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Abstract. The epistemic approach to probabilistic argumentation
assigns belief to arguments. To better understand this approach, we
consider structured arguments. Our approach is to start with a proba-
bility distribution, and generate an argument graph containing struc-
tured arguments with a probability assignment. We construct argu-
ments directly from the probability distribution, rather than a knowl-
edgebase, and then consider methods for selecting the arguments
and counterarguments to present in the argument graph. This pro-
vides mechanisms for managing uncertainty in argumentation, and
for argument-based explanations of probability distributions (that
might come from data or from beliefs of an agent).

1 INTRODUCTION

Recently there has been some interest in extending abstract argumen-
tation to handle probabilistic formalisation of uncertainty. Probabilis-
tic approaches for modeling uncertainty in argumentation include the
constellations approach and the epistemic approach [12]. The first is
based on a probability distribution over the subgraphs of the argu-
ment graph ([11] which extends [5] and [19]), and this can be used to
represent the uncertainty over the structure of the graph (i.e. whether
a particular argument or attack appears in the argument graph under
consideration). The second approach is the epistemic approach which
involves a probability distribution over the subsets of the arguments
[30, 12, 17]. This can be used to represent the uncertainty over which
arguments are believed to be accepted. A further approach is based
on labellings for arguments using in, out, and undecided, from [3],
augmented with off for denoting that the argument does not occur
in the graph [28]. A probability distribution over labellings gives a
form of probabilistic argumentation that overlaps with the constella-
tions and epistemic approaches.

The epistemic approach can be constrained (using axioms or pos-
tulates) to be consistent with Dung’s dialectical semantics, but it can
also be used as a potentially valuable alternative to Dung’s dialecti-
cal semantics [30, 12, 17]. The later is advantageous if we want to
consider enthymemes (arguments with incomplete support or claim)
which create uncertainty about the exact meaning of the argument
and associated attacks, and which in turns creates uncertainty about
which arguments are acceptable. The epistemic approach also has
advantages if we want to model imperfect agents who might not al-
ways adhere to the strict constraints of Dung’ dialectical semantics
as shown in [22]. However, focusing on the abstract level leaves open
various questions as to the meaning and role of probabilities. For an
epistemic argument, what is the meaning of the probability assign-
ment? How can we instantiate a probabilistic argument with structure
so that we can better understand its meaning? How can we generate

1 University College London, UK, email: anthony.hunter@ucl.ac.uk

logical arguments from probabilistic information? We are interested
in these kinds of question in this paper.

For an argument A, P (A) represents the degree of belief that A is
acceptable. This belief is a function of the belief in the composition
of the argument itself (for example, as a function of the belief in
its premises, belief in its claim, and belief in the derivation of the
claim from the premises), and the belief in the acceptability of other
relevant arguments (e.g. directly/indirectly supporting or attacking).
How we might formalize this depends on the kinds of arguments we
are dealing with and the kinds of application. We will investigate one
approach to formalizing this in this paper.

In previous work on probabilistic versions of structured argumen-
tation [10, 12, 26], it is assumed that a knowledgebase of formulae
is available, that the arguments are constructed from this knowledge-
base, and that the probability values are then assigned to the argu-
ments. A single probability distribution is assumed over the atoms of
the language, and this can be used to give an assignment to arguments
in such a way as to adhere some basic postulates for probabilistic ar-
gumentation. However, this still leaves open questions of how we get
the knowledgebase, and what is a principled way of constructing the
argument graph from the available arguments.

In order to address these questions in this paper, we take a dif-
ferent approach that uses the probability distribution to construct
the structured arguments. This means that the probability distribu-
tion is primary, and the logical arguments and the argument graph
constructed from them are secondary. This will give us a form of
logical argumentation for the epistemic approach to probabilistic ar-
gumentation. We start with a probability distribution that reflects ei-
ther the beliefs of the agent or the frequency distribution over some
domain. From this probabilistic information, we investigate ways to
construct structured argument graphs. First we consider an exhaus-
tive approach which provides an unnecessarily complex argument
graph, and then we consider ways to select arguments for inclusion
in an argument graph. To do this in a principled way, we also con-
sider desirable properties of the structured argument graphs that are
constructed by selecting arguments. This provides the following con-
tributions: (1) a probabilistic semantics for logical argumentation; (2)
insights into selectivity in argumentation; (3) a framework for han-
dling uncertainty in argumentation, in particular how the probabili-
ties can be harnessed, and as such provides a step towards the learn-
ing of argument graphs from data; and (4) a formalism for explaining
probability distributions (such as obtained by machine learning).

2 FRAMEWORK FOR ARGUMENTATION

We now propose a new form of logical argumentation called essen-

tial argumentation which is based on a language of literals. We as-
sume a set of literals L formed from a set of atomic propositions
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(i.e. atoms) S. Each literal is either an atomic proposition α or its
negation ¬α. For an atom α, let Atoms(α) = Atoms(¬α) = α.

We will construct directed graphs (as proposed by Dung [6]). For
a graph G, Nodes(G) is the set of nodes in G, and Arcs(G) is the set
of arcs in G. Each node in a graph denotes an argument, and each arc
(B,A) denotes an attack by B on A. An argument A is a source iff
there is no argument B such that B attacks A. For graphs G,G′, G
is a subgraph of G′, denoted G � G′, iff Nodes(G) ⊆ Nodes(G′)
and Arcs(G) ⊆ {(A,B) ∈ Arcs(G′) | A,B ∈ Nodes(G)}.

2.1 Probability distributions

We assume that a probability distribution P is over subsets of S
(i.e. P : ℘(S) → [0, 1] such that

∑
X⊆L P (X) = 1). We use

each subset of atoms as a model, and so for X ⊆ S, and a Boolean
combination of literals φ, we use X |= φ to denote X satisfies φ us-
ing the classical entailment relation. For example, {b} |= ¬a where
S = {a, b}. For each S, we assume an ordering over the sequence of
atoms 〈α1, . . . , αn〉 so that we can encode each model by a binary
number: For a model X , if the ith argument is in X , then the ith
digit is 1, otherwise it is 0. For example, for the sequence of atoms
〈a, b, c〉, the model {a, c} is represented by 101.

