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ABSTRACT

There is a great demand for accurate data of structural, elastic and 

thermodynamic properties of the Earth-forming silicates. Experiments to simulate 

the conditions of the mantle and core are obviously difficult. Therefore, theoretical 

models which can predict the required geophysical data at such conditions are of 

immediate importance.

This work is a theoretical investigation into the lattice dynamics and 

thermodynamics of the major Earth-forming silicates. We use an atomistic approach 

based on the Bom model of solids. This work is a rigorous test of the methodology 

and reliability of the lattice dynamics model at extreme geological conditions, i.e. 

high pressures and temperatures.

We chose the modelling of oxygen isotope fractionation between 

geologically relevant silicates as a stringent test for our approach. The model works 

very well, although the calculated fractionation factors are not yet sufficiently 

accurate to be practically useful.

We have compared calculations based on the quasi-harmonic approximation 

with corresponding molecular dynamics results for the geophysically important 

minerals periclase (MgO) and MgSi03 perovskite. It has been clearly shown that 

the quasi-harmonic approximation breaks down at high temperatures and low 

pressures but this deviation is reduced when the external pressure is increased. 

Therefore, it is necessary to use the molecular dynamics technique for upper mantle 

conditions and the lattice dynamics model is limited to the lower mantle although 

inclusion of intrinsic anharmonicity into the model will remove such restrictions.

All electron Hartree-Fock calculations were performed for the geologically 

relevant cubic MgSi03 perovskite (an idealised structure). Successful geometry 

optimisations and reasonable bulk moduli were obtained. Subsequently, potentials
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obtained by fitting to such an ab initio energy surface can be incorporated into the 

lattice dynamics code, thus eliminating the problem of empirically determined 

potentials.

The inclusion of the above considerations into the lattice dynamics code will 

yield a reliable theoretical technique for studying minerals at any geological 

condition. With such a powerful tool, coupled with the growing experimental 

techniques to probe such levels, the models of the Earth’s interior can be clarified 

to give an overall consistent picture.
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CHAPTER ONE

INTRODUCTION

In this thesis we present a theoretical analysis of the lattice dynamics and 

thermodynamics of the major Earth-forming silicates. This includes a test of the 

reliability of the model at the relevant geological conditions, i.e. high pressures and 

temperatures. The structure of the thesis is presented at the end of this chapter as 

we wish to develop the preliminary ideas and clarify the key presuppositions which 

are implicit in the geosciences. A brief discussion of the current models for the 

interior of the Earth will now be given, highlighting the interrelationships and 

interdependency between the seismological, thermal and compositional theories. It 

is hoped that this will provide a clear context for the work presented in this thesis.

1.0 The problem of beyond perception and the beginning of the Earth

How is it possible to study the Earth’s interior? The planet is far too big to 

simply dig a hole and take a look! It is possible to observe phenomena on the 

surface and then by proposing explanations and causal relationships we may infer 

and gain insight into the interior. A test, not only in science but all knowledge, is 

consistency. If a prediction from a theory is not observed from experiment or is 

inconsistent with other models then the theory is obviously limited and has to be 

revised or dismissed. Through lack of information it may still be necessary to make 

some presuppositions and the geosciences are no exception to this.

The beginning of the Earth is still a mystery and a totally consistent model 

is yet to emerge. Brown and Mussett (1981) give an account of the different classes 

of theories which attempt to explain the mystery. A brief summary of the main
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ideas of the three classes of theories will now be given.

The first class of theory states that the Sun was fully formed before the 

planets and the material of the planets came directly from the Sun or another star. 

The once widely accepted "tidal theories" belong to this class. The second class of 

theories assumes that the Sun and all the planets all formed from a rotating cloud 

or nebula as a natural result of the evolution of the cloud in response to 

gravitational and other forces. Finally, the last group of theories agrees with the 

first that the Sun was fully formed before the planets but states that the planetary 

material was drawn from interstellar clouds or other sources to form a nebula.

A relevant example of such a test of consistency in the Earth sciences is the 

analysis of chondritic meteorites as a reflection of the composition of the original 

solar nebula. Clearly, such tests lead to, not only a fuller understanding of the 

theory but also an awareness of its limitations. Excellent treatises of how the Earth 

models weave together are Poirier (1991) and Anderson (1989). A brief review of 

the current models of the interior of the Earth is presented in the following section. 

This gives the precise context of the work undertaken in this thesis.

1.1 Models of the Earth’s interior

The models to describe the interior of the Earth fall into three categories; 

seismological, thermal and compositional (mineralogical). Each theory uses pieces 

of information to support each other, resulting in a complex weaving of 

relationships. As stated earlier, the more consistency emerges, the more we feel that 

we are reaching a true understanding of the Earth.

1.1.1 Seismological models

The seismological models are based on velocity-depth profiles determined
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from travel-time-distance curves for seismic waves, and on periods of free 

oscillations (see, for example, Bolt 1982). Due to a network of sophisticated world­

wide seismograms the quantity and amount of data has increased so that it is 

possible to collect all the results into one overall model. The International 

Association of Seismology and Physics of the Earth’s Interior have decided on such 

a model and it is referred to as the preliminary reference Earth model (PREM) (see, 

Dziewonski and Anderson 1981). Seismological models yield density, pressure and 

elastic moduli as functions of depth and these are shown in Figures 1.1 to 1.4 for 

the PREM model.

The main assumptions made in order to derive the density-depth expressions 

will now be outlined without including the mathematical technicalities. 

Compression is assumed to be adiabatic, that is, there is no exchange of heat which 

could cause temperature variations and add a thermal expansion contribution to the 

density variations with pressure. It is also assumed that the Earth is in hydrostatic 

equilibrium and spherically symmetric, hence, it is possible to formulate simple 

expressions for both pressure and acceleration due to gravity profiles with depth in 

order to derive a density-depth expression. The Adams-William son equation (see, 

Williamson and Adams 1923) relates density and bulk moduli with depth and 

therefore is an equation of state. For depths where non-adiabaticity occurs, it is 

possible to add a thermal expansion term to the Adams-Williamson equation to 

provide a necessary correction. Figure 1.1 shows the velocity and density profiles 

of the PREM model.

Figures 1.2, 1.3 and 1.4 are the variations of pressure, seismic parameter 

and Poisson’s ratio with depth respectively. All this information of the Earth’s 

interior now provides constraints on the other models, namely, the thermal and 

compositional models.
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1.1.2 T herm al models

How does temperature vary with depth? Equations of state are the variations 

of a property with pressure and temperature, therefore, if we wish to develop a 

satisfactory compositional model it is necessary to have some knowledge of the 

geotherms, that is, the variation of temperature with depth. The thermal models 

attempt to give such a temperature-depth profile. Also discussed in this section are 

the various heat transport mechanisms and patterns of convection in the mantle.
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The boundary condition for any thermal model is the heat flux coming from 

inside the Earth which can be measured at the surface and has a mean value of 80 

mW /m2. To infer a temperature profile one must also have some knowledge of the 

sources of heat which are transported through the mantle and eventually radiated 

at the surface.

The sources of heat fall into three categories classified by original, 

radiogenic and "others". The "original" heat is the accretional heat due to the 

dissipation of gravitational energy when planetesimals bombarded the surface of the 

growing Earth, which eventually partly melted. This theory partly assumes that the 

Earth is still cooling after its initial hot state, but this belief is not held by all, and 

hence is still a matter of debate.

Radiogenic heat is the heat given off from the radioactive decay of elements 

U235, U238, Th232 and K40. The heat production per mass unit of each element is well 

known but their concentration in the Earth is much less certain. One estimate 

(Verhoogen 1980) states that the total radiogenic production of heat in the mantle 

accounts for at least 60% of the total heat output.

Other sources of heat may be tidal dissipation in the solid Earth and 

frictional dissipation in the convecting mantle. These contributions are assumed to 

be negligible in comparison to the radiogenic heat. However, a significant 

contribution to the total heat output could be the latent heat released during 

crystallization of the inner core and by the gravitational energy released as particles 

of solid iron fall toward the inner core and as the mantle falls in on a shrinking 

core. The heat flux from the core into the lower mantle is another boundary 

condition for the convective problem. It is estimated to be about 10% of the total 

heat output of the Earth (Verhoogen 1980).

Due to the opacity of iron-bearing minerals at high pressure, radiative 

transfer of heat is assumed to be negligible in the Earth’s mantle. Therefore, the 

two remaining mechanisms for heat are convection and conduction. The latter can
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be viewed as vibrations through crystal structures. Convection is when heat 

containing material is transported from one location to another.

Convection in the mantle is when heat containing matter is bodily 

transported in a fluidlike manner. To gain some insight into the conditions under 

which convection takes place we consider a layer of fluid in a gravitational field. 

The lower surface is at a higher temperature than the upper surface and hence, 

there is a temperature gradient. The nature of the temperature gradient in the fluid 

determines whether there is convection or not. If an element of fluid rises along the 

adiabatic temperature gradient then it will undergo a decompression without any 

loss of heat. For a temperature gradient less than the adiabatic gradient 

(subadiabatic), the element of fluid is cooler, hence denser than the surrounding 

fluid and sinks again. The fluid is stratified and stable with respect to convection 

and heat is transported by conduction. If the temperature gradient in the fluid is 

superadiabatic, that is, steeper than the adiabatic gradient, the element of fluid is 

warmer and lighter than the surrounding fluid; it is buoyant and will go on rising. 

In this case, the situation is unstable and provides the criterion for the onset of 

convection. A tighter criterion is given by the dimensionless Rayleigh number 

which measures the relative importance of the buoyancy force (which is 

proportional to the acceleration due to gravity, the thermal expansion coefficient 

and the temperature gradient) and the viscosity drag force (which hinders 

convection).

Continental drift and plate tectonics are a clear indication that the upper 

mantle convects. Recent measurements of the Rayleigh number and Bullen 

parameter (another constant which provides a criterion for convection) have led to 

the conclusion that the lower mantle also convects. The patterns of convection are 

a matter of considerable debate and have fallen into two main categories; whole 

mantle and two-layer convection. Figure 1.5 shows a schematic diagram of each 

pattern along with their corresponding temperature and viscosity profiles. Therefore, 

more accurate knowledge of temperature and viscosity varying with depth could 

lead to a clearer picture of the patterns of convection in the mantle. As yet, there
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is still not enough experimental evidence or theoretical consistency to end the 

dispute of the convection patterns in the mantle.

Geotherms are temperature profiles as a function of depth and are usually 

anchored at the seismic discontinuities identified with phase transitions whose P, 

T boundaries are experimentally known or extrapolated. From these points the 

geotherms follow an adiabat in the homogenous regions, where the Bullen 

parameter is close to 1.0 (lower mantle and outer core). The adiabatic gradient is 

often determined by using a value of the acoustic Griineisen parameter compatible 

with a seismological Earth model. The uncertainty in the temperature is usually not 

less than a few hundred degrees and can be as much as 1000K. The geotherm 

calculated or measured from various techniques are shown in Figure 1.6
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1.1.3 Mineralogical models

This section concludes the summary presented in this thesis of the models 

which attempt to give a description of the Earth’s interior. All models, as we have 

seen, require consistency between each other for an overall coherent view of the 

Earth.

The compositional models are constrained by the seismological models 

where a direct correlation with the velocity and density profiles is required. The 

initial conditions of the composition of the Earth is derived from assumptions of 

the primitive bulk Earth composition and the chemical evolution of the Earth. The 

mineralogical model is then tailored to fit the needs of the various convection 

models and therefore, conditions the choice of geotherm.

There are two approaches to constructing a compositional model. Firstly, the 

actual density and elastic moduli at various depths are adiabatically extrapolated 

to zero pressure and brought down from the final temperature to room temperature. 

A mineral assemblage is devised so that its density and aggregate elastic properties 

fit the decompressed material. Alternatively, a mineral assemblage at room 

temperature and ambient pressure is synthesised so that after heating and 

adiabatically compressing it, its density and seismic velocities fit the seismological 

model.

Discrepancies between contending mineralogical models arise from two 

sources. The models use different assumptions for the primitive bulk Earth 

composition and its evolution. It is generally assumed that the primitive 

composition of the bulk Earth (and terrestrial planets) is that of the devolatilized 

solar nebula (Hart and Zindler 1986). The problem is to decide what is the 

composition of the original solar nebula and to what degree it has lost its elements. 

The second source of discrepancy lies in the choice of elastic and thermal 

parameters of the high-pressure candidate minerals. Most of them are, if not 

unknown, at least subject to a high degree of uncertainty, stemming either from the
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inherent experimental errors and/or from the fact that we must rely on one 

measurement. Obviously, there is a pressing need for accurate laboratory 

measurements of these parameters for the high pressure phases.

The development of theoretical models which predict the relevant data 

would not only be a complementary approach, but also relieves the difficult task 

of performing precise experiments of such practically unattainable conditions. This 

indicates the precise context of the work presented in this thesis and will be further 

qualified in the last section of this chapter. The bulk of the mineralogical models 

is the study of phase transitions of minerals. A brief overview of this subject is 

now presented.

The phase of a mineral can be viewed as the relative stability field in terms 

of the intensive parameters pressure and temperature. If the parameters are varied 

then there is a movement through different phases, and between these phases are 

the phase transitions. The "order" of a phase transition can indicate the type 

changes that take place within a crystal structure. A first-order transition is 

associated with a change in volume, where atoms or ions are actually moving from 

their sites to other locations. A second-order transition is often displacive and 

corresponds to a mere distortion of bonds. Most of the experimental work in the 

recent years has been carried out using two high-pressure techniques; the multi­

anvil apparatus, up to 250kbar, and the laser heated diamond-anvil cell (Figure 1.7), 

up to IMbar (see, for example, Bassett 1977; Hemley et al. 1987).
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G A S K E T

Figure 1.7 Principle of the diamond-anvil cell. The sample (stippled) is contained 

in a small hole (200 to 400 ,um) drilled in a metal gasket, compressed by the 

diamonds. It can be heated by focusing a laser beam on it. (After Poirier 1991).

The most recent experimentally observed phase transitions of geologically 

important minerals are shown in Figures 1.8, 1.9, 1.10 and 1.11. It is generally 

assumed that M gS i03 and Mg2S i0 4 are two of the most significant minerals with 

respect to the Earth’s interior (see, for example, Poirier 1991; Anderson 1989) and 

their phase transitions are shown in the above mentioned figures. We see from 

Figures 1.8 and 1.9 that the structure of M gSi03 evolves from pyroxene through 

to garnet, ilmenite and perovskite with increasing pressure. It is thought that about 

80% of the lower mantle consists of (M gFe)Si03.
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Figure 1.8 P, T Phase diagram for MgSi03 composition. The approximate velocity 

of P waves (in km/s) is indicated below the names of the mineral phases. The 

arrows show the direction in which the phase boundaries are expected to move 

when A120 3 is added (after D. L. Anderson 1987a)
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Figure 1.9 Isothermal (T=1000°C) phase diagram for the M gSi03-F eS i03 system. 

The crystalline structures are cpx (clinopyroxene), (3 ((3-phase), y (y-spinel, mw 

magnesiowiistite), st (stishovite), pv (perovskite) (after Jeanloz and Thompson 

1983).

The important and possibly dominant mineral of the upper mantle is olivine 

(Mg,.xFex)2S i0 4 (with x = 0.1). Figure 1.10 shows the variation Mg2S i0 4 

polymorphs with increasing temperature and pressure. The calculated phase diagram 

of the Mg2S i0 4-Fe2S i0 4 system is shown in Figure 1.11.
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Figure 1.10 P, T phase diagram for the Mg2Si04 polymorphs (a: olivine, p: 

modified spinel phase, y: spinel). Solid lines from Akaogi et al. (1984), dashed 

lines from Suito (1977) (after Akaogi et al. 1984).
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F igure  1.11 Isothermal (T=1600°C) calculated phase diagram for the Mg2S i0 4- 

Fe2S i0 4 system. The crystalline structures are a  (olivine), (3 ((3-phase), y (y-spinel). 

The boundaries experimentally determined by Katsura and Ito (1989) are shown by 

dashed curves (after Akaogi et al. 1989).

This concludes the brief overview of the models of the Earth’s interior. The 

remaining section of this chapter outlines the objectives of the research presented 

in this thesis and also summarises the flow of ideas as presented chapter by 

chapter.
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1.2 Summary

As was stated in the previous section, there is a great demand for accurate 

data of structural, elastic and thermodynamic properties of the Earth-forming 

silicates so that refinements can be made to existing compositional models and 

discrepancies between the precise interrelationships of the models are clarified. It 

is hoped that insight into the exact conditions for the formation and evolution of 

the Earth is gained. Experiments to simulate the conditions of the mantle and core 

are obviously difficult. Therefore, theoretical models which can predict the required 

geophysical data at such conditions are of immediate importance.

Currently there are three ways to model the physical structure and properties 

of the crystalline phase: classical, semi-classical and quantum mechanical. The 

classical approach, known as molecular dynamics and Monte Carlo methods, are 

based upon solving Newton’s equations of motion for an ensemble of atoms or ions 

which constitute the crystalline material. The lattice dynamics model is referred to 

as semi-classical because it contains the non-classical novelty of wave-particle 

duality. The kinetic or "dynamic" energy of the crystal is assumed to be the sum 

of all the lattice vibrations. Both the molecular and lattice dynamical methods use 

a potential model to simulate the net forces between the atoms or ions. Most of the 

physical properties predicted by these models are derived from the potential or 

some derivative of the potential. Hence, the accuracy of the calculated properties 

is sensitive to the "realism" of the potential model. A full discussion of this as well 

as an outline of the theory of molecular and lattice dynamics is given in Chapter 

Two. Similarities and differences between the two methods are also presented.

The lattice dynamical simulation method has recently been a topic of 

detailed research (see, for example, Parker and Price 1989; Catlow and Mackrodt 

1982). Many developments to the simulation codes have allowed the possibility of 

modelling a whole variety of silicate structures over a wide range of temperature 

and pressure. It is for these reasons that the test of the lattice dynamics method for 

geologically relevant conditions is the core of the research presented in this thesis.
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Isotope exchange reactions between minerals involve small energy changes 

and to model such subtleties is a stringent test for any model. The prediction of the 

fractionation factors as a function of temperature for oxygen isotope exchange 

reactions between the rock-forming minerals: albite, diopside, forsterite, pyrope, 

quartz and wollastonite, was chosen as a sufficient "probe" for the potential model 

of the lattice dynamics approach. Such predictions are also of geophysical 

importance in the context of geothermometry and can provide useful constraints for 

geotherms. The detailed analysis of, not only the fractionation factors, but also 

other predicted structural, elastic and thermodynamic data is presented in Chapter 

Three.

For the simulation model to be useful when applied to the geophysical 

context it has to perform well at high temperatures and pressures, i.e. the conditions 

of the Earth’s interior. The potentials have previously been modelled for silicates 

(see, for example, Sanders et al. 1984; Lewis and Catlow 1985), therefore, this 

limits the applicability of the lattice dynamics model to the compositions of the 

upper and lower mantle. The model calculations are performed at the quasi- 

harmonic level of approximation. This treats the potential energy function as a 

quadratic, that is, a symmetrical parabola, but allows for the effect of thermal 

expansion. This approximation works well for low temperatures as the ions in the 

lattice do not move significantly away from their equilibrium positions. However, 

at high temperatures there will be anharmonic effects due to the asymmetrical form 

of the "true" potential. Hardy (1980) states that these anharmonic effects increase 

with temperature but decrease with increasing pressure. Hence, the lattice dynamics 

simulation code may be applied to mantle conditions without due concern for 

anharmonicity if Hardy’s (1980) hypothesis is correct. We test this hypothesis by 

comparing molecular and lattice dynamical simulations of MgO (periclase) and 

MgSi03 (perovskite) at a wide range of temperature and pressure. It is assumed that 

the molecular dynamics method includes the anharmonic effects so that by 

comparing the predicted physical parameters: enthalpy, volume, thermal expansion 

coefficient, isothermal bulk modulus, heat capacity and so on, with those obtained 

from the lattice dynamics simulations, it is possible to pinpoint the magnitude of
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anharmonicity as a function of temperature and pressure and also see if the two 

approaches converge at high temperatures and pressures. This work is presented in 

Chapter Four.

Recent developments on simulation codes have given rise to a quantum 

mechanical treatment of periodic structures (Pisani et al. 1988). The exact solution 

of Schrodinger’s equation for a many-body system is, as yet, impossible therefore 

the calculations are performed at the Hartree-Fock level of approximation. A 

detailed discussion of this as well as a brief outline of the theory and preliminary 

calculations of the energy, optimised volume and bulk modulus of cubic perovskite 

is given in Chapter Five. The possibility of quantum mechanical simulations of the 

charge density within a crystal structure, lending information for the development 

of "a priori" potential models, is also discussed.

Finally, the main points to arise from the work in this thesis is summarized 

in Chapter Six. Also presented in the final chapter are suggestions for future work 

and developments especially regarding the potential model for the lattice dynamics 

simulation technique.
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CHAPTER TWO

MOLECULAR AND LATTICE DYNAMICAL SIMULATION

MODELS

2.0 Introduction

In this chapter we discuss the two simulation approaches, molecular and 

lattice dynamics, which are used for the research presented in this thesis. Energy 

is viewed as activity and subsequently potential energy is discussed in terms of 

"implicit" activity. The potential model is the crux to both simulation techniques 

because it is from the form and derivatives of the explicit potential energy 

equations that all dynamic properties are derived. This matter is discussed in detail 

and a summary of the method for obtaining the potential parameters is given. The 

molecular dynamics model is presented in great detail showing the derivations and 

equations which link the potential model to the dynamical variables. A similar 

treatment is given for the lattice dynamics model and the chapter is concluded with 

an analysis of anharmonicity and its deviations from the quasi-harmonic 

approximation.

2.1 The potential energy of a crystal structure

As stated above, energy is presupposed to be activity or process and hence, 

motion is a manifestation of energy and is usually represented as the sum of kinetic 

and potential component of the dynamical system. The kinetic component is the 

quantification of the movement of the whole system (the crystal structure) or the 

components of the system (atoms or ions in our case) and the potential energy is
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the amount of activity or work needed to bring about the crystal structure. This is 

usually expressed as the energy required to bring the atoms or ions from infinite 

distances from each other to their locations in a crystal structure. Alternatively, one 

can view the crystal structure as sitting in a "field" or context which, although 

ultimately extends to the whole Universe, is abstracted or reduced to a limited 

domain which can be handled mathematically. Due to the minute masses of crystals 

in comparison with planets, the effects of gravitation can be neglected. Also, we 

can neglect the effects of the strong and weak force as these deal with a deeper 

level of system than we wish to deal with (i.e. less than 1013 metres). We also 

assume that the magnetic effects within ions give a negligible contribution to the 

overall potential energy of the crystal structure. It follows then, that the first 

component of the potential energy is the electrostatic or Coulombic term (without 

constants):

Uc = V W i M  (2-1)

where e is the charge of the electron, qj and qj are the point charges associated with 

ions i and j, and r  ̂is the distance between them. This expression models the forces 

between ions in the crystal structure which arise directly from their internal 

motions. This gives an intuitive and imaginative picture of the cause for such 

forces. Note that from interpreting Newton’s equations of motion, a force can be 

defined as the effect of motion or, more specifically, the rate of change of the rate 

of change of position with respect to time. Hence, this makes the above 

interpretation of the electrostatic interaction viable.

