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Abstract 

Assessment of the employment impact of renewable electricity technologies is generally implemented 

through either complex and data-intensive methods (such as Computable General Equilibrium models) 

or simplistic approaches, normally focused on specific energy generation technologies, such as 

employment factors. In contrast, this article proposes a transparent and easily reproducible econometric 

methodology based on the Vector Error Correction model that uses aggregated and widely available 

data. The model is applied to the power generation sector in the United Kingdom using annual data 

from 1990 onwards and provides evidence that the long-term employment impact of renewable 

technologies is much higher than the impact arising from deploying nuclear or natural gas technologies. 

The impulse response function analysis indicates that a permanent 1 Gigawatt-hours increase in annual 

electricity supply generated by renewable technologies creates 3.5 jobs in the long-term period. Finally, 

this study derives the implications of the findings in the context of decarbonisation scenarios for the 

power sector in the United Kingdom and assesses the extent to which decarbonisation pathways based 

on renewable rather than nuclear technologies contribute to stimulating employment in the generation 

sector. 

Highlights  

 Novel econometric methodology to estimate renewable energy net employment impact 

 Method employs relatively aggregated data on UK national level 

 1 GWh increase in annual renewable energy creates 3.5 long-term jobs 

 Renewable energy generates about 6 times more jobs than nuclear 
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1. Introduction 

Renewable technologies are an integral component in the mitigation of climate change [1]. The 

deployment of renewable energy technologies is sometimes considered a win-win scenario for both the 

environment and economic welfare, as they reduce carbon emissions and create employment in various 

sectors of the economy through direct and indirect effects. International Renewable Energy Agency [2] 

indicates that renewable energy can create a “considerable future potential” for net job creation, a 

suggestion generally backed up by most studies in the literature [3]. 

Since 2012, the deployment of renewable technologies has substantially increased, leading to the 

renewable energy sector globally employing 11 million people in 2018 [4]. The rapidly increasing 

maturity of renewable technologies along with the rising numbers of created jobs make it crucial that 

one investigates the employment effect of renewable electricity. Although there is a large number of 

papers doing so, these studies tend to focus on specific technologies, locations and plants and to discard 

the employment effect of fossil and nuclear generation technologies [5].  

Based on extensive literature review, Cameron and Zwaan [5] conclude that the magnitude of the net 

employment effect varies significantly among countries, technologies and empirical methodologies 

with no clear consensus over the long-term sustainability of renewable jobs. This article helps bridge 

this lack of consensus by developing a novel methodology that assesses the long-term employment 

effect of different types of power generation technologies, including conventional thermal, from a 

macroeconomic perspective so that an estimate of the net job creation can be obtained by combining 

the results from this article to national decarbonisation scenarios. The approach of this study is a 

rigorous but simple and can be implemented by using relatively aggregated data. The methodology is 

applied to renewable electricity produced in the United Kingdom (UK) as a case study. Employment in 

the UK energy generation sector is modelled as a function of a) economic activity and b) the level of 

electricity generated by conventional thermal (oil and coal), combined cycle gas turbine (CCGT), 

nuclear and renewable technologies. The proposed econometric methodology has relatively low data 

requirements based on a Vector Error Correction (VECM) model. This means that it can be estimated 

on national data for employment and economic activity in the power sector (regardless of the technology 

being used) and the amount of electricity produced by different power generating options. Therefore, 

the main advantage of this approach is that it avoids the data burden typical of Input-Output (IO), 

Computable General Equilibrium (CGE) and macroeconometrics sectorial models [5], with the 

additional advantage that the relationships estimated in this model are transparent, contrary to other 

approaches, such as CGE models, using several elasticity parameters, not always made explicit in the 

studies. The proposed approach is implemented in the case of the UK electricity generation market as 
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it is highly competitive [6] with diverse energy mix, a significant proportion of which has been 

increasingly being generated by renewable technologies. 

By quantifying the employment impact of a number of energy technologies, the proposed methodology 

can be applied on the back of the output of energy system models which produce deployment scenarios 

of electricity generation technologies to achieve a certain level of decarbonisation. This implies the 

possibility of computing the net effect from the deployment of renewable technologies on employment 

in renewable and fossil-fuel based plants, respectively. In addition, the proposed methodology can be 

easily replicated across countries therefore increasing empirical evidence base while taking into account 

the context of a particular country, such as industrial and labour policy, technologies being used in 

power generation and labour productivity. All variables used are observed at the annual frequency, 

although one could use quarterly or monthly data, in those cases where they are available. The ability 

to use annual observations instead of more granular ones increases the applicability of the method which 

uses data which are readily available for the member countries of the Organisation for Economic Co-

Operation and Development (OECD). Thus, this study is of interest to both UK policymakers and 

government officials while replication of this study in other countries would be of similar interest to 

policymakers in the country of interest. 

This paper is structured as follows. Section 2 reviews the recent literature on employment and renewable 

electricity. Section 3 analyses the UK electricity supply market. Section 4 explains the methodological 

approach while Section 5 provides details on the data used in. Results are presented in section 6 and 

discussion on policy relevance can be found in Section 7. Section 8 concludes. 

