the values of
the layer weights such that only a certain fraction of
the inputs is used for feedforward computation. This
enables a dynamic weight scaling across and within the
network layers, and it is termed as weight-scaling neural
network-based MIMO detector (WeSNet). To increase
the robustness against the changes in the activation
patterns and additional enhancement in the detection
accuracy for the same inference complexity, we intro-
duce trainable weight-scaling functions. Experimental
results show the superiority of our proposed method
over the benchmark model (DetNet) and classical ap-
proaches based on semi-definite relaxation in terms of
detection accuracy and computational efficiency.

Index Terms—MIMO detection, multilayer percep-
tron, Deep Neural Networks, DetNet, WesNet, profile
weight coefficients.

I. Introduction

R ECENT research work on artificial intelligence (AI)
for wireless communications has shown substan-

tial progress in applying deep learning techniques and
other machine learning algorithms on the physical layer
for various signal processing [1]–[4]. An ingenious auto-
encoder design proposed by O’Shea and Hoydis [3] is one
of the successful applications of deep learning on physical
layer. It consists of module functions for constructing
signal constellations based on the communication rate and
error coding correction for modulation classification, and
signal detection. It provides superior performance over
the traditional modulation schemes such as BPSK, QAM,
PSK, and Hamming code decoder. More recent works
have involved MIMO detection through deep learning.
One of the earliest attempts is the work of O’Shea et
al. [5], who implemented unsupervised learning using an
auto-encoder as a continuation of end-to-end learning of
previous attempts [3]. The combined effects of learning
and the detection capability of the conventional optimal
detector are presented in the work of Samuel et al. [6],
where a novel deep learning method based on ML pro-
jected gradient optimization known as DetNet is proposed.
This approach is significant as it derives a learnable signal
detection architecture for multiple channels on a single
training shot with near-optimal performance and lower
inference complexity.

Generally, a deeper neural network performs better than
the shallow network architectures, at the expense of a
significant increase in complexity and training time [7],
[8]. Therefore, designing DNN architectures with scalable
complexity that can enable learning and inference on a
range of low powered devices becomes necessary. While
considerable number of work on accelerating DNN training
and inference have been put forward in computer vision
[9]–[11], to the best of our knowledge, no such systematic
DNN architecture has so far been designed for physical
layer communications. In this work, we attempt to address
this by proposing a complexity-scalable DNN architecture
for efficient MIMO detection. We introduce the concept of
monotonic non-increasing profile function that scales each
layer of the NN to allow the network to dynamically learn
the best attenuation strategy for its weights during train-
ing. We further introduce a learnable accuracy-complexity
design, where the weight profile functions themselves are
made trainable in order to impede vanishing gradients
caused by the variations in the values of activations. This
enhances the detection accuracy of the WeSNet at the
expense of additional memory due to the increase in the
model parameters. This paper is part of the recent work
we propose on scalable DNN design for MIMO detection
[12].

The remainder of the paper is structured as follows: We
present the system model and the review of the traditional
MIMO detectors in Section II. The details of the proposed
approach are presented in Section III. Experiments and
results are discussed in Section IV. The paper is finally
summarized and concluded in Section V.

II. System Model and Benchmarks

Consider a communications system with Nt transmit
and Nr receive antennas. The received signal is modelled
using a standard MIMO channels equation as

ȳ = H̄s̄ + n̄ (1)

where the received complex symbol vector is: ȳ ∈ CNr×1,
and the corresponding transmitted symbol vector, is s̄ ∈
CNt×1. H̄ ∈ CNr×Nt is Rayleigh fading channel matrix and
the additive white Gaussian noise (AWGN) vector n̄ ∈
CNr×1 with zero mean and variance σ2. For convenience

2

and ease of implementation, the channel model is redefined
over the real domain as

y ≡
[
<{ȳ}
={ȳ}

]
∈ R2Nr×1, s ≡

[
<{s̄}
={s̄}

]
∈ R2Nt×1

H ≡
[
<{H̄} −={H̄}
={H̄} <{H̄}

]
∈ R2Nr×2Nt

With this representation, (1) can be expressed in terms
of real-valued vectors and matrix as

y = Hs + n (2)

Below, we briefly summarize some common classical and
learning-based MIMO detectors that form our perfor-
mance benchmarks.