The intrinsic activity within the charged ions could lead to many effects 

which have a significant contribution to the overall potential energy. Obviously, it 

is not possible to model all these effects and so an approximation is made based 

on the Born model of solids (Born and Huang 1954) which states that the 

interatomic potentials are defined to simulate the net forces between the ions. These 

forces are usually assumed to be pair-wise additive.
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The Buckingham potential is used to describe the short-range repulsive and 

attractive dispersion forces between the ions and takes the following form:

USR = V ^ ex p ^ /p ij) ‘ c ijrij'6> (2-2)

where Ay and pAj are the effective repulsive parameters and Cy is the effective 

dispersion coefficient. These potential parameters have to be derived for each pair 

of species i and j and this is achieved via empirical fitting procedures (see, for 

example, Lewis and Catlow 1985). This topic will be further elucidated in section 

2.1.1. The short-range repulsive force arises from the forbiddance of overlapping 

electron clouds of neighbouring ions. This is a direct result of the Pauli exclusion 

principle which states that no two species can have the same quantum numbers or 

in less technical terms, they cannot occupy the same space at the same time. The 

internal activity of the charged ions leads to creation of dipoles which can give rise 

to mutual dipole-dipole attractions between neighbours. This is known as the van 

der Waals interaction and is modelled by the r*6 term in the Buckingham potential.

Figure 2.1 shows how the contributions from the long-range Coulomb 

attractive potential and the short-range dispersive and repulsive interactions give 

an overall asymmetric potential "well" which shows the variation in potential 

energy as a function of interatomic spacing.

Both potentials 2.1 and 2.2 are employed in the molecular dynamics (MDS) 

and lattice dynamics (LDS) simulation techniques. It is possible to model other 

forces that can arise from the internal processes within the ions: many-body effects 

and polarizability are such examples, however, the MDS code generally do not 

incorporate these developments as they have given successful simulations without 

the need of these additional terms (see for example, Dove 1988; Matsui 1988). 

Hence, the remaining components to the potential energy only apply to the LDS 

model.
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Figure 2.1 Asymmetric potential "well" (bold curve). The potential is the sum of 

the attractive Coulombic potential and a short-range repulsive (thin curves). The 

parabola at r = re (dashed curve) corresponds to the harmonic approximation.

The shell model provides a simple description of the ease with which the 

charged ion is deformed by being in a particular environment and this effect is 

technically referred to as ionic polarizability. In this model, the ion (it is frequently 

assumed that oxygen is the only polarizable atom in the structure) is described as 

having a core containing all the mass, surrounded by a massless shell of charge Y, 

representing the outer valence electron cloud. The core and shell are coupled by a 

harmonic spring, so that their interaction can be expressed as:

Up = S fc /j2, (2.3)

where kS i is the spring constant, and q is the core-shell separation. The ffee-ion
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polarizability (a) is given by the term:

a  = Yj2/(kSi). (2.4)

In addition to these terms it has previously found (Sanders et al. 1984) that in order 

to describe the directionality of the O-Si-O bond in silicates, it is necessary to 

include in the potential a three-body or bond-bending term of the type:

UB = ^ k Bijk(0iJk - 0O)2, (2.5)

where kBijk is the spring constant, 0ijk is the O-Si-O bond angle, and 0O is the 

tetrahedral angle.

Other many-body contributions and magnetic effects (eg. quadrupolar 

moments) are assumed to be negligible, therefore, these are not included in the 

overall potential model. It is important to note here that all the dynamical 

properties of a crystal structure are derived from the form and derivatives of the 

potential energy function. Hence, it is important in any solid-state model to obtain 

a realistic potential for the context one is investigating (e.g. covalent, ionic, metal, 

semiconductor, superconductor etc.). Therefore, the next section is devoted to the 

derivation of the potential parameters.

2.1.1 The derivation of the potential parameters

The reliability of the simulation in modelling a particular solid depends on 

the accuracy of the chosen potential parameters. Indeed, it is the reliability of the 

potential model rather than the approximations in the simulation methods which 

usually determines the success of the simulation. Thus the inclusion of all the 

important interatomic interactions, and then the subsequent derivation of the 

appropriate parameters is critical in determining the outcome of the simulation.

43



The short-range interaction and shell model parameters are obtained using 

a least squares fitting procedure. Parameters are adjusted until agreement between 

experimental and calculated crystal properties is achieved. Cohesive energies, lattice 

constants, elastic constants and dielectric constants constitute the data which is used 

for the fitting procedures (see, Lewis 1985). The parameters are first derived for 

the component binary oxides and then applied, in a direct transferable manner, to 

the system of interest. This approach to deriving a potential energy function has 

yielded many encouraging results (see for example, Price et al. 1987; Catlow and 

Mackrodt 1982) and is preferred to the alternative methods: the modified electron 

gas approach (Gordon and Kim 1972) and the ab-initio quantum mechanical 

methods (Lasaga and Gibbs 1987). In Chapter Five we will discuss the possibility 

of deriving potential energy surfaces from all electron Hartree-Fock calculations.

This concludes the discussion of potential energy of a crystal structure. The 

next section deals with the kinetic contribution to the total energy of the dynamical 

system of a crystal lattice. The first model presented is the classical Newtonian 

approach which is the MDS technique.

2.2 The molecular dynamics simulation model

The idea of MDS is the straightforward numerical solution of Newton’s 

equations of motion for a system of particles or ions. The computer stores the 

positions and velocities of a number of particles in a fictitious "box" at a given 

time, and from a given model for the forces acting between the different particles, 

the changes in the set positions and velocities are calculated. Newton’s equations 

are continuous in time but the simulation uses an integration algorithm to calculate 

the discrete changes in the dynamic variables over a small given time interval. This 

process is repeated iteratively for several thousand timesteps, and effectively the 

simulation generates the trajectories of the particles in time. The accuracy of the 

trajectories depends upon how realistic the force (potential) model is and the size 

of the timestep used. The smaller the timestep the closer one tends to the
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continuous evolution of the system in time. Hence, starting from a given 

configuration of particle coordinates and velocities, the simulation generates the 

trajectory of the entire ensemble through the phase space spanned by the dynamic 

variables of all the particles in a completely deterministic way. Conditions such as 

the density of the system and the temperature can easily be imposed during an 

initial equilibration stage of the simulation.

In the MDS code used for the work presented in this thesis (called 

QCTPMD, written and donated by Prof. Masanori Matsui), Newton’s laws of 

motion are solved numerically for the ensemble of particles or ions by the fifth- 

order predictor-corrector algorithm developed by Gear (1971), and calculates the 

new positions and velocities of each ion for each timestep increment. The code 

initially assigns a random set of positions and velocities for each ion in order to 

start the algorithm. To obtain the subsequent positions and hence velocities, the 

force law is required for the ensemble of atoms. For a set of N particles which 

have coordinates rit velocities fj and masses m4 (where i = 1,....,N), the potential 

energy function is given by:

Wry) = Uc + USR, (2.6)

where r̂  = I I = I rt - i*j I is the distance between the ith and jth atoms. To 

facilitate the computation of the Coulomb and dispersion interactions, respectively, 

the Ewald sum method and the convergence-acceleration technique (Williams 1971) 

are used. Newton’s law of motion takes the following form:

m ^  = Zj^rij1 (d<l)/dr ij)rij, i = 1,....,N. (2.7)

The MDS code is based upon a microcanonical ensemble treatment (N,Q,E) 

of a crystal structure, where N is the number of atoms or ions, Q is the volume and 

E is the energy. This is a statistical ensemble where the brackets (....) denote the 

quantities which remain constant. A constant volume simulation severely restricts 

the number of problems one can study, specifically, phase transitions of crystal
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structures. Hence, Andersen (1980) developed a constant pressure method for the 

statistical ensemble (N,H,P) where H is the enthalpy and P is the applied pressure. 

Parrinello and Rahman (1981) extended this method to study crystal structures of 

any symmetry and this provides the foundation for the model which is used in the 

MDS code. An outline of the essential equations which constitutes the MDS model 

is now given.

It is useful to adopt the Lagrangian formulation to treat the microcanonical 

ensemble and the general Lagrangian can be expressed as the sum of the kinetic 

and potential energy of the system:

S£ =  1 /2  Zjmjl q  12 - 1 /2  Sj^yfry). (2 .8 )

Parrinello and Rahman (1981) have proposed a Lagrangian for the study of 

microcanonical ensembles of particles where the size and shape of the MDS cell 

is allowed to vary with an externally applied hydrostatic pressure. This is easily 

extended to consider a general external stress (see Parrinello and Rahman 1981) but 

will not be discussed here. It is worth noting that the Lagrangian has not been 

derived from first principles and its validity is to be judged from the equations of 

motions and statistical ensembles that it generates. The Lagrangian is expressed as:

g  = 1/2 Zi=1N m&'GSi - Ei=1N E j /  4>(ry) + 1/2 W(Trh'h) - PQ, (2.9)

where P is the hydrostatic pressure, h is a matrix whose columns are, in order, the 

components of the MDS cell vectors; a, b and c which completely define the size 

and shape of the cell by their lengths and mutual orientations. Hence, the volume 

of the cell is given by:

a =  II h II = a (bxc), (2.10)

where a, b and c are assumed to for a right-handed triad. The position r4 of the ith 

particle can be reexpressed in terms of h and of a column vector as:
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r t -  hSj = a na + c^b + o^c, (2.11)

where ocH, 0^  and ot3i are in the range between 0 and 1, and i = 1.....N. If the prime

denotes the transpose of a vector or tensor then the square of the distance

between i and j ions can be written as:

ry2 = (s, - Sj)'G(Si - sj), (2.12)

where the metric tensor G is:

G = hTi. (2.13)

In reciprocal space the vectors are defined as:

27i/£2{bxc, cxa, axb) = (27t/D)a, (2.14)

where the matrix a  = Q h '1 carries information concerning the size and orientation 

of the MDS cell and is subject to the usual periodic conditions. The parameter W 

in equation 2.9 has dimensions of mass and will be further discussed later. From 

the proposed Lagrangian the equations of motion are found to be:

^  = - Ljrimi'1((|)x/rij)(si - Sj) - G’1̂ ,  i=l,...,N, (2.15)

Wti = (7t - P)o, (2.16)

where, using the dyadic notation, and writing Vj = h^:

Qjc = EjirijViVj - £i£|>i(<|i'A'jj)rijrij. (2.17)

When the MDS cell is time independent, h = constant and G = 0. From equation 

2.11 we see that equations 2.15 and 2.7 become equivalent. The average pressure
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is calculated from 1/3 of the trace of the average of n. Equation 2.16 allows the 

system to be driven by the dynamic imbalance between the externally applied 

pressure and the internally generated stress tensor, hence, the equation allows one 

to study nonequilibrium phenomena which are driven by these imbalances. In a 

state of equilibrium, making the external stress have an oscillatory time dependence 

will also one to study frequency dependant response of the system to external 

stimuli of various kinds. From equation 2.16 it also follows that the mass W 

determines the relaxation time for recovery from an imbalance between the external 

pressure and the internal stress. Andersen’s (1980) suggestion for the value of W 

is such that the relaxation time is of the same order of magnitude as the time L/c, 

where L is the MDS cell size and c is the velocity of sound. This eliminates the 

arbitrariness in the choice of W and makes the calculation more realistic.

From equation 2.9 one can construct the corresponding Hamiltonian 

following the usual rules of mechanics. Since the system is not subject to time 

dependent forces the Hamiltonian is a constant and is given by:

In equilibrium at temperature T, the equipartition of energy theorem gives (9/2)kBT 

contribution from the term containing W and (3N/2)kBT from the other kinetic 

terms. Therefore to an accuracy of 3:N one finds that the constant in motion is 

simply the enthalpy:

H = 'L-Vlmy? + ZjE^Cry) + l/2W(Trh'h) + PQ. (2.18)

H = E + PQ, (2.19)

where the total energy is given by:

E = Sil/2m|V,2 + (2.20)

Hence, the Lagrangian in equation 2.9 generates, as stated previously, a constant 

pressure, enthalpy and number of ions (P,H,N) ensemble.



We have seen from the above treatment how the potential model is used in 

the solution of Newton’s laws of motion to calculate the enthalpy of a number of 

particles in a "box" which are at a given temperature and applied pressure. Other 

elastic and thermodynamic parameters can be calculated from the variation of 

volume and enthalpy with changing pressures and temperatures. The heat capacity 

at constant pressure is given by:

CP = 0H/3T)P. (2.21)

The thermal expansion coefficient and isothermal bulk modulus can be defined, 

respectively, as:

a  = V \dV /dT )P (2.22)

Kx = - V0P/3V)X, (2.23)

where V is the volume at pressure P and temperature T. It is now possible to show 

how the heat capacity at constant volume is related to the heat capacity at constant 

pressure:

CP = Cv + TVcx2Kt , (2.24)

where the final term in the above expression is known as the anharmonic 

contribution. Anharmonicity will be discussed later in section 2.2.2.

From simulations of a crystal structure at different pressures and 

temperatures it is possible to obtain the above thermodynamic and elastic properties 

by performing linear interpolations on enthalpy-temperature, volume temperature 

and volume-pressure plots. These properties may be derived in MDS studies using 

the fluctuation formulae, however for certain MDS conditions (which will be 

employed later) they show rather large uncertainties (see, Nose and Klein 1983).
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2.2.1 Quantum corrections to the MDS model

At absolute zero temperature quantum theory predicts a non-zero energy for 

the crystal structure and this is called the zero-point energy. This result directly 

contradicts classical physics which relates the motion of the ions in the crystal 

structure to the temperature, hence, predicting zero energy at absolute zero 

temperature. The reason for the zero-point energy is that the ions have to possess 

a non-zero momentum so that it is not possible to know the position and velocity 

precisely and violate Heisenberg’s uncertainty principle.

The classical mechanics description of atoms in a solid is only 

approximately valid at temperatures considerably above the Debye temperature. To 

estimate the quantum contribution to the structural, elastic and thermodynamic 

properties our code employs the Wigner-Kirkwood expansion (see for example, 

Landau and Lifshitz 1958; Hansen and Weis 1969; Matsui 1989) of the free energy 

in powers of Planck constant h. The corrections include only the first nonvanishing 

term having the order h2, and neglect all higher-order terms. When the crystal 

potential energy is taken as the sum of pairwise interactions, as in equation 2.6, the 

quantum correction to the Helmholtz free energy, F, per formula unit (quantum 

minus classical is denoted by A) is expressed as (see, Hoover et al. 1969; Barker 

et al. 1971):

AF = (E0/T)(£1m,‘1Vl2U)

= + 2<j>„y)), (2.25)

where E0 is h2/(96tt2k), k is Boltzmann constant, is the mass of the ith ion, U 

= <t>jj is the crystal potential energy per formula unit (see equation 2.6), V,2 is the 

Laplacian with respect to the coordinates of the ith ion, Z is the number of formula 

units per basic cell, and the angle brackets denote averages over the classical 

ensemble. Here the summation over i includes the ions in one basic cell, and j is 

summed over all atoms in the crystal except i=j.
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The quantum corrections to the pressure P, the isothermal bulk modulus Kx, 

the heat capacity at constant pressure CP, and the product of KT and the thermal 

expansion coefficient a  are obtained from differentiating AF with respect to volume 

V and/or temperature T. the results are:

AP = -[3(AF)/3V]T = - E0/(3TVZ)((X,EJm1‘'(<j>ij" 'r lj + 2 ^ "  - 2 ^  V »

- (2kTZ)‘ x + 2<t»ij'rij'1) x Z . Z / V #

- + 2(|)|j'rij'1)) x (S^C^y'r.j))] >, (2.26)

AKt = V ^ A F ) # ^  = E0/(9TVZ)((EiZJmi-‘(<t'ij" " r 1j2 -

- (2kTZ)-1[(ZiLJm|-1(<t.ij'" r ij + 2*#~ - 2 * „ y )  x V

- + 2<t.y" - 2<)>ijV )>  * (2.27)

ACP = - T[32(AF)/3T2]p as P -> 0

= - 2AF/T, (2.28)

A(aKT) = - [32(AF)/3T3V]vt = [3(AF)/3V]/T

= - AP/T. (2.29)

Finally, the quantum correction to a  is obtained using equations 2.27 and 2.29 as

Aa = [A(aKT) - aAKT]/Kx, and the correction to V is calculated using AP as AV

= (V/Kt)AP.
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2.2.2 Anharmonicity and the MDS model

Previously, it was shown in Figure 2.1 how the distribution of potential 

energy varies between two neighbouring ions. At low temperatures the ions in the 

crystal structure vibrate about their equilibrium positions with small displacements. 

The curve at and around the equilibrium separation can be accurately approximated 

by a symmetrical parabola which is referred to as the harmonic approximation 

because the solutions to the dynamical equation for the ion are sinusoidal.

When the temperature of the crystal structure is increased the vibrations of 

the ions are more energetic and the displacements increase. The harmonic 

approximation is no longer valid for such conditions and the solutions to the 

dynamical equation are anharmonic (ie. includes overtones) due to the asymmetry 

of the potential energy distribution. This high temperature effect is known as 

anharmonicity and is included in the MDS treatment of a crystal structure by 

sampling the actual potential energy distribution and derivatives with respect to 

increasing interatomic spacing. This is transparent from equations 2.6, 2.15 and 

2.17. Harmonicity and quasi-harmonicity will be further discussed in section 2.3.1.

2.3 The lattice dynamics simulation (LDS) model

The kinetic contribution in the LDS model is from treating the motions of 

the atoms or ions in a crystal structure as waves or, as they are commonly called, 

lattice vibrations. The LDS technique is often referred to as a semi-classical 

approach because the lattice vibrations are quantised (also called phonons) but the 

analysis of the dynamics of the atoms or ions utilises Newton’s laws of motion. 

This approach was pioneered by Born and Huang (1954) and calculates the 

vibrational frequencies in periodic structures. We now discuss the main equations 

which constitute the LDS model.

In the Born model of solids one assumes that the net interacting forces are
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described by interatomic potentials. From the previous section we see that the total 

potential energy is given by:

UT — Uc + U SR + Up + UB. (2.30)

All the vibrational, elastic and thermodynamic properties calculated in the LDS 

model depends upon realism of the potential model. Also, the main assumption in 

the LDS model is the quasi-harmonic approximation which treats the vibrational 

motions of the atoms or ions in the crystal structure as independent quantized 

harmonic oscillators whose frequencies vary with cell volume. This will be 

discussed in greater detail, along with anharmonicity, thermal expansion and the 

Griineisen parameter, in the next section.

The prediction of crystal structures and other temperature dependant crystal 

properties first requires the calculation of internal stress caused by the vibration of 

the constituent atoms. As stress is equal to the derivative of free energy with 

respect to volume, and the free energy at a given volume can be evaluated directly 

from the phonon frequencies, the first step is to determine the frequencies. These 

are calculated using a prescription elucidated by Cochran (1977) for the above shell 

model potential. The equations of motion to be solved are:

where u is the displacement of the core and m its corresponding mass. In the case 

of the massless shells we have the condition:

where w is the shell displacement, corresponding to zero net forces on the shells. 

The potential energy is expanded to second order with respect to ion displacements, 

i.e., the harmonic approximation:

md2u/dt2 = dUx/du, (2.31)

0 = dUT/dw, (2.32)
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Ux(r') - UT(r) = l/2(W uu-u*u + Wuwu w  + Wwu-wu + Www-w-w), (2.32)

assuming the unit cell is at equilibrium and Wuu represents the second derivative 

matrix between cores, Wuw between core and shell and Www between shells.

Finally, before solving for the derivatives with respect to core and shell 

displacements, the periodic nature of the solid must be considered by including the 

dependence of atomic displacements on the wave-vector q, i.e.,

u = uexp(i(q-r - cot)) (2.33)

and

w = wexp(i(q r  - cot)), (2.34)

where r  is the atom position and co the vibrational frequency. The second derivative 

or force constant matrix is similarly affected. For example, the force constant 

matrix for the interactions involving only shells is given by:

S = Wexp(iq(ra - rb)), (2.35)

which is summed over all ions r5. Similar expressions are obtained for the core­

shell (T) and the core-core (R) matrices. Hence we can now solve the equations 

of motion 2.30 and 2.31 from equation 2.32 to get:

c o ^  u -  R u + T-w, (2.36)

and

0 = T u  + S-w, (2.37)

where m is the diagonal matrix of core masses. Removing the shell displacements
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w by substituting 2.36 and 2.37 gives:

c o W  = (R + T S ' T) u. (2.38)

Finally, by defining the dynamical matrix D as:

D = m (R - T S 1 T) m, (2.39)

and

u = m n , (2.40)

to give

co2n = D n, (2.41)

which is now the eigen-vector problem and hence the frequencies can be calculated 

by diagonalising the dynamical matrix. However, the phonon frequencies are 

dependant on the wave-vector, i.e. phonon dispersion, thus to determine the phonon 

density of states we need to calculate the frequencies over all possible wave- 

vectors.

The need to calculate the frequencies for all wave-vectors is overcome in 

part by determining only those frequencies on a three-dimensional mesh of points 

within the Brillouin zone, using an appropriate weighting factor. The weighting will 

depend on the number of times a point appears in the Brillouin zone, thus the zone 

centre q = (0,0,0) which appears only once will have a weighting factor of one, 

while q = (0.5,0.5,0.5) for an orthorhombic crystal will have a weighting factor of 

eight. Fortunately the thermodynamic properties converge rapidly with the size of 

the mesh for temperatures above 50 K. The failure at very low temperatures is 

because acoustic phonons with wave-vectors close to the zone centre are the only 

thermally excited modes, therefore we need a fine mesh in this region to determine
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correctly the phonon frequencies and hence the thermodynamic properties. This 

may be overcome by using "uneven sampling" techniques (see, Baldereschi 1973; 

Chadi and Cohen 1973; Filippini et al. 1976) which give an appropriate weighting 

to wave-vectors near the zone centre. Brillouin zone sampling will be discussed in 

greater detail in the next chapter.