2. Literature review 

Jobs created by renewable technologies can be distinguished in (i) direct, (ii) indirect and (iii) induced 

[2]. Direct jobs are created by the sector’s core activities, indirect are those related to the supply chain 

of the energy sector (e.g. firms providing raw materials, regulatory bodies, banks, etc.) while induced 

jobs are generated by an increase in the aggregate demand stimulated by the renewable sector [7]. Gross 

employment comprises the overall employment created by an increase in the generation of renewable 

energy while net employment takes into account the missed employment which would have been 

generated in counterfactuals, i.e. the employment which would have been generated by the plants which 

would have been built in the place of renewables. 

The existing literature on the employment effect of renewable technologies – part of a wider branch 

assessing the employment effect of sustainable development policies [8] – comprises a large number of 

studies employing various techniques and methodological approaches. Cameron and Zwaan [5] identify 

70 publications since the beginning of the last decade, but only a small subset can be considered as 
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presenting original research, as the literature is affected by a high degree of recursive referencing, so 

that many studies merely re-use or recycle findings from earlier publications [5]. Existing publications 

grouped into studies 1) producing forecast or simulations based on theoretical models, external 

estimates and conversion of values from other papers e.g. [9]; 2) performing some form of literature 

review e.g. [10]; and 3) analysing historical employment data to empirically estimate gross employment 

effects. The latter group of studies can be further divided in three subgroups based on the type of 

empirical methodology, i.e. IO, CGE and employment factors. IO models estimate interdependencies 

between different economic sectors and employment effects of renewable energy, especially with 

regard to indirect and induced jobs such as [11, 12, 13, 14, 15, 16]. CGE models, such as [17, 18, 19], 

are macroeconomics models that account for the economy-wide ramifications of renewable energy and 

provide estimates of the employment effect for induced jobs across the economy. Finally, employment 

factors are ratios of a specific type of employment to the level/capacity of electricity generated by a 

specific type of renewable technology (e.g. the direct employment factor for manufacturing and 

installations for wind energy is measured as job/MW) [20, 21, 22, 23, 24] and mostly focus on direct 

job creation. By performing a meta-analysis on studies investigating the employment effect of 

renewables, [25] find that the magnitude of net employment effect is mainly driven by the implemented 

methodology. More specifically, [25] find that studies based on IO and CGE with induced effects tend 

to be less favourable to net job creation while policy reports tend to be more supportive of net job 

creation.  

Evaluating empirical results found in the literature, [5] note that the employment impact varies across 

renewable technologies.1 The German labour market has been in the forefront of attention as a series of 

studies indicates the positive effect of renewables on creating job opportunities [26, 27, 28, 29]. Studies 

investigating the employment effect of solar industry development focus especially on Mediterranean 

countries [30, 31, 32, 33, 34, 35, 36, 37] and Middle East [38]. Wind energy is expected to stimulate 

job creation in the European Union (EU) [24, 39] and the United States (US) [40, 41], an argument that 

is further supported for countries such as Brazil [42,43], Greece [30, 31] and Spain [44, 33, 34]. 

Investing in renewables is expected to create job opportunities also in East African economies [45]. 

However, in the case of Texas, [46] found no statistically significant impact of wind electricity on 

employment, revealing that the type of landscape, ownership and local participation are all crucial 

factors to maximise local employment effect [47]. Similarly, [48] find small sectoral employment 

effects of Clean Development Mechanisms projects across Brazilian municipalities. On the other hand, 

[49] that use a macro-economic sectorial model for Germany find that renewable technologies had 

positive net employment effect. Although this net effect is small if labour markets are not flexible, it 

can become considerably high if the newly created jobs are filled with workers that have been recently 

                                                 
1 For example, solar panels can create several times more jobs than onshore wind. 
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unemployed. The importance of retraining workers in the transition from coal to renewable electricity 

is discussed in [50]. Cost-competitive wind electricity was found to produce initially low but rising 

benefits in terms of welfare and GDP in the case of the US economy [51]. On a wider scale, doubling 

the share of renewables in world electricity production was found to increase direct and indirect 

employment in the sector to 24.4 million by 2030, with most renewable jobs coming from fuel supply 

(bioenergy feedstocks), installations and equipment manufacturing [52]. Concerning the UK job 

market, [21] investigate the potential employment effect in Wales by regional deployment of tidal and 

wave-based renewable technologies while [53] valuate the expected net employment impact of rising 

production and use of biomass crops in UK bioenergy plants.  

From an economic theory perspective, increasing renewable electricity tends to imply higher 

unemployment rate [54] mainly through increases in the labour tax required to fund renewable 

electricity schemes. [55] confirms that labour market rigidities and existing unemployment provide 

some scope for a double dividend, but in practice these are likely to be limited, like in the case of the 

employment effects of the renewable energy expansion in Germany computed in [55]. Using a panel 

dataset of 80 countries, [56] find positive impact of renewable energy consumption on unemployment 

in European Union and Africa while negative in Asia and Latin American countries. [57] describe the 

existence of three economic channels for job creation, so that a shift in investment towards renewables 

increases employment if it targets sectors with a higher share of labour compensation out of value added, 

lower wages or lower import rates. The authors found positive employment impacts arising from 

weatherproofing and solar panels, a result that is robust across models used in the study. [5] argue that 

the maturity of production techniques, economies of scale and automatisation of industrial processes 

can lead to reduction of employment in the longrun. A small number of studies quantifying the effect 

of economies of scale on long-term employment [58, 59, 60] indicate high levels of reduction in 

employment rates, although this subject needs to be further investigated [5]. 