A. Maximum Likelihood-detector (ML-detector)
The ML detector is known as the optimal detector [13].

However, finding the estimated symbols involves searching
over all the possible transmitted digital symbols of |M|Nt

vectors (where M is the size of the modulated symbol and
Nt is the number of transmit antennas). Therefore, the
complexity of this detector grows exponentially with the
number of transmit antennas and the modulation order,
and cannot be practically realizable in real systems. ML-
detector calculates the Euclidean distance between the
received and the transmitted symbol vectors for a given
channel and spot the one with minimum value.

ŝ = arg min
s∈S

‖y−Hs‖2 (3)

B. Deep MIMO Detector (DetNet)
Most pertinent to our work is the detector that uses a

DNN architecture [6], [14]. The unique property of this
detector is its ability to scale for higher dimension signals
[14]. Learning that leads to good detection is achieved by
finding a set of parameters, Υ that minimize the difference
between the transmitted symbols and their estimates. By
unfolding (3) using ’Stochastic Gradient Descent’ (SGD)
optimization over r-th layers (i.e iterations), the architec-
ture of the DetNet is designed as

ŝr+1 = ŝr − 2ηrHT y + 2ηrHT Hŝr (4)

With HT y, HT H and s as inputs and the application
of some non-linearity, (4) is converted to a multi-layer per-
ceptron (fully connected NN) of r-th-layers ∀ r = 1, . . . ,L.
Each layer consists of a three sub-layers (1r, 2r and 3r)
defined by the following equations

ur = Ω(W1rxr + b1r) (5)

where:

xr = Ξ(HT y, HT Hsr, sr, ar) (6)

ŝr+1 = Θ(W2rur + b2r) (7)

âr+1 = W3rur + b3r (8)

Ξ(·) is the concatenation function, Wr, W2r and W3r

are the weights of the input, detection and auxiliary
layers, ar is auxiliary input, Ω(·) and Θ(·) are nonlinear
and piece-wise linear sign functions, respectively. These
equations represent a single layer of DetNet. The trainable
parameters that are optimized during training are defined
by

Υ = {W1r, W2r , W3r, b1r, b2r, b3r}L
r=1 (9)

III. Proposed Weight-Scaling Neural-Network
based MIMO Detector (WeSNet)

A. Weight Scaling Vector Coefficient (WSVC)
A WSVC is calculated by applying monotonically non-

increasing coefficients (known as profile function coeffi-
cients) to the layer weights during the forward propaga-
tion. This results in prioritizing the selection of the layer
weights in decreasing fashion from the most significant to
least significant. Mathematically, for two given vectors,
x = [x1,x2, . . . ,xN]T and y = [y1, y2, . . . , yN]T , if
Ψ is the vector of the profile coefficients, WSVC is the
truncated version of the form

N∑
k=1

Ψkx
T
k yk = Ψ1x

T
1 y1 + Ψ2x

T
2 y2, ... + ΨNx

T
NyN (10)

In a standard fully connected DNN, the output of the feed
forward pass is given by

zq =
N∑

p=1
Wqpxp + bq (11)

where p and q are the input and output dimensions
respectively; xp is the p-th input components, Wqp is the
channel or layer weight corresponding to the qth output
and bq is the output bias. The corresponding WSVC is
derived by

zq =
N∑

p=1
ΨpWqpxp + bq (12)

Fig. 1 shows the difference between the feed-forward com-
putations of a layer of an MLP and the MLP augmented
by WSVC. The part of the WSVC corresponding to
significant layer weights is indicated by the light shaded
region on the bottom-right side of the figure. The example
shows that, via the WSVC, we can compute and use only
one-fourth of the channel/layer weights out of the N layer
dimension, as the remaining weights are attenuated and
can be dropped.

