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OBJECTIVES The goal of this study was to evaluate the role of dynamic substrate changes in facilitating conduction

delay and re-entry in ventricular tachycardia (VT) circuits.

BACKGROUND The presence of dynamic substrate changes facilitate functional block and re-entry in VT but are rarely

studied as part of clinical VT mapping.

METHODS Thirty patients (age 67 � 9 years; 27 male subjects) underwent ablation. Mapping was performed with the

Advisor HD Grid multipolar catheter. A bipolar voltage map was obtained during sinus rhythm (SR) and right ventricular

sensed protocol (SP) single extra pacing. SR and SP maps of late potentials (LP) and local abnormal ventricular activity

(LAVA) were made and compared with critical sites for ablation, defined as sites of best entrainment or pace mapping.

Ablation was then performed to critical sites, and LP/LAVA identified by the SP.

RESULTS At a median follow-up of 12 months, 90% of patients were free from antitachycardia pacing (ATP) or

implantable cardioverter-defibrillator shocks. SP pacing resulted in a larger area of LP identified for ablation (19.3 mm2

vs. 6.4 mm2) during SR mapping (p ¼ 0.001), with a sensitivity of 87% and a specificity of 96%, compared with 78% and

65%, respectively, in SR.

CONCLUSIONS LP and LAVA observed during the SP were able to identify regions critical for ablation in VT with a greater

accuracy than SRmapping. This may improve substrate characterization in VT ablation. The combination of ablation to critical

sites and SP-derived LP/LAVA requires further assessment in a randomized comparator study.

(J Am Coll Cardiol EP 2020;-:-–-) © 2020 The Authors. Published by Elsevier on behalf of the American College of

Cardiology Foundation. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

DEEP = decrement-evoked

potential

ERP = effective refractory

period

LAVA = local abnormal

ventricular activation

LP = late potentials

RV = right ventricular

SP = sense protocol

VT = ventricular tachycardia
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V entricular tachycardia (VT) is classi-
cally associated with re-entrant
arrhythmia over a fixed anatomical

structure. Activation and entrainment map-
ping of VT remain the gold standard for iden-
tifying critical sites for ablation of VT (1);
however, this method is limited by poorly
tolerated or nonsustained VT. Several
substrate-guided approaches have been
developed to overcome this, including scar
homogenization (2) and late potentials (LP)
mapping (3–5). However, outcomes when
comparing both methods are similar (6), and
procedure success can be as low as 47% (7).
A key element in facilitating VT is the presence of
dynamic changes within the substrate that may not
be evident during sinus rhythm substrate mapping
but may form a critical aspect of the tachycardia
mechanism when conduction velocity slows dynam-
ically and tissue refractory periods lengthen. We have
previously described dynamic substrate changes
within regions of myocardial scar and LP (8). Several
methods have been studied to invoke dynamic sub-
strate changes in critical regions for ablation,
including decrement-evoked potential (DEEP) map-
ping (9,10), which involves a drive train and S2 pacing
protocol, and evoked delayed potential mapping, in
which electrogram changes during right ventricular
(RV) drive train pacing and S1 to S2 pacing are
examined (11). However, VT on device traces is often
seen to be initiated by single extrasystolic beats
(12,13).

The current study aimed to investigate dynamic
substrate changes to local abnormal ventricular ac-
tivity (LAVA) and LP, in relation to critical sites for VT
ablation using high-resolution mapping of the
ventricle with the Advisor HD Grid (Abbott, Inc.,
Abbott Park, Illinois), during short coupled single
extrastimuli from the right ventricle (Barts Sense
Protocol [SP]), designed to invoke conduction delay.
We hypothesized that the dynamic functional sub-
strate mapping would improve the identification of
critical substrate.

METHODS

PATIENT DEMOGRAPHIC CHARACTERISTICS. Thirty
consecutive patients (mean age 67 � 9 years; 27 male
subjects) with ischemic cardiomyopathy undergoing
clinical VT ablation for symptomatic antitachycardia
pacing, symptomatic sustained VT, or implantable
cardioverter-defibrillator shocks were enrolled from 2
UK centers. Mean ejection fraction was 25 � 10%.
Supplemental Table 1 summarizes the patient cohort.
The study conformed to the Declaration of Helsinki,
and patients gave informed consent. Research was
approved by the local Research Ethics Committee.