3. Electricity supply and the UK policy framework 

The UK electricity market was restructured in 1990 to allow private investors enter the previously 

nationalised market through a competitive bidding system that resulted in lower energy prices [61]. 

Companies generating electricity are classified in Major Power Producers (MPPs) and Other Generators 

(OGs). MPPs are firms whose “primary purpose is the generation of electricity” [61], while OGs are 

companies that “produce electricity as part of the manufacturing or other commercial activities, but 

whose main business is not electricity generation” [12]. OGs generate electricity mostly to satisfy their 

industrial energy needs while surplus is normally exported to the grid.2 Digest of UK Energy Statistics 

                                                 
2 Although the long-term relationship between electricity supply generated by OGs and employment has also been 

investigated, findings do not support this argument. Thus, the present study focuses solely on MPPs whose 

“primary purpose is the generation of electricity” [61]. 
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(DUKES) [61] divides electricity supply into conventional thermal, CCGT, nuclear and renewable 

electricity supply. Conventional thermal supply includes electricity generated by turbines burning coal 

and oil, while CCGT is a technology that uses natural gas (or gas oil to a small extent) to produce 

electricity at higher efficiencies than conventional thermal technologies. Nuclear electricity is generated 

by nuclear power plants all of which are classified as MPPs while, according to the Directive 

2009/28/EC, renewable electricity is generated by renewables non-fossil sources such as hydro, wind 

farms, and solar farms [61].3  

Conventional thermal technologies generated 77% of total electricity supply in 1990 – the year that 

CCGT plants introduced in the UK – but by 1999 a 42% reduction took place (see Figure 1) mostly due 

to coal being replaced by gas burnt in CCGTs, the so-called “dash for gas” [62, 63] which implied a 

113,000 Gigawatt-hours (GWh) increase in CCGT generation in the same time period4. From 2000 to 

2013, conventional thermal and CCGT power stations supplied roughly similar levels of electricity 

although after the 2008 economic crisis there has been increased instability in the two series. Finally, 

from 2013 to 2016 conventional electricity decreased to become responsible only for 15% of electricity 

supply in 20165 while CCGT electricity has increased by 20% covering in 2016 almost 50% of total 

UK electricity supply. From 2016 to 2018, conventional thermal, CCGT and nuclear electricity have 

experienced gradually declining trends. 

                                                 
3 There has been a major amendment in the MPPs definition in 2008 so that major wind farm companies could 

change classification from OGs to MPPs while the definition was further amended in 2015 to also include large 

scale solar farm companies which before 2015 were identified as OGs. 
4 See also the symmetric behaviour of the time series for conventional thermal and CCGT power stations between 

1990 and 2000 in Figure 1(a). 
5 This reduction is mainly because in 2015 the carbon price floor has doubled from 9£ to 18£ per tonne of CO2 
[61]. 
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(a)  

(b)  

Figure 1. Total annual electricity supplied (GWhs) by Major Power Producers (MPPs) per type of 

electricity generation technology used in power generation process 
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Nuclear power stations have generated on average 23% of total UK electricity supply since 1991, with 

the lowest level of electricity supply being 14% in 2008 and the highest being 29% in 1997 and 19986. 

Since 1998 several nuclear plants have been gradually decommissioned so that only eight nuclear plants 

were left in operation in 2017 [61] out of the sixteen that were in operation in 1995, explaining the 

overall reduction in nuclear electricity. Decline in nuclear electricity took place in correspondence of a 

rebound of conventional electricity up to 2007. 

Contribution from renewable technologies has steadily increased since the late 2000s. In 2007 the EU 

Renewable Energy Directive (RED) set as target by 2020 the production of 20% of electricity supply 

by renewable resources while in the UK the target was set in 2009 at the level of 15% of the total energy 

[61]. The Energy Act 2013 established the Contracts for Difference (CfD) policy framework through 

which the UK government ensures secure, affordable and clean electricity supplies [6]. More 

specifically, CfD policy incentivises business stakeholders to invest in renewable energy projects by 

providing them with sufficient credit to cover upfront capital costs. It further provides renewable energy 

generators with a fixed price and tops up the wholesale price when it is lower than the agreed price [6]. 

As a result, renewable electricity has steadily increased up to 2018 (Figure 1(b)) with a small reduction 

in 2016 attributed to unfavourable weather conditions for wind [61]. Increase in electricity from 

renewable plants has occurred in presence of shrinking production from conventional thermal plants 

from 2010 onwards. 