B. Weight Coefficient Profile Formulation
In this section, we begin by presenting two non-

increasing monotonic profile functions (Linear and Half-
Exponential functions) for the weight coefficients [11].

3

Unscaled	Weightes	Computation Scaled	Weights	Computation

Input	Layers	with	unused	Inputs	Channels/Neurons

Z1 Z2 Z3 ZM

W1 W2 W3 WM

Layer	Weight	Coefficients

Significant	Layer	Weights Unused/Attenuated	Layer	Weights

Full	Layer	Before	Scaling

Z4

W4

Inputs Outputs Outputs

Inputs

Fig. 1: WSVC in a single layer of an MLP allowing for attenuated
layer weights to (optionally) be dropped [11].

1) Linear Profile Function: The profile function coeffi-
cients comprise of samples of the linear function:

Ψk = 1− k

N
; ∀ k = 1, 2, . . . ,N (13)

where N is the layer size.
2) Half-Exponential Profile Function: This function at-

tenuates coefficients corresponding to half of the channel
via an exponential decay function. The implication of this
is that it allows the network training to adjust the gradient
flow such that important weights are retained in the non-
attenuated half of each layer and the less important ones
in the exponentially-attenuated half.

Ψk =
{

1 if k ≤ N
2 ∀ k = 1, 2, . . . ,N

exp
(

N
2 − k − 1

)
otherwise

(14)

C. Architectural Framework of the WeSNet-Detector
WeSNet is a nonlinear detector designed by unfolding

the ML metric using a recursive formulation of the pro-
jected gradient descent optimization. Our proposed detec-
tor applies the profile functions on the existing DetNet.
Such a modification reduces the computational complexity
for training the detector. We apply profile coefficients
function to (5) and (8) to obtain the following non-linear
WSVCs over p-th and q-th inputs of the r-th layer of the
first and third sub-layers respectively.

ur(q) = Ω
{

N∑
p=1

Ψ1r(p)W1r(qp)xr(p) + b1r(q)

}
(15)

â(r+1)h =
M∑

q=1
Ψ3r(q)W3r(hq)ur(q) + b3r(h) (16)

HTysr arHTH

xr

W1r

ur

W3r b3r

b1r

W2r b2r

Fig. 2: Single r-th layer WeSNet-detector.

where q and h are the outputs of the first and third sub-
layers respectively, while N and M are their corresponding
sizes.

The WeSNet is designed with 60 layers and each layer
has three sub-layers, the input layer, the auxiliary and
the detection layer. The layer weights of the last sub-layer
(detection layer) described by (7) are not scaled in order
to maintain the full dimension of the detected symbols
as originally transmitted. The flowchart of a single layer
WeSNet based on the (7), (15) and (16) is shown in Fig. 2.
It is important to note that ML-detector does not require
the knowledge of the noise variance for error estimation.
Therefore, the loss function of WeSNet is derived as the
weighted sum of the detector’s errors normalized with the
loss function of the typical linear inverse detector [6] as

L(s; ŝ(H, y : Υ)) =
L∑

r=1
log(r)‖s− ŝr‖2

‖s− s̃‖2 (17)

D. WeSNet with Learnable Weight Profile Coefficients (L-
WeSNet)

To improve the robustness of the WeSNet against
vanishing gradients and possible gradient explosion, the
weight profile functions themselves are made trainable
parameters, whose values are optimized during the train-
ing process. This allows for significantly wider exploration
of appropriate scaling functions than the predetermined
profile functions presented earlier, albeit at the expense
of computational complexity during training. To achieve
this, (9) is modified to include profile weight functions as
learned parameters.