VT MAPPING AND ABLATION PROTOCOL: THE

BARTS SP. VT Mapping and ablation were performed
by using the EnSite Precision mapping system
(Abbott, Inc.) (Figure 1A, Central Illustration). Endo-
cardial access to the left ventricle was obtained by
using the retrograde arterial or transseptal ap-
proaches. A hexapolar catheter was placed in the RV
apex for pacing, with the proximal pole located in the
inferior vena cava blood pool as the reference for
unipolar signals.

Two substrate maps were obtained, one during si-
nus rhythm and one mapping the paced beat of a
single sensed extra from the RV apex (Barts SP) to
invoke left ventricular conduction delay (Figure 1B).
Maps were performed simultaneously by using turbo
mapping. The Barts SP involves finding the effective
refractory period (ERP) of the single paced RV sensed
extra (without a drive train), delivering single sensed
extras at 20 ms above RV ERP every fifth beat, tem-
plating the morphology of this paced beat, and col-
lecting points that match the template morphology to
create a substrate map of this paced beat (Figure 1C).
LP were defined, as per published literature (3,5), as
isolated high-frequency local electrograms after the
offset of the terminal portion of the QRS. To assess
local activation time of LP, the window of interest
was set at þ500 ms from reference.

Following this, activation complemented by
entrainment mapping of induced VTs were performed
in 21 patients, 9 of whom also had pace mapping
performed for additional conformation. The critical
isthmus during entrainment mapping was considered
according to established criteria (1). Where mapping/
entrainment in VT was not possible, a pace map
strategy was used (9 of 30 patients); we aimed for a
match >96% to the clinical VT, as previously
described (14). A total of 75 VTs were entrained
(n ¼ 45) or pace mapped (n ¼ 30) in 30 patients.
Ablation was then performed to sites of best
entrainment/pace map and all LP and LAVA sub-
strates defined by the Barts SP, using the TactiCath
Ablation Catheter (Abbott Inc.), irrigated at a power of
50 W, targeting a lesion size index of 7 for each lesion.
Procedure endpoint was VT noninducibility. Non-
inducibility was confirmed by programmed electrical
stimulation, with a drive at 600 ms and 400 ms per-
formed until ERP at S4 from the RV apex and base.
Nonclinical VTs were not ablated.

DATA COLLECTION AND ANALYSIS. Substrate maps
were collected by using the Advisor HD Grid

https://doi.org/10.1016/j.jacep.2020.06.037


FIGURE 1 High Density Grid and Sense Protocol Mapping Technique

(A) High-density (HD) grid and schematic of the HD wave solution. The HD grid consists of 16 equally spaced electrodes arranged in a 4 � 4

grid. Bipolar wave fronts are measured both along and across the splines, with the HD wave solution selecting the highest amplitude signal

from 2 orthogonal bipoles, thus obviating the problem of bipolar blindness whereby a wave front traveling across and along the splines would

record a low-amplitude signal. (B) Schematic showing the 5 steps of the Barts Sense Protocol. Maps of late potentials are made automatically

using the TurboMap feature, which allows retrospective maps to be created from the data. (C) Example of Barts Sense Protocol mapping for

late potentials. The paced beat is templated within the mapping system, and points acquired based on a good score match to the paced

morphology. HD grid signal with late potentials can be seen; the latest deflection is demarcated as a yellow line and is created automatically by

the mapping system with manual user checks/correction. This creates a timing map based on timing of late potentials post-QRS.
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(Figure 1A), a multipolar mapping catheter containing
16 equally spaced electrodes in a 4 � 4 grid layout.
Bipolar voltage maps were collected by using the
high-density (HD) wave-mapping technology of the
Advisor HD Grid, whereby bipolar recording along
and across splines was enabled, with the system
analyzing orthogonal bipolar wave fronts and
recording the best of the 2 signals to negate the effect
of wave front directionality. In addition, the system
uses the best duplicate algorithm, whereby the
highest amplitude signal in a collected region is dis-
played on the map. Normal myocardium was defined
as tissue with a bipolar voltage >1.5 mV, dense scar
was defined as a bipolar voltage <0.5 mV, and scar
border zone was defined as a bipolar voltage 0.5 to
1.5 mV, consistent with previously published data (2).