To sum up, production from conventional thermal plants has decreased since the restructuring of the 

power market in the 1990s so that it is reasonable to expect substitution between electricity supply 

generated by conventional thermal plants and other technologies. One should expect the existence of 

substitution between conventional thermal and CCGT, as discussed at length above. Nuclear 

technologies have played a central role in the UK electricity market with their declining output in the 

1990s initially filled by increasing production from conventional thermal plants in a way that 

substitution should exist between electricity generated by conventional thermal and nuclear 

technologies. Only nuclear and renewables can deliver CO2-free electricity required to meet UK’s CO2 

targets. Hence, it is reasonable to expect substitution between nuclear and renewable electricity, as a 

certain level CO2 target can be reached by either increasing electricity from renewable or nuclear, given 

a certain deployment of electricity from CCGT and conventional thermal plants. 

                                                 
6 The peak in 1997 and 1998 reflects the fact that Sizewell B has been the latest nuclear power plant to enter 

commercial operation in 1995. 
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4. Methodological approach 

The methodological approach of this paper comprises two steps. The first step (Section 4.1) establishes 

a theoretical framework for the reduced form model that explains how the future number of jobs in the 

representative power producing firm is determined by the firm’s expectation of future electricity 

demand. The second step (Section 4.2) involves the empirical implementation of the theoretical model 

with the use of econometric modelling and can be further divided in: (a) unit root testing, (b) 

cointegration testing, (c) VECM modelling, (d) impulse response function (IRF) analysis. 

One can use as a starting point the consideration, supported by DUKES [61, p.113], that the UK 

electricity system is driven by demand which in other words means that UK electricity supply is 

competitive in nature. Indeed, the wholesale electricity market in the UK is moderately concentrated 

while according to the Office of Gas and Electricity Markets (Ofgem) [6] the degree of market 

concentration7 has significantly decreased during the last decade. Overall, the installed capacity has 

increased during the last decade mainly due to policies such as the CfD which support the investment 

in renewable technologies [6]. This allows the related labour market to be fully flexible and competitive 

enough to efficiently accommodate changes in the energy mix of electricity generation8. 

4.1. A theoretical framework 

A representative firm in the electricity generation market chooses labour inputs (𝐿𝑡) at time t based on  

its expectations (𝐸𝑡−1) at time t-1, using all available information (𝐼𝑡−1) at time t-1, of the electricity it 

will supply (𝑒𝑡) at time t.  This can be expressed as: 

𝐿𝑡 = 𝑓(𝐸𝑡−1[𝑒𝑡|𝐼𝑡−1]) (1) 

The firm’s expectation in relation to electricity supply at time t can be further distinguished into the 

sum of expectation 𝐸𝑡−1[𝑐𝑜𝑛𝑡|𝐼𝑡−1] for conventional thermal, 𝐸𝑡−1[𝑐𝑐𝑔𝑡𝑡|𝐼𝑡−1] for CCGT, 

𝐸𝑡−1[𝑛𝑢𝑐𝑡|𝐼𝑡−1] for nuclear and 𝐸𝑡−1[𝑟𝑒𝑛𝑡|𝐼𝑡−1] for renewable electricity at time t-1 so that: 

𝐸𝑡−1[𝑒𝑡|𝐼𝑡−1] = 𝐸𝑡−1[𝑐𝑜𝑛𝑡|𝐼𝑡−1] + 𝐸𝑡−1[𝑐𝑐𝑔𝑡𝑡|𝐼𝑡−1] + 𝐸𝑡−1[𝑛𝑢𝑐𝑡|𝐼𝑡−1] +

𝐸𝑡−1[𝑟𝑒𝑛𝑡|𝐼𝑡−1]. 

(2) 

The representative firm forms its expectation about time t by taking into account demand for electricity 

observed at time t-1 and in all past years, with diminishing weights attributed to the past years used to 

form the expectation. Thus, an increase in electricity demand at time t-1 – and by extent an equal 

                                                 
7 The degree of market concentration is measured by Ofgem with the use of the Herfindahl-Hirschman index. 
8 Employment depends both on installed and operating capacity of distinct renewable technologies. Since this 

study focuses on the macro level of the economy and uses aggregated data, it seems more sensible to look at the 

generation. It would be interesting in the future to use installed capacity data instead. 
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increase in electricity supply – implies an increase in the representative firm’s expectations of electricity 

demand in time t with expectations adjusted by a parameter 𝛽 which takes values between 0 and 1 . The 

parameter takes the role of an “error-adjustment” term reflecting the deviations between expectation at 

t-2 of electricity consumption at t-1, 𝐸𝑡−2[𝑒𝑡−1|𝐼𝑡−2], and actual consumption of electricity at t-1, 𝑒𝑡−1: 

𝐸𝑡−1[𝑒𝑡|𝐼𝑡−1] = 𝐸𝑡−2[𝑒𝑡−1|𝐼𝑡−2] + 𝛽(𝑒𝑡−1 − 𝐸𝑡−2[𝑒𝑡−1|𝐼𝑡−2]) (3) 

As under the assumption of adaptive expectations, the expectation of a future variable is based on all 

past observations, equation (3) can iteratively be expressed as follows: 

𝐸𝑡−1[𝑒𝑡|𝐼𝑡−1] = 𝛽(∑ (1 − 𝛽1)𝑗∞
𝑗=0 𝑒𝑗), (4) 

for years j in the past. It is true that distinct technologies within the same energy generation category 

(for example solar, wind, etc.) have different employment effect and that even the magnitude of the 

employment effect from a given technology varies across the stages of the technological development 

of the technology. One of the advantages of the approach of this study is that it estimates the average 

employment effect without having to focus on the characteristics of individual generation technologies. 