Υ̃ = {W1r, W2r , W3r, b1r, b2r, b3r, Ψr}L
r=1 (18)

It is important to note that the monotononicity during
training and gradient update is maintained by the shape
of the functions of (13) and (14). Finally, we conclude
this section by describing the pseudocode for our proposed
framework as shown in Algorithms 1-3.

IV. Simulation and Numerical Results
In this section, we present the experimental setup and

the performance of the WeSNet under different profile
functions.

4

Algorithm 1 Weight Coefficient Steps
Input: Input layer size (N number of input neurons)
Output: Vector of weight coefficient

1: for k = 1 to N do
2: if Function is ′Linear′ then
3: Compute: Linear Profile Function (13)
4: else if Function is ′Half − Exponential′ then
5: Compute: Half-exponential Profile Function (14)
6: end if
7: end for

Initialisation :
8: steps = [1, 1 − 1

n , 1 − 2
n , · · · , 1

n] {weight masking
vector}
where n is an integer, which can be chosen from 1-10
Weight Coefficient Steps = [0, · · · , 0]
m = int(N

n)
9: for i ∈ steps do

10: for j = 1 to m do
11: Save i to Weight coefficient Steps for every j
12: end for
13: end for
14: return Weight Coefficient Steps

Algorithm 2 Layer Weight Profiling

Input: Weight-Coefficients, Coefficient-ratio = Ψ̃cr, N ,
in-size, out-size, begin-profile, end-profile

Output: Layer Weight-coefficients
Initialize Weight Profile :

1: if Ψcr = 0 then
2: Weight-Coefficients←Weight− Coefficients
3: end if
4: Weight-Coefficients = Weight-Coefficients× Ψ̃cr
5: return Weight-Coefficients
6: Layer Profile range

(a) 0 ≤ begin-profile ≤ 10
(b) 0 ≤ end-profile ≤ 10

7: Generate Input-steps and Output-steps
Initialize Profile Step :
p-step = [0, · · · , 0]
p-step

[
begin-profile : end-profile

]
= 1

Let WCS = Weight Coefficient Steps {from Algo-
rithm 1}
(a) Input-steps = WCS(in-size, steps = p-steps)
(b) Output-steps = WCS(out-size, steps = p-steps)

8: Let the Functions in Algorithm 1 be P-Func
and WC = Weight-Coefficients

9: Weight Profile← P-Func(in-size)
10: Use WC, Weight Profile, (a), (b) in line 7 above and

Ψ̃cr to obtain Layer Weight-coefficients
11: WLW C ← Layer Weight-coefficients
12: return WLW C

Algorithm 3 Training via Weight-Scaling
Input: Layer Weight-coefficients(WLW C),

Layer Weight(W), Input-Data, Output-Grad, Loss-
Function (L)

Output: Scaled-Weight Vector (WW SV C)
1: Forward Propagation :
2: x← Input-Data
3: out-size, input-size ← shape of W {Weight initializa-

tion}
4: WW SV C ←WW SC ∗W {∗ is a Hadamard Product}
5: z← x[WW SV C]T + b {where; b = bias}
6: return z
7: Backward Propagation :
8: out-size, input-size← shape of W
9: WW SV C ←WW SC ∗W

10: ∂L
∂z ← Output-Grad

11: ∂L
∂x ←

∂L
∂z ×WW SV C

12: ∂L
∂WW SV C

←
(

∂L
∂z
)T × x

13: ∂L
∂b ← sum

(
∂L
∂z
)

14: Parameter update :
15: WW SV C(i) ←WW SV C(i−1) − η ∂L

∂WW SV C

16: bi ← bi−1 − η ∂L
∂b {∀i ∈ {1, 2 . . . , N}}

TABLE I: Simulation settings

Parameters Values

First Sublayer Dimension 20Nt = 320
Second Sublayer Dimension Nt = 16
Third Sublayer Dimension 20Nt = 320