The probability distribution concerns the truth of the atomic
propositions. For example, if we are considering a domain with the
concepts birds (b) and flying things (f ), then we have a probability
distribution over the powerset of {b, f}, and then we need to give a
probability to each of {}, {b}, {f}, and {b, f} being true with the
sum being 1. We can do this by assuming a frame of reference. For
instance, for birds flying, ways of determining the probability distri-
bution include: (1) consider all situations (or observations, or days)
to determine which situations have birds, birds flying, etc; (2) con-
sider all individuals that are birds (or all the birds you have seen, or
read about, or watched on TV) to determine which are flying, etc; or
(3) consider all types of birds to determine which have the capability
to fly (rather than you see actually fly) to determine which types have
the capability to fly.

2.2 Essential arguments and attacks

We start with the simplest definition for an argument based on a set
of literals where the support of an argument is a set of literals, and
the claim is a literal.

Definition 1. Let L be a set of literals. A naive argument is a tuple
〈Φ, α〉 where Φ ⊆ L and α ∈ L. Let Naive(L) be the set of naive
arguments formed from L.

In this paper, we regard a naive argument 〈{β1, . . . , βn}, α〉, as
saying that an instance of “β1, . . . , βn is an instance of a”. For ex-
ample, for A = 〈{b, p}, f〉, where b denotes bird, p denotes pen-
guin, and f denotes flying-thing we say that an instance of a bird and
penguin is an instance of flying thing. A naive argument 〈Φ, α〉 is a
presumption iff Φ = ∅. For example, for 〈{}, f〉, any instance is a
flying thing by presumption.

Definition 2. For a pair of arguments A1 = 〈Φ1, α1〉 and A2 =
〈Φ2, α2〉, A1 attacks A2 iff A1 undercuts A2 or A1 rebuts A2 where
A1 undercuts A2 iff β ∈ Φ2 such that {α1} |= ¬β, and A1 rebuts

A2 iff {α1} |= ¬α2.

We could consider further types of counterarguments adapted
from deductive argumentation [8]). The following graph definition
presents all possible arguments and attacks without consideration of
a probability distribution.

A7 = 〈{a,¬a},¬a〉 A8 = 〈{a,¬a}, a〉

A1 = 〈{¬a},¬a〉 A2 = 〈{a}, a〉

A3 = 〈{},¬a〉 A4 = 〈{}, a〉

A5 = 〈{a},¬a〉 A6 = 〈{¬a}, a〉

Figure 1: The super-exhaustive graph for S = {a}.

Definition 3. A super-exhaustive graph for a set of atoms S is a
graph G where Nodes(G) = Naive(L) and Arcs(G) = {(A,B) ∈
Nodes(G)× Nodes(G) | A attacks B}.

An example of a super-exhaustive graph is Figure 1. As seen here,
any super-exhaustive graph contains inconsistent arguments (i.e. con-
tradiction between support and claim) and reflexive arguments (i.e.
claim is a premise). Hence, the graph contains a large number of ar-
guments as quantified below.

Proposition 1. For a language with n atoms (i.e. |S| = n), the
number of naive arguments is 2n× 22n.

As defined next, essential arguments are naive arguments that are
consistent and not reflexive. Returning to Figure 1, only A3 and A4

are essential arguments.

Definition 4. Let L be a set of literals and let 	 be a classi-
cal consequence relation. An essential argument is a tuple 〈Φ, α〉
where Φ ⊆ L and α ∈ L such that (1) Φ 
	 ⊥ and (2)
Atoms(Φ) ∩ Atoms(α) = ∅. Let the set of essential arguments be
Args(L). For A = 〈Φ, α〉, Support(A) = Φ, Claim(A) = α, and
Atoms(A) = Atoms(Φ) ∪ Atoms(α).

In this paper, we use literals for the support and claim. However,
for presenting them, we can give logically equivalent formulae for the
support with claim. For instance, we could represent each support as
a set of literals together with a formula that implies the claim. In other
words for an essential argument of the form 〈{β1, . . . , βn}, α〉, we
can give the logical argument 〈{β1, . . . , βn, β1∧ . . .∧βn → α}, α〉.
Clearly, the support of this is logically equivalent to the support plus
claim {β1, . . . , βn, α} of the essential argument.

Example 1. Consider the essential arguments A1 = 〈{b}, f〉 and
A2 = 〈{p, b},¬f〉. So A1 (resp. A2) is logically equivalent to A′

1 =
〈{b, b → f}, f〉 (resp. A2 = 〈{p, b, b ∧ p → ¬f},¬f〉).
Definition 5. An exhaustive graph for a set of atoms S is a graph
G where Nodes(G) = Args(L) and Arcs(G) = {(A,B) ∈
Args(G)× Args(G) | A attacks B}.

We give an example of an exhaustive graph in Figure 2 for a lan-
guage with two atoms. Because we have eliminated the inconsistent
and reflexive arguments, we have the following result which is a rel-
ative improvement on the number of naive arguments, though still
overwhelming when presented in an argument graph.

Proposition 2. For a language with n atoms (i.e. |S| = n), the
number of essential arguments is 2n× 3n−1.

To address the problem of the exhaustive graph being so large, we
introduce selectivity in Section 3. This will draw on the probability
of the arguments as considered in the next subsection.
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〈{}, a〉 [0.8] 〈{},¬a〉 [0.2]

〈{¬b},¬a〉 [0.1] 〈{¬a},¬b〉 [0.1] 〈{a}, b〉 [0.6] 〈{b}, a〉 [0.6]
〈{b},¬a〉 [0.1]

〈{¬b}, a〉 [0.2] 〈{¬a}, b〉 [0.1]

〈{a},¬b〉 [0.2]

〈{}, b〉 [0.7] 〈{},¬b〉 [0.3]

Figure 2: The exhaustive graph for the set of atoms S = {a, b}. For 〈a, b〉, let P (11) = 0.6, P (10) = 0.2, P (01) = 0.2, and P (00) = 0.
From this, the probability of each argument is given in square brackets using Definition 6.