As a positive employment effect in time t might not only be the outcome of higher electricity 

consumption but also of higher economic activity, one has to control for Gross Value Added (GVA) in 

the electricity generation sector.  

4.2. Econometric modelling  

The first step of the empirical modelling consists in testing the stationarity of the variables using the 

Dicky-Fuller Generalised Least Squares (DF-GLS) test. [64], choice motivated by high size-adjusted 

power in finite samples. If the DF-GLS test cannot reject the null of nonstationary, one can implement 

the Zivot and Andrews (ZA) [65] test that allows for series to have a break at an unknown point in time. 

The choice of the deterministic component used in the test is determined based on the results of Akaike 

and Bayesian information criteria on two separate specifications, one with intercept only and the other 

one with intercept and linear trend, and secondly by visual inception of the series (Figure A1. ). The 

choice of the appropriate lag length is based on modified Akaike information criterion [66].  

Since there is evidence of the variables being integrated of order I(1), and of cointegration among them 

(Section 6), this section focuses on cointegrating Vector Autoregression (VAR) as econometric 

methodology. This implies implementing a cointegration analysis using a VAR approach [67, 68], and 

estimate a Vector Error Correction (VECM) model of order p, where all variables are treated as 

endogenous: 
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𝛥𝑥𝑡 = 𝛤0 + 𝛱𝑥𝑡−1 + ∑ 𝛤𝑖𝑋𝑡−𝑖

𝑝

𝑖=1

 

(5) 

where 𝑥𝑡 is a 6 x 1 vector containing the logarithms of employment, GVA, and electricity generated by 

1) conventional thermal, 2) CCGT, 3) nuclear and 4) renewable technologies, 𝛱 and 𝛤𝑖 are 6 x 6 

coefficient matrices and 𝛤0 contains the deterministic terms. The trace and the maximum eigenvalue 

tests are employed to explore the appropriate number of cointegrating vectors. Regarding the 

deterministic terms in the cointegrating vectors, the choice of whether or not to include a linear trend is 

based on estimation of a model with intercept only and one with intercept and trend (following [69]. 

Once the long-term relationship between employment, output and electricity supply is identified9, one 

can compute the long-term response of employment to a positive shock in the electricity supply of each 

type of power generation technology using IRF analysis. The IRF describes the effect of a positive 

permanent shock on electricity supply at time t on employment from time t to t+n. In this way one can 

examine the response of employment to a 1 GWh increase, independently taking place in each 

electricity production technology. As this is a reduced form model, the generalised IRF [71] is employed 

because it is invariant to the ordering of the variables in the VAR and “fully takes into account the 

historical patterns of the correlation observed amongst the different shocks” [72, 73].  

5. Data 

The dataset includes six variables, namely a) number of jobs, b) GVA, and electricity supply generated 

by c) conventional thermal, d) CCGT, e) nuclear and f) renewable technologies at an annual frequency 

from 1990 to 201610. More precisely: 

 Employment, or to be more precise number of jobs in the MPP firms, is measured by the number 

of “workforce jobs” on the UK national level. Workforce jobs are sourced from employer 

surveys like the Office for National Statistics (ONS) Labour Force Survey [74] on a quarterly 

basis from which yearly averages are computed. Although both full-time and part-time jobs are 

measured by workforce jobs, there is no distinct classification for the two types of jobs. 

Similarly, there is no information about the skill level of the employees. The lowest level of 

aggregation for which workforce jobs data are available in terms of SIC industrial classification 

is related to the “D” industrial sector which incorporates all MPPs firms and more generally 

firms related to “electricity, gas, steam and air conditioning”.  

                                                 
9 Results from the cointegration testing, discussed below in Section 6, preclude us from using the bound testing 

approach of Pesaran et al. [70], as this can be implemented only in the case on one cointegrating vector. 
10 Although energy supply data are currently available till 2018, 2017 and 2018 observations for GVA are currently 

reported only as provisional estimates and therefore subject to further changes. For this reason, this study used 

data up to 2016, the most recent year for which final GVA annual figures for the UK power sector are available. 
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 Data on GVA related to the “D” industrial sector are published in annual figures by the ONS 

[75] and expressed in terms of 2010 prices (measured in million pounds). GVA measures the 

national level of economic activity or output of the related industrial sector. 

 Electricity supply is equal to the total annual level of electricity supplied to end users in the UK 

generated by MPPs and it is reported separately for each type of energy generation technology. 

Electricity supply data for conventional thermal, CCGT, nuclear and renewable technologies, 

respectively, is obtained from DUKES that provide the longest time series on UK electricity 

supply measured in GWhs on an annual basis.  