Number of Layers L = 60
Fraction of non-zero Layer Weights Ψ̃cr

Training Samples 100000
Batch Size 5000

Test Samples 10000
Training SNR range 5dB - 25dB

Test SNR range 6dB - 24dB
Optimizer SGD with Adam

Learning Rate 0.001
Weight Initializer Xavier Initializer

Number of Training Iterations 10000
Number of Monte Carlo during inference 400

WeSNet is implemented in Tensorflow 1.14.0 [15] and
python 3.6.8. Since deep learning libraries only support
real number computations, we use real-valued representa-
tion of the random signals and fading channel to generate
the training and test datasets. The detector is evaluated
under a symmetric channel of 16 transmit and 16 receive
antennas (16, 16). To ensure a fair comparison, we evaluate
the performance of our proposed model with the bench-
mark model (DetNet) under the same experimental set-
tings with the same simulation parameters as summarized
in Table I.

We generate both training and test dataset stochas-
tically drawn from BPSK constellation s ∈ {±1}Nt , a
random white Gaussian noise from a uniform distribution

5

6 8 10 12 14 16 18 20 22 24
SNR (dB)

10 5

10 4

10 3

10 2

10 1

BE
R ZF

MMSE
SDR
DetNet
ML
WeSNet-HF-30%
WeSNet-HF-40%
WeSNet-HF-50%
WeSNet-HF-60%
WeSNet-HF-70%

Fig. 3: BER comparison of the proposed DNN MIMO Detector:
(WeSNet-HF), DetNet and other classical Detectors.

over a wide range of SNR values U(5dB − 25dB) and the
corresponding received symbols are generated from the
standard wireless channel model. The model is trained
for 10000 iterations with 5000 batch size. We assume an
unknown noise variance (see Section II), and therefore
the noise vector is generated from a random uniform
distribution over the training SNR values in order to
enable the parameters learning over a wide range of SNR
conditions.

A. WeSNet Design with Half-Exponential and Linear Pro-
file Functions Performance Evaluation

Fig. 3 depicts the performance of half-exponential WeS-
Net (WeSNet-HF)F with 40%-70% weight coefficients and
other benchmark detectors. It can be seen that WeSNet-
HE surpasses both ZF and MMSE by wide margin. In gen-
eral, WeSNet with only 40% of the layer weights (WeSNet-
HF-40%) outplays DetNet. In fact, the accuracy margin
is remarkably conspicuous with profile weight coefficients
> 50% (WeSNet-HF-50% − WeSNet-HF-70%). At 10−4

BER, WeSNet-HF-50% and WeSNet-HF-60% outperform
DetNet with 1.34dB and 2.48dB respectively. Similarly,
they also yield better accuracy of symbol detection over
SDR by 0.45dB and 1.35dB margin respectively.

Fig. 4 shows the performance of WeSNet-HF and lin-
ear WeSNet (WeSNet-L) as more weight coefficients are
gradually added. It can be seen that both linear and
half-exponential profile WeSNet models have a compa-
rable performance at lower SNR fora profile coefficients
between 20% − 40% of the layer weights. However, we
observe a distinguishable difference at higher SNR as more
profile weight coefficients are used. As anticipated, adding
more profile coefficients increases WeSNet’s accuracy, but
performance saturates after 60% of the coefficients. It
can also be seen that WeSNet-HF outperforms WeSNet-
L with a significant margin at higher SNR. This means

6 8 10 12 14 16 18 20 22 24
SNR (dB)

10 5

10 4

10 3

10 2

10 1

BE
R

WeSNet-HF-20%
WeSNet-HF-40%
WeSNet-HF-60%

WeSNet-L-20%
WeSNet-L-40%
WeSNet-L-60%

19 20 21 22
10 4

2 × 10 4

3 × 10 4

4 × 10 4

Fig. 4: BER comparison of WeSNet-HF and WeSNet-L.