Subsequently, a new window of interest was set
within the mapping system that contained the entire
diastolic interval, and the TurboMap feature was used
to identify the latest LP from the Barts SP data. The
system was set to annotate the latest LP identified
within the diastolic window, and these were then
individually checked and manually corrected
(Figure 1C).



FIGURE 2 Bipolar Voltage Comparison During Sinus and Sense Protocol

Substrate maps during intrinsic rhythm (A) and “sense protocol” pacing (B) in a patient with previous anterior myocardial infarction requiring

ventricular tachycardia ablation. Comparison of bipolar voltage during intrinsic rhythm and sense protocol mapping shows similar delineation of

scar region. Bipolar voltage was set to conventional criteria with dense scar <0.5 mV in gray, normal voltage >1.5 mV in purple, and scar border

zone 0.5 to 1.5 mV. Color bar indicates voltage to the left of each map.
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STATISTICAL ANALYSIS. Continuous variables are
represented as mean � SD if normally distributed and
median (25th to 75th quartile) if not normally
distributed. The paired Student’s t-test was used to
compare differences in location in relation to critical
areas for ablation, scar area, and LP between intrinsic
rhythm and SP mapping. A p value <0.05 was
considered statistically significant. Analysis was per-
formed by using R statistical software (R Foundation
for Statistical Computing, Vienna, Austria).

RESULTS

ABLATION OUTCOMES. Ablation guided by the Barts
SP rendered VT noninducible in 29 patients, and 90%
(27 of 30) of patients were free from symptomatic VT/
antitachycardia pacing or implantable cardioverter-
defibrillator shocks at a median follow-up of
12 months. The mean VT burden was reduced from 89
events per patient in the 6 months’ pre-ablation to 4.6
events per patient in the median 12 months’ post-
ablation follow-up period; mean shocks per-patient
burden decreased from 4.4 to 0.27 in the same time
period (Central Illustration, Supplemental Figure 1,
Supplemental Tables 2 and 3). Median procedure time
was 4 h 6 min, and median ablation time was 32 min.

COMPARISON OF SCAR AREA: INTRINSIC RHYTHM

VERSUS SP. Figure 2 presents an example of bipolar
scar voltage comparison during intrinsic rhythm and
during SP mapping in a sample patient. It can be seen
that there are no major differences in the scar area
when comparing intrinsic rhythm versus the SP while
mapping using the HD wave solution and the best
duplicate algorithm. The mean dense scar area was
38.2 � 34 mm2 during intrinsic rhythm and 37.4 �
34 mm2 during the SP map, with no statistically sig-
nificant differences between the two (p ¼ 0.25).

COMPARISON OF LP AND LAVA IDENTIFICATION:

INTRINSIC RHYTHM VERSUS SP. Figure 3 shows a
comparison of LP and LAVA identified by the SP
versus intrinsic rhythm in a sample patient. It can be
seen that the SP identifies a larger region of LP that
were not present during sinus rhythm substrate
mapping (Figure 4). The median area of LP across the
30 patients during sinus rhythm was 6.4 mm2 (IQR 2
to 7 mm) during sinus rhythm mapping and 19.3 mm2

(IQR 7 to 25 mm) during SP pacing (p ¼ 0.001); this
represented a median of 9% of the total scar in sinus
rhythm and 38% during SP.