Once the phonon frequencies have been determined for point within the 

irreducible Brillouin zone we can calculate the thermodynamic functions E, S, F 

and Cv i.e., the vibrational energy, entropy, free energy and heat capacity at 

constant volume, respectively, using the appropriate weighting factors. They are 

determined from the following expressions for a set of harmonic oscillators:

E = kTZjM (x/2 + x/(e* - 1), (2.42)

S = k £ “ (-ln(l - e") + x/(ex - 1)), (2.43)

F = kT£,M (x/2 + ln(l - e'*)), (2.44)

Cy = kX,M (xV)/(e‘ - l)2. (2.45)

where each is summed over the total number of phonon frequencies, M, and where 

x = hco/kT. The zero-point energy 2 ^ 0 /2  is also included in the vibrational energy 

and free energy. In addition it is possible to calculate the density of states from the 

phonon frequencies within a small finite frequency interval where the total number 

of modes is 3n, (n being number of atoms in the unit cell).

The kinetic pressure PK is simply the derivative of vibrational free energy 

with respect to volume. Thus for an isotropic material:

PK = dF/dV, (2.46)

and is determined by calculating the free energy at a given volume and then
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recalculating after making a small adjustment to the cell volume dV. If the 

calculation is at desired hydrostatic pressure PH then the difference between PK and 

PH needs to be minimised by iterative changes in volume where the free energy 

and, hence, vibrational frequencies are recalculated for each iteration. The 

calculations involve the utilisation of static simulation routines for constant 

temperature (Norgett and Fletcher 1970) and constant pressure (Catlow and Norgett 

1976; Parker and Price 1989), and details of these routines will not be given here. 

The calculation, as stated previously, is based upon the quasi-harmonic 

approximation and this is the topic for discussion in the next section. A further 

analysis of anharmonicity and its implications for the LDS model, thermal 

expansion and the Gruneisen parameter are also discussed.

2.3.1 Quasi-harmonicity, anharmonicity, thermal expansion and the Gruneisen 

parameter.

The harmonic approximation neglects higher than second order terms in the 

expansion of the potential energy about the equilibrium separation between 

neighbouring atoms in the crystal structure. The most important consequences of 

the approximation are:

a) there is no thermal expansion;

b) the force constants and hence the elastic constants are independent of 

temperature and pressure;

c) the heat capacity becomes constant at high temperatures;

d) the specific heats measured at constant pressure and constant volume are equal: 

CP = Cv;

e) since there are no collisions between phonons, their mean free paths and 

lifetimes are infinite;

f) as a consequence of (e), a perfectly harmonic crystal would have an infinite 

thermal conductivity;

g) the line widths of the infrared absorption peaks and of the Raman, Brillouin and

57



inelastic scattering peaks are zero for perfectly-ordered harmonic crystals.

In real crystals none of these consequences are satisfied accurately.

We have seen how the kinetic contribution to the total energy of a crystal 

can be evaluated from the frequencies of the lattice vibrations. These calculations 

are performed by the computer code PARAPOCS (Parker and Price 1989) at the 

quasi-harmonic level of approximation. In this approximation the frequencies of the 

lattice vibrations are a function of volume, however after each volume increment 

the frequencies are recalculated assuming that the atoms or ions are independent 

quantized harmonic oscillators. This approach accommodates thermal expansion but 

still neglects the nonlinear coupling of phonons. We see from equation 2.24 that 

the heat capacities at constant pressure and constant volume are no longer equal, 

and at high temperatures one would expect a linear dependence of Cv with 

temperature but this is not the case because in the quasi-harmonic approximation 

the specific anharmonic term is not included in the calculation of the free energy 

(see, Brtiesch 1982).

The asymmetric form of the crystal potential energy is the cause for thermal 

expansion (see Figure 2.2). As the temperature of the crystal increases so do the 

vibrations of the atoms. The interatomic separation oscillates between rt and r2, 

with r2 - re > re - r1} that is the extension of the bond is greater than its 

compression. In addition, the restoring force (i.e. the negative of the slope of the 

curve) is smaller on the extension side, so that, on average, the bond spends a 

longer time in extension than in compression. The mean value of the bond length 

becomes longer than the equilibrium value at low temperature: rx + r2 > 2r, hence 

the crystal expands. One can also see from Figure 2.2 that if a pressure is applied 

at constant temperature in order to decrease the crystal spacing, the restoring force 

increases more rapidly than in the harmonic case: compression becomes more and 

more difficult, that is, the bulk modulus increases with pressure.
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E(T=0)

Figure 2.2 Thermal expansion. At T=0 K, the interatomic potential is minimum for 

the equilibrium distance re. At a finite temperature, the potential E(T) is higher and 

due to the asymmetric shape of the anharmonic curve, the equilibrium distance is 

the average between rx and r2, which is greater than re. For a symmetrical harmonic 

potential (dashed curve) there would be no thermal expansion. (After Poirier, 1991)

Thermal expansion coefficient can be calculated in two ways using 

PARAPOCS. The first method measures the crystal structure at two finite 

temperatures, and the change in volume is calculated (see equation 2.22). This is 

analogous to the experimental technique using dilatometers where small changes 

in volume are measured on heating (see, White et al. 1985). Alternatively, the 

following thermodynamic relation can be used:

p = tCv/K t V = yCp/Ks V, (2.47)
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where V is the molar volume, K s is the adiabatic bulk modulus and y  is the thermal 

Gruneisen parameter.

The thermal or average Gruneisen parameter is found from calculating the 

mode Gruneisen parameters which are defined as:

and provide an explicit measure of the variation of vibrational frequencies with 

volume. Hence, the average Gruneisen parameter is given by (see, Kieffer 1982):

where (Cv)j is the contribution to the heat capacity made by each mode, i (see 

equation 2.45). From the above definitions we see that the Gruneisen parameter 

provides a good measure of anharmonicity. The quasi-harmonic approximation only 

takes into account the effect of thermal expansion, and this can be viewed as taking 

account of "extrinsic" contribution of anharmonicity. We now discuss the 

consequences of "intrinsic" anharmonicity.

If a crystal is held at a fixed volume and the temperature is increased then 

all the energy goes into the thermally excited phonons or lattice vibrations, 

assuming there is no heat loss. Up to now we have assumed that the phonon is 

equivalent to an independent lattice vibration which is similar to a normal mode 

or standing wave. In other words, the vibration is distributed instantaneously over 

the whole crystal structure and, as stated earlier, leads to an infinite thermal 

conductivity. Obviously, the instantaneous distribution of energy in the form of 

lattice vibrations does not allow for the transport of heat (i.e. energy) and is only 

applicable to equilibrium conditions."Far from equilibrium" states such as the flow 

of seismic waves from earthquakes require a treatment where the phonon lifetime 

is not infinite (see, Reissland 1973; Briiesch 1982). This also implies a "far from 

equilibrium" thermodynamics for the study of macroscopic properties (see,

Yi(q) = -V/coi(q)-[dcoi(q)/dV], (2.48)

Y — l/CvE^CvVcOj, (2.49)
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Prigogine and Stengers 1984).

When treating "intrinsic" anharmonicity the expansion of the potential 

energy with respect to interatomic separation is taken to higher than second order 

terms. This expression is then placed in the anharmonic Hamiltonian for the 

solution of Schrodinger’s equation for a set of quantum anharmonic oscillators. The 

solution to this equation is very complex because there is coupling between the 

equations of each oscillator leading to non-linear effects. Briiesch (1982), Reissland 

(1973) and Ball (1989) all contain some aspects of the mathematical analyses of 

the anharmonic crystal and we refer the interested reader to these texts. We will 

merely state some results of the anharmonic problem which have a relevance for 

our context.

At high temperatures Cv increases linearly with temperature, that is, there 

is a positive deviation from the Dulong-Petit limit. The vibrational frequencies of 

the mode of vibrations in the crystal decrease with increasing temperature (see, 

Gillet et al. 1991) and hence, Gruneisen parameters for the variation with 

temperature and pressure can be defined. Hardy (1980) investigated the variation 

of the derivatives of the crystal potential energy, <{>, with respect to the interatomic 

spacing and defined a dimensionless parameter X as:

X = f ' T O J ' ^ R ) ,  (2.50)

where R is the mean distance between nearest neighbours and is the root mean 

square value of the ionic displacements due to thermal motion. This parameter 

provides a measure of the anharmonic effects relative to the harmonic 

approximation. The second and third derivatives <1>"(R) and <|>"'(R) are the major 

parameters determining the size of harmonic and of cubic anharmonic effects, 

respectively. The equipartition theorem allows Xnas to be estimated with the 

formula:

( l /^ C X ^ 2 = (l/2)kT, (2.51)
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where C is a typical value for the harmonic force constants. It is roughly 

proportional to <])"(R). When the attractive part of the potential (<|>A(r) = -A/r where 

r is the distance between ions) is neglected in relation to the repulsive part (<J)(r) 

= B/r" where n is between 7 and 12 for ionic solids), the second derivative <J>"(R) 

is proportional to 1/Rn+2, so that X ^ 2 is proportional to TRn+2. The third derivative 

<j>'"(R) is proportional to 1/Rn+3, so that the ratio X is proportional to:

( l/RI1+3)(TRn+2))1/2Rn+2 = (TRn)1/2. (2.52)

Hence, the relative magnitude of anharmonic to harmonic effects depends upon the 

product TRn. Since the mean distance R decreases as pressure increases, it follows 

from equation 2.52 that T must be increased to keep the value of X constant as 

pressure is increased. Therefore, the temperature at which anharmonicity has the 

same relative magnitude increases as pressure increases. In other words, at high 

temperatures the anharmonic treatment (MDS model) should tend to the quasi­

harmonic approximation (LDS model) as pressure is increased. It is precisely this 

hypothesis which is tested in Chapter Four.

2.4 Concluding remarks

We have seen the similarities and differences between the MDS and LDS 

models. In Chapter Three we present the results of a rigorous test of the potential 

model for the LDS approach. The modelling of oxygen isotope equilibria up to 

1000 K temperatures for a variety of silicate minerals was chosen as a suitable 

stringent probe because the reactions between the minerals involve small exchanges 

of energy.
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CHAPTER THREE

A COMPUTER SIMULATION APPROACH TO 

MODELLING THE STRUCTURE, THERMODYNAMICS 

AND OXYGEN ISOTOPE EQUILIBRIA OF SILICATES

3.0 Introduction

With the advent of powerful supercomputers, much effort has been put into 

the modelling of crystal structures and the calculation of their associated lattice 

dynamic and thermodynamic properties (see for example, Parker and Price 1989; 

Catlow and Mackrodt 1982). It has been clearly demonstrated that from a 

microscopic treatment of periodic systems, accurate macroscopic properties can be 

calculated (see for example, Kieffer and Navrotsky 1985; Price et al. 1987). The 

study presented in this chapter is not only an extension of previous work of Price 

et al. (1987), but also a rigorous test of the methodology employed. As described 

in the previous chapter, our approach is based upon the atomistic or Bom model 

of solids, in which potential functions represent the interactions between atoms in 

a structure. We have used potentials which were previously fitted (Lewis and 

Catlow 1985) either to the physical properties of binary oxides or to quantum 

mechanical energy surfaces, and contain terms to describe three-body interactions 

(Sanders et al. 1984) as well as oxygen-oxygen and cation-oxygen short-range 

interactions. These potentials have been successfully used in the past to model 

phase relations between magnesium silicates (Parker and Price 1989). In this 

chapter we test the precision and transferability of the potentials by comparing, for 

a wide range of silicates, our calculated structural, elastic and bulk thermodynamic 

properties with existing experimental data. Whereas in previous studies (see, for 

example, Wall and Price 1988; Price et al. 1987) simple high-symmetry silicate 

structures have been investigated, here we also look at silicates with framework, 

chain and low symmetry structures (albite, diopside, a-quartz and wollastonite) as

63



well as the higher symmetry forsterite and pyrope. We also take the prediction of 

thermodynamic properties to its very limit by investigating the effect that oxygen 

isotope substitution has on the physical properties of the silicates and also studying 

a highly subtle reaction, namely that of oxygen isotope partitioning. The successful 

simulation of this process should prove a most stringent test for any modelling 

technique.

In the following sections we discuss the input for the LDS code 

PARAPOCS, the problem of sampling the Brillouin zone to obtain representative 

estimates of thermodynamic properties, our calculated results which include 

structural data (such as lattice parameters, cell volume, bond lengths and bond 

angles), elastic constants, bulk moduli, mode Gruneisen parameters and other 

thermodynamic data (such as thermal expansion coefficients, heat capacities and 

entropies). We devote the penultimate sections to the discussion of the above 

mentioned stable isotope effects and oxygen isotope partitioning, giving a brief 

summary of the theory involved and how it relates to lattice dynamics. A detailed 

comparison of our results with those determined experimentally is also presented, 

along with a discussion of the problems arising from the experiments. Finally, we 

give our conclusions, outlining the geophysical implications of this work, and 

discuss the successes and limitations of our model.

3.1 Data input to PARAPOCS

In this study we modelled the following silicates; albite, diopside, forsterite, 

pyrope, a-quartz and wollastonite. These were chosen, not only for their geological 

importance, but also because the necessary component potentials were available to 

perform an accurate simulation. The availability of experimental data was also a 

contributing factor for our selection.

PARAPOCS requires the orthogonalised coordinates of each ion in the 

whole unit cell. These are calculated from the processing of the experimental x-ray
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diffraction coordinates of the asymmetric cell through an orthogonalisation routine. 

Note that in the shell model we treat a core ion and a shell ion of the same species 

(see section 2.3) and so the shell coordinates are also input with initially the same 

values as the core ions. The magnitude of the lattice vector, L, is determined by the 

longest lattice parameter of the unit cell (in angstroms). The orthogonalisation 

routine provides a lattice vector rotation matrix which is input prior to the 

coordinates.

Our calculations are performed for a perfect lattice (i.e. no defects or 

vacancies) and based on a fully ionic potential model. Hence, the mass and full 

ionic charge is input for each species of ion contained in the unit cell of the crystal 

structure. We have applied the shell model to the oxygen atom only in our studies 

and so the oxygen core ion is assigned a small positive partial charge and all the 

mass, whilst the shell ion contains the resulting negative charge to make the species 

fully ionic and zero mass (see section 2.3). The potential parameters used for each 

component interaction (see equations 2.2, 2.3 and 2.5) are presented in Table 3.1. 

The short-range potential cut-off varied between 0.9 for forsterite and pyrope and 

1.9 for a-quartz. However, it is usual to take of value of 1.1L. A maximum core­

shell separation of 0.1L was used for all the silicates. All the minerals with the 

exception of forsterite were modelled with a three-body O - Si - O interaction term 

and albite with an extra O - Al - O term. The maximum deviation from the initial 

bond angle from equilibrium was set at 20.0° and the bond lengths were within the 

constraints of 0 to 1.76A for the bond O - Si and 0 to 2.70A for the O - O bond. 

For the O - Al - O group we set the limits to 0 to 1.9A for the O - Al bond and 

0 to 3.0A for the O - O bond.
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Table 3.1 Potential parameters used for silicates

Interaction Potential Parameters Ref.

A/eV p/A C/eVA*6

O2 - O2' 22764.0 0.1490 27.8800 1

Si4+ - O2' 1283.9 0.3205 10.6616 1

Al3+ (6-fold) - O2 1114.9 0.3118 0.0 2

Al3* (4-fold) - O2 1460.3 0.2991 0.0 3

Mg2+ - O2' 1428.5 0.2945 0.0 2

Ca2+ - O2- 1090.4 0.3437 0.0 2

Na+ - O2 1226.8 0.3065 0.0 4

k/eVrad'2

O2 - Si4* - O2 2.097 1

O2 - Al3+ - O2' 2.097 1

k/eVA'2

O2' core-shell 79.9204 1

Note: 1 Sanders et al. 1984; 2 Lewis and Catlow 1985; 3 James 1979; 4 

Catlow et al. 1984

The maximum magnitude of the phonon wavevector was given the value of 

L for all the silicates. The number of points sampled in reciprocal space was 

determined by taking the number of species in the unit cell into consideration. The 

arrays within PARAPOCS are set as high as possible so that we are able to cover 

as much of the dispersion curve as allowed within the given computational
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constraints. However, this is the major limitation of the program and we are 

restricted to 8 points sampled in the Brillouin zone for large unit cells such as 

pyrope. A more detailed investigation of Brillouin zone sampling is given in the 

next section.

3.2 Brillouin Zone Sampling

Because phonon frequencies vary as a function of the wavevector q, it is 

essential, in order to calculate bulk thermodynamic properties, to evaluate phonon 

vibrational frequencies across the whole Brillouin zone. However, because of 

computational constraints, it is not practical to sample the entire zone, therefore, 

special sampling procedures must be used. Efficient sampling of the first Brillouin 

zone is essential for economizing computer time, although the best method for 

achieving this is not obvious. In the past there have been a variety of approaches 

to Brillouin zone sampling, such as the use of special-point sets (Chadi and Cohen 

1973), mean-value points (Baldereschi 1973) and sampling points on a general grid 

(Filippini et al. 1976). We have performed calculations using all these methods, and 

have compared their efficiency and accuracy.

The general grid sampling methods investigated were based on a scheme 

used by Filippini et al. (1976). They point out that the amount of phonon dispersion 

is generally greatest near the Brillouin zone centre and, therefore, more dense 

sampling is required in this region. This is achieved by dividing the first Brillouin 

zone into a set of boxes, each containing one sampling point at its centre, with an 

edge length of the i  ̂box given by:

Xj = 0.5 (2(i l))/(2n-l), (3.1)

where n is the cube root of the number of points sampled. The co-ordinates of the 

i* point are:
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0.5(2(il)-l)/(2n-l)  + 0.5(2(M))/{2(2n-l)} . (3.2)

In obtaining the density of states, the eigenvalues (co2(q)) calculated at each 

reciprocal lattice wave vector (q) are weighted by a factor M which varies 

according to the size of the box, thus:

where i, j, k = 1 to n. Thus, even though the Brillouin zone is sampled more 

densely near the centre, these frequencies do not make a contribution that is out of 

proportion to the total frequency sum.

Filippini et al.(1976) studied the effects of three progression formulae 

similar to (3.1) and found that the best convergency was given by the following 

equation:

where ^  = 1, 2, 3  etc. They also noted that it is only necessary to sample the

Brillouin zone in an asymmetric sector. The symmetry conditions and the size of 

the sector sampled depend upon the point group of the cell.

We have used the two progression formulae (3.1) and (3.4) in a sampling 

procedure, which tested the convergency of the zero-point energy (ZPE) and the 

heat capacity at constant volume. We see from equations 2.42 and 2.45 that the 

ZPE and Cv are dependant on the summation of the frequencies and hence the 

number of modes sampled and therefore, the consistency and convergency of the 

predicted values should provide an adequate test of the various sampling 

procedures. By choosing the ZPE as a testable parameter we have included a 

function which is independent of the density of states and therefore not prone to 

the errors accumulated from such a term.

M = 2(i+j+k"3), (3.3)

Xj = [n/3+n2]1/3, (3.4)
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The results of our calculations for the MgSi03-ilmenite structure, which has 

a space group of R3, are shown in Table 3.2a. Each set of calculations are 

internally self-consistent, and all the calculated heat capacities, irrespective of the 

details of the sampling process, are within 0.08 Jmol^K1 of each other. The zero- 

point energies differ by a maximum of 0.0024eV within each sampling procedure 

and we see for equations 3.1 (+ ve octant only) and 3.4 (all octants) the 

convergency is very good. Increasing the number of sampling points does not affect 

the convergency in a consistent manner, therefore, it is difficult to see an overall 

trend. Uncertainties of +/- 0.002eV and +/- 0.08 JmoUK'1 were, however, 

considered to be an acceptable limit in our study, and so for the remaining part of 

our work we used progression formula 3.1, against which we compared the special 

point sampling methods outlined below.

In an attempt to minimise the computational time spent sampling the 

Brillouin zone, Baldereschi (1973) defined the concept of a mean-value point to be 

a point at which the value assumed by any given periodic function of the wave 

vector is an excellent approximation to the average value of the same function 

throughout the Brillouin zone. The approach of using a mean-value point would be 

most valuable in studying a high-symmetry structure, that contains a large number 

of atoms. Thus we chose to compare the results obtained with the Baldereschi 

(1973) mean-value point with those of the grid-method in the study of garnet 

pyrope. Pyrope (Mg3Al2Si30 12) has 160 atoms in its body-centred cubic cell, and 

therefore would represent a considerable computational challenge. We tested the 

efficiency and accuracy of the mean-value point (27t/a(l/6,l/6,l/2)) for this lattice 

(Baldereschi 1973) by comparing the result obtained from using the special point 

to the grid point set in equation 3.1. The values calculated are given in Table 3.2b, 

and it can be seen that the agreement is excellent, even though the mean-value 

point method only used one-eighth of the cpu time. Unfortunately, mean-value 

points are of most use for cubic cells, so we chose not to pursue this method any 

further as we were to study lower symmetry structures.
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Table 3.2a The predicted values of zero-point energy and Cv for ilmenite at 300

K with varying Brillouin zone sampling techniques

Sampling

Equation
Ns1 ZPE/eV Cv/Jmol^K'1

3.12

8 0.4650 79.0404

27 0.4653 79.0164

64 0.4654 79.0100

3.12

5 0.4637 79.0314

14 0.4633 79.0722

30 0.4625 79.0851

3.13

5 0.4651 78.9890

14 0.4641 79.0324

30 0.4639 79.0008

3.42

5 0.4546 79.1820

14 0.4548 79.1788

30 0.4543 79.2236

3.43

5 0.4608 79.2206

14 0.4626 79.1559

30 0.4632 79.1420

1 Number of points sampled in reciprocal space;2 + ve octant 

only;3 all octants
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Table 3.2b The predicted zero-point energies and heat capacities for pyrope and

a-quartz for a variety of Brillouin zone sampling procedures

Mineral Sampling

Equation

Ns1 ZPE/eV Cv/Jmol'K*1

Pyrope 

(T = 100 and 

300 K)

Mean-value

point

1 1.8281 83.7804

1 1.8250 323.0976

3.1

8 1.8286 83.6086

8 1.8255 324.7778

a  - Quartz 

(T = 100 K)

Special-

point

6 0.2993 15.5402

12 0.2993 15.5419

24 0.2993 15.5419

3.1

8 0.2993 15.5207

27 0.2992 15.5508

64 0.2992 15.5616

1 The number of points sampled in reciprocal space

Chadi and Cohen (1973) extended the work of Baldereshi (1973) by 

calculating a set of special sampling points for cubic and hexagonal Bravais 

lattices. We tested this approach on a-quartz which has a trigonal crystal structure. 