2.3 Probability of an argument

The probability of an essential argument being acceptable is the be-
lief in the premises and the claim. The same definition is used for
deductive arguments in [12].

Definition 6. The probability of an essential argu-

ment 〈{β1, . . . , βn}, α〉, denoted P (〈{β1, . . . , βn}, α〉), is∑
X⊆Ss.t.X|=β1∧...∧βn∧α P (X).

Example 2. For the probability distribution, where b denotes “bird”,
p denotes “penguin”, and f denotes “flying-thing”, A1 = 〈{b}, f〉
has P (A1) = 0.95 and A2 = 〈{p, b},¬f〉 has P (A2) = 0.01.

〈b, p, f〉 110 101 100
p 0.01 0.95 0.04

The probability P (A1) = 0.95 means that the belief in the argument
being acceptable is very high.

Proposition 3. For arguments A,B ∈ Args(L), and probability
distribution P , if Support(A) ⊆ Support(B), and Claim(A) =
Claim(B), then P (A) ≥ P (B).

We now return to the naive arguments that are inconsistent. As we
show next, they have zero probability, and so gives a further reason
to ignore them.

Proposition 4. Let P be a probability distribution. For 〈Φ, α〉 ∈
Naive(L), if Φ ∪ {α} 	 ⊥, then P (〈Φ, α〉) = 0, and 〈Φ, α〉 
∈
Args(L).

In Figure 2, we give the probability for each argument. Whilst
this gives a perspective on the probability distribution, we have al-
ready acknowledged that we need to be selective in the arguments
we present to better represent the probabilistic information.

2.4 Epistemic extensions

For a probability distribution P , and A ∈ Args(L), P (A) is the
degree of belief that A is acceptable. When P (A) > 0.5, then the
argument is believed to be acceptable, whereas when P (A) ≤ 0.5,
then the argument is not believed to be acceptable.

Definition 7. The epistemic extension for probability distribution P
and graph G is Extension(P,G) = {A ∈ Args(G) | P (A) > 0.5}.

Example 3. For the exhaustive graph G in Figure 2, we get
Extension(P,G) = {〈{}, a〉, 〈{}, b〉, 〈{b}, a〉, 〈{a}, b〉}.

The epistemic approach provides a finer grained assessment of an
argument graph than given by Dung’s definition of extensions. By
adopting constraints on the distribution, the epistemic approach sub-
sumes Dung’s approach [30, 17]. However, there is also a need for a
non-standard view where we adopt alternative constraints on the dis-
tribution. For instance, we may wish to represent disbelief in argu-
ments even when they are unattacked [22]. Nonetheless, for the non-
standard view we may want the probabilities to respect the structure
of the graph in some sense [12, 17, 22]. For example, when argument
A attacks argument B, the rational constraint ensures that if A is
believed (i.e. P (A) > 0.5), then B is not believed (i.e. P (B) ≤ 0.5),
and coherence constraint ensures that the belief in A and B sum to
less than or equal to 1 (i.e. P (A) + P (B) ≤ 1).

Example 4. Examples of belief in arguments in Figure 3.

A1 A2 A3 A4 A5 Rational Coherence
P1 0.6 0.9 0.4 0.6 0.7 No No
P2 0.3 0.9 0.3 0.1 0.8 Yes No
P3 0.9 0.1 0.2 0.8 0.2 Yes Yes

A1

A2

A3

A4

A5

Figure 3: Example of argument graph.

So with constraints, we can manage how the structure of the
graph is reflected in the probability distribution (and vice versa), and
thereby it is a way to combine the belief in the composition of an
argument, and the belief in acceptability of its counterarguments.

2.5 Plausibility of an argument

The plausibility measure captures the probability of the argument if
the antecedent is subsequently found to be true. This is calculated by
increasing the mass assigned to each model that satisfies the support
of the argument in proportion to its current mass.

Definition 8. The plausibility distribution, denoted P̂ , for a prob-
ability distribution P and an argument A is calculated as follows,
where κ =

∑
X′|=Support(A) P (X ′). If κ = 0, then P̂ = P , other-

wise P̂ is defined for each X ⊆ S as follow.

P̂ (X) =

{
P (X)/κ if X |= Support(A)
0 if X 
|= Support(A)
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So the plausibility of an argument A is

P̂ (A) =
∑

X|=Support(A)∧Claim(A)

P̂ (X)

Example 5. Continuing Example 2, for A1 = 〈{b}, f〉, P (A1) =
0.95 and P̂ (A1) = 0.95 and for A2 = 〈{p, b},¬f〉, P (A2) = 0.01
and P̂ (A2) = 1.

At the level of arguments, the plausibility function is probabilis-
tic conditioning, and so similar to Pollock’s argument strength [25].
Unlike Pollock, we do use the measure in an inference mechanism.

Proposition 5. For all A, P̂ (A) = P (A)/P (Support(A)).

Therefore, for any probability distribution P and argument A,
P (A) ≤ P̂ (A). The following results consider what happens when
the probability and plausibility coincide, the effect of zero probabil-
ity, and the nature of the uniform distribution.

Proposition 6. For all P , P (A) = P̂ (A) iff either for all X ⊆ S, if
P (X) 
= 0, then X |= Support(A), or for all X ⊆ S, if P (X) 
= 0,
then X 
|= Support(A).

Proposition 7. For all P , if P (A) = 0, then P̂ (A) = 0.

Proposition 8. For n atoms, let G∗ be the exhaustive graph. If P
is a uniform distribution, then for each A ∈ Nodes(G∗), 1/2n ≤
P (A) ≤ 1/2 and P̂ (A) = 1/2.

In the next section, we will use the plausibility measure to help
select arguments to present in an argument graph.

3 SELECTIVITY IN ARGUMENTATION

As we have seen from Figure 2, the exhaustive graph has an over-
whelming number of arguments and attacks. To address this, we use
the probability distribution to help select arguments and attacks to
include in the argument graph, thereby providing a better representa-
tion by focusing on the key arguments and attacks.