FUNCTIONAL AREAS OF LP AND LAVA RELATE TO

CRITICAL AREAS OF THE VT CIRCUIT. The functional
unmasking of LP and LAVA was observed in 26 pa-
tients and showed good correlation to critical regions
of the VT circuit (sites of best entrainment or pace
map). The sensitivity and specificity value of SP to
critical sites of ablation were 87% (95% CI: 85 to 89)
and 96% (95% CI: 94 to 98), respectively, versus 78%
(95% CI: 74 to 82) and 65% (95% CI: 63 to 67) for sinus
rhythm mapping (Supplement 4).
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FIGURE 3 Dynamic Functional Late Potential Unmasking by the Sense Protocol

Color maps of late potentials (last deflection) during intrinsic rhythm (A) and sense protocol pacing (B), along with recorded electrograms. During intrinsic rhythm, late

potentials lay dormant within the QRS or just post-QRS (A), while during the sense protocol, late potentials are unmasked as shown in B and also the corresponding

electrograms. Electrograms were recorded from the same area as shown by the high density grid in both maps. Highlighted areas in yellow indicate regions of local

abnormal ventricular activity or late potentials.
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Figure 4 presents an example of activation map-
ping of a VT circuit in a patient with ischemic car-
diomyopathy and prior anterior myocardial infarction
(Video 1). The HD grid was used to map the diastolic
pathway. SP substrate mapping of this region shows
better delineation of LP within the diastolic corridor
through dynamic LP delay and unmasking of regions
of functional slow conduction.

Figure 5 presents an example of a VT circuit map-
ped in a patient with anterior septal scar (Video 2);
regions of good pace map and poor pace map are seen
within a very small region within the scar. Within this
region, there were LAVA and LP with decrements on
SP pacing indicating functional conduction delay. The
activation map of LP (Video 3) shows a complex
activation pattern within this region of low voltage
with lines of block in keeping with the pace map and
entrainment findings. This matches the regions of
pace mapping, in which a region of poor pace map
near to a region of good pace map indicating a line of
block or multiple exits was seen, followed by pace
map induction of VT. Ablation to this region of LP
rendered the VT noninducible.

DISCUSSION

This study uses a new high-density mapping catheter
(Advisor HD Grid) and a unique pacing protocol (Barts
SP) to better delineate VT substrate and identify new
markers for substrate ablation. We made two main
findings: 1) wave front–induced changes in scar
voltage are not present when bipolar mapping using
HD wave arrangement is used; and 2) functional LP
and LAVA can be unmasked by the SP, enabling better
delineation of critical regions for VT ablation that
may not be visible during sinus rhythm. This unique
delineation of functional substrate changes combined
with activation or pace mapping needs further large-
scale analysis, ideally in a randomized controlled
trial.

HDWAVEOBVIATES THE INFLUENCEOFDIRECTIONALITY

ON SCAR CHARACTERIZATION. Previous studies have
suggested that pacing wave front influences scar
delineation (15,16) and that the wave front influences
scar morphology. Our study found no significant dif-
ference in scar area between sinus rhythm and SP
mapping. This may be due to the HD wave algorithm
and the ability to measure bipoles across splines, thus
obviating the problem of “bipolar blindness” in which
the wave front runs parallel to the splines, as recently
reported (17). Our findings show that by having wave
fronts mapped at right angles, activation and voltage
can be mapped, thus avoiding the problems faced
with directionality from previous studies using linear
bipoles (16), and similar information may be obtained
from other multipolar catheters if used in a variety of
orientations; further investigation is required.

FUNCTIONAL LP AND LOCAL ABNORMAL

VENTRICULAR ACTIVITY AS A MARKER OF DYNAMIC

SLOW CONDUCTION. Few studies have investigated
wave front directionality and abnormal potentials
(17–19). Brunckhorst et al. (19) reported significant
variation in identification of abnormal potentials
when pacing from the right atrium versus the right
ventricle; however, linear bipolar catheters were used

http://jacccep.acc.org/video/2020/0595_VID1.mp4
http://jacccep.acc.org/video/2020/0595_VID2.mp4
http://jacccep.acc.org/video/2020/0595_VID3.mp4


FIGURE 4 Relationship of Sense Protocol Functional Late Potentials to a Mapped VT Circuit

(A) Activation mapping of ventricular tachycardia (VT) in a patient with previous anterior myocardial infarction as shown in Video 1. The high-density grid is placed on the

critical isthmus, with mid-diastolic signals recorded on the right; it can be seen that the activation sequence goes from spline A to spline D, demarking the entrance and

exit of the VT diastolic channel (white arrow). (B) Late potentials (LP) color timing map during sinus rhythm (left) and sense protocol pacing (right) showing a greater

region of LP during the sense protocol corresponding to the mapped diastolic pathway of VT. (C) Example of local LP delay and splitting of LP during sense protocol