The results are again shown in Table 3.2b. Agreement with the grid point sets of 

equation 3.1 is again excellent. Both heat capacities are converging from below, 

and differ by less than 1 per cent of each other.
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Although a few discrepancies in our calculations did arise, we did not feel 

that a deeper analysis was required, as our initial question (i.e. what is the most 

efficient method for sampling the Brillouin zone) had been answered to the level 

of accuracy we required. For the sake of self-consistency and convenience, 

therefore, we used the grid point sets of equation 3.1 as our sampling method for 

the analyses described below. In the next section we discuss the structural, elastic 

and thermodynamic results obtained for a number of silicates using this approach.

3.3 Predicted Structural, Elastic and Thermodynamic Properties.

In this section we present the structural data predicted for albite, diopside, 

forsterite, pyrope, a-quartz and wollastonite, and discuss the comparability of these 

data with experimental values. Similar discussions are subsequently presented for 

their predicted elastic and thermodynamic data.

Table 3.3 shows the observed and predicted values (T=300K) for the lattice 

parameters and cell volume of the silicates studied. We see that the agreement with 

the experimental data on the whole is excellent, with the largest error in predicted 

cell volume being for albite (6.2%) due to a less than perfect Na-O potential, and 

the lowest being 1.2% for a-quartz. Significantly, the nature of the monoclinic and 

triclinic distortions of albite, diopside and wollastonite are all very well predicted. 

The average bond lengths and average bond angles for the low symmetry structures 

are given in Table 3.4 and once again the agreement with experimental data is very 

good. This reflects the excellent agreement between individual calculated bond 

lengths and bond angles and those observed. It should be noted that Si-O-Si angles 

are well reproduced without recourse to using a Si-O-Si angle dependant term in 

our potential model. Table 3.5 shows the results for the elastic constants and bulk 

moduli at a temperature of 300K. Agreement with the experimental data is again 

good, but the predicted values are systematically overestimated. Our predicted 

values for the average mode Gruneisen parameter and thermal expansion coefficient 

(at T=300K) is shown in Table 3.6.
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Table 3.4 Predicted and observed average bond angles and average bond lengths 

for albite, diopside and wollastonite.

Albite1 Diopside2 Wollastonite3

O - Si -O

ob 109.44 109.32 109.25

pr 109.39 108.26 109.19

S i - O - S i

ob 144.74 135.79 143.53

pr 142.10 135.35 145.25

0 - 0

ob 2.68 2.66 2.63

pr 2.65 2.73 2.65

S i - O

ob 1.61 1.64 1.62

pr 1.61 1.64 1.63

C a - 0

ob 2.50 2.39

pr 2.57 2.44

Mg - O

ob 2.08

Pr 2.09

Al - O

ob 1.74

pr 1.74

N a- O

ob 2.55

pr 2.81

Note: Units: Bond angles/0 Bond lengths/A;

References: 1 Harlow and Brown (1980); 2 Levien and Prewitt (1981); 3 

Ohashi (1984)
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Table 3.6 Predicted and observed average Griineisen parameter and thermal 

expansion coefficient at T = 300 K

Average Griineisen 

parameter

Thermal expansion 

coefficient

Ypr Yob Ppr Pob

Albite 0.612 NA 1.734 NA

Diopside1 0.784 NA 1.534 3.0

Forsterite2 1.087 1.335 1.895 2.8

Pyrope3 1.099 1.050 1.579 1.9

a-Quartz3 0.513 0.670 2.354 3.5

Wollastonite4 0.628 NA 1.493 0.6

Note: Units (3 lO^K*1; References: 1 Finger and Ohashi (1976); 2 Matsui 

and Manghnani (1985); 3 Anderson (1989); 4 Weston and Rodgers 

(1976); NA = Not available

76



Table 3.7 Predicted and observed heat capacities and entropies

T/K CP S

ob pi- ob pr

Albite1,6 100 81.66 81.95 54.30 51.73

300 205.10 207.18 207.40 206.11

500 262.61 265.57 328.97 327.60

700 290.69 291.78 422.27 421.67

1000 312.34 309.27 530.04 529.18

Diopside2 100 52.40 54.97 4.27 5.00

300 167.40 166.58 143.70 147.00

500 213.70 209.77 241.70 243.94

700 234.00 228.16 317.20 317.89

1000 248.19 240.44 402.90 401.74

Forsterite3 100 32.26 33.08 1.77 2.08

300 119.10 116.90 94.85 95.08

500 148.30 148.40 163.90 163.50

700 161.70 161.70 216.10 215.90

1000 175.10 171.10 276.20 275.50

Pyrope1,4 100 94.27 83.68 42.48 33.39

300 326.60 324.76 268.28 251.51

500 419.28 418.85 455.57 443.19

700 455.19 458.23 603.22 591.25

1000 473.89 485.05 769.54 759.94

Note: Continued overleaf
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Table 3.7 Continued

T/K Cp S

ob pr ob pr

a-Quartz5,7 100 15.70 15.57 9.69 8.95

300 44.78 45.46 41.74 41.28

500 59.68 60.01 68.45 68.39

600 65.04 63.94 79.82 79.71

Wollastonite2’* 100 97.32 101.73 51.81 55.60

300 259.41 257.21 246.66 251.78

500 321.58 317.09 396.30 399.44

700 348.84 342.88 509.70 510.81

1000 375.01 359.73 639.30 636.41

Note: Units: Jmol^K1; References: 1 Robie et al. (1978); 2 Krupka et al. 

(1985a and 1985b); 3 Robie et al. (1982); 4 Haselton and Westrum (1980); 

5 Hemingway (1987); 6 Openshaw et al. (1976); 7 Gurevich and Khlyustov 

(1979); * 3 moles of CaSi03

The experimental data, where they exist are also shown, and we see that the 

comparability between observed and calculated values is poorer than for the 

structural parameters, possibly reflecting some previously noted (Price et al. 1987) 

minor shortcoming in the third derivative of the Si-O potential. Holland (1989) has 

recently studied empirically the volume dependency of entropy for silicate minerals, 

and his predicted entropies at 298K are in excellent agreement with experimental 

values, with average absolute deviations of l^ lJm ol^K '1. Our calculated heat 

capacities and entropies (shown in Table 3.7) are also, on the whole, in very good 

agreement with experimental data, with average deviations of 2-3Jmol1K 1. The low
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temperature simulations for pyrope show quite considerable errors in the predicted 

entropies and heat capacities. This is an effect of limited sampling of the Brillouin 

zone where only eight points were sampled for pyrope, because of its large unit 

cell. The simulations for a-quartz were not carried out above 600K because the 

PARAPOCS code is based on the quasi-harmonic approximation and breaks down 

as a soft-mode or displacive phase transition is approached. Overall, the results 

from the simulations show excellent comparability with experimentally determined 

data. This success encouraged us to consider using these models to calculate the 

effects on the above and other physical properties from the result of the substitution 

of the oxygen atom by the heavier O18 isotope.

3.4 Equilibrium Isotope Effects of O18 Substitution

The above properties were all calculated for the silicates containing the O16 

isotope. In this section we investigate the effects on the properties when the oxygen 

is substituted by its heavier isotope O18. The nature of the substitutions that we are 

interested in is that the isotopes are stable, i.e. they have very long lifetimes, and 

the systems are in equilibrium. O’Neil (1986) quite correctly points out that the 

nature of the potential energy curve is unaffected by these substitutions because 

there is no change in the overall charge distribution. Therefore, it is purely the 

effect of the mass on the bond energy, and hence, the frequencies of the modes of 

vibration, that we are investigating. If X is any parameter then X ^ )  denotes the 

parameter of the y-oxygen isotope silicate.

We begin by looking at the calculated cell volumes, V, which are presented 

in Tables 3.8a and 3.8b. We see from our results that the volumes increase with 

temperature as expected. On substitution of O18 the cell volume is slightly reduced. 

We saw in section 2.5 that the LDS model within the quasi-harmonic 

approximation converges at an equilibrium volume when the external hydrostatic 

pressure is equal to the vibrational (phonon) pressure.
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Table 3.8a Predicted enthalpy, zero-point energy and cell volume for the O16

isotope silicates

T/K H/eV ZPE/eV V c e u / A 3

Albite 100 -480.3026 1.2066 703.39625

300 -479.9873 1.2056 706.06395

500 -479.4885 1.2043 709.31780

700 -478.9064 1.2029 712.86217

1000 -477.9657 1.2008 718.49332

Diopside 100 -336.4300 0.8795 450.22583

300 -336.1821 0.8785 451.36806

500 -335.7849 0.8771 453.00551

700 -335.3277 0.8754 454.83746

1000 -334.5947 0.8729 457.81043

Forsterite 100 -211.8399 0.6165 295.20595

300 -211.6714 0.6152 296.08591

500 -211.3910 0.6133 297.43141

700 -211.0673 0.6111 298.97665

1000 -210.5467 0.6075 301.57901

80



Table 3.8a Continued

T/K H/eV ZPE/eV v„i/A 3

Pyrope 100 -672.3563 1.8286 1456.3472

300 -671.8985 1.8255 1459.8174

500 -671.1124 1.8209 1465.0342

700 -670.1976 1.8157 1470.9786

1000 -668.7240 1.8071 1480.7682

a-Quartz 100 -128.3439 0.2992 111.23262

300 -128.2773 0.2989 111.65164

500 -128.1659 0.2985 112.27541

600 -128.1013 0.2982 112.61117

Wollastonite 100 -497.8345 1.2572 822.66896

300 -497.4348 1.2561 825.10338

500 -496.8298 1.2548 828.20069

700 -496.1416 1.2534 831.45164

1000 -495.0441 1.2514 836.27937
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Table 3.8b Predicted enthalpy, zero-point energy and cell volume for the O18

isotope silicates

T/K H/eV ZPE/eV v ceU/A3

Albite 100 -480.3423 1.1651 703.34124

300 -480.0177 1.1640 706.01837

500 -479.5110 1.1628 709.27433

700 -478.9237 1.1614 712.83294

1000 -477.9784 1.1593 718.47101

Diopside 100 -336.4595 0.8488 450.17440

300 -336.2038 0.8478 451.33200

500 -335.8004 0.8464 452.98004

700 -335.3396 0.8448 454.81739

1000 -334.6033 0.8423 457.79514

Forsterite 100 -211.8599 0.5958 295.16504

300 -211.6859 0.5946 296.06048

500 -211.4013 0.5927 297.41380

700 -211.0751 0.5905 298.96342

1000 -210.5524 0.5870 301.56884
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Table 3.8b Continued

T/K H/eV ZPE/eV v ceU/A3

Pyrope 100 -672.4172 1.7658 1456.1612

300 -671.9426 1.7627 1459.6892

500 -671.1438 1.7582 1464.9424

700 -670.2213 1.7531 1470.9076

1000 -668.7412 1.7447 1480.7148

a-Quartz 100 -128.3540 0.2887 111.19651

300 -128.2850 0.2884 111.63119

500 -128.1716 0.2880 112.26187

600 -128.1065 0.2878 112.62381

Wollastonite 100 -497.8771 1.2125 822.59348

300 -497.4664 1.2115 825.04779

500 -496.8528 1.2102 828.16119

700 -496.1591 1.2088 831.41923

1000 -495.0568 1.2069 836.26035
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If the mass of an ion is increased its vibrational frequency decreases (see equation 

2.38) therefore the phonon pressure will subsequently be smaller. If the external 

pressure is the same the cell volume is reduced. However, this is not the case for 

a-quartz at T=600K where V (018) is larger than V (016). At this temperature a- 

quartz is approaching a transition to its (3 phase, therefore anharmonic effects are 

obviously significant. However, our model which is based on the quasi-harmonic 

approximation gives no suggestion that the anharmonic effects vary with mass at 

constant temperature and so it is not possible to explain the above exception along 

these lines. In Figures 3.1a and 3.1b we see the variation in the difference in cell 

volumes for the two isotopes with temperature. It is interesting to note that the 

trend of V (018)-V(016) approaching zero is consistent for all the silicates. Yet 

again, this is difficult to explain via anharmonic effects but our results show a 

definite relationship between mass and intrinsic anharmonicity at constant 

temperature. Boyer (1981) has clearly demonstrated the shortcomings of the quasi­

harmonic approximation by showing that the vibrational pressure is consistently 

overestimated at high temperatures. If the increase of mass of a constituent ion 

tends to increase the level of anharmonicity at that temperature then we would 

expect an overestimation in phonon pressure and, hence, cell volume for the O18 

silicates at high temperatures, and this would account for the observed trends. 

Another trend we can observe from Figures 3.1a and 3.1b is that the magnitude of 

cell volume difference is dependant on the size of the unit cell of the silicate. 

Therefore, pyrope with the largest cell volume will give the greatest cell volume 

difference between its isotope members and, similarly, a-quartz the smallest.
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We now turn our attention to the zero-point energies (ZPE) which are also 

listed in Tables 3.8a and 3.8b. There is a consistent decrease in ZPE for each 

silicate with increasing temperature and this would not be immediately obvious 

from inspection of equation 2.42 where the ZPE is shown to be independent of 

temperature. Nevertheless, we know there is a new volume for each new 

temperature and this can provide a clue for the understanding of the above trend. 

As the temperature is increased the unit cell expands giving an increase in the 

average interatomic separation, R. From equations 2.33 and 2.34 we see the real 

part of expression will decrease if R increases and subsequently the real frequencies 

will also decrease. Therefore, the summing of the ground state mode frequencies 

will be less than for lower temperatures. Also, the greater the number of modes 

(i.e. ions in the unit cell), the larger the ZPE. Pyrope with the largest number of 

ions in its unit cell has the largest ZPE, and correspondingly, a-quartz the smallest. 

The ZPE(018) is always less than the ZPE(016) because, as stated earlier, an 

increase in mass gives a decrease in frequency and, hence, sum of ground state 

frequencies. Figures 3.2a and 3.2b show the variation of ZPE(016)-ZPE(018) with 

temperature. This property reduces with increasing temperature for all the silicates. 

Once again, this cannot be explained purely from the relationships in our model. 

In other words, the intrinsic anharmonic contributions to both O16 and O18 cases are 

not necessarily different.
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The important thermodynamic quantity of heat capacity at constant volume, 

Cv, is directly related to the sum of the normal modes of vibration (see equation 

2.45). The calculated values are presented in Tables 3.9a and 3.9b and we see that 

they increase with temperature as expected. The integrand (without the density of 

states function) in equation 2.45 tends to e'x as x tends to infinity, implying that for 

a smaller x (i.e. smaller frequency at constant temperature) the calculated heat 

capacity would be larger. This is exactly what we discover for Cv(0 18) where a 

larger mass substituted gives smaller frequencies for the modes of vibration. 

Obviously, for a greater number of modes of vibration, the larger the heat capacity, 

but this does not explain why the difference in heat capacities, Cv(0 18)-Cv(0 16), 

should also follow this correlation (see Figures 3.3a and 3.3b). In Debye theory, we 

see that the heat capacity approaches the Dulong-Petit limit of 3NR, where N is the 

number of atoms in the formula unit and R is the universal gas constant. Therefore, 

the increase in heat capacity will diminish at high temperatures, thus explaining the 

reduction in Cv(0 18)-Cv(0 16) as the temperature increases. An interesting feature 

we see in Figures 3.3a and 3.3b is that the curves all have a maximum around 250 

to 300K. This suggests that at this temperature:

d/dT(Cv(0 18)-Cv(0 16) = 0 (3.5)

or

d/dT(Cv(0 18)) = d/dT(Cv(0 16)), (3.6)

where T is the temperature. Therefore, on the normalised heat capacity curves with 

temperature we should find the gradients of all silicates and both isotopes to be 

identical at the above specified temperature range. It would be interesting to see if 

experiment confirms this.
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Table 3.9a Calculated lattice energies, Gibbs free energies and heat capacities at

constant volume for the O16 silicates

T/K ULAT/eV G/eV Cv/Jmol^K*1

Albite 100 -481.5446 -480.3563 81.8532

300 -481.5427 -480.6282 206.5180

500 -481.5394 -481.1863 264.2432

700 -481.5343 -481.9658 289.7440

1000 -481.5233 -483.4506 306.1591

Diopside 100 -337.3292 -336.4580 54.9470

300 -337.3278 -336.6393 166.0620

500 -337.3249 -337.0490 208.5640

700 -337.3204 -337.6341 226.2400

1000 -337.3103 -338.7587 237.3660

Forsterite 100 -212.4672 -211.8547 33.0575

300 -212.4657 -211.9671 116.2175

500 -212.4622 -212.2383 146.7487

700 -212.4563 -212.6337 158.9917

1000 -212.4430 -213.4025 166.5643
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Table 3.9a Continued

T/K I W e V G/eV cv/
Jm ortC 1

Pyrope 100 -674.2107 -672.3910 83.6080

300 -674.2068 -672.6807 323.0940

500 -674.1986 -673.4093 414.8600

700 -674.1853 -674.4874 451.7880

1000 -674.1554 -676.6007 474.6200

a-Quartz 100 -128.6494 -128.3532 15.5625

300 -128.6490 -128.4056 45.2973

500 -128.6482 -128.5204 59.6178

600 -128.6476 -128.5972 63.4377

Wollastonite 100 -499.1314 -497.8923 101.6625

300 -499.1296 -498.2178 256.4835

500 -499.1262 -498.9000 315.6390

700 -499.1212 -499.8478 340.7355

1000 -499.1114 -501.6404 356.6790
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Table 3.9b Calculated lattice energies, Gibbs free energies and heat capacities at

constant volume for the O18 silicates

T/K ULAT/eV G/eV Cv/Jmol^K1

Albite 100 -481.5446 -480.3991 85.4945

300 -481.5428 -480.6829 210.9991

500 -481.5394 -481.2594 267.3333

700 -481.5343 -482.0601 291.7291

1000 -481.5234 -483.5789 307.2693

Diopside 100 -337.3293 -336.4894 57.8870

300 -337.3278 -336.6793 169.6390

500 -337.3249 -337.1031 210.8220

700 -337.3204 -337.7043 227.6410

1000 -337.3103 -338.8544 238.1350

Forsterite 100 -212.4673 -211.8758 34.9510

300 -212.4657 -211.9937 118.7424

500 -212.4622 -212.2743 148.2789

700 -212.4564 -212.6804 159.9227

1000 -212.4430 -213.4662 167.0676
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Table 3.9b Continued

T/K ULA1/eV G/eV cv/
Jm o l'K 1

Pyrope 100 -674.2108 -672.4549 89.4220

300 -674.2070 -672.7607 330.8080

500 -674.1988 -673.5172 419.5160

700 -674.1855 -674.6275 454.6140

1000 -674.1556 -676.7920 476.1460

a-Quartz 100 -128.6494 -128.3640 16.5072

300 -128.6490 -128.4194 46.4049

500 -128.6482 -128.5387 60.3921

600 -128.6476 -128.6181 64.0587

Wollastonite 100 -499.1314 -497.9382 105.9990

300 -499.1297 -498.2774 261.5490

500 -499.1263 -498.9808 318.9045

700 -499.1213 -499.9528 342.7830

1000 -499.1114 -501.7839 357.8085
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Also listed in Tables 3.9a and 3.9b are the static lattice energies, U ^ .  As 

temperature increases the lattice energies increase slightly, i.e. they become less 

negative. On inspection of equation 2.30, we see that the lattice energy is 

independent of temperature and so the effect we are picking up is from a change 

in volume. The Coulombic term (equation 2.1) has the greatest contribution to the 

lattice energy and it is easy to see that if the volume expands the average distances 

between ions will become larger giving a less negative electrostatic term. Note that 

in the Ewald sum, there are contributions from the interactions between like and 

unlike ions. However, the nearest-neighbour ions are usually oppositely charged 

species resulting in an overall negative Coulombic term. If the electrostatic 

component becomes less negative with increasing temperature then this is the 

dominant effect in the static lattice energy. The O18 isotope silicate gives a smaller 

volume, as discussed earlier, and therefore, a more negative lattice energy from the 

above reasoning.

We are now in a position to discuss the equilibrium isotope effects on 

enthalpy which are presented in Tables 3.8a and 3.8b. The positive terms of the 

vibrational energy and pressure-volume increase with temperature and so we 

observe the consistent trend of enthalpy becoming less negative. If the mass of an 

ion is increased, the vibrational energy is less positive, the lattice energy is more 

negative and the volume is smaller giving the overall effect of a more negative 

enthalpy for the O18 isotope silicates.

The average Griineisen parameters, y, are presented in Tables 3.10a and 

3.10b and we see that they generally decrease with temperature. This is difficult to 

account for as there are opposing effects in the overall contribution to y via 

equation 2.49.
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Table 3.10a Predicted average Griineisen parameter, isothermal bulk modulus and

thermal expansion coefficient for the O16 isotope silicates

T/K Y Kx/kbar p/xlO^K'1

Albite 100 1.04639 694.75420 1.1640

300 0.61257 685.92957 1.7348

500 0.52360 675.74340 1.9171

700 0.49664 664.88090 2.0164

1000 0.48255 648.28372 2.1065

Diopside 100 0.77204 1178.78456 0.53103

300 0.70513 1161.38329 1.4844

500 0.65465 1137.51547 1.7614

700 0.63844 1111.13622 1.9006

1000 0.63379 1068.62531 2.0461

Forsterite 100 1.26065 1519.63181 0.61696

300 1.08654 1494.47448 1.8952

500 1.00938 1461.04051 2.2638

700 0.99189 1423.84917 2.4603

1000 1.00158 1362.08125 2.6972
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Table 3.10a Continued

T/K y Kj/kbars p/xlO^K'1

Pyrope 100 1.53774 2070.50921 0.56633

300 1.09905 2046.32623 1.5789

500 1.01476 2014.86397 1.8943

700 0.99464 1980.50207 2.0488

1000 0.99682 1925.51213 2.2040

a-Quartz 100 0.64836 443.69210 1.0185

300 0.51306 440.47024 2.3541

500 0.46492 436.34448 2.8184

600 0.45255 434.26782 2.9238

Wollastonite 100 0.83013 880.74007 0.77355

300 0.62786 868.07142 1.4932

500 0.55680 852.75887 1.6528

700 0.52582 836.85726 1.7101

1000 0.49581 813.68006 1.7259
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Table 3.10b Predicted average Griineisen parameter, isothermal bulk modulus and

thermal expansion coefficient for the O18 isotope silicates

T/K Y Kx/kbar p/xlO^K'1

Albite 100 1.00308 694.94330 1.1652

300 0.60216 686.08459 1.7420

500 0.51856 675.88858 1.9205

700 0.49416 664.97352 2.0199

1000 0.48131 648.35018 2.1085

Diopside 100 0.75414 1179.48048 0.54621

300 0.69683 1161.87852 1.4980

500 0.65067 1137.87305 1.7692

700 0.63617 1111.41166 1.9052

1000 0.63258 1068.83051 2.0484

Forsterite 100 1.24676 1520.38883 0.64488

300 1.07333 1494.99407 1.9124

500 1.00281 1461.42296 2.2720

700 0.98813 1424.14296 2.4649

1000 0.99948 1362.31475 2.6993
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Table 3.10b Continued

T/K y K-j/kbars p/xlO^K'1

Pyrope 100 1.48767 2071.33314 0.58583

300 1.08466 2047.29964 1.5948

500 1.00847 2015.28488 1.9034

700 0.99115 1980.82435 2.0541

1000 0.99497 1925.75294 2.2068

a-Quartz 100 0.65790 443.83168 1.0962

300 0.51068 440.53915 2.4005

500 0.46220 436.40117 2.8382

600 0.45650 434.11693 2.9795

Wollastonite 100 0.80644 881.08227 0.78331

300 0.61942 868.33522 1.5019

500 0.55312 852.94725 1.6585

700 0.52374 837.01259 1.7133

1000 0.49487 813.76819 1.7279
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Also listed in Tables 3.10a and 3.10b are the thermal expansion coefficients, 

p, which consistently increase with temperature. This is a consequence of the 

asymmetric potential energy curve (see Figure 2.3) where an increase in 

temperature results in an increase in the average interatomic separation. Hence, as 

we go higher up the potential well, the rate at which the volume expands also 

increases thus giving an increase in the thermal expansion coefficient We stated 

at the beginning of this section that the potential energy distribution is not affected 

by a change in mass of an ion, therefore we would expect the rate of change of cell 

volume with respect to temperature to be similar for both oxygen isotope silicates. 