All data are converted into logarithms and thus estimated coefficients represent the elasticities of the 

variables.  

6. Results  

The results from unit root testing (Table A1) indicate that all variables are of order I(1)11. As the DF-

GLS unit root test12 indicates that only 3 of the 6 variables are I(1) (Table A1), namely employment, 

GVA and renewable electricity supply. Therefore, the remaining variables (conventional thermal, 

CCGT and nuclear electricity supply) are assessed by implementing the ZA test that allows for an 

unknown break in the series, a choice validated by the graphical visualisation of the series (Figure A1)13. 

The results of the ZA test confirm the existence of breaks and the fact that conventional thermal, CCGT 

and nuclear electricity supply are I(1) allows us to proceed with the VECM methodology. As the 

cointegration tests indicate the existence of four cointegrating vectors in the estimated system (Table 

A2)1415, the specified restrictions in the cointegrating vectors are based on both economic theory, i.e. 

the scale effect between output and employment represented in the first cointegrating vector β1, and the 

historical relationships between the four electricity production technologies discussed in Section 3 in 

the three remaining cointegrating vectors. Vector β2 is used to capture the substitution between 

conventional thermal and CCGT technologies, β3 the substitution between conventional thermal and 

nuclear technologies and β4 to capture the substitution between nuclear and renewable electricity plants.  

                                                 
11 This means that variables are non-stationary time-series. 
12 This is a unit root test where the null hypothesis of non-stationarity is rejected when the test statistic is larger 

(in absolute values) than the critical value [64].  
13 This is a unit root test with structural breaks where the null hypothesis of non-stationarity is rejected in favour 

of the break-stationary alternative when the test statistic is larger (in absolute values) than the critical value [65]. 

The ZA test indicates the existence of a break in the series of conventional thermal, CCGT and nuclear electricity 

supply at the year 2013, 1995 and 2006, respectively, which can also be confirmed by visual inception of the 

abovementioned series in Figure A1. 
14 The cointegration test is a procedure that tests for the existence of r cointegrating vectors among k I(1) series, 

where the null hypothesis of no cointegration is rejected in favour to the cointegration alternative when the P-

value of the Likelihood Ratio (LR) test is lower than 0.05.  
15 The cointegration tests have also been performed without incorporating the trend term and no significant 

difference was found. 



[Type here] 

 

14 

 

The resulting long-run component of a VECM including a trend in all cointegrating vectors turns out to 

be stable and with coefficients having reasonable signs and values (VECM 1 - Table 1). The 

cointegrating vector capturing the scale effect indicates the existence of a positive long-term coefficient 

equal to 0.9616 for the relationship between output and employment. When it comes to relationship 

between different electricity generation technologies, long-term coefficients are all negative as one 

would expect, with the long-term coefficient of CCGT (β2) taking the value of -0.31, that of nuclear (β3) 

-1.36 and the coefficient capturing the substitution between nuclear and renewables (β4) being equal to 

-0.22. The trend in β1 is positive and equal to 0.35 while the trend in β2, β3 and β4 is negative with values 

equal to -0.12, -0.89 and -1.02, respectively. The unexpectedly high values (in absolute terms) of the 

trend in β3 and β4 vectors raise some initial concerns on the indication of four cointegrating vectors from 

the tests. 

Table 1. Cointegrating vectors β from specifications VECM 1 and VECM 2 

VECM 1 

 Jobs GVA Conventional 
CCG

T 
Nuclear Renewables Trend Constant 

β1 1 -0.96     -0.35 2.80 

β2   1 0.31   0.89 -28.27 

β3   1  1.36  -0.12 -25.34 

β4     1 0.22 -1.02 1.58 

VECM 2 

 Jobs GVA Conventional 
CCG

T 
Nuclear Renewables Trend Constant 

β1 1 -1.06     0.06 -2.32 

β2   1 0.46 0.76 0.30 -0.001 -28.25 

The statistical significance of the coefficients in the four cointegrating vectors is assessed with the use 

of the Likelihood Ratio (LR) test (Table 2) where a P-value lower than 0.05 indicates that the coefficient 

is statistically significant. The long-term coefficients are all strongly statistically significant, while the 

trend coefficient of β1 vector is statistically significant only at 5% significance level and that in β4 at 

10% significance level. The validity of VECM 1 in Table 2 is also checked by implementing the 

Lagrange Multiplier (LM) test for serial correlation in the residuals and the White test for 

heteroskedasticity. The null hypothesis of serial correlation and homoscedasticity in the LM and White 

test, respectively, can be rejected when the P-value is lower than 0.05. Table 3 reveals that the 

cointegrating VAR has homoscedastic residuals, while the null of no serial autocorrelation is rejected 

at 5% significance level in the case of LM test. To further test the validity of a model with four 

cointegrating relationships, two slightly modified specifications (VECM 1A and VECM 1B - Table A3) 

                                                 
16 Vector coefficients in Table 1 are presented in their matrix format. The reported coefficients in the text have 

opposite signs to those presented in the table, as it is customary in the field. 
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are estimated where the trend coefficients in β2 and β3 are imposed to be zero, therefore enforcing the 

results from the LR tests in Table 2. One can see that in both VECM 1A and VECM 1B specifications, 

the exclusion of only one trend coefficient in each of the models has a considerable impact on the value 

of the long-term coefficients. The remaining trend coefficients in VECM 1A and VECM 1B have in 

most cases different signs and markedly different values from those for VECM 1 in Table 1, although 

they remain statistically significant (Table A4). The residuals in the alternative specifications VECM 

1A and VECM 1B remain non-heteroskedastic similar to VECM 1, while they become non-serially 

correlated in VECM 1A (Table A5). Most importantly, both specifications VECM 1A and VECM 1B 

are not stable as they have one root out of the unit root circle, a pattern also observed for any alternative 

specification examined except for VECM 1 specification. 