(second beat) along the mapped diastolic pathway of VT. (D) Entrainment from site close to pole D1 on the high-density grid (gray dot) shows concealed entrainment

with a post-pacing interval of 18 ms, and a stimulus to QRS duration <30% VT cycle length, indicating entrainment at a VT exit site.
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FIGURE 5 Sense Protocol Functional Late Potential Behavior in Critical Regions of the VT Circuit

(A) Sense protocol voltage map with a highlighted region (black shape) of patchy low voltage within a region of dense scar. After substrate mapping, ventricular

tachycardia (VT) was induced in this region (Video 2), and entrainment and pace mapping were performed. (B) Sites of entrainment and pace mapping, with yellow dots

representing regions of late potentials (LP) marked manually. During substrate mapping, a sense protocol pacing map of LP was created. (C) The high-density grid with

recorded signal over a region of LP. The timing of the LP is used to create an LP map, with color scale seen on the bar on the left and signal recorded shown below. (D) It

can be seen that there is decrement in the LP region on sense protocol single extra pacing (second beat), compared with intrinsic rhythm (first beat), with timing markers

post-QRS displayed. The region highlighted in yellow is local abnormal ventricular activity in intrinsic rhythm, which is delayed to the end of the QRS during sense

protocol pacing. Video 3 shows the complex pattern of sense protocol LP conduction in this region with areas of block and complex wave front, which may explain the

pace map and entrainment findings. (E) From left to right, clinical VT (left panel), pace mapping at an isthmus region (middle panel) where there was initial short

stimulus to QRS and poor QRS correlation to the clinical VT, followed by a longer stimulus to QRS and 98% pace match; the right panel shows pace match induction of

VT in this region, indicating the catheter in a critical part of the circuit.
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CENTRAL ILLUSTRATION Sense Protocol Technique and Outcomes
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with larger electrode rings and larger inter-electrode
spacing, thus potentially resulting in recording from
nearby healthy tissue. In addition, several methods
for LP identification have been previously used
(3,10,20), making study comparisons difficult. LP
mapped in sinus rhythm may also lack sensitivity and
specificity (21,22) and may not be present in up to 29%
of VT re-entry circuits and 46% of VT termination
sites during sinus rhythm mapping (23,24).

Jackson et al. (10) and Porta-Sánchez et al. (9) have
shown that DEEP may increase the specificity for
identifying the VT diastolic pathway using an extra-
stimuli protocol at 600 ms during RV pacing. How-
ever, this approach has practical limitations because
it requires mapping substrate over several drive
trains to look for decrements, in a cohort of patients
who are unwell with poor ventricular function, and
this potentially increases procedure time. Similarly,
evoked delayed potential mapping requires signifi-
cant manual signal annotation (10). Our method al-
lows for automated mapping of both sinus rhythm
and SP simultaneously within existing mapping sys-
tems, without significant post-processing.

Our findings differ significantly from the DEEP
mapping (9) in that the Barts SP identified a greater
area of abnormal substrate for ablation compared with
mapping in intrinsic rhythm, whereas DEEP mapping
identifies an area two-thirds smaller than the mapped
LP region in sinus rhythm. These differences may be
explained by substrate and conduction velocity
adaptation during drive train pacing, which may
conceal more physiological abrupt conduction delays
through action potential duration and sodium channel
adaptation to repeated stimulation (25). In addition,
because DEEP mapping is used to identify regions of
functional delay rather than LP, it would naturally
identify a smaller area. The majority of VT/ventricular
fibrillation recorded on implantable cardioverter-
defibrillator devices occurs due to single premature
extrasystolic events (12,13), and thus studying the
cardiac substrate in this maladapted physiological
state as shown in our protocol may explain our find-
CENTRAL ILLUSTRATION Continued

The Barts Sense Protocol involves creating a substrate map of a single e

protocol are described in panel A. (A) Activation mapping of ventricular ta

as shown in Video 1. The HD Grid is placed on the critical isthmus, with

activation sequence goes from spline A to spline D, demarking the entranc

color timing map during sinus rhythm (left) and sense protocol pacing (

protocol corresponding to the mapped the diastolic pathway of VT. (C)

during sense protocol (second beat) along the mapped diastolic pathway

critical for ablation. (D) Plot demonstrating total VT burden for each pat
ings of greater regions of LP and also better success
rates versus sinus rhythm mapping alone.