However, the volume for O18 silicate is smaller and so this would give a larger 

thermal expansion coefficient as P = V'MV/dT. This is precisely what is observed 

from our calculated results in Tables 3.10a and 3.10b.

The remaining property listed in Tables 3.10a and 3.10b is the isothermal 

bulk modulus, Kx. If we assume that the decrease of y  with temperature in 

negligible compared to the increase of Cv, P and V then we can see from 

inspection of equation 2.47 that KT will decrease as the temperature increases. We 

can also observe that KT(0 18) is consistently greater than KT(0 16) (except for a- 

quartz at T=600K). On isotope substitution the effects to the properties in equation 

2.47 are opposing, making it difficult to explain the definite trend.

With all the isotopic effects on the quantities that contribute to the 

anharmonic term (see equation 2.24) accounted for, it is now possible to look at the 

heat capacity at constant pressure. Our calculated values are presented in Tables 3.7 

and 3.11. As the temperature rises the anharmonic term becomes more significant 

and CP tends away from the Dulong-Petit limit. This is clearly observed for all 

silicates and, also, if we assume the product of PKT is more dominant than the 

change in volume then this explains the fact that CP(0 18) is greater than CP(0 16) at 

any of the predicted temperatures.
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Table 3.11 Predicted heat capacity and entropy for the O18 isotope silicates

T/K Cp/Jmol^K'1 S/Jmol^K'1

Albite 100 85.5946 54.6611

300 211.6634 213.8825

500 268.6645 337.3565

700 293.7675 432.2565

1000 310.3880 540.3281

Diopside 100 57.9110 28.7770

300 170.1703 152.9140

500 212.0358 251.3470

700 229.5732 325.9150

1000 241.2211 410.1420

Forsterite 100 34.9790 15.2880

300 119.4739 98.9667

500 149.9687 168.4305

700 162.6492 221.2497

1000 171.5749 281.1242
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Table 3.11 Continued

T/K Cp/Jmol^K'1 S/Jmol'K*1

Pyrope 100 89.5000 36.2500

300 332.5240 263.0840

500 423.5420 457.9680

700 461.0940 607.2900

1000 486.6000 776.7440

oc-Quartz 100 16.5189 9.6657

300 46.5756 43.2195

500 60.7881 70.8246

600 64.5816 82.2678

Wollastonite 100 106.0665 58.8555

300 262.2780 260.7840

500 320.3670 410.6085

700 344.9355 522.8700

1000 360.8685 649.0215
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The entropy is related to the integral of the heat capacity at constant 

pressure over temperature and so is directly proportional to the magnitude of CP. 

This corresponds precisely with our calculated results (see Tables 3.7 and 3.11) and 

shows exactly the same trends as CP.

Finally, to conclude this section we turn our attention to the Gibbs free 

energy, G, which were shown earlier in Tables 3.9a and 3.9b. The free energies 

become more negative with temperature because the entropic term rises rather 

steeply with increasing temperature. For the reason that the S (018) is greater than 

S(016), the G (018) is more negative than G (016). It is the Gibbs free energies we 

require to investigate the reaction of oxygen isotope fractionation between silicates.

3.5 Oxygen Isotope Partitioning.

Isotope partitioning is important geologically because it can reveal 

information about the temperature of formation of rocks in the Earth’s crust and 

mantle. In this section we discuss the reasons for the occurrence of isotope 

fractionation and the theory we use to model it. A brief summary of alternative 

theoretical models to calculate fractionation factors is presented, and the possibility 

of applying the results to stable isotope thermometry is discussed. We also discuss 

the problems encountered in performing laboratory experiments to establish an 

isotope exchange reaction, and the temperature dependency of the fractionation 

factors with respect to our calculated results.

The theory for isotope exchange reactions was first developed by Urey 

(1947) and Bigeleisen and Mayer (1947), where they used a statistical mechanics 

approach to treat a general polyatomic gas. O’Neil (1986) states that this method 

can be extended to condensed phases if we consider a crystalline structure to be 

treated as giant molecules consisting of N atoms held together by elastic forces. We 

have adopted this approach to investigate oxygen isotope exchange reaction 

between silicates. Consider the following isotope exchange reaction between phases
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A and B,

aAj + bB2 = aA2 + bBx . (3.7)

The subscripts 1 and 2 indicate that the phase contains only the light and the heavy

isotopes respectively. The equilibrium constant, K, for this reaction can be written 

as:

K = [Q(A2)r[Q(B1)]b/[Q(A1)]“[Q(B2)]b = (Q2/Q1)A7(Q2/Q1)Bb, (3.8)

where Q is the partition function, a statistical mechanics quantity which contains 

all the energy information of the phase. The fractionation factor, a , is related to K 

in the following way:

a  = K1M, (3.9)

where n is the number of atoms exchanged in reaction (3.7). The equilibrium 

constant can be linked to a common thermodynamic property (such as the Gibbs 

free energy) by using the following expression:

AG = -RTlnK, (3.10)

where AG is the change in Gibbs free energy for the exchange, R is the universal 

gas constant and T is the absolute temperature.

Like all equilibrium constants, K for an isotope exchange reaction is 

temperature dependant. This is the basis for its use in thermometry. The energy 

changes in isotopic exchange reactions are of the order of a few joules per mole 

and thus too small to be measured calorimetrically (Clayton 1981). Direct 

measurement by exchange reactions is difficult, particularly at low temperatures, 

because the driving force for the reaction is small. Therefore experiments must 

frequently be performed at high temperatures and the data obtained must be
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extrapolated to lower temperatures. In the range of temperatures of geologic 

interest, extrapolation laws are not well understood. O’Neil (1986) notes that 

according to Urey’s (1947) theory the sign of the fractionation factor can change 

(’crossover’) with changing temperature and so expressions which describe the 

temperature dependency of a  (like lna = A + B/T or lna = A + B/T + C/T2, where 

A, B and C are constants) are only useful for interpolating data, and should not to 

be used to extrapolate data, as they do not account for any unusual temperature 

dependencies (crossovers, maxima, minima and points of inflection) of a , and 

could lead to inferences which may be seriously in error.

Experimentally, there have been many studies of stable isotopes in either 

synthetically made minerals or natural samples. Thermometry is a necessary tool 

in geology for determining the temperature of formation of assemblages, 

establishing the pressure-temperature conditions of metamorphic rocks and 

estimating temperatures of geothermal reservoirs and of ore deposition. 

Fractionation in natural samples are usually described by thermometry equations 

similar to those described above and is related to the per mil concentrations of the 

O18 (5180 )  isotope in the following way;

10001nax_Y = Ax_y(106/T2) + BX.Y = 5x-5y, (3.11)

where the partitioning is between the isotopes O16 and O18 in substances X and Y. 

Ax_y and BX.Y are constants for the isotope exchange reaction between X and Y, a x_ 

Y is the fractionation factor for this reaction, 5X and 5y are the per mil 

concentrations of the O18 isotope in X and Y respectively. The validity of 

expression 3.11 is based upon three assumptions; the exchange reaction must have 

reached equilibrium, the isotopic compositions were not altered subsequent to the 

establishment to the equilibrium, and the temperature dependence of the 

fractionation factors is known from experimental determinations. From our earlier 

discussions on the temperature dependency of a , we know that equation 3.11 does 

not allow for any unusual temperature dependencies. Bottinga and Javoy (1973) 

have extended the work of Bigeleisen and Mayer (1947) to theoretically derive
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equation 3.11. They emphasize that the equation is only valid for high temperatures 

(T > 800K).

Kieffer (1982) has investigated the microscopic origins of isotope partitions, 

and has devised a model where one can predict thermodynamic properties of 

minerals such as heat capacities, entropies and Helmholtz free energies from elastic, 

structural and spectroscopic data. In order to carry out a Kieffer model calculation, 

however, one has to assume or construct the form of the density of states function. 

The calculated isotope equilibria presented by Kieffer (1982) are, however, in good 

agreement with experimental values. More recently, Schutze’s (1980) increment 

method has been applied to oxygen isotope fractionation for mineral-water systems 

by Richter and Hoernes (1988). Two empirically derived factors are used in order 

to simplify the method. The first factor is used to multiply the O18 increments of 

the weakly bonded cations and the second factor is the value of lOOOlno^^ which 

is a mean value based on experimental data taken from a whole variety of sources. 

The results are presented in the form of calibration curves ie. 10001namineral.water = 

A + B x 103/T + C x 106/T2, where the coefficients A, B and C are calculated for 

each mineral-water system. Smyth (1989) has also computed the electrostatic 

binding energies at various sites in mineral structures from accurately measured 

crystallographic data. He has found that the differences in the potentials for various 

sites between different structures is strongly correlated with observed oxygen 

isotope fractionation between minerals, and future work may predict fractionation 

factors from electrostatic site potentials of anion sites.

In our study, we used PARAPOCS to calculate the free energy of 

isotopically distinct silicates as a function of temperature. Thus, for a pair of 

minerals, by calculating the free energy of the four species in the exchange reaction 

3.7, we can calculate the overall change in free energy for the reaction and hence 

a  by using 3.10 and 3.9. As stated earlier, quartz has not been included in this part 

of the study because simulations at temperatures above 600K would approach a 

displacive phase transition and this is not accommodated by the model used in 

PARAPOCS. The predicted temperature dependency of a  for each mineral-mineral
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system is displayed in Figure 3.4. Not only is the correct ’sense* of each reaction 

predicted (for example, O16 prefers albite rather than diopside and not vice versa) 

but the fractionation factors also tend to 1.0 with increasing temperature, which we 

would expect from equation 3.10. It should be noted that from our calculations the 

diopside-pyrope and diopside-forsterite systems show a crossover of the 

fractionation factor. This behaviour is as yet not understood. Kieffer (1982) 

suggests that crossovers would be unlikely in sets of minerals with comparable 

compositions (such as anhydrous silicates) because of the regularity in behaviour 

of vibrational modes with degree of polymerization of the Si-O bonds and the 

monotonic dependence of the partition function on this behaviour. Such behaviour 

has not yet been observed for mineral-mineral systems either from natural data or 

from laboratory data but has been clearly seen in mineral-fluid and melt-fluid 

experiments (see for example, O’Neil and Taylor 1967, and Matsuhisa el al. 1979). 

Clearly, this type of behaviour is as yet unresolved and a matter of considerable 

debate.
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We have compared our calculated fractionation factors to experimental 

values, where they exist, and are shown in Table 3.12. The observed values which 

do not have uncertainty limits are for exchange reactions between generic members. 

Clearly, agreement is rather poor and the best values are for the diopside-pyrope 

system where the calculated values are underestimated by 30%. From these results, 

it is not clear where the source of divergency arises. Hence, we have studied the 

isotope effects for each individual silicate by calculating the reduced partition 

function ratio, /, as a function of temperature, T, from the following expression:

ln /=  (-(F*-F)/kT) + (3r/2 x ln(m/m*)), (3.12)

where m and m* are the masses of the exchanging isotopes, F is the Helmholtz free 

energy, r is the number of atoms of the element undergoing exchange and k is 

Boltzmann’s constant. Note that our simulations are at zero pressure and so the 

Gibbs and Helmholtz free energies are equal. In Table 3.13 we have compared our 

calculated values of l/rl0001n/from 300 to 1000K with Kieffer’s (1982). Forsterite 

gives the best agreement where the percentage difference from Kieffer’s (1982) 

values varies from less than 0.1% at 300K to a maximum of 5.6% at 500K. 

Diopside and pyrope have comparable differences ranging from a minimum 1.2% 

(diopside at 1000K) to 12.8% (diopside at 700K). Albite gives the worst agreement 

where the average percentage difference is 13%. These differences in agreement 

correlates very well with the performance of the potential models in predicting the 

structure and thermodynamics of each mineral. If we refer back to the structure 

data in Tables 3.3 and 3.4 and also the thermodynamic data in Table 3.7 we see 

that forsterite gives the best agreement in cell parameters, volume, heat capacity 

and entropy and albite has the poorest simulated structure. This implies that the 

prediction of isotope effects are critically dependant on the accuracy of the 

simulated structures, lattice dynamics and thermodynamics. Hence, the slightest 

inaccuracy in the potential parameters will lead to poor values for isotope effects. 

This is confirmed if we look at the component energies which add to give the 

Gibbs free energy potential, G:
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Table 3.12 Predicted and observed fractionation factors

T /C O^pre C to b s

Albite-Diopside 600 1.00100 1.00313 
+/- 0.00140

700 1.00090 1.00287 
+/- 0.00115

Albite-Pyrope
(Plagioclase-Gamet)

500 1.00163 1.00320

600 1.00129 1.00251

700 1.00109 1.00202

Albite-Forsterite 600 1.00141 1.00405 
+/- 0.00141

700 1.00118 1.00379 
+/- 0.00116

Albite-Wollastonite 600 1.00140 1.00301 
+/- 0.00140

700 1.00120 1.00276 
+/- 0.00115

Diopside-Pyrope
(Pyroxene-Garnet)

500 1.00025 1.00035

600 1.00021 1.00028

700 1.00018 1.00022

Diopside-Forsterite 600 1.00032 1.00223 
+/- 0.00142

700 1.00027 1.00199 
+/- 0.00117

Diopside-Wollastonite 600 1.00020 1.00143 
+/- 0.00131

700 1.00015 1.00118 
+/- 0.00106

Note: References: Chiba et al. (1989); Matthews et al. (1983); Bottinga and 
Javoy (1975)
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Table 3.13 Reduced partition function ratios of the silicates studied

Mineral T/K l/rl0001n/

Calculated Kieffer (1982)

Albite 300 88.5 98.8

500 36.1 40.0

700 19.1 23.2

1000 9.3 10.8

Diopside 300 81.5 85.6

500 32.2 34.8

700 17.1 19.6

1000 8.5 8.4

Forsterite 300 80.7 80.0

500 31.6 31.6

700 16.6 17.6

1000 8.2 8.0

Pyrope 300 81.1 85.6

500 32.3 33.6

700 16.9 18.8

100 8.3 8.0

Wollastonite 300 80.4

500 31.2

700 16.3

1000 8.2
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G = E - TS + PV, (3.13)

where E is the total energy of the crystal, T is the absolute temperature, S is the 

entropy, P is the pressure and V is the volume. In our calculations P = O.OOlkbars 

and so there is very little contribution from the pres sure-volume term. (Incidentally, 

the isotope exchange experiments were performed between 1 and 24kbars pressure 

(see for example, Chiba et al. 1989), however, pressure effects are assumed to be 

negligible, and this has been shown experimentally by Clayton et al. (1975). 

Therefore, comparison of observed data with the results from our calculations is 

valid). Hence the precision of G is dependant on the accuracy of both E and S 

which, as explained earlier, are both calculated from the potentials. The study of 

such subtle effects (energies of a few joules per mole) reveals the limitation of our 

methodology and potential models.

3.5 Summary

We have reported free energy minimisation studies for a wide variety of 

silicate minerals where the calculations were based on a lattice dynamics model to 

the quasi-harmonic level of approximation. Overall, we can conclude that the model 

works very well, although the calculated fractionation factors are not yet 

sufficiently accurate to be practically useful. The predicted structure and bulk 

thermodynamics of the silicates however are excellent and this clearly shows, along 

with other applications of the model (see, for example, Jackson and Catlow 1988, 

and Winkler et al. 1990), that the type of model potentials used in this chapter are 

genuinely transferable, and can be applied to a wide variety of structural topologies 

(ortho-, chain-, layer- and framework-silicates). We suggest that the thermodynamic 

properties predicted from our fundamental, microscopic, atomistic models can now 

be considered as reliable as the predictions made by other bulk, phenomenological 

or empirical approaches. However, refinements of the potential parameters are 

necessary if we are to predict accurately the structures and thermodynamic 

properties (to within 0.1% of observed values) that appear to be required if our
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approach is to be extended to the quantitative study of isotope effects, and rigorous 

testing of the temperature and pressure dependency of the fractionation factor.

We have seen in section 3.4 how important the anharmonic effects are at 

high temperatures and how our model, which is based on the quasi-harmonic 

approximation, only accounts for extrinsic anharmonicity. In the next chapter a 

detailed investigation of the intrinsic anharmonicity is given and quantitative 

estimates of these effects on geophysically important properties are also presented. 

It has also been shown that the nature of the interatomic potentials used also limit 

the reliability of our results, so in Chapter Five we outline a strategy whereby 

quantum mechanics can be used to study the nature of the electronic environment 

in the crystal structure.
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CHAPTER FOUR

ANHARMONICITY AND THE BREAKDOWN OF THE 

QUASI-HARMONIC APPROXIMATION

4.0 Introduction

In this chapter we investigate the limit of the quasi-harmonic approximation 

(QHA) in the LDS model by simulating periclase (MgO) and MgSi03 perovskite 

from low to high temperatures and pressures. It is generally accepted that MgSi03 

perovskite is the most abundant mineral in the Earth (about 40% of the total 

composition, and 80% of the lower mantle) and so a reliable theoretical approach 

to simulating its structure and physical properties is of great value. It is hoped that 

this work will pinpoint the future requirements for accurate modelling of the 

structure and thermodynamics so that the results obtained can be used to pinpoint 

the important geophysical parameters such as the thermal expansion coefficient, the 

melting temperature and the clarification of the phase diagram for the MgSi03 - 

FeSi03 system (see Figure 1.9). Work has already been carried out in this direction 

(see Matsui and Price 1992) where the polymorphs of MgSi03 have been studied 

using the MDS technique. Also related to these phase diagrams is MgO in the form 

of magnesiowiistite. Therefore, reliable simulations of periclase will provide an 

important preliminary step for future calculations of the magnesiowiistite system 

and further fine tuning of the predicted phase diagrams. The transport properties 

of minerals is another application of our simulation approach and so the 

determination of the limitations of this methodology will be useful for investigating 

the dynamic phenomena of electrical and thermal conductivity, diffusion and 

rheology of the mantle (see for example, Wall and Price 1989). We adopt the MDS 

technique to model the intrinsic anharmonic component which is not included in 

the LDS approach (see sections 2.2.2 and 2.3.1). By comparing the results obtained
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from the two procedures it should be straightforward to ascertain the temperature 

and pressure conditions at which the QHA breaks down and therefore see what 

implications this has for modelling the various geological environments (i.e. upper 

and lower mantle).

In the next section we briefly review some of the recent research that has 

been carried out in the geosciences community on anharmonicity and this is 

followed by a discussion of the conditions and parameters input into the MDS and 

LDS codes in order to perform successful simulations of MgO and MgSi03. 

Following this, a detailed discussion of our results is given and we investigate the 

effects of anharmonicity on geologically important parameters such as molar 

volume, thermal expansion coefficient, isothermal bulk modulus and the average 

Griineisen parameter. We conclude this discussion by estimating the percentage 

corrections one would have to allow for to the above properties, at a variety of 

temperatures and pressures, if the LDS model was used. Finally, a summary of the 

chapter is given.

4.1 Review of recent literature on anharmonicity

We have already mentioned in Chapter Two the hypothesis proposed by 

Hardy (1980) which states that the intrinsic anharmonicity of a crystal will reduce 

as the applied hydrostatic pressure is increased. This can be understood by the 

following qualitative reasoning. As the external pressure is applied and the 

temperature is kept fixed, the cell volume reduces, i.e. the average interatomic 

separation becomes smaller, and the atoms or ions feel a stronger repulsive force 

from the forcing together of the electron clouds which is forbidden by the Pauli 

exclusion principle. Therefore, the ions would not only find less space in which to 

move but also feel a stronger force keeping them to their equilibrium positions. 

Hence, at high pressures there would be small displacements about the equilibrium 

positions even at large temperatures, thus following the symmetric or harmonic part 

of the potential energy curve.
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In Chapter Three we saw how the QHA overestimates the phonon pressure 

at high temperatures and this understanding has been brought about by the work 

of Boyer (1981). He has used Gordon-Kim (1972) type pair potentials in quasi- 

harmonic equation-of-state calculations for alkali halides and the relevant results 

are shown in Figure 4.1 where isothermal curves of vibrational pressure for sodium 

fluoride are plotted along with the static pressure contour. We see that an instability 

arises in the QHA at high temperatures (T=1200 for NaF) and this would have the 

consequence of predicting imaginary frequencies for the modes of vibration (see 

equation 2.38) in the LDS model. We will be referring to this point many times in 

our discussions as it pinpoints the precise limitations of the QHA. Boyer and Hardy 

(1981) have extended the work to investigate the structural phase transition in 

RbCaF3 which led to the study of the analogue perovskite structure CsCaF3 (see 

Boyer 1984).

:00 rt

Figure 4.1 Plot of static pressure and vibrational pressure (for selected 

temperatures) as a function of lattice constant. The arrows on the abscissa indicate 

measured volumes of the solid at 0 K and Tm, and of the liquid at Tm. (After, Boyer 

1981)
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Gillet and his co-workers have produced some excellent experimental work 

on high temperature and high pressure Raman spectroscopic studies on the olivine 

structures (see for example, Gillet et al. 1989 and 1991; Reynard et al. 1992). They 

have demonstrated that it is possible to calculate intrinsic anharmonic parameters 

from the change in mode frequency with temperature or pressure. Their current 

experimental arrangement has constrained them to looking either at temperature or 

pressure dependency however they are currently working on the simultaneous 

variation of both parameters.