Table 2. P-values of the Likelihood Ratio (LR) tests for the coefficients in the cointegrating vectors in 

Table 1 

 GV

A 
CCGT NUC REN 

Trend 

β1 
Trend 

β2 
Trend 

β3 

Trend 

β4 

All 

trends 

VECM 1 0.00 0.00 0.00 0.00 0.04 0.31 0.15 0.07 0.00 

VECM 2 0.00 0.00 0.00 0.00 0.00 0.86   0.00 

The fact that restricting one coefficient in VECM 1, based on indications from LR tests, implies 

considerable instability in the values of the other long-term coefficients, changes in their signs and 

ultimately explosive behaviour is taken as an indication that four cointegrating vectors in the system 

are a spurious result from cointegration testing. Therefore, VECM 1 is re-estimated with only two 

vectors, by assuming that β1 captures the scale effect between employment and GVA, as before, and β2 

capturing the substitution effect between conventional thermal on one side, i.e. historically the main 

electricity generation technology used in the UK17, and CCGT, nuclear and renewables on the other 

side. 

Table 3. Diagnostic tests for the residuals of the VECMs cointegrating vectors in Table 1 

 Lags Serial correlation Heteroskedasticity 

VECM 1 1 0.04 0.31 

VECM 2 1 0.17 0.40 

The resulting specification (VECM 2 - Table 3) is stable and has coefficients in the cointegrating vectors 

of the same sign and value similar to those in the model with four cointegrating vectors (VECM 1). 

More specifically, the scale effect between employment and GVA remains positive with value equal to 

1.06 (Table 1) which is fairly similar to the 0.96 value in VECM 1. Concerning the substitution effect, 

the coefficients for CCGT and renewables (-0.46 and -0.30, respectively) are also close to those in 

VECM 1. The only exception is the long-term coefficient of nuclear electricity which is equal to -0.76, 

                                                 
17 Conventional thermal technologies have generated the largest amount of electricity supply in relation to 

independently each one of the other electricity generation technologies throughout the whole timespan with the 

exception of the years 2007, 2008 and 2016 (Figure 1).  
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i.e. half the value of the coefficient in VECM 1. The trend coefficient in β1 is equal to -0.06 while that 

in β2 is almost equal to zero (0.001). The coefficients in the two cointegrating vectors are strongly 

significant – LR test in Table 2 – with only exception the trend coefficient in β2. The validity of VECM 

2 specification is supported by the failure to detect heteroskedasticity and serial correlation in the 

residuals (Table 3). Finally, the validity of the assumption of two cointegrating vectors is examined by 

assessing its robustness and estimating an alternative specification of VECM 2 where the non-

statistically trend term in the β2 is dropped from the model. The results in Table A3 indicate that this 

change leaves all long-term coefficients in both vectors virtually unaffected so that their values and sign 

are almost identical to those in VECM 2 (Table 1). The β coefficients in VECM 2A are strongly 

statistically significant (Table A4) while the diagnostic tests fail to detect heteroskedasticity and serial 

correlation in the residuals (Table A5). The stability of the system is not affected by this restriction, as 

VECM 2A turns out to be stable with four unit roots. 

The last step involves the implementation of a 1 GWh shock on each type of technology, separately, 

and the assessment of the resulting impact on employment for a time horizon of twenty years starting 

from year one - when shock occurs. Results indicate that employment responds negatively to a 1 GWh 

permanent increase in annual conventional thermal electricity supply (Figure 2(a)) reaching the value 

of -0.3 in the long-term. This is a counterintuitive result that can be attributed to the fact that the most 

recent conventional thermal plant built in the UK predates the start of the sample and that production 

of electricity from coal plants has largely been decreasing since 1990. In other words, it is unlikely that 

moderate increase in generation would change expectations of generators on the decreasing share of 

this technology. In panel (b), one can observe that the employment effects of a shock in conventional 

thermal and CCGT technologies seem to have roughly symmetrically opposite shapes although the 

employment effect to a shock in conventional thermal is lower in absolute value compared to the impact 

of a shock to electricity produced from CCGT. This finding seems to reflect the considerable pattern of 

substitution observed in Figure 1(a). One can also observe that the impact of an increase in CCGT 

production builds up across time after it takes place and results in an even higher employment effect in 

the following 4 years where employment reaches its peak value of 0.4 jobs. In the case of a shock in 

nuclear supply, employment effect reaches a value of 0.5 jobs in the long-term. However, contrary to 

the impact of CCGT, the size of the impact decreases across time from an initial impact of 0.7. Finally, 

regarding the employment effect to a shock in renewable electricity, Figure 2(d) indicates that the 

immediate impact of 1 job reaches the peak of 4.7 jobs after 6 years and eventually stabilises near 3.5 

jobs in the case of renewable electricity. It is interesting to notice that the impact of an increase in 

renewable electricity across time reflects the overall increasing trend observed in Figure 1(b), perhaps 

incorporating expectation on future increases. 
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Figure 2. Impulse response functions (IRFs) for VECM 2 in Table 1. The graphs reveal the employment 

effect of a 1 GWh permanent increase in electricity supply for each type of power generation 

technology.  