3.1 Desiderata for selective graphs

Since, we assume the primacy of the probability distribution, the aim
of the argument graph is to explain the distribution with particular
emphasis on a query (i.e. a literal that is a claim of interest). We also
assume explanations should adhere to some principles concerning
what is shown and what is not selected. The following are desiderata
where G is a selective argument graph, P is a probability distribu-
tion, and P̂ is the corresponding plausibility function.

Faithful If G∗ is the exhaustive graph, then G � G∗.
Relevant If ψ ∈ L is a query, then there is an A ∈ Nodes(G) such

that Claim(A) ∈ {ψ,¬ψ}.
Plausible For (B,A) ∈ Arcs(G), P̂ (B) ≥ 0.5.
Informative For (B,A) ∈ Arcs(G), if B is not a source in G (i.e.

there is an undercut for B), then Atoms(B) 
= Atoms(A).
Rational For (B,A) ∈ Arcs(G), if P (B)>0.5, then P (A)≤0.5.
Semi-optimistic If for every attacked argument A, P (A) ≥ 1 −∑

B s.t. (B,A)∈Arcs(G) P (B).

We explain these properties as follows: (Faithful) selective graphs
should only contain nodes and arcs from the exhaustive graph; (Rel-
evant) the query should be an atom in the claim of an argument in

the selective graph; (Plausible) for each attack in the selective graph,
the attacker is plausible; (Informative) for each attack in the selective
graph, the attacker and attackee do not just refer to the same atoms
(unless the attacker is unattacked) – the aim is to avoid a chain of
argument, undercut, undercut to undercut, where the same atoms are
used, and so avoids unhelpful repetition of information; (Rational)
for each attack, if the attacker is believed, then the attackee is not
believed; (Semi-optimistic) for each attackee, there is a lower bound
on belief in it (e.g. A is only attacked by B, and P (B) = 0.2, then
P (A) ≥ 0.8).

3.2 Constructing selective graphs

We now consider how to construct a selective graph that meets the
desiderata. There are various ways we may wish to do this. We will
consider two options in detail. We start with the following subsidiary
definitions.

Definition 9. Let ψ be a query where ψ ∈ S and let G∗ be the
exhaustive graph. A query argument for ψ is an argument A ∈
Nodes(G∗) such that Claim(A) ∈ {ψ,¬ψ}. A starting argument

for ψ is a query argument A ∈ Nodes(G∗) for ψ such that P (A) ≥
0.5 and for all query arguments A′ ∈ Nodes(G∗) for ψ such that
P (A′) ≥ 0.5, Support(A) ⊆ Support(A′).

In general, for a query ψ, probability distribution P , and exhaus-
tive graph G∗, there is not a unique starting argument.

Example 6. Consider S = {a, b}. For query a, the query arguments
are A1 = 〈{}, a〉, A2 = 〈{},¬a〉 A3 = 〈{b}, a〉, A4 = 〈{¬b}, a〉
A5 = 〈{b},¬a〉, and A6 = 〈{¬b},¬a〉. For the following probabil-
ity distribution, A1, A2, A3, and A6 are starting arguments.

〈a, b〉 11 10 01 00
P 0.5 0.0 0.0 0.5

In the definition of a selective graph, we can use the notion of a
fixed set Ψ ⊆ L to specify that all arguments that appear in the graph
have a support that contains the fixed set. For example, returning to
Example 2, we could have the fixed set {b}, and so all arguments
A would be required to have b ∈ Support(A). Both definitions for
selective graphs in this paper use this requirement but we are not
proposing that any definition for a selective graph has to use it.

Our first type of selective graph is the procon window that presents
the starting arguments with supports that contain the fixed set. This
gives a bipartite graph.

Definition 10. A procon window for a query φ and fixed set Ψ is
a graph G � G∗ s.t. Nodes(G) = {B ∈ Nodes(G∗) | B is a
query argument for φ s.t. P̂ (B) ≥ 0.5 and Φ ⊆ Support(B)} and
Arcs(G) = {(B,A) ∈ Arcs(G∗) | B,A ∈ Nodes(G)}.

Note, in the examples of selective graphs in the rest of the paper,
the probability (respectively plausibility) of the argument is given on
the left (respectively right) in square brackets after the argument.

Example 7. Continuing Example 6, with fixed set Φ = {} and query
a, the following is the procon window.

A1 = 〈{}, a〉 [0.5, 0.5] A2 = 〈{},¬a〉 [0.5, 0.5]

A3 = 〈{b}, a〉 [0.5, 1.0] A6 = 〈{¬b},¬a〉 [0.5, 1.0]
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The following simple example indicates how procon windows can
be used to capture useful arguments for and against a diagnosis. In
this case, it is whether a particular symptom results in a particular
disease. It would be straightforward to generalize to consider multi-
ple symptoms and signs.

Example 8. Consider atoms d denoting “disease” and s denoting
“symptom”, and the following probability distribution.

〈d, s〉 11 10 01 00
P 0.09 0.01 0.0 0.9

From P , the fixed set Φ = ∅, and the query d, we get the follow-
ing procon window showing strong belief in arguments against the
disease, together with a highly plausible argument for the disease.

A1 = 〈{},¬d〉 [0.9, 0.9]
A2 = 〈{s}, d〉 [0.09, 1.0]

A3 = 〈{¬s},¬d〉 [0.9, 0.99]

Our second type of selective graph is the span window which is a
subgraph with a limit on the length of paths from each node to the
starting node. For this, we require the following subsidiary defini-
tions: For a graph G, and arguments A,B ∈ Nodes(G), the path-

length function, denoted PathLength(A,B), gives the length the
shortest path from A to B (i.e. the lowest number of arcs to traverse
from A to B). For example, in Figure 3, PathLength(A4, A1) = 2
whereas PathLength(A1, A4) = ∞. The span σ of a graph G with
a starting argument A is the highest value for pathlength of the argu-
ments B ∈ Nodes(G). So for example, for σ = 0, the graph has just
the starting argument, for σ = 1, the graph has the starting argument
and possibly direct attackers, for σ = 2, the graph has the starting
argument, and possibly direct attackers, and possibly direct attackers
to the direct attackers, and so on.