O. L. Anderson has been keenly interested in the effects of anharmonicity 

on geological materials for many years (see for example, O. L. Anderson et al. 

1990; O. L. Anderson and Suzuki 1983). The work consists of investigating the 

high temperature effects on the Hildebrand equation-of-state for simple solids like 

LiF, NaCl and MgO. He has also compared the effects on the average Griineisen 

parameter, thermal pressure and heat capacity at constant volume and for the 

minerals forsterite, fayalite and periclase. The results illustrated that the effects are 

not necessarily consistent in each case and that opposite trends can be observed. 

Finally, there has been the development of what is now called the Anderson- 

Griineisen parameter which is constant over any temperature range within the 

assumptions of its derivation. Experimental data for the garnets, forsterite, MgO 

and iron have confirmed this and so have theoretical calculations (see Reynard and 

Price 1990). We will also calculate this parameter for our case studies to see if we 

arrive at the same conclusion.

The next section gives the essential parameters input into the LDS and MDS 

models for energy simulations of the chosen test minerals.

4.2 Input for the simulation models

In this study we have simulated the physical properties of MgO (periclase) 

and M gSi03 perovskite in order to investigate the effects of anharmonicity. To
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show that our methodology is independent of the potential model we have used a 

fully ionic (FI) and partial ionic (PI) charge models for MgO. We will denote each 

of these as MgO.FI and MgO.PI respectively. The potential parameters are listed 

in Table 4.1. Note that we are using a rigid-ion model, i.e. we assume that the 

charge distribution of an ion is not significantly disturbed when brought into the 

proximity of other ions. Hence, only two-body interactions are considered and the 

total expression for the potential energy is given by equation 2.6. The potential 

parameters employed have given successful and accurate simulations previously 

(see, Lewis and Catlow 1985; Matsui 1988 and 1989), therefore, we have not 

compared our predicted results with observed data as we feel that this prerequisite 

has already been established. In Figures 4.2a, b and c the experimental high 

pressure and temperature data is presented for MgO and MgSiOa. In Figures 4.2a 

and b the observed values are compared with the MDS calculations performed by 

Matsui (1989) for MgO using the same partial-ionic potentials as listed in Table 

4.1. Figure 4.2c shows, not only the experimental data for the P-V-T relations of 

perovskite (Mao et al. 1991), but also their calculated equations of state. For 

comparison with the calculated MgSi03 data see the Appendix where the values for 

volume and enthalpy are presented in tabulated format.

We set the lattice parameter for MgO (FI and PI) in the LDS model to 

4.23A (Lj) and, subsequently, the short-range potential cut-off to 2 . 6 ^ .  The 

maximum magnitude of the phonon wavevector equals Li and a ten special-point 

set of Chadi and Cohen (1973) was employed to sample the Brillouin zone. 

Similarly, for MgSi03 the lattice parameter, = 4.78A and the short-range 

potential cut-off = 2.5D,. The maximum magnitude of the phonon wavevector was 

also L2 but the reciprocal space sampling equation 3.1 (27 points) was used in this 

case.
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Table 4.1 Potential parameters used for MgO and MgSi03

Interaction Potential Parameters Ref.

A/eV p/A C/eVA'6

MgO Full Ionic Charge Model

Olo

22764.0 0.1490 27.8800 1

Mg2+ - O2 812.07 0.3242 0.0 2

MgO Partial Ionic Charge Model 

q/l el: Mg = +1.4; 0  = -1.4

0 - 0 2145.69 0.3000 30.2220 3

Mg - O 9892.16 0.2020 0.0 3

Mg - Mg 1309336.7 0.1040 0.0 3

MgSiOa Partial Ionic Charge Model (MAMOK) 

q/l el: Mg = +1.565; Si = +2.339; O = -1.298

0 - 0 1621.68 0.3000 30.2220 4

Mg - O 8035.12 0.2020 0.0 4

S i - O 7363.45 0.1900 0.0 4

Mg - Mg 1309336.7 0.1040 0.0 4

Mg - Si 2325826.6 0.0920 0.0 4

Si - Si 5005903.5 0.0800 0.0 4

Note: 1 Sanders et al. 1984; 2 Lewis and Catlow 1985; 3 Matsui 1989; 4 

Matsui 1988
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Figure 4.2c The P-V-T relations of perovskite. Crosses represent the experimental 

data and the lines are the calculated EOS. The numbers indicate the temperatures 

in Kelvin. (After, Mao et al. 1991)

Obviously, the MDS input takes a slightly different format as we are dealing 

with a different physical model. For MgO, the size of the MDS cell was 4 x 4 x 

4 (i.e. 64) unit cells but for MgSi03 an MDS cell of 3 x 3 x 3 , 27 unit cells was 

chosen due to computational constraints. The same timestep of l.Ofs was used for 

both minerals and sufficient timesteps (around 4000 to 6000) were performed in 

each simulation for "aging" purposes allowing sufficient time for equilibration. A 

further 5000 timesteps are the carried out for the averaging of the physical 

properties. There are two adjustable parameters, Q and W (see equation 2.9) which 

emerge from the constant temperature (Nose 1984) and constant pressure 

(Parrinello and Rahman 1981) routines and these have been set as following; Q = 

lO.OkJmol^ps2 for MgO and MgSi03, W = 40.0gmol*1 for MgO and, finally, W = 

lOO.Ogmol'1 for MgSi03. These two parameters determine the timescale of the 

temperature and volume fluctuations, respectively, but they have no effect on the 

trajectory averages calculated from a simulation (Haile and Graben 1980; Nose 

1984). Having fixed the main input parameters the code initiates the usual periodic 

boundary condition. It is important to note that no symmetry constraints are 

imposed as the success of a simulation is determined by the prediction of the

123



correct crystal structure. Recent developments applied to the MDS code (see Parker 

and Watson 1992) have eliminated the problem of having to set energy convergent 

values for two parameters used in the Ewald summation for the potential energy 

(see sections 2.1). It has been shown (Parker and Watson 1992) that the new 

procedure (which can be initiated by a default value) is in accordance with the 

Ewald methods of THBREL and PARAPOCS and affects the cell volume by 

approximately 1 per cent. We have not recalculated our MDS enthalpies and 

volumes because we feel that such small changes to the absolute values will not 

affect the calculated trends significantly. We now discuss the results of our 

simulations.

4.3 The effects of intrinsic anharmonicity on key geophysical properties

From the simulated volume and enthalpy at various temperatures and 

pressures it is possible to calculate the thermal expansion coefficient, isothermal 

bulk modulus and heat capacity at constant pressure from their temperature and 

pressure derivatives. Hence, it is then possible to predict other thermodynamic 

properties such as the average Griineisen parameter and heat capacity at constant 

volume. We have performed simulations to high temperatures (-3000 to 4000K) 

and high pressures (either to 500 or lOOOkbars). The temperature and pressure 

derivatives were obtained from regression fits of the enthalpy and volume data. The 

limitations of this approach will we discussed as we progress through this section.

We start by investigating the effects of intrinsic anharmonicity on the molar 

volume. We see from Figures 4.3a, b and c that the calculated volume rises with 

temperature and decreases with pressure as expected. For all cases (i.e. MgO.FI, 

MgO.PI and MgSi03) at the higher temperatures V(LDS) is larger then V(MDS) 

except at high pressures where they converge. From our earlier discussions on 

Boyer’s (1981) work we see that these results are entirely as we would expect. The 

QHA overestimates the vibrational pressure at high temperatures, thus giving a 

higher than normal value for the cell volume. However, if we increase the external
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pressure the QHA has a greater field of stability (see Figure 4.1) and subsequently 

does not break down. In other words, the intrinsic anharmonic effects become less 

with increasing pressure and the MDS results tend to the values obtained by the 

QHA.

The enthalpy, H, is a measure of the internal energy of a crystal plus a 

pressure-volume term. From inspection of Figures 4.4a, b and c we see that the 

trends are identical to the volume curves except that the relative differences are 

smaller. Once again H(LDS) is greater (i.e. less negative) than H(MDS) at high 

temperatures because the vibrational energy component of the internal energy is 

overestimated by the QHA as is the volume. Both of these facets give an additional 

positive contribution to the overall enthalpy. The enthalpies from the two modelling 

approaches converge at high pressures which, yet again, supports Hardy’s (1980) 

hypothesis.

Figures 4.5a, b and c show the calculated thermal expansion coefficients, 

p, for the above stated temperature and pressure ranges. The values generally 

increase with temperature and the reasons for this were presented previously in 

section 3.4. However, there are some fluctuations from this trend at 200kbars for 

MgO.FI and MgSi03, and at the low pressures for MgO.PI. Although there are 

curvatures in the theoretical thermal expansion coefficient vs. temperature curve, 

we feel that this is what we are not seeing here. We can clearly see from the raw 

data of enthalpy and volume (presented in Appendix A) that for each pressure we 

have carried out calculations at only a few temperature points due to the restrictions 

in computational resources. Therefore, the polynomial fits to each dataset gives the 

general trend required but may not be of the closeness that is necessary when 

investigating the variations of differentials. Hence, the curvatures in Figures 4.4a, 

b and c are probably due to errors incurred from imprecise fitting. We would 

expect p to decrease with pressure because the slopes of the volume-temperature 

curves (Figures 4.2a, b and c) become less inclined with increasing pressure. It is 

easy to deduce that at a given temperature p(LDS) is greater than p(MDS) as the 

LDS volume-temperature slopes are steeper for each pressure except at the high
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pressures where they meet with the MDS curves. It is for this reason that the 

thermal expansion curves should also meet at the high pressures, however, due to 

the uncertainties in the derived values, there is merely a coming together of the 

LDS and MDS curves and not a superimposition. It is interesting to note how the 

intrinsic anharmonicity affects the standard measure of extrinsic anharmonicity, 

namely, the thermal expansion coefficient.

An understanding of the effect of pressure on the thermal expansion of 

silicates is of great geophysical importance, as it is required in order to calculate 

mineral densities under mantle pressure and temperature conditions independently 

of the adiabatic gradient assumption. O. L. Anderson (1967) first showed that the 

thermal expansion can be related to density, p, by the following expression:

(P/Po) = (P/Po)'8T' (4.1)

where the subscript 0 denotes room temperature and Sj is the Anderson-Griineisen 

parameter which is assumed to be independent of pressure and the material studied. 

Experimental and theoretical studies have placed the value of &r between 4 and 6, 

however, the values derived from seismic data give a lower estimate of 2 to 3 (see, 

Reynard and Price 1990 for references). Our calculated results are presented in 

Tables 4.2a, b and c, and we immediately see that the MDS values are significantly 

less than those calculated from the QHA (note we have taken the low temperature 

values, usually 1500K as our po and p0). Also, there are some "waywardly" high 

figures (see the low pressures for LDS in particular) and also some low estimates 

from the MDS model (500kbars MgO.FI, and 0.001 and lOOkbars MgO.PI). As 

explained above, these fluctuations from the expected are probably due to 

inaccurate fitting, and the curvatures found in the predicted thermal expansion 

curves could account for some of these. On the whole, we can conclude that the 

average values for bj are 7 to 8 for the calculations based on the QHA and 3 to 4 

for the MDS model. This implies that the QHA overestimates the Anderson-
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Table 4.2a Calculated Anderson-Gruneisen parameters for MgO.FI

P/kbars T/K 8t (LDS) M M D S )

0.001 2000.0 12.75 4.71

100.0 2000.0 8.68 5.13

200.0 2000.0 2.32 2.93

2500.0 5.04 2.78

3000.0 6.69 2.65

300.0 2000.0 5.93 8.49

2500.0 6.47 7.15

3000.0 6.76 6.04

400.0 2000.0 5.08 4.35

2500.0 5.18 3.70

3000.0 5.24 3.12

500.0 2000.0 7.04 1.03

2500.0 6.60 1.01

3000.0 6.20 0.98

1000.0 2000.0 9.31 2.63

2500.0 8.81 2.58

3000.0 8.35 2.53
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Table 4.2b Calculated Anderson-Griineisen parameters for MgO.PI

P/kbars T/K &T (LDS) 5t (MDS)

0.001 2000.0 5.55 1.42

100.0 2000.0 13.70 1.10

200.0 2000.0 7.04 3.52

2500.0 10.27 3.26

3000.0 10.36 3.03

300.0 2000.0 7.67 2.57

2500.0 7.64 2.43

3000.0 7.39 2.31

400.0 2000.0 7.37 2.41

2500.0 7.06 2.30

3000.0 6.73 2.20

500.0 2000.0 7.36 2.85

2500.0 7.02 2.72

3000.0 6.69 2.60
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Table 4.2c Calculated Anderson-Griineisen parameters for MgSi03

P/kbars T/K (LDS) (MDS)

0.001 2000.0 - 10.72

100.0 2000.0 12.07 4.96

200.0 2000.0 11.56 4.31

2500.0 11.97 4.26

3000.0 10.97 4.17

300.0 2000.0 8.92 3.67

2500.0 8.52 3.62

3000.0 8.02 3.56

400.0 2000.0 8.41 3.37

2500.0 7.66 3.56

3000.0 7.01 3.70

500.0 2000.0 8.15 2.99

2500.0 7.82 3.18

3000.0 7.47 3.33

1000.0 2000.0 9.85 3.20

2500.0 8.05 3.47

3000.0 6.51 3.71

138



Griineisen parameters but our data lacks the sufficient accuracy to see if this 

overestimation is reduced with increasing pressure. Also, there is some definite 

confirmation that the seismic data are giving the correct order of parameter but 

refined MDS calculations need to be performed to resolve the debate on this 

matter. This confirms the statements of D. L Anderson (1987b, 1989) that results 

obtained from laboratory conditions (i.e. moderate pressure and temperature relative 

to the lower mantle) cannot be extrapolated to the extreme conditions of the 

mantle. Recent ab initio calculations carried out by Isaak et al. (1992) also suggest 

that the an increase in pressure decreases the value for 8S (8X). Clearly, these recent 

developments are favourable for the results obtained from the lateral variations in 

seismic wave velocities but it is rather early to draw any definite conclusions.

The bulk modulus is a measure of incompressibility and so the greater the 

magnitude, the bigger the force that is required to compress the crystal. Figures 

4.6a, b and c show that the isothermal bulk modulus, KT, decreases for each 

pressure. This is correct because as the temperature increases, the crystal expands 

and the repulsive contribution to the short-range potential is decreased (see equation 

2.2), thus making the crystal easier to compress. Similarly, if the hydrostatic 

pressure is increased, the cell volume reduces and the repulsive interaction 

increases proportionally to the curvature on the potential energy distribution (see 

Figure 2.3), subsequently making the crystal more difficult to compress. We have 

seen that the volume is overestimated at high temperatures in the QHA implying 

it is easier to compress at these conditions. For this reason, KX(LDS) < KX(MDS) 

at high temperatures. This effect reduces with increasing applied pressure for the 

reasons given earlier.
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At absolute zero temperature the two heat capacities CP and Cv are equal. 

Classically, Cv follows the Dulong-Petit law and takes the constant value of 3NR, 

where N is the number of species in the formula unit and R is the universal gas 

constant. Therefore, a useful stability check for a MDS run is to extrapolate the Cp 

data back to zero kelvin and see if it meets the 3NR limit. The lOOkbar dataset for 

MgO.FI failed to do so and has been removed from Figure 4.7a. There have been 

other omissions due to "crossovers" which made it difficult to distinguish the 

individual curves. It must be stressed that the values for the CP were calculated 

from the polynomial fitting to enthalpy-temperature data and the differentials 

involved small changes in enthalpy relative to the absolute values, making the 

results even more prone to uncertainties. This is obviously a limitation of our 

methodology and we can only comment on the general trends given by the data 

obtained from the derivatives, and not the fine details. We see from Figures 4.6a, 

b and c that CP increases with T and decreases with pressure as expected from 

inspection of the enthalpy curves (see Figures 4.4a, b and c). Generally, the LDS 

data are greater than the MDS values for each pressure except at lOOOkbars. 

Clearly, this follows the same trend as the physical properties studied above 

implying a reduction of intrinsic anharmonicity at high pressures.
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To highlight the sort of errors involved in our procedure, we have plotted 

the LDS heat capacities, Cv, calculated from equation 2.45 and superimposed the 

values obtained from the polynomial fitting method (see Figures 4.8a, b, c and d). 

We see that agreement is not of the accuracy required for the study undertaken 

here. However, we have still presented the Cv data (Figures 4.9a, b and c) and the 

average Griineisen parameters, y, (Figures 4.10a, b and c), so that we can see the 

general trends. The CV(MDS), on the whole, increase linearly at high temperatures 

which confirms the prediction from the theory of anharmonic oscillators (see for 

example, Brtiesch 1982). Also, at the lower temperatures the CV(LDS) tends to zero 

as expected from equation 2.45. Generally, the Griineisen parameters decrease with 

pressure and this is difficult to account for rigorously as there are opposing effects 

in equation 2.47.
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Finally, to conclude this section we have composed percentage deviation 

plots of the QHA from the intrinsically anharmonic molar volume, thermal 

expansion and isothermal bulk modulus. These plots (see Figures 4.11, 4.12 and 

4.13) are shown for MgO.FI only so that this provides an example of the sort of 

corrections needed if calculations based on the QHA are performed. At high 

temperatures and pressures the LDS calculations should be corrected for 0.25% in 

the molar volume, 15% in the thermal expansion and 5% in the isothermal bulk 

modulus. Geophysically, this implies that the MDS technique is necessary for the 

upper mantle conditions (at all temperatures) and the LDS approach is limited to 

the lower mantle (all temperatures) and low temperature studies in the upper 

mantle. Recent theoretical developments on phonon-phonon interactions and the 

anharmonic potential energy function have led to models which could significantly 

improve the current LDS approach and give a good description of high temperature 

phenomena. This progress has been reported in Ball (1989) and Briiesch (1982) 

along with finite-temperature perturbation theory to phonons in a quantised crystal 

lattice, self-consistent phonon theory and nonpolynomial field theories.
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4.4 Summary

We have compared calculations based on the QHA with corresponding MDS 

(i.e. intrinsic anharmonicity included) derived results for MgO and MgSi03. It has 

been clearly shown that the QHA breaks down at high temperatures and low 

pressures and this deviation from the "true" values is reduced when the external 

pressure is increased. In fact, for the molar volume, enthalpy and isothermal bulk 

modulus the two approaches converge at very high pressures implying that the 

intrinsic anharmonic effects are negligible at these conditions. It has also been 

demonstrated that the major shortcoming of our methodology was insufficient data. 

Sampling at many more points in P-T space is necessary so that precise polynomial 

fits could be achieved in order to calculate other physical properties with minimal 

uncertainty. We did not pursue this line because many of the MDS runs were 

taking thousands of seconds (varying between 1000 to 6000) on the 

CRAY/CONVEX supercomputers and our limited resources could not cope with 

this demand. On the whole, the effects of intrinsic anharmonicity reduces the 

Anderson-Griineisen parameters and this has the possible conclusion that the 

experimental values derived from seismic data implicitly include such effects, 

explaining why they are generally lower than the values found from other 

experimental procedures. Finally, we gave quantitative estimates of the errors one 

would find for the molar volume, thermal expansion and isothermal bulk modulus, 

if calculations based on the QHA were used. We found that it was necessary to use 

the MDS technique for upper mantle conditions and the LDS model is limited to 

the lower mantle although, in the near future, improvements can be made via the 

theory of phonon-phonon coupling to remove such restrictions.
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CHAPTER FIVE

QUANTUM MECHANICAL SIMULATIONS 

OF SILICATES

5.0 Introduction

The obvious limitation of the atomistic modelling approach is the 

dependency on empirical fitting for suitable potential energy distributions of the 

system under study. This can be overcome by adopting so-called "a priori" methods 

for calculating the potential energy surface for a variety of geometries and then 

deriving the necessary information from a least-squares fitting to the surface. To 

penetrate beyond the atomistic realm we have to go into the subatomic world of 

electrons and nuclei. Unfortunately, the exact solution for the many-electron atom 

or molecule has not yet been discovered due to the additional interaction terms 

arising in the Hamiltonian, hence, restricting the separation of variables approach 

for the solution of the Schrodinger differential equation. This has not hindered 

progress on the approximate solutions of many-body systems and these have been 

extended to investigate periodic structures (see for example, Nada et al. 1990; 

Cohen et al. 1989). In the next section we discuss the approximations employed in 

the CRYSTAL code (Pisani et al. 1988; Dovesi et al. 1988) which is used for 

preliminary optimised geometry calculations for the idealised cubic MgSi03 

perovskite. As was stated in the previous chapter, MgSi03 perovskite is probably 

the most abundant mineral in the Earth (80% of the lower mantle) and so the study 

of its electronic nature is of immediate importance. The results are discussed in 

section 5.2 and the summary and conclusions are presented in the final section.
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5.1 Outline of model

In this section, a brief discussion of the quantum mechanical model for 

crystal structures, as used by the CRYSTAL program, will be given. As stated 

above, approximations are necessary for the solution of the many-electron molecule 

which we will now outline. The Schrodinger equation for the many-electron 

molecule is set up for the non-relativistic time-independent case and it is only 

possible to treat the ground state energy and not the excited (i.e. temperature 

dependant) states due to the complexity of the equations. In the Bom-Oppenheimer 

approximation the nuclei are assumed to respond considerably more slowly (due 

to their heavier masses) than the electrons which further simplifies the Hamiltonian 

of the system by neglecting the kinetic energy of the nuclei. The Schrodinger 

equation can now be split into a set of linear one-electron molecule equations 

which can be solved for the ground state energy if the eigenfunctions (i.e. 

molecular spin-orbitals, MO) are known. This is achieved by constructing a trial 

MO from a linear combination of atomic orbitals (LCAO - which arise from the 

exact solutions of the hydrogen atom) and applying the variation theorem to 

calculate the minimum energy. These calculations are performed at the Hartree- 

Fock (HF) level of approximation where the one-electron Hamiltonians are replaced 

by the effective Hamiltonians which are perturbations from the one-electron case, 

and contain an average potential term to account for the average field of all the 

other electrons. The average potential is readily calculated from the MO (see, for 

example, George 1972) and through a series of iterations it is possible to calculate 

the potential which reproduces the eigenfunctions that determined it. This type of 

calculation is called a self-consistent field (SCF). The extension of this treatment 

to a periodic structure is achieved by imposing the periodic conditions on the 

eigenfunctions which gives, what are commonly called, the Bloch functions. The 

crystal orbitals (CO) are then constructed out of these Bloch functions from the 

LCAO method where Gaussian-type orbitals (GTO) are input along with their 

exponents and contraction coefficients (see, Hehre et al. 1969) to provide 

convenient approximations of the hydrogen-like solutions. The number of Gaussian 

functions used to construct the atomic orbitals of all the electrons of an atom
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constitutes a resulting basis set for that atom in the crystal structure. Hence, the 

size of basis set is the computing limitation of CRYSTAL and calculations for 

large unit cell structures cannot yet be implemented. Within these approximations 

the motions of the individual electrons are not correlated and this is an obvious 

source for inaccurate ground state energies. Nevertheless, it is still possible to 

employ this procedure to study relative differences in energies (especially for 

different geometries of the same material) and can also provide insight into the 

nature of the bonding (see, for example, Nada 1990). In the next section we discuss 

the results of the HF-LCAO periodic calculations of cubic MgSi03-perovskite.