6 8 10 12 14 16 18 20 22 24
SNR (dB)

10 5

10 4

10 3

10 2

10 1
BE

R

SDR
DetNet
ML
WeSNet-HF-20%
WeSNet-HF-40%

WeSNet-HF-60%
LWeSNet-HF-20%
LWeSNet-HF-40%
LWeSNet-HF-60%

18 19 20 21 22

10 4

6 × 10 5

2 × 10 4

3 × 10 4
4 × 10 4

Fig. 5: BER comparison of the L-WeSNet, WeSNet-HEF, DetNet and
other classical detectors.

that WeSNet-HF provides a better dynamic scalable com-
putation over a wide range of percentages of the layer’s
input. Following this reason, we shall use WeSNet-HF
as our reference model for the remaining analyses in the
subsequent sections.

B. Performance Evaluation of L-WeSNet
In this section, the performance of our proposed ap-

proach is examined when the weight profile coefficients are
made learnable (L-WeSNet).

Fig. 5 delineates the performance of WeSNet with learn-
able weight coefficients. It can be seen that there is a
significant performance improvement as the percentage
of nonzero weight coefficients are used. Our study also
shows that L-WeSNet-40% produces better accuracy than
DetNet and near SDR at all SNRs. Furthermore, for L-
WeSNet-HF-60%, the performance is near-optimal.

6

10 20 30 40 50 60 70
Percentage of Weights used (%)

10 4

10 3

10 2

BE
R

(a
t 1

2d
B,

 14
dB

, 1
8d

B
&

 22
dB

)
WeSNet-HF-12dB
WeSNet-HF-14dB
WeSNet-HF-18dB
WeSNet-HF-22dB

LWeSNet-12dB
LWeSNet-14dB
LWeSNet-18dB
LWeSNet-22dB

WeSNet-L-12dB
WeSNet-L-14dB
WeSNet-L-18dB
WeSNet-L-22dB

Fig. 6: BER vs Percentage Weight Profile Coefficients for L-WeSNet-
HF, WeSNet-HF and WeSNet-L.

TABLE II: MIMO detectors’ complexity per symbol slot time.

MIMO Detector Number of Flops Operation
ML |S|Nt (8N2

t + 8Nt − 2)
SDR

(
13N3

t + 25N2
t + 17Nt + 4

)
Niterations [13], [16]

WeSNet
[(

Ψ̃crNt(128Nt + 5) + 9Nt

)]
L, L = number of layers

DetNet [(Nt(128Nt − 2))] L

Fig. 6 shows the variation of BER as a function of
layer weight coefficients for WeSNet-HF, WeSNet-L, and
the L-WeSNet-HF. We observe that at 12dB, 14dB, 18dB,
and 22dB with 50% weight coefficients, L-WeSNet-HF has
been able to reduce the BER by 11.9%, 12.2%, 22.1%
and 18.2% respectively as compared to non-learnable
WeSNet-HF model. It can also be seen that L-WeSNet-
HF has comparable accuracy with WeSNet-HF at lower
SNR with 10%−20% of the weights. However, we observe
a significant performance improvement over non-learnable
WeSNet(s)(WeSNet-HF and WeSNet-L) at higher SNR as
more weights coefficients are added.

C. Complexity Evaluation
Table II shows the computational cost of the detectors

as measured by the number of floating-point operations
(FLOPS). It can be seen that the complexity of ML
scales exponentially with the number of transmit antennas
as expected while SDR and DetNet are of O(n4) and
O(n3) respectively. Compared to the benchmark detectors,
however, the introduction of the weight profile coefficient
scaling design in WeSNet has led to the significant reduc-
tion of its inference (online) detection computational cost
even much lower than that of the DetNet.