Definition 11. A span window for a starting argument A, a fixed
set Ψ ⊆ L, and a span σ ∈ N, is an acyclic graph G � G∗ s.t.:

1. for all B ∈ Nodes(G), (a) PathLength(B,A) ≤ σ; (b) Ψ ⊆
Support(B); and (c) if B 
= A, then P̂ > 0.5.

2. for all (B,C) ∈ Arcs(G), (a) if B is not a presumption, then
Atoms(B) 
⊆ Atoms(C); (b) if B is a presumption, then B is a
source; and (c) PathLength(B,A) ≥ PathLength(C,A)

We explain the conditions as follows: (1a) The span of the graph
is bounded by σ; (1b) The fixed set appears in the support of each ar-
gument in the graph; (1c) Apart from possibly the starting argument,
each argument has a plausibility greater than 0.5; (2a) Each attacker
has some atoms different to its attackee apart from when it is a pre-
sumption (so it is a specificity principle that filters out attackers that
have more general support) – e.g. in Example 9 attack by 〈{b}, f〉
on 〈{p, b},¬f〉 is not possible, whereas from 〈{p, b},¬f〉to〈{b}, f〉
is possible; (2b) Apart from possibly the starting argument, only a
source (i.e. an unattacked argument) has the possibility of being pre-
sumptive; and (2c) Each path goes to the starting argument.

Example 9. Returning to Example 2, let the query be f , we get
the query arguments 〈{b}, f〉 and 〈{¬p, b}, f〉 that are believed. Of
these,〈{¬p, b}, f〉 is the only starting argument.

〈b, p, f〉 110 101 100
P 0.01 0.95 0.04

From P , and the fixed set ∅, we obtain the following span window
for σ ≥ 3. Whereas if σ = 2, then we would not include 〈{},¬p〉 or
〈{b},¬p〉. Note, 〈{b},¬p〉 does not attack 〈{p, b},¬f〉 because of
condition 2a from Definition 11.

〈{}, f〉 [0.95, 0.95]

〈{p, b},¬f〉 [0.01, 1.0] 〈{p},¬f〉 [0.01, 1.0]

〈{b},¬p〉 [0.99, 0.99]〈{},¬p〉 [0.99, 0.99]

Furthermore, with P and the fixed set {b}, we obtain the following
span window for σ ≥ 2.

A1 = 〈{b}, f〉 [0.95, 0.95]

A2 = 〈{p, b},¬f〉 [0.01, 1.0]

Example 10. Let c denote “patient has a cold”, f denote “patient
has flu”, and e denote “there is a flu epidemic currently”. Consider
the following probability distributions.

〈c, f, e〉 101 100 011 010 001 000
P 0.05 0.7 0.1 0.02 0.03 0.1

From P , we obtain the following span window for σ ≥ 3. So by pre-
sumption, the patient does not have a cold. Whilst, there are plausible
counterarguments, there are strong reasons to reject those.

〈{},¬f〉 [0.88, 0.88]

〈{e}, f〉 [0.1, 0.56] 〈{e,¬c}, f〉 [0.1, 0.77]

〈{c},¬e〉 [0.7, 0.93]

〈{},¬e〉 [0.82, 0.82]

〈{}, c〉 [0.75, 0.75]

Example 11. We extend Example 10 with the atom s to denote “pa-
tient displays symptoms of flu”, and the following probability distri-
bution.

〈s, c, f, e〉 1101 1011 1001
P 0.1 0.8 0.1

With P and Φ = {s, e}, we get the following span window for σ ≥ 2.
So there is a strong argument for the patient having flu.

A1 = 〈{s, e}, f〉 [0.8, 0.8]

A2 = 〈{c, s, e},¬f〉 [0.1, 1.0]

We now consider the graphs produced by the procon and span win-
dow definitions with respect to the desiderata properties.

Proposition 9. If G is the selective graph for G∗ obtained as
a procon (respectively span) window, then G satisfies the proper-
ties of faithful, relevant, plausible, informative, rational, and semi-
optimistic, given at the start of this subsection.

The epistemic extension of a selective graph G is sound with re-
spect to the epistemic extension of the exhaustive graph G∗.
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Proposition 10. For a probability distribution P , exhaustive graph
G∗, and selective graph G � G∗,

Extension(P,G) = Extension(P,G∗) ∩ Nodes(G)

Clearly there are various options for windows from an exhaustive
graph. We have provided two definitions that meet a set of desirable
properties. However, for different applications, we may choose an
alternative set of desirable properties. For instance, for more literals,
we generate more arguments, and we may want to restrict the length
of branches by limiting the support of arguments to have at least one
atom that has not occurred on the branch to the starting argument or
we may want to restrict the branching factor by limiting the over-
lap between siblings. These longer range requirements can then be
reflected in new definitions for windows. We may also consider al-
ternatives to the plausibility measure for deciding which arguments
to include in the window.

4 COMMITMENT IN ARGUMENTATION

We now consider how we can analyse an argument graph by updating
a probability distribution by making commitments to specific atomic
propositions which we do by using probability statements. A prob-
ability statement is of the form (α, v) where α ∈ S is an atomic
proposition and v ∈ [0, 1].

Definition 12. Let Γ be a set of probability statements. A probability
distribution P is committed to Γ iff for each (α, v) ∈ Γ, P (α) = v.
A set of probability statements Γ is consistent iff there is a probabil-
ity distribution P such that P is committed to Γ.

Commitment is not necessarily to 0 or 1 because there may still be
uncertainty about the atom.

Definition 13. Let P be a probability distribution, and let Γ be a
consistent set of probability statements (i.e. if p(α, v1) ∈ Γ, and
(α, v2) ∈ Γ, then v1 = v2). A commitment function is function of
the form Com(P,Γ) = P ′.

Since argumentation is about dealing with incomplete and incon-
sistent information, commitment can be used as part of a process
of eliminating uncertainty. At the start perhaps there is uncertainty
about all the atoms in S, and then as the problem is investigated
(perhaps by asking questions, doing research, seeking advice, etc),
commitments are made to atoms

Commitment can also be used hypothetically. In this way, com-
mitments can be made to investigate scenarios. So different choices
for Γ would denote different scenarios. From this, the robustness of
specific arguments could be identified. For instance, if a particular
argument, or a particular claim, occurs for a wide variety of choices
of Γ, then that argument or claim would appear to be more robust.