5.2 Results and Discussion

The establishment of a reliable, well balanced set of basis functions to 

describe the atomic species of the system under investigation, is an essential 

preliminary step of the calculation. We have used the basis functions which were 

originally variationally (i.e. the outer shell exponent is varied until a minimum 

energy is achieved) optimised for the MgSi03 ilmenite structure (see, Nada 1992a) 

as a starting point for our study. The basis set (b.s.) for each atomic species of the 

crystal structure is referred to by the standard notation, X-YZ A, adopted by Pople 

and his co-workers (see, for example Hehre et al. 1969) where X, Y and Z are the 

number of functions in the last three shells of the atom, and A is the type of 

function (Gaussian in our case). Hence, we have used a 8-61 G b.s. for the 

magnesium atom, an 8-51 G b.s. for oxygen and a modified 6-21 G b.s. for the 

silicon atom. For a more detailed discussion of the validity and accuracy of these 

basis set functions we refer the reader to Nada (1992a).

The above mentioned basis sets were variationally re-optimised for the cubic 

M gSi03 perovskite context, however, it was not necessary to optimise the outer 

shell exponent for the Mg atom as previous studies have shown (see, Nada 1992a) 

only minute energy differences for such changes, implying that the atom retains its 

highly ionic character as previously established for this b.s. It is worth noting that
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the convergency test on the energy was set to a difference of 10‘8 between the two 

consecutive SCF cycles. The outermost shell Gaussian function was omitted from 

the Si atom resulting in a 6-62 G b.s. as this was found to give convergent energies 

at a variety of tolerances (i.e. the accuracy cut-offs for the integrals). Therefore, 

there are two Gaussian functions which are modelling the sp valence functions and 

the optimised exponents are shown in Figure 5.1a. Similarly, for oxygen we have 

optimised the outermost sp shell Gaussian function and also the previous function 

(i.e. the last one of the 5 GTO group) and these results are shown in Figure 5.1b. 

It is important to note that the sequence of optimisation is always from the 

innermost function (core electrons) to the outer (valence electrons) as this provides 

as systematic method for avoiding unnecessary correlations. These calculations 

typically required 1000 seconds cpu time on the CONVEX supercomputer and were 

performed with the following tolerances (expressed as -log10 [x]:

Coulomb overlap tolerance = TOL1 6

Coulomb penetration tolerance = TOL2 6

Exchange overlap tolerance = TOL3 6

Exchange pseudo overlap (g sum) = TOL4 6

Exchange pseudo overlap (n sum) = TOL5 16

The meaning of these truncation parameters require a detailed discussion of the 

theoretical technicalities which is beyond the scope of this chapter, and so we refer 

the interested reader to Pisani et al. (1988). With the energy-minimised exponents 

for all the b.s the cell parameter was variationally optimised to give the best 

possible cell volume. Figure 5.2 shows the energy curves for the re-optimised b.s. 

(BS1) and the original b.s. (BS2) and we see little difference the re-optimisation 

makes possibly implying the transferability of b.s. from one symmetry to another. 

However, one would expect serious distortions in the electron clouds (i.e. b.s.) if 

the transfer is between two largely dissimilar geometries (e.g. cubic to triclinic). In 

Table 5.1 the energy and cell volume calculated for BS1 and BS2 are given. The 

bulk modulus is calculated from the second derivative of energy with volume (i.e. 

the curvature of the plots in Figure 5.2) and they are also presented in the
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following table.

Table 5.1 Calculated energies, bulk moduli and cell volumes

Energy/a.u. K/GPa Cell Volume/A3

BS1 -713.376 295.3 43.16

BS2 -713.380 297.7 43.01

We see that the energies, cell volumes and bulk moduli are in very close agreement 

for both b.s. implying, as stated above, the possible transferability of b.s. from one 

similar symmetry to another. It is encouraging to note the comparability of these 

results with the Linear Augmented Plane Wave (LAPW) method (an alternative ab 

initio method) of Cohen et al. (1989) where they found an optimum cell volume 

of 42.14A3 and a bulk modulus of 279 GPa. It is interesting that both ab initio 

methods predict a bulk modulus which is larger than the observed bulk modulus 

for the orthorhombic perovskite (i.e. 245 GPa, see Yeganeh-Haeri et al. 1989). This 

is as expected because it is generally found from high-pressure and vibrational 

spectroscopy experiments (see, for example, Angel et al. 1990) that it is more 

difficult to compress the octahedra than to rotate it, therefore the regular "packed" 

cubic case can only be deformed by compression (i.e. shortening of the Si - O 

bond) and will give a larger bulk modulus. These preliminary calculations have 

been extended by Nada et al. (1992b) to investigate the electronic properties of, not 

only the cubic perovskite, but the other possible symmetries as well.

It is possible to obtain an HF energy "hypersurface" if calculations are 

performed for variations in the three cell parameters a, b and c. This is a good 

approximation to the potential energy distribution of a crystal structure if the 

contribution from the correlation energy is small. Alternatively, one can use other 

quantum mechanical procedures such as the LAPW method (see for example,
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Cohen et al. 1989) which accounts for such electron correlations. Once the energy 

surface is obtained a straightforward least-squares fitting procedure to the function 

given in equation 2.2 will yield the necessary parameters. This eliminates the 

empirical approach to obtaining accurate potential energy functions and it is hoped 

that the quantum mechanical method can be incorporated into PARAPOCS as a 

primary routine.

5.3 Summary

All electron HF-LCAO periodic calculations were performed for the cubic 

MgSi03 perovskite (an idealised structure) and successful geometry optimisations 

were performed for, not only the re-optimised b.s., but also the original b.s. which 

were originally developed for the ilmenite structure. Although only ground state 

energies can be calculated with this method, a definite application of this type of 

calculation is to determine the potential energy surfaces for particular crystal 

structures. Subsequently, potentials obtained by fitting to such an ab initio energy 

surface can be incorporated into the PARAPOCS code thus eliminating the problem 

of empirically determined potentials. It must be stressed that the HF approximation 

will fail to give accurate potential energy surfaces where the electron correlation 

is significant, therefore, this will limit its applicability to the number of materials 

that can be studied in the geological context. However, it may be possible to 

overcome this problem by including the option of an ab initio LAPW calculation 

within PARAPOCS code.

171



CHAPTER SIX

SUMMARY

As was stated in Chapter One, there is a great demand for accurate data of 

structural, elastic and thermodynamic properties of the Earth-forming silicates so 

that refinements can be made to existing compositional models, in particular phase 

diagrams, and discrepancies between the precise interrelationships of the interior 

Earth models are clarified. It is hoped that from such clarification, insight into the 

exact conditions for the formation and evolution of the Earth is gained. 

Experiments to simulate the conditions of the mantle and core are obviously 

difficult. Therefore, theoretical models which can predict the required geophysical 

data at such conditions are of immediate importance and provide a complement to 

gaining information of inaccessible terrain.

The research presented in this thesis was a theoretical investigation into the 

lattice and thermodynamics of the major Earth-forming silicates. We have used an 

atomistic approach based on the Born model of solids, in which potential functions 

represent the interactions between atoms in a structure. This work is, not only an 

extension the previous work but also a rigorous test of the methodology. We also 

set out to find how reliable the LDS model is in varying geological conditions (i.e. 

differing pressures and temperatures).

In Chapter Three we chose the modelling of oxygen isotope fractionation 

between the silicates; albite, diopside, forsterite, a-quartz, pyrope and wollastonite, 

as a stringent test for our approach. More precisely, the calculations were based on 

a lattice dynamics model to the quasi-harmonic level of approximation using the 

computer code PARAPOCS. Overall, we concluded that the model works very 

well, although the calculated fractionation factors are not yet sufficiently accurate
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to be practically useful. The predicted structure and bulk thermodynamics of the 

silicates however are excellent and this clearly shows that the type of model 

potentials used in this approach are genuinely transferable, and can be applied to 

a wide variety of structural topologies (ortho-, chain-, layer- and framework- 

silicates). We suggested that the thermodynamic properties predicted from our 

fundamental, microscopic, atomistic models can now be considered as reliable as 

the predictions made by other bulk, phenomenological or empirical approaches. 

Also, refinements of the potential parameters is necessary if we are to predict 

accurately the structures and thermodynamic properties (to within 0.1% of observed 

values) that appear to be required if our approach is to be extended to the 

quantitative study of isotope effects, and rigorous testing of the temperature and 

pressure dependency of the fractionation factor.

The success of the lattice dynamics model in the geophysical context will 

be determined by its performance at a variety of temperature and pressures, 

especially under extreme conditions. The work presented in Chapter Four was the 

result of detailed analysis of this point. We compared calculations based on the 

QHA with corresponding MDS (i.e. intrinsic anharmonicity included) derived 

results for the geophysically important minerals periclase (MgO) and MgSi03 

perovskite. It has been clearly shown that the QHA breaks down at high 

temperatures and low pressures and this deviation from the "true” values is reduced 

when the external pressure is increased. In fact, for the molar volume, enthalpy and 

isothermal bulk modulus the two approaches converge at very high pressures 

implying that the intrinsic anharmonic effects are negligible at these conditions. It 

has also been demonstrated that the major shortcoming of our methodology is 

insufficient data (i.e. sampling at many more points in P-T space) so that precise 

polynomial fits could be achieved in order to calculate other physical properties 

with minimal uncertainty. On the whole, the effects of intrinsic anharmonicity 

reduces the Anderson-Gruneisen parameters and this has the possible conclusion 

that the experimental values derived from seismic data (i.e. the lateral variations 

in the seismic velocities) implicitly include such effects explaining why they are 

generally lower than the values found from other experimental procedures. Overall,

173



for the geophysical context, this implies that it is necessary to use the MDS 

technique for upper mantle conditions and the LDS model is limited to the lower 

mantle although, in the near future, improvements such as the inclusion of 

anharmonic potentials and phonon-phonon interactions can be made to remove such 

restrictions. Also, to achieve a greater flexibility with the MDS technique the shell 

model can be incorporated into the calculation of the overall potential energy.

The obvious limitation of the atomistic modelling approach is the 

dependency on empirical fitting for suitable potential energy distributions of the 

system under study. This can be overcome by adopting so-called "a priori" methods 

for calculating the potential energy surface of a variety of geometries and then 

deriving the necessary information (i.e. the potential parameters) from a least- 

squares fitting to the surface. To penetrate beyond the atomistic realm we have to 

go into the subatomic world of electrons and nuclei. All electron HF-LCAO 

periodic calculations were performed for the geologically relevant cubic MgSi03 

perovskite (an idealised structure) using the computer code CRYSTAL. Successful 

geometry optimisations were performed for, not only the re-optimised basis sets, 

but also the original basis set which were developed for the ilmenite structure. 

Subsequently, potentials obtained by fitting to such an ab initio energy surface can 

be incorporated into the PARAPOCS code, thus eliminating the problem of 

empirically determined potentials.

Finally, we can be hopeful that the indications made for developing the 

PARAPOCS code will be pursued in the near future and this will ultimately 

provide a reliable and accurate theoretical technique for studying minerals at any 

geological condition. With such a powerful tool, coupled with the growing 

experimental techniques to probe such levels, the models of the Earth’s interior can 

be clarified to give an overall consistent picture. Ultimately, this may shed light on 

the beginning and evolution of the Earth.

174



REFERENCES

Akaogi M, Ross N, MacMillan P, Navrotsky A (1984) The Mg2Si04 polymorphs 

(olivine, modified spinel and spinel) - Thermodynamic properties from oxide melt 

solution calorimetry, phase relations and models of lattice vibrations. Amer. 

Mineral. 69:499-512

Akaogi M, Ito E, Navrotsky A (1989) Olivine-modified spinel-spinel transitions in 

the system Mg2Si04 - Fe2Si04: calorimetric measurements, thermochemical 

calculation, and geophysical application. J. Geophys. Res. 94:15671-15685

Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or 

temperature. J Chem Phys 72:2384-2393

Anderson DL (1987a) Thermally induced phase changes, lateral heterogeneity of 

the mantle, continental roots and deep slab anomalies. J. Geophys. Res. 92:13968- 

13980

Anderson DL (1987b) A seismic equation of state n, shear and thermodynamic 

properties of the lower mantle. Phys Earth Planet Inter 45:307-323

Anderson DL (1989) Theory of the Earth. Blackwell, Oxford.

Anderson OL (1967) Equation for thermal expansivity in planetary interiors. J 

Geophys Res 72:3661-3668

Anderson OL (1982) The Earth’s core and the phase diagram of iron. Phil Trans 

R Soc Lond A306:21-35

Anderson OL, Suzuki I (1983) Anharmonicity of three minerals at high 

temperature: Forsterite, fayalite and periclase. J Geophys Res 88:3549-3556

175



Anderson OL, Chopelas A, Boehler R (1990) Thermal expansivity vs. pressure at 

constant temperature: A re-examination. Geophys Res Lett 17:685-688

Angel RJ, Carpenter MA, Finger LW (1990) Structural variation associated with 

compositional variation and order-disorder behaviour in anorthite-rich feldspars. 

Am Mineral 75:150-162

Baldereschi A (1973) Mean-value point in the Brillouin zone. Phys Rev B7:5212- 

5215

Ball RD (1989) Anharmonic lattice dynamics. In: Ionic Solids at High 

Temperatures. Ed. Stoneham M , World Scientific, Singapore, 9-105

Barker JA, Fisher RA, Watts RO (1971) Liquid argon - Monte Carlo and molecular 

dynamics calculations. Mol Phys 21:657

Bassett WA (1977) The diamond cell and the nature of the Earth’s interior. Ann. 

Rev. Earth Planet. Sci. 7:357-384

Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic 

exchange reactions. J Chem Phys 15:261-267

Bolt BA (1982) Inside the Earth. Freeman, San Francisco

Bom M, Huang K (1954) Dynamical theory of crystal lattices. Clarendon Press, 

Oxford.

Bottinga Y, Javoy M (1973) Comments on oxygen isotope geothermometry. Earth 

Planet Sci Lett 20:250-265

Bottinga Y, Javoy M (1975) Oxygen isotope partitioning among the minerals in 

igneous and metamorphic rocks. Rev Geophys Space Phys 13:401-418

176



Boyer LL (1981) First-principles theory of phase transformations in ionic solids. 

Ferroelectrics 35:83-88

Boyer LL (1984) Parameter-free equation of state for CsCaF3. J Phys C 17:1825- 

1832

Boyer LL, Hardy JR (1981) Theoretical study of the structural phase transition in 

RbCaF3. Phys Rev B 24:2577-2591

Brown GC, Mussett AE (1981) The Inaccessible Earth. George Allen and Unwin, 

London.

Brown JM, McQueen RG (1986) Phase transitions, Griineisen parameter and 

elasticity for shocked iron between 77 GPa and 400 GPa. J Geophys Res 91:7485- 

7494

Brown JM, Shankland TJ (1981) Thermodynamic parameters in the Earth as 

determined from seismic profiles. Geophys J R Astr Soc 66:579-596

Briiesch P (1982) Phonons: Theory and Experiment I. Springer-Verlag, Berlin

Catlow CRA, Cormack AN, Theobald F (1984) Structure prediction of transition- 

metal oxides using energy-minimization techniques. Acta Cryst B40:195-200

Catlow CRA, Mackrodt WC (1982) Theory of simulation methods for lattice and 

defect energy calculations in crystals. In: Computer simulation of Solids (Eds 

Catlow CRA, Mackrodt WC). Lecture notes in Physics 166, 3-20. Springer-Verlag, 

Berlin Heidelberg New York

Catlow CRA, Norgett MJ (1976) U.K.A.E.A Report A.E.R.E M2936, United 

Kingdom Atomic Energy Authority. Harwell

177



Chadi DJ, Cohen ML (1973) Special points in the Brillouin zone. Phys Rev 

B8:5747-5753

Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope 

fractionation involving diopside, forsterite, magnetite and calcite: application to 

geothermometry. Geochim Cosmochim Acta 53:2985-2995

Clayton RN (1981) Isotopic thermometry. In: Thermodynamics of Minerals and 

Melts (Eds Newton RC, Navrotsky A, Wood BJ). Springer-Verlag, Berlin, pp85- 

109

Clayton RN, Goldsmith JR, Karel KJ, Mayeda TK, Newton RC (1975) Limits on 

the effect of pressure on isotopic fractionation. Geochim Cosmochim Acta 39:1197- 

1201

Clayton RN, Goldsmith JR, Mayeda TK (1989) Oxygen isotope fractionation in 

quartz, albite, anorthite and calcite. Geochim Cosmochim Acta 53:725-733

Cochran W (1973) The dynamics of atoms in crystals. Edward Arnold, London

Cohen RE, Boyer LL, Mehl MJ, Pickett WE, Krakauer H (1989) Electronic 

structure and total energy calculations for oxide perovskites and superconductors. 

In: Perovskites, a structure of great interest to geophysics and materials science 

(eds. A Navrotsky and DJ Weidner). Geophys Monograph 45:55-66, AGU, 

Washington

Dove M (1988) Molecular dynamics simulation in the solid state sciences. In: 

Physical Properties and Thermodynamic Behaviour of Minerals. Ed. Salje EKH 

501-590, D. Reidel, Dordrecht.

Dovesi R, Pisani C, Roetti C, Causa’ M, Saunders VR (1988) CRYSTAL88. An 

ab initio all-electron LCAO-Hartree-Fock program for periodic systems. QCPE

178



Program N.577, Quantum Chemistry Program Exchange, Indiana University, 

Bloomington, Indiana, USA

Dziewonski AM, Anderson DL (1981) Preliminary Reference Earth Model. Phys. 

Earth Planet. Interiors 25:297-356

Filippini G, Gramaccioli Cm, Simonetta M, Suffritti GB (1976) Lattice-dynamical 

applications to crystallographic problems: consideration of the Brillouin zone 

sampling. Acta Crystallogr A32:259-264

Finger LW, Ohashi Y (1976) The thermal expansion of diopside to 800°C and a 

refinement of the crystal structure at 700°C. Am Mineral 61:303-310

Fujino K, Sasaki S, Takeuchi Y, Sadanaga R (1981) X-ray determination of 

electron distributions in forsterite, fayalite and tephroite. Acta Crystallogr B37MIS­

SIS

Gear CW (1971) Numerical Initial Value Problems in Ordinary Differential 

Equations. Prentice-Hall

George DV (1972) Principles of Quantum Chemistry. Pergamon Press, New York.

Gillet P, Guyot F, Malezieux JM (1989) High pressure, high temperature Raman 

spectroscopy of Ca2Ge04 (olivine form): Some insights on anharmonicity. Phys 

Earth Planet Int 58:141-154

Gillet P, Richet P, Guyot F, Fiquet G (1991) High-temperature thermodynamic 

properties of forsterite. J Geophys Res 96:11805-11816

Gordon RG, Kim YS (1972) Theory of the forces between closed-shell atoms and 

molecules. J Chem Phys 56:3122-3132

179



Gurevich VM, Khlyustov VG (1979) Calorimeter for determining of low- 

temperature heat capacity of minerals. Quartz heat capacity under the temperature 

9-300K. Geokhimiia 6:829-839

Haile JM, Graben HW (1980) Molecular dynamics simualations extended to various 

ensembles. 1. Equilibrium properties in the isoenthalpic-isobaric ensemble. J Chem 

Phys 73:2412

Hansen JP, Weis JJ (1969) Quantum corrections to coexistence curve of neon near 

triple point. Phys Rev 188:314

Hardy RJ (1980) Temperature and pressure dependence of intrinsic anharmonicity 

and quantum corrections to the equation of state. J. Geophys. Res. 85:7011-7015

Harlow GE, Brown GE (1980) Low albite: an x-ray and neutron diffraction study. 

Am Mineral 65:986-995

Hart SR, Zindler A (1986) In search of a bulk Earth composition. Chemical 

Geology 57:247-267

Haselton HT, Westrum EF (1980) Low-temperature heat capacities of synthetic 

pyrope, grossular and pyrope60grossular40. Geochim Cosmochim Acta 44:701-709

Hehre WJ, Stewart RF, Pople JA (1969) Self-consistent molecular-orbital methods. 

I. Use of gaussian expansion of Slater-Type atomic orbitals. J Chem Phys 51:2657- 

2664

Hemingway BS (1987) Quartz: heat capacities from 340 to 1000K and revised 

values for the thermodynamic properties. Am Mineral 72:273-279

Hemley RJ, Bell PM, Mao HK (1987) Laser techniques in high-pressure 

geophysics. Science 237:605-612

180



Holland TJB (1989) Dependence of entropy on volume for silicate and oxide 

minerals: a review and a predictive model. Am Mineral 74:5-13

Hoover WG, Holt AC, Squire DR (1969) Adiabatic elastic constants for argon. 

Theory and Monte Carlo calculations. Physica 44:437

Isaak DG, Anderson OL, Cohen RE (1992) The relationship between shear and 

compressional velocities at high pressures: Reconciliation of seismic tomography 

and mineral physics. Geophys Res Lett 19:741-744

Ito E, Katsura T (1989) A temperature profile of the mantle transition zone. 

Geophys Res Lett 16:425-428

Jackson RA, Catlow CRA (1988) Computer simulation studies of zeolite structure. 

Mol Simulation 1:207-224

James R (1979) PhD Thesis, Univ. of London.

Jeanloz R, Thompson AB (1983) Phase transitions and mantle discontinuities. Rev. 