V. Conclusion
In this work, we present an efficient and scalable deep

neural network-based MIMO detector design, where com-
plexity can be adjusted at inference while achieving a
competitive detection accuracy. We introduce a weight

scaling framework using monotonically non-increasing pro-
file functions to dynamically prioritize a fraction of the
layer weights during training. The results show that
our proposed approach achieves state-of-the-art perfor-
mance comparable to those optimal classical detectors at
much lower complexity. Lastly, our experiments show that
weight profile functions act as regularizers, i.e., in addition
to exhibiting dynamic capabilities to scale over a compu-
tation range, they also help the network to generalize well
by preventing overfitting when the model size grows.

References
[1] T. Gruber, S. Cammerer, J. Hoydis, and S. ten Brink, “On deep

learning-based channel decoding,” in 2017 51st Annual Confer-
ence on Information Sciences and Systems (CISS). IEEE, 2017,
pp. 1–6.

[2] E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode
linear codes using deep learning,” in 2016 54th Annual Aller-
ton Conference on Communication, Control, and Computing
(Allerton). IEEE, 2016, pp. 341–346.

[3] T. O’Shea and J. Hoydis, “An introduction to deep learning for
the physical layer,” IEEE Transactions on Cognitive Commu-
nications and Networking, vol. 3, no. 4, pp. 563–575, 2017.

[4] S. Dörner, S. Cammerer, J. Hoydis, and S. ten Brink, “Deep
learning based communication over the air,” IEEE Journal of
Selected Topics in Signal Processing, vol. 12, no. 1, pp. 132–143,
2018.

[5] T. J. O’Shea, T. Erpek, and T. C. Clancy, “Deep learning based
mimo communications,” CoRR, vol. abs/1707.07980, 2017.

[6] N. Samuel, T. Diskin, and A. Wiesel, “Deep mimo detection,”
in Signal Processing Advances in Wireless Communications
(SPAWC), 2017 IEEE 18th International Workshop on. IEEE,
2017, pp. 1–5.

[7] H. N. Mhaskar and T. Poggio, “Deep vs. shallow networks: An
approximation theory perspective,” Analysis and Applications,
vol. 14, no. 06, pp. 829–848, 2016.

[8] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao,
“Why and when can deep-but not shallow-networks avoid the
curse of dimensionality: a review,” International Journal of
Automation and Computing, vol. 14, no. 5, pp. 503–519, 2017.

[9] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-
net: Imagenet classification using binary convolutional neu-
ral networks,” in European Conference on Computer Vision.
Springer, 2016, pp. 525–542.

[10] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks,” in Advances in neural infor-
mation processing systems, 2016, pp. 4107–4115.

[11] B. McDanel, S. Teerapittayanon, and H. Kung, “Incomplete dot
products for dynamic computation scaling in neural network
inference,” in 2017 16th IEEE International Conference on
Machine Learning and Applications (ICMLA). IEEE, 2017,
pp. 186–193.

[12] A. Mohammad, C. Masouros, and Y. Andreopoulos,
“Complexity-scalable neural network based mimo
detection with learnable weight scaling,” arXiv preprint
arXiv:1909.06943, 2019.

[13] W.-K. Ma, P.-C. Ching, and Z. Ding, “Semidefinite relaxation
based multiuser detection for m-ary psk multiuser systems,”
IEEE Transactions on Signal Processing, vol. 52, no. 10, pp.
2862–2872, 2004.

[14] N. Samuel, A. Wiesel, and T. Diskin, “Learning to detect,”
IEEE Transactions on Signal Processing, 2019.

[15] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow:
A system for large-scale machine learning,” in 12th {USENIX}
Symposium on Operating Systems Design and Implementation
({OSDI} 16), 2016, pp. 265–283.

[16] W.-K. Ma, C.-C. Su, J. Jaldén, and C.-Y. Chi, “Some results on
16-qam mimo detection using semidefinite relaxation,” in 2008
IEEE International Conference on Acoustics, Speech and Signal
Processing. IEEE, 2008, pp. 2673–2676.