The following are some optional requirements for commitment:
(Tautology) An empty commitment should not change the probabil-
ity distribution; (Idempotence) Repeating a commitment should not
change the result; and (Invariance) The order in which the commit-
ments are done should not affect the result.

Tautology Com(P, ∅) = P .
Idempotence If Com(P,Γ) = P ′ then Com(P ′,Γ) = P ′.
Invariance Com(Com(P,Γ1),Γ2) = Com(Com(P,Γ2),Γ1).

Next, we define a particular commitment function which updates
the satisfying models by the ratio of the desired and current value

for the atom, and similarly for the non-satisfying models. For this,
we assume that for any commitment (α, v), 0 < P (α) < 1 (i.e.
it is not the case that α is completely believed or disbelieved). It
is straightforward to generalize the definition in order to drop this
restriction.

Definition 14. A simple commitment by probability distribution P
to a statement (α, v), where P (α) ∈ (0, 1), is a distribution P ′,
denoted Simple(P, (α, v)), as follows, where X ⊆ S is a model:

P ′(X) =

⎧⎨
⎩

P (X)× v
P (α)

if X |= α and v > 0

P (X)× 1−v
1−P (α)

if X 
|= α and v < 1

0 otherwise

For Γ = {(α1, v1), . . . , (αn, vn)}, the simple commitment function,
denoted Coms(P,Γ) = Pn, is defined recursively as follows for i ∈
{1, . . . , n}, where P0 is P , and Γi+1 = Γi \ {(αi, vi)}.

Coms(Pi−1, {(αi, vi)} ∪ Γi+1)
= Coms(Simple(Pi−1, (αi, vi)),Γi+1)

Coms(Pn, {}) = Pn

So we obtain P1 from P0 and (α1, v1), P2 from P1 and (α2, v2),
and so on until Pn from Pn−1 and (αn, vn).

Example 12. Below we give a probability distribution P , and the
result distribution for each of three alternatives for committing to b.

Update 〈a, b〉 11 10 01 00
P 0.05 0.75 0.1 0.1

P1 (b, 1) 0.33 0 0.67 0
P2 (b, 0.4) 0.13 0.53 0.27 0.07
P3 (b, 0.1) 0.03 0.79 0.07 0.11

Commitment causes mass to be transferred to a smaller subset of
models.

Example 13. Continuing with the atoms in Example 2, we start with
P1 being all instances of vertebrate in a particular zoo. Using com-
mitment, P2 is obtained from P1 with the commitment (b, 1) (i.e. it is
a bird), and then P3 is obtained from P2 with the commitment (p, 0)
(i.e. it is not a penguin),

〈b, p, f〉 110 101 100 000
P1 0.01 0.085 0.005 0.9
P2 0.1 0.85 0.05 0
P3 0 0.94 0.06 0

From P1, we obtain the following span window for σ ≥ 3.

〈{},¬f〉 [0.915, 0.915]

〈{b,¬p}, f〉 [0.085, 0.94] 〈{b}, f〉 [0.085, 0.85]

〈{},¬b〉 [0.9, 0.9] 〈{¬p},¬b〉 [0.9, 0.91]

From P2, we obtain the following with σ ≥ 2 and Φ = {b}.

〈{b}, f〉 [0.85, 0.85] 〈{p, b},¬f〉 [0.1, 1.0]

From P3, we obtain the following with σ ≥ 1 and Φ = {b,¬p}.

〈{b,¬p}, f〉 [0.94, 0.94]
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The simple commitment function produces a probability distribu-
tion.

Proposition 11. For a probability distribution P , and statements Γ,
if Coms(P,Γ) = P ′, then P ′ is a probability distribution.

For any commitments, the simple commitment function satisfies
tautology and idempotence. However, when they are restricted to 0
or 1, then it also satisfies invariance.

Proposition 12. For Γ = {(α1, v1), . . . , (αn, vn)}, if each i ∈
{1, . . . , n}, it is the case that vi ∈ {0, 1}, then Coms(P,Γ) function
satisfies tautology, idempotence, and invariance.

If a probability distribution already agrees with a probability state-
ment, then there is no change with simple commitment.

Proposition 13. If P (α) = v and Coms(P, {(α, v)}) = P ′, then
P = P ′.

In the following, we show that the simple commitment function
is a generalization of the plausibility measure and therefore of prob-
abilistic conditioning. In the plausibility measure, there is a hypo-
thetical commitment to the support of an argument being completely
believed, whereas commitment is to any literal, and the commitment
can be for any value in the unit interval (as long we do not require
invariance).

Proposition 14. For an argument A, if Support(A) =
{β1, . . . , βn}, and P (Support(A)) > 0, then P̂ (A) = P ′(A),
where Γ = {(β1, 1), . . . , (βn, 1)}, and Coms(P,Γ) = P ′.

Finally, we formalize an example of defeasible reasoning taken
from Pollock [24] concerning whether something is red, thereby
showing how the updates can be captured as commitments.

Example 14. Let i denote “illumination is red”, o denote “looks
red”, and r denote “it is red”. Consider query r, and fixed set {o}.

〈i, o, r〉 111 110 011
P 0.025 0.075 0.9

P ′ 0.25 0.75 0

From P , we obtain the following span window for σ ≥ 2.

A1 = 〈{o}, r〉 [0.93, 0.93]

A2 = 〈{i, o},¬r〉 [0.07, 0.75]

So argument A1, which is believed, says that with the observation of
the item looking red, the item is red, whereas the counterargument,
which is disbelieved, says that with the observation of the item look-
ing red, together with the illumination being red, the item is not red.
So the counterargument is not believed, but the plausibility is high,
indicating a reason to doubt the argument A1. Furthermore, if the
probability distribution is revised to give belief in P ′(i) = 1 and
P ′(o) = 1, and the fixed set is Φ = {i, o}, then the selective graph
is the following with just one node. So now the argument against the
item being red is believed.