ROLE OF COMBINED SP MAPPING WITH ENTRAINMENT/

PACE MAPPING TO IMPROVE OUTCOMES. Activation
and entrainment mapping of VT remain a challenge in
patients in whom the VT is poorly tolerated, not
inducible, or nonsustained. In addition, VT induction
and mapping before substrate ablation have been
shown to prolong procedure time with poorer out-
comes (26,27). Several substrate-guided approaches
have been devised, including linear ablation (2), LP
mapping (3), and LAVA elimination (4). However,
real-world outcomes from VT ablation remain as poor
as 40% to 60% (7,28) regardless of ablation strategy.
This highlights the limitations of present strategies in
defining critical regions for ablation.

The Barts SP, which involves single extrastimuli
at an interval 20 ms above ERP from the right
ventricle, enables conduction delay to be invoked
from the patients’ intrinsic steady state of con-
duction, thus looking specifically for maladaptation
in regions of diseased tissue and slow conduction.
Our study showed the ability of the SP to unmask
dormant LP or LAVA (Figures 3 to 5). In 80% of
cases, these regions lay within 10 mm of critical
sites for ablation, which is consistent with previous
studies (23); however, we were able to see these
sites in 87% of patients during sense mapping, and
this potentially provides a new and practical
method to map LP. The combination of SP sub-
strate mapping with entrainment/pace mapping
may, therefore, explain our symptomatic therapy–
free rate of 90%. Further large, randomized
comparator studies are required to corroborate this
theory. Although focal targeting of critical regions
may be desired from a practical perspective to
reduce procedure time, careful and systematic
analysis of the substrate and ablation at all poten-
tial regions of abnormal VT substrate, which may
form substrates for alternative VT circuits in the
future, is required.
xtra packed beat at short a short coupling interval. The 5 steps to the
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mid-diastolic signals recorded on the right, it can be seen that the

e and exit of the VT diastolic channel (white arrow). (B) Late potential
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of VT, enabling better characterization of regions of slow conduction

ient 6-months pre-ablation and in the follow up period post-ablation.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: LP,

which are a marker of slow conduction within ven-

tricular scar and may contribute to the VT isthmus, are

dynamic in nature. This information may be useful in

guiding substrate-based catheter ablation strategies.

TRANSLATIONAL OUTLOOK: Larger multicenter

randomized studies are required to evaluate the suc-

cess of this method of ablation against conventional

strategies. Investigation of the effect of different

pacing protocols on LP is required.
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STUDY LIMITATIONS. Accepted voltage cutoffs for
scar threshold were applied based on published data;
however, debate exists as to what the correct optimal
voltage cutoffs should be. This is a nonrandomized
single cohort of 30 patients; a randomized study is
needed to further confirm its clinical value and
compare outcomes. For clinical simplicity and patient
safety, we only performed single extra pacing in the
RV apex, and whether our findings would be repro-
ducible and/or perform better with pacing from other
sites needs further investigation. The paper is only
descriptive and does not directly make comparisons
with other multipolar catheters or substrate ablation
strategies. We did not systematically compare RV
drive train or S1/S2 pacing versus single extra pacing
(Supplement 5).
CONCLUSIONS

Our novel pacing protocol (Barts SP) improved iden-
tification of functional abnormal substrate, which was
able to improve delineation of critical areas for VT
ablation. Larger multicenter randomized studies are
required to assess the success of this method of
ablation versus conventional strategies.
ADDRESS FOR CORRESPONDENCE: Dr. Neil T. Sri-
nivasan, Department of Cardiac Electrophysiology,
The Barts Heart Center, St. Bartholomew’s Hospital,
West Smithfield, London EC1A 7BE, United
Kingdom. E-mail: neil.srinivasan@nhs.net. Twitter:
@Callme_DrNeil.
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