Geophys. Space Phys. 21:51-74

Katsura T, Ito E (1989) The system Mg2Si04 - Fe2Si04 at high pressures and 

temperatures: precise determination of stabilities of olivine, modified spinel and 

spinel. J. Geophys. Res. 94:15663-15670

Kieffer SW (1982) Thermodynamics and lattice vibrations of minerals V. Rev 

Geophys Space Phys 20:827-849

Kieffer SW, Navrotsky A (1985) Microscopic to Macroscopic. Reviews in 

Mineralogy 14. Mineralogical Soc America, Washington

Krupka KM, Robie RA, Hemingway BS, Kerrick DM, Ito J (1985a) Low-

181



temperature heat capacities and derived thermodynamic properties of anthophyllite, 

diopside, enstatite, bronzite and wollastonite. Am Mineral 70:249-260

Krupka KM, Hemingway BS, Robie RA, Kerrick DM (1985b) High-temperature 

heat capacities and derived thermodynamic properties of anthophyllite, diopside, 

dolomite, enstatite, bronzite, talc, tremolite and wollastonite. Am Mineral 70:261- 

271

Landau LD, Lifshitz EM (1958) Statistical Physics. Pergamon Press, London.

Lasage A, Gibbs JV (1987) Applications of quantum mechanical potential surfaces 

to mineral physics calculations. Phys Chem Minerals 14:107-117

Leitner BJ, Weidner DJ, Liebermann RC (1980) Elasticity of single crystal pyrope 

and implications for garnet solid solution series. Phys Earth Planet Inter 22:111-121

LePage Y, Calvert LD, Gabe EJ (1980) Parameter variation in low-quartz between 

94 and 298K. J Phys Chem Solids 41:721-725

Levien L, Prewitt CT (1981) High- pressure structural study of diopside. Am 

Mineral 66:315-323

Levien L, Weidner DJ, Prewitt CT (1979) Elasticity of diopside. Phys Chem 

Minerals 4:105-113

Lewis GV (1985) Interatomic potentials: Derivation of parameters for binary oxides 

and their use in ternary oxides. Physica 131B:114-118

Lewis GV, Catlow CRA (1985) Potential models for ionic oxides. J Phys C: Solid 

State Phys 18:1149-1161

Mao HK, Bell PM (1979) Equation of state of MgO and e-Fe under static pressure

182



conditions. J Geophys Res 84:4533-4536

Mao HK, Hemley RJ, Fei Y, Shu JF, Chen LC, Jephcoat AP, Wu Y, Bassett WA 

(1991) Effect of pressure, temperature and composition on lattice parameters and 

density of (Fe,Mg)Si03-perovskites to 30 GPa. J Geophys Res 96:8069-8079

Matsuhisa Y, Goldsmith JR, Clayton RN (1979) Oxygen isotopic fractionation in 

the system quartz-albite-anorthite-water. Geochim Cosmochim Acta 43:1131-1140

Matsui T, Manghnani MH (1985) Thermal expansion of single-crystal forsterite to 

1023K by Fizeau interferometry. Phys Chem Minerals 12:201-210

Matsui M (1988) Molecular dynamics study of MgSi03 perovskite. Phys Chem 

Minerals 16:234-238

Matsui M (1989) Molecular dynamics study of the structural and thermodynamic 

properties of MgO crystal with quantum correction. J Chem Phys 91:489-494

Matsui M, Price GD (1992) Computer simulation of the MgSi03 polymorphs. Phys 

Chem Minerals 18:365-372

Matthews A, Goldsmith JR, Clayton RN (1983) Oxygen isotope fractionations 

involving pyroxenes: the calibration of mineral-pair geothermometers. Geochim 

Cosmochim Acta 47:631-644

McSkimin HJ, Andreatch P, Thurston RN (1965) Elastic moduli of quartz versus 

hydrostatic pressure at 25° and -195.8°C. J Appl Phys 36:1624-1632

Nada R, Catlow CRA, Dovesi R, Pisani C (1990) An ab-initio Hartree-Fock study 

of a-quartz and stishovite. Phys Chem Minerals 17:353-362

Nada R, Catlow CRA, Dovesi R, Saunders VR (1992a) An ab-initio Hartee-Fock

183



study of the ilmenite-structured MgSi03. Proc R Soc (Lond) A 436:499-509

Nada R, Stuart JA, Ross N, Patel A, Price GD (1992b) A comparative periodic ab- 

initio Hartee-Fock study of the stability of ilmentie-, cubic perovskite-, 

rhombohedral perovskite- and LiNb03 - structured MgSi03. Preprint

Norgett MJ, Fletcher R (1970) Fast matrix methods for calculating relaxation about 

defects in crystals. J Phys C 3:163

Nos6 S (1984) A unified formulation of the constant temperature molecular 

dynamics methods. J Chem Phys 81:511-519

Nose S, Klein ML (1983) A study of solid and liquid carbon tetrafluoride using the 

constant pressure molecular dynamics technique. J Chem Phys 78:6928-6939

Novak GA, Gibbs GV (1971) The crystal chemistry of the silicate garnets. Am 

Mineral 56:791-825

Ohashi Y (1984) Polysnthetically-twinned structures of enstatite and wollastonite. 

Phys Chem Minerals 10:217-229

O ’Neil JR (1986) Theoretical and experimental aspects of isotopic fractionation. 

Rev Mineral 16:1-40

O ’Neil JR, Taylor HP (1967) The oxygen isotope and cation exchange cemistry of 

feldspars. Am Mineral 52:1414-1437

Openshaw RE, Hemingway BS, Robie RA, Waldbaum DR, Krupka KM (1976) The 

heat capacities at low temperatures and entropies at 298.15K of low albite, analbite, 

microline and high sanidine. J Res US Geol Surv 4:195-204

Parker SC, Price GD (1989) Computer modelling of phase transitions in minerals.

184



Adv Solid-State Chem 1:295-327

Parker SC, Watson G (1992) Private communication.

Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: A new 

molecular dynamics method. J Appl Phys 52:7182-7190

Peltier WR, Jarvis GT (1982) Whole mantle convection and the thermal evolution 

of the Earth. Phys. Earth Planet. Interiors 29:281-304

Pisani C, Dovesi R, Roetti C (1988) Hartree-Fock ab initio treatment of crystalline 

systems. Lecture Notes in Chemistry. Springer-Verlag, Heidelberg.

Poirier JP (1991) Introduction to the Physics of the Earth’s Interior. Cambridge 

University Press, Cambridge.

Poirier JP (1986) Dislocation-mediated melting of iron and the temperature of the 

Earth’s core. Geophys J R Astr Soc 85:315-328

Post JE, Burnham CW (1986) Ionic modelling of mineral structures and energies 

in the electron gas approximation: T i02 polymorphs, quartz, forsterite, diopside. 

Am Mineral 71:142-150

Price GD, Parker SC, Leslie M (1987) The lattice dynamics and thermodynamics 

of the Mg2Si04 polymorphs. Phys Chem Minerals 15:181-190

Prigogine I, Stengers I (1984) Order out of Chaos. Fontana, London.

Reissland JA (1973) The Physics of Phonons. Wiley, London.

Reynard B, Price GD (1990) Thermal expansion of mantle minerals at high 

pressures - a theoretical study. Geophys Res Lett 17:689-692

185



Reynard B, Price GD, Gillet P (1992) Thermodynamic and anharmonic properties 

of forsterite, a-Mg2Si04: Computer simulation vs. high pressure measurements. 

Preprint

Richter R, Hoemes S (1988) The application of the increment method in 

comparison with experimentally derived and calculated O-isotope fractionations. 

Chem Erde 48:1-18

Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of 

minerals and related substances at 298.15K and IBar (104 pascals) pressure and at 

higher temperatures. US Geol Survey Bull 1452

Robie RA, Hemingway BS, Takei H (1982) Heat capacities and entropies of 

Mg2Si04, Mn2Si04 and Co2Si04 between 5 and 380K. Am Mineral 67:470-482

Sanders MJ, Leslie M, Catlow CRA (1984) Interatomic potentials for Si02. J Chem 

Soc, Chem Communications 1271-1273

Schiitze H (1980) Der isotopenindex- eine inkrementenmethode zur 

naherungsweisen berechnung von isotopenaustauschgleichgewichten zwischen 

kristallin substanzen. Chem Erde 39:321-334

Shankland TJ, Brown JM (1985) Homogeneity and temperatures in the lower 

mantle. Phys Earth Planet Interiors 38:51-58

Smyth JR (1989) Electrostatic characterization of oxygen sites in minerals. 

Geochim Cosmochim Acta 53:1101-1110

Spiliopoulos S, Stacey FD (1984) The Earth’s thermal profile: Is there a mid­

mantle thermal boundary layer? J Geodynamics 1:61-77

Suito K (1977) Phase relations of pure Mg2Si04 up to 200 kilobars. In High-

186



pressure research, Manghnani MH, Akimoto S eds. Academic, New York, 255-266

Suzuki I, Anderson OL, Sumino Y (1983) Elastic properties of a single-crystal 

forsterite Mg2Si04, up to 1,200K. Phys Chem Minerals 10:38-46

Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 

(London) 562-581

Verhoogen J (1980) Energetics of the Earth. National Academy of Sciences, 

Washington D.C.

Wall A, Price GD (1988) Computer simulation of the structure, lattice dynamics 

and thermodynamics of ilmenite-type MgSi03. Am Mineral 73:224-231

Wall A, Price GD (1989) Electrical conductivity of the lower mantle: a molecular 

dynamics simulation of MgSi03 perovskite. Phys Earth Planet Int 58:192-204

Wang CY (1972) Temperatures in the lower mande. Geophys J R Astr Soc 27:29- 

36

Weston RM, Rogers PS (1976) Anisotropic thermal expansion characteristics of 

wollastonite. Mineral Mag 40:649-651

White GK, Roberts RB, Collins JG (1985) High Temp. High Press. 17:61

Williams DE (1971) Accelerated convergence of crystal lattice potential sums. Acta 

Crystallogr A27:452

Williams Q, Jeanloz R, Bass J, Svendsen B, Ahrens TJ (1987) The melting curve 

of iron to 250GPa: A constraint on the temperature at the Earth’s center. Science 

236:181-182

187



Williamson ED, Adams LH (1923) Density distribution in the Earth. J. Washington 

Acad. Sci. 13:413-428

Winkler B, Dove MT, Leslie M (1990) Static lattice energy minimization and 

lattice dynamics calculations on alumino-silicate minerals. Preprint

Yeganeh-Haeri A, Weidner DJ, Ito E (1989) Single-crystal elastic properties of 

M gSi03. In: Perovskites, a structure of great interest to geophysics and materials 

science (eds. A Navrotsky and DJ Weidner). Geophys Monograph 45, AGU, 

Washington

188



APPENDIX

Table A1 Enthalpy and volume data calculated at various pressures and 

temperatures for MgO.FI LDS model.

P/kbars T/K Enthalpy/kJmol^K'1 Volume/cn^mor1

0.001 500.0 -3891.6315 11.3569

1000.0 -3867.3309 11.5664

1500.0 -3840.5645 11.8354

2000.0 -3810.3398 12.2378

100.0 500.0 -3782.3414 10.8327

1000.0 -3758.5919 10.9800

1500.0 -3732.9106 11.1523

2000.0 -3705.9251 11.3545

200.0 1000.0 -3653.9541 10.5225

2000.0 -3602.5822 10.7956

3000.0 -3547.4024 11.1428

4000.0 -3484.9351 11.6656

300.0 1000.0 -3552.8789 10.1446

2000.0 -3502.1974 10.3615

3000.0 -3448.7488 10.6181

4000.0 -3391.9960 10.9358

400.0 1000.0 -3454.9093 9.8221

2000.0 -3404.6760 10.0024

3000.0 -3352.1403 10.2083

4000.0 -3297.3901 10.4473
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Table A1 Continued

P/kbars T/K Enthalpy/kJmol^K'1 Volume/cm3m or1

500.0 1000.0 -3359.6794 9.5409

2000.0 -3309.7698 9.6952

3000.0 -3257.8133 9.8678

4000.0 -3204.1512 10.0616

1000.0 1000.0 -2915.9249 8.5100

2000.0 -2866.9160 8.5986

3000.0 -2816.2690 8.6942

4000.0 -2764.7006 8.7954
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Table A2 Enthalpy and volume data calculated at various pressures and

temperatures for MgO.FI MDS model.

P/kbars T/K Enthalpy/kJmol^K*1 Volume/cm3m or1

-0.4340 498.6 -3895.248826 11.3371

-0.0275 999.8 -3869.805696 11.5332

-0.0830 1500.0 -3843.503414 11.7426

-0.0392 1999.4 -3816.583250 11.9760

100.0 499.1 -3786.468073 10.8184

99.9 999.4 -3760.712630 10.9678

100.0 1500.2 -3734.934165 11.1163

100.0 2000.2 -3708.528338 11.2775

200.0 1000.3 -3656.258081 10.5132

199.9 2000.3 -3604.233668 10.7586

199.9 2999.6 -3550.647975 11.0258

200.0 4000.0 -3494.954725 11.3157

299.9 1001.5 -3555.171746 10.1416

299.9 2000.1 -3503.525625 10.3371

300.0 3000.2 -3450.403686 10.5582

299.8 3999.5 -3395.517818 10.7900

400.0 999.3 -3457.315202 9.8188

400.0 2000.4 -3405.763699 9.9905

399.9 2999.7 -3353.053044 10.1734

399.8 3999.8 -3298.495662 10.3612
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Table A2 Continued

P/kbars T/K Enthalpy/kJmol^K'1 Volume/cm3mor1

500.0 1000.4 -3362.129317 9.5394

499.9 2000.0 -3310.708796 9.6883

499.9 3000.1 -3258.107135 9.8411

499.8 3999.6 -3204.349260 9.9993

1000.4 1000.1 -2918.357158 8.5197

999.9 2000.0 -2867.564795 8.6000

999.9 2999.5 -2815.699113 8.6874

999.9 4000.9 -2762.559378 8.7844
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Table A3 Enthalpy and volume data calculated at various pressures and

temperatures for MgO.PI LDS model.

P/kbars T/K Enthalpy/kJmol^K'1 Volume/cm3m or1

0.001 500.0 -2029.9077 11.4482

1000.0 -2004.2635 11.7739

1500.0 -1973.5701 12.2979

100.0 500.0 -1920.6773 10.8662

1500.0 -1869.1092 11.3290

2000.0 -1839.3324 11.6644

2500.0 -1802.5001 12.2374

200.0 500.0 -1815.8343 10.4287

1000.0 -1791.9328 10.5810

1500.0 -1765.8335 10.7608

2000.0 -1738.2027 10.9701

2500.0 -1708.7061 11.2217

3000.0 -1676.1309 11.5494

3500.0 -1633.8410 12.1344

300.0 500.0 -1714.5533 10.0771

1000.0 -1691.0653 10.1981

1500.0 -1665.4795 10.3379

2000.0 -1638.7067 10.4942

2500.0 -1610.7679 10.6703

3000.0 -1581.4016 10.8728

3500.0 -1550.0141 11.1149
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Table A3 Continued

P/kbars T/K En th alpy/kJ m o !1K*1 Volume/cm3m or1

400.0 500.0 -1616.2576 9.7832

1500.0 -1567.8488 9.9981

2000.0 -1541.5657 10.1239

2500.0 -514.3903 10.2616

3000.0 -1486.2510 10.4134

3500.0 -1456.9539 10.5833

500.0 500.0 -1520.5294 9.5307

1500.0 -1472.6443 9.7135

2000.0 -1446.6882 9.8191

2500.0 -1419.9829 9.9328

3000.0 -1392.5285 10.0555

3500.0 -1364.2449 10.1890

4000.0 -1334.9855 10.3356
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Table A4 Enthalpy and volume data calculated at various pressures and

temperatures for MgO.PI MDS model.

P/kbars T/K Enthalpy/kJmol^K'1 Volume/cn^mor1

-0.0434 1000.2 -2006.053544 11.6956

-0.0355 1249.8 -1993.611718 11.8572

0.0043 1499.8 -1979.880587 12.0294

-0.0110 1749.7 -1965.680565 12.2065

-0.0807 2000.6 -1951.174124 12.4099

-0.0367 2500.4 -1920.840793 12.8566

-0.0698 3000.1 -1886.375140 13.5005

99.9 1000.1 -1898.658229 11.0361

99.9 1250.0 -1885.478408 11.1440

99.9 1499.5 -1872.053737 11.2560

100.0 1750.1 -1858.505291 11.3719

99.9 2000.4 -1844.778640 11.4836

99.9 2499.8 -1816.411442 11.7376

99.9 3000.2 -1786.993410 12.0219

99.9 3499.3 -1756.345307 12.3488

200.0 1000.1 -1794.411895 10.5617

200.0 1249.9 -1781.367500 10.6388

199.9 1500.2 -1768.188157 10.7203

200.0 1750.1 -1754.752297 10.8098

199.9 2000.0 -1741.330857 10.8941

199.9 2500.0 -1713.862173 11.0791

199.9 2999.9 -1685.672098 11.2721

200.0 3498.9 -1656.466636 11.4825
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Table A4 Continued

P/kbars T/K Enthalpy/kJmol^K'1 Volume/cu^mol'1

300.0 1000.5 -1693.648629 10.1805

300.0 1250.1 -1680.666294 10.2447

299.9 1500.1 -1667.539076 10.3113

300.0 1749.8 -1654.358911 10.3809

299.9 1999.7 -1641.006244 10.4496

300.0 2499.9 -1614.020438 10.5930

299.9 2999.8 -1586.192495 10.7425

300.0 3499.5 -1557.983236 10.9003

400.0 749.6 -1608.674772 9.8157

399.9 999.9 -1595.831274 9.8697

400.0 1500.5 -1569.876407 9.9790

399.9 2000.1 -1543.521156 10.0957

399.9 2500.3 -1516.706552 10.2111

399.9 3000.1 -1489.466513 10.3383

399.9 3499.4 -1461.549067 10.4632

499.9 749.1 -1513.335894 9.5572

499.9 1249.5 -1487.605160 9.6497

499.9 1500.0 -1474.563722 9.6947

499.9 1999.3 -1448.466975 9.7950

499.8 2500.0 -1421.737227 9.8955

499.9 3000.0 -1394.683639 9.9996

499.9 3499.6 -1367.221713 10.1146

499.9 4000.4 -1338.964623 10.2287
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Table A5 Enthalpy and volume data calculated at various pressures and

temperatures for MgSi03 perovskite LDS model.

P/kbars T/K Enthalpy/kJmor'K'1 Volume/cn^mol'1

0.001 500.0 -7082.1800 24.6811

750.0 -7052.8050 24.9386

1000.0 -7020.6305 25.2493

1250.0 -6985.7573 25.6473

100.0 500.0 -6844.1752 23.7439

1000.0 -6784.7901 24.1328

1500.0 -6718.4861 24.6224

2000.0 -6645.1312 25.2925

200.0 500.0 -6613.6089 22.9875

1000.0 -6555.4226 23.2901

1500.0 -6491.1120 23.6496

2000.0 -6422.8722 24.0720

2500.0 -6349.7407 24.5947

3000.0 -6265.6287 25.3802

300.0 500.0 -6389.4041 22.3502

1000.0 -6332.0883 22.5991

1500.0 -6268.8636 22.8884

2000.0 -6202.5065 23.2135

2500.0 -6133.1608 23.5832

3000.0 -6060.0088 24.0179
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Table A5 Continued

P/kbars T/K Enthalpy/kJmol^K'1 Volume/cm3mor1

400.0 500.0 -6170.7341 21.7986

1000.0 -6114.1217 22.0105

1500.0 -6051.6291 22.2541

2000.0 -5986.3579 22.5220

2500.0 -5918.7783 22.8168

3000.0 -5848.6911 23.1450

500.0 500.0 -5956.9523 21.3122

1000.0 -5900.9475 21.4967

1500.0 -5839.0043 21.7078

2000.0 -5774.4691 21.9370

2500.0 -5707.9663 22.1847

3000.0 -5639.5225 22.4536

3500.0 -5568.9010 22.7485

4000.0 -5495.6040 23.0772

1000.0 500.0 -4946.3893 19.4890

1000.0 -4892.6934 19.5990

1500.0 -4832.4626 19.7250

2000.0 -4769.8590 19.8589

2500.0 -4705.8385 19.9991

3000.0 -4640.7077 20.1453

3500.0 -4574.5595 20.2976
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Table A6 Enthalpy and volume data calculated at various pressures and

temperatures for MgSi03 perovskite MDS model.

P/kbars T/K Enthalpy/kJmol^K'1 Volume/cm3m or1

-0.0632 750.5 -7061.789015 24.8830

0.0175 999.9 -7029.052610 25.1440

-0.0619 1249.9 -6995.201434 25.4426

0.0047 1500.2 -6960.583161 25.7734

-0.0829 2000.3 -6887.256762 26.7214

100.0 499.9 -6857.585981 23.6927

100.0 1000.1 -6792.765094 24.0853

100.0 1500.0 -6726.337092 24.5093

99.9 2000.3 -6657.714246 24.9898

100.0 2500.2 -6586.020642 25.5318

200.0 500.0 -6628.170463 22.9413

200.0 1000.3 -6563.762480 23.2558

200.0 1500.3 -6497.948831 23.5884

200.0 2000.4 -6430.583556 23.9508

199.8 2500.2 -6361.213494 24.3522

199.9 3000.0 -6289.330411 24.7807

300.0 500.3 -6404.981420 22.3062

299.9 1000.0 -6340.945683 22.5687

299.9 1500.1 -6275.747414 22.8478

299.9 2000.0 -6209.110432 23.1392

299.9 2499.4 -6141.046879 23.4503
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Table A6 Continued

P/kbars T/K Enthalpy/kJmol^K'1 Volume/cn^mol'1

299.9 2999.7 -6071.254995 23.7883

300.0 3500.7 -5999.536785 24.1384

399.9 499.7 -6187.344660 21.7573

400.0 1000.2 -6123.454531 21.9841

400.0 1499.7 -6058.575656 22.2222

399.9 1999.8 -5992.647974 22.4679

399.9 2500.0 -5925.215582 22.7314

399.9 3000.5 -5856.256129 23.0076

399.9 3500.1 -5785.272162 23.3029

500.0 500.4 -5974.491732 21.2717

500.0 1000.1 -5910.722133 21.4734

499.9 1499.8 -5846.139071 21.6820

499.9 2000.0 -5780.540094 21.8982

500.0 2500.4 -5713.738638 22.1240

499.9 3000.4 -5644.969609 22.3677

499.9 3499.8 -5576.099973 22.6096

999.9 499.8 -4967.868003 19.4552

999.4 998.7 -4904.652182 19.5854

1000.0 1500.6 -4840.774881 19.7124

1000.0 2000.4 -4776.116127 19.8467

999.8 2500.0 -4710.701724 19.9843

999.9 3000.3 -4644.300231 20.1235

999.7 3500.4 -4577.117984 20.2678
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