A′
2 = 〈{i, o},¬r〉 [0.75, 0.75]

We propose the simple commitment function as an illustration of
how we can define commitment, and show how it can be useful to
capture updates that are not necessarily categorical. Alternative ap-
proaches to defining commitment functions include Jeffrey’s updat-
ing rule [18], refinement [13], and distance-based methods that min-
imize the change to a probability distribution [16].

5 COMPARISON WITH LITERATURE

The two main approaches to probabilistic (abstract) argumentation
are the constellations and the epistemic approaches [12]. In the
epistemic approach, the topology of the argument graph is fixed,
but there is uncertainty about whether an argument is believed
[30, 12, 1, 13, 7, 14, 15, 17]. The epistemic approach has been ex-
tended to also allow a probability distribution over subsets of attacks,
and thereby represent belief in each attack [23].

At the structured level, Haenni [10] considered a restricted form
of probabilistic argumentation in which pros and cons are generated
from a classical logic knowledgebase, and then a probability distri-
bution over models of the language are used to assign a belief in each
argument. Subsequently, this was generalized by Hunter to arbitrary
argument graphs [12] in which various kinds of counterargument can
be accommodated. More recently, Prakken considered a similar ap-
proach for ASPIC+ [26]. In other logic-based proposals, Verheij has
combined probabilities with non-monotonic inference [32] and sep-
arately, he has combined qualitative reasoning in terms of reasons
and defeaters (adapting Pollock’s definitions [25]), with quantitative
reasoning using argument strength (modeled as the conditional prob-
ability of the conclusions given the premises) [33]. In these five pro-
posals, it is assumed that somehow a knowledgebase of formulae is
available, that the arguments are constructed from this knowledge-
base, and that the probability values are then assigned to the argu-
ments. In contrast, in this paper, we generate all possible arguments
based in the language, then we select arguments for the graph based
on the probability distribution and requirements for the graph.

Dung and Thang [5] provided the first proposal for a probability
distribution over sets of arguments which is used to obtain a proba-
bility distribution over induced subgraphs. This is then used with a
probabilistic version of assumption-based argumentation. Then, Li et
al [19] proposed a probability assignment to arguments and attacks,
and when assuming independence, these can be used to generate a
probability distribution over subgraphs. Both these proposals can be
viewed as special cases of the constellation approach (as opposed
to the epistemic approach used in this paper). In another rule-based
system for dialogical argumentation, the belief in the premises of an
argument is used to calculate the belief in the argument, though the
nature of this belief is not investigated [29].

Bayesian networks can be used to model argumentative reason-
ing with arguments and counterarguments [34]. In a similar vein,
Bayesian networks can be used to capture aspects of argumentation
in the Carneades model where the propagation of argument applica-
bility and statement acceptability can be expressed through condi-
tional probability tables [9]. Argumentation can also be used to help
construct Bayesian networks [2, 35]. Going the other way, arguments
can be generated from a Bayesian network, and this can be used to
explain the Bayesian network [31]. This involves constructing argu-
ments involving a rule-based language in ASPIC+ for reflecting the
network structure. Finally, argumentation can be used to combine
multiple Bayesian networks [20]. However, none of the above works
offer a way to generate the arguments from the probability distribu-
tion, or a way to select arguments to present in a graph, as we have
provided in this paper.

6 DISCUSSION

In this paper, we have provided a framework for generating and an-
alyzing argument graphs from a probability distribution. This of-
fers a more accessible and better explained way of viewing and
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analysing the distribution (as illustrated in the examples, each graph
is easier to assimilate than its corresponding probability distribution).
Furthermore, it is configurable. We can select the choice of argu-
ments/attacks as a type of window, and we can consider the require-
ments of the window as a set of constraints. We can consider different
requirements as desirable properties, and we can draw on measures
such as belief and plausibility to define these requirements and win-
dows. This proposal is interesting for applications as we can obtain
a probability distribution from data, ML models, or asking people
for belief in scenarios. Argumentation can then make sense of the
distribution, provide explanations, or be used to make decisions.

Being selective when constructing argument graphs appears to re-
flect how humans are not exhaustive when arguing. This selectivity
may be based on various criteria, but belief in arguments is likely
to be an important aspect. In future work, we will investigate this in
empirical evaluation with participants, and so follow a recent trend in
evaluating argumentation formalisms [27, 4, 22]. This may include
studying whether people prefer some kinds of window over others,
whether given the probabilistic information, people would tend to
produce the same arguments and counterarguments as our approach,
and whether when people are given an argument graph produced
by our methods, they understand the probabilistic information bet-
ter (perhaps by providing better answers to questions). Also in future
work, we will consider situations without a unique probability dis-
tribution. For example, we might only know the belief in some for-
mulae which might be the case if we are dealing with enthymemes.
For this, we may use the principle of maximum entropy to select a
unique probability distribution (see for example [21, 17]).

REFERENCES

[1] P. Baroni, M. Giacomin, and P. Vicig, ‘On rationality conditions for
epistemic probabilities in abstract argumentation’, in Proceedings of
the Fifth International Conference on Computational Models of Argu-
mentation (COMMA’14), (2014).

[2] F. Bex and S. Renooij, ‘From arguments to constraints on a Bayesian
network’, in Proceedings of the Sixth International Conference on
Computational Models of Argumentation (COMMA’16), (2016).

[3] M. Caminada and D. Gabbay, ‘A logical account of formal argumenta-
tion’, Studia Logica, 93, 109–145, (2009).

[4] F. Cerutti, N. Tintarev, and N. Oren, ‘Formal arguments, preferences,
and natural language interfaces to humans: an empirical evaluation’,
in Proceedings of the European Conference on Artificial Intelligence
(ECAI’14), volume 263 of FAIA, pp. 1033–1034. IOS Press, (2014).

[5] P. Dung and P. Thang, ‘Towards (probabilistic) argumentation for jury-
based dispute resolution’, in Proceedings of the Third International
Conference on Computational Models of Argumentation (COMMA’10),
pp. 171–182. IOS Press, (2010).

[6] P. M. Dung, ‘On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games’,
Artificial Intelligence, 77(2), 321–358, (1995).

[7] D. Gabbay and O. Rodrigues, ‘Probabilistic argumentation: an equa-
tional approach’, Logica Universalis, 9(3), 345–382, (2015).

[8] N. Gorogiannis and A. Hunter, ‘Instantiating abstract argumentation
with classical logic arguments: Postulates and properties’, Artificial In-
telligence, 175(9-10), 1479–1497, (2011).

[9] M. Grabmair, T. Gordon, and D. Walton, ‘Probabilistic semantics for
the carneades argument model using Bayesian networks’, in Proceed-
ings of the Third International Conference on Computational Models
of Argumentation (COMMA’10), pp. 255–266, (2010).

[10] R. Haenni, ‘Modelling uncertainty with propositional assumptions-
based systems’, in Applications of Uncertainty Formalisms, LNCS,
446–470, Springer, (1998).

[11] A. Hunter, ‘Some foundations for probabilistic abstract argumenta-
tion’, in Proceedings of the Fourth International Conference on Com-
putational Models of Argumentation (COMMA’12), pp. 117–128. IOS
Press, (2012).

[12] A. Hunter, ‘A probabilistic approach to modelling uncertain logical ar-
guments’, International Journal of Approximate Reasoning, 54(1), 47–
81, (2013).

[13] A. Hunter, ‘Modelling the persuadee in asymmetric argumentation di-
alogues for persuasion’, in Proceedings of the 24th International Joint
Conference on Artificial Intelligence (IJCAI’15), (2015).

[14] A. Hunter, ‘Persuasion dialogues via restricted interfaces using proba-
bilistic argumentation’, in Proceedings of the 10th International Con-
ference on Scalable Uncertainty Management (SUM’16), (2016).

[15] A. Hunter, ‘Two dimensional uncertainty in persuadee modelling in ar-
gumentation’, in Proceedings of the 22nd European Conference on Ar-
tificial Intelligence (ECAI’16), (2016).

[16] A. Hunter and N. Potyka, ‘Updating probabilistic epistemic states in
persuasion dialogues,’, in Proceedings of European Conference on
Symbolic and Quantitative Approaches to Uncertainty (ECSQARU’17),
volume 10369 of LNCS, pp. 46–56, (2017).

[17] A Hunter and M Thimm, ‘Probabilistic reasoning with abstract argu-
mentation frameworks’, Journal of Artificial Intelligence Research, 59,
565–611, (2017).

[18] R. Jeffrey, The Logic of Decision, Chicago University Press, 1965.
[19] H. Li, N. Oren, and T. J. Norman, ‘Probabilistic argumentation frame-

works’, in Proceedings of the First International Workshop on the The-
ory and Applications of Formal Argumentation (TAFA’11), (2011).

[20] S. Nielsen and S. Parsons, ‘An application of formal argumentation:
fusing Bayesian networks in multi-agent systems’, Artificial Intelli-
gence, 171(10-15), 754–775, (2007).

[21] N. Nilsson, ‘Probabilistic logic’, Artificial Intelligence, 28, 71–87,
(1995).

[22] S Polberg and A Hunter, ‘Empirical evaluation of abstract argumen-
tation: Supporting the need for bipolar and probabilistic approaches’,
International Journal of Approximate Reasoning, 93, 487–543, (2018).

[23] S. Polberg, A. Hunter, and M. Thimm, ‘Belief in attacks in epis-
temic probabilistic argumentation’, in Proceedings of the International
Conference on Scalable Uncertainty Management (SUM’17), volume
10564 of LNCS, pp. 223–236. Springer, (2017).

[24] J. Pollock, ‘Defeasible reasoning’, Cognitive Science, 11(4), 481–518,
(1987).

[25] J. Pollock, Cognitve Carpentry, MIT Press, 1995.
[26] H. Prakken, ‘Probabilistic strength of arguments with structure’, in Pro-

ceedings of International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’18), (2018).

[27] I. Rahwan, M Madakkatel, J. Bonnefon, R Awan, and S. Abdallah, ‘Be-
havioural experiments for assessing the abstract argumentation seman-
tics of reinstatement’, Cognitive Science, 34(8), 1483–1502, (2010).

[28] R. Riveret and G. Governatori, ‘On learning attacks in probabilistic ab-
stract argumentation’, in Proceedings of the 15th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS’16),
(2016).

[29] R. Riveret, A. Rotolo, G. Sartor, H. Prakken, and B. Roth, ‘Success
chances in argument games: a probabilistic approach to legal disputes’,
in Proceedings of the 20th Annual Conference on Legal Knowledge and
Information Systems (JURIX’07), pp. 99–108. IOS Press, (2007).

[30] M. Thimm, ‘A probabilistic semantics for abstract argumentation’, in
Proceedings of the 20th European Conference on Artificial Intelligence
(ECAI’12), (August 2012).

[31] S. T. Timmer, J.-J. Ch. Meyer, H. Prakken, S. Renooij, and B. Verheij,
‘Explaining Bayesian networks using argumentation’, in Proceedings
of the 13th European Conference on Symbolic and Quantitative Ap-
proaches to Reasoning with Uncertainty (ECSQARU’15), (2015).

[32] B. Verheij, ‘Jumping to conclusions: A logico-probabilistic founda-
tion for defeasible rule-based arguments’, in Proceedings of the Eu-
ropean Conference on Logics in Artificial Intelligence (JELIA’12), vol-
ume 7519 of LNCS, pp. 411–423. Springer, (2012).

[33] B. Verheij, ‘Arguments and their strength: revisiting Pollock’s anti-
probabilistic starting points’, in Proceedings of the Fifth International
Conference on Computational Models of Argumentation (COMMA’14),
(2014).

[34] G. Vreeswijk, ‘Argumentation in Bayesian belief networks’, in Pro-
ceedings of the First International Workshop on Argumentation in
Multi-Agent Systems (ArgMAS’04), pp. 111–129, (2004).

[35] R. Wieten, F. Bex, H. Prakken, and S. Renooij, ‘Supporting discus-
sions about forensic bayesian networks using argumentation’, in Pro-
ceedings of the International Conference on Artificial Intelligence and
Law (ICAIL’19), pp. 143–152, (2019).

A. Hunter / Generating Instantiated Argument Graphs from Probabilistic Information776