7. Discussion  

Starting with the scale effect, Table 1 confirms a positive relationship between GVA and employment, 

a result supported by [76] and in general by the extensive literature on the causal relationship between 

electricity use and economic growth [77]. The long-term elasticity of GVA takes the values 0.96 and 

1.06 in the case of VECM 1 and VECM 2, respectively, hinting at a positive one-to-one relationship 

between output and employment. Regarding the relationship between different types of electricity, 

findings indicate that CCGT, nuclear and renewables are all substitutes of conventional thermal. As 

there is sufficient evidence to conclude that the indication of four cointegrating vectors is likely to be 

spurious, the focus is placed on the results produced by VECM 2 (Table 1) where two cointegrating 

vectors are assumed. CCGT electricity is a long-term substitute of conventional thermal electricity, with 

elasticity equal to -0.46, a result supported by the literature related to interfuel substitution in the power 

industry [78]. Results further indicate that electricity generated by both nuclear and renewable 

technologies is a substitute of electricity generated by conventional thermal processes with elasticity 

equal to -0.76 and -0.30, respectively.  
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As mentioned in Section 2, there is a certain debate on whether jobs created by the deployment of 

renewable technologies can be sustainable in the long-term period. After examining the historical 

relationship between employment and electricity supply in the UK, findings indicates (Figure 2) that a 

permanent 1 GWh increase in annual electricity supply generated by renewables creates 4.7 new jobs 

in the short-term period while 3.5 jobs in the long-term. Thus, 3/4 of the jobs created by the deployment 

of renewable technologies are sustainable in the long run. Regarding nuclear electricity, a 1 GWh 

increase creates 0.81 jobs in the short-term – 6 times lower than those created by an equally sized 

increase in renewable electricity – while in the long-term employment stabilises at 0.54 jobs, i.e. 2/3 of 

the created jobs are sustainable in the long-run. Thus, the employment effect of nuclear electricity is 

not only much smaller in absolute terms than that of renewables but also less sustainable. When it comes 

to CCGT, the short-term employment effect is 0.57 jobs – 8 times lower to that created by an equal 

sized increase in renewable electricity – while the long-term effect is 0.36 jobs. The fact that capacity 

utilization is normally lower for renewable electricity technologies compared to other technologies 

might have a role in explaining the higher employment impact of renewables, as a higher level of 

capacity needs to be built and maintained, compared to other technologies, in order to produced a given 

amount of electricity. 

The similarity between this study’s results and those estimated by [79] that use an IO model for Japan 

can be interpreted as evidence of robustness of the proposed approach. [79] find that the potential for 

job creation over the life cycle of different renewable technologies is estimated to range between 1.04 

and 5.04 person-years per GWh. Older studies find similar but lower in magnitude effect for countries 

such as Brazil and Greece. [43] find that the total employment effect for Brazil is equal to 1.09 persons-

years per GWh while [31] find that total employment effect for Greece ranges between 0.26 to 1.50. 

7.1. Employment effect of UK decarbonisation scenarios for 2030  

From a policy perspective, and as a way of testing the methodology, one can investigate the potential 

future employment effect from a set of scenarios for electricity generation in 2030, produced by the UK 

Times (UKTM) model [80], by using the estimated long-run employment effect (Figure 2). The “Energy 

island” scenario is used as a counterfactual as it is the only one to assume that conventional thermal 

technologies will continue to be used until 2030. Table 418 reveals that “Low carbon (no Bioenergy with 

Carbon Capture Storage (BECCS))” and “Low carbon” are the only scenarios in which there is positive 

employment effect related to CCGT technologies equal to the creation of about 15,000 and 4,500 jobs, 

respectively. The only case of nuclear technologies have a positive employment effect equal to about 

                                                 
18 Conventional thermal is not incorporated in Table 4 as the last coal plant has been commissioned in 1987 and 

since then UK power sector has been significantly reduced its reliance to conventional technologies. 
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19,000 jobs is under the counterfactual in which 43% of total electricity supply is generated by nuclear.19 

Renewable technologies are expected to create from a minimum of about 16,000 jobs to a maximum of 

about 186,000 under the “Low carbon (no BECCS)” and “Low carbon (no Carbon Capture Storage 

(CCS))” scenarios, respectively20. The key role of renewables in generating a significant number of jobs 

in the long-run is the reason why employment effect in the “Low carbon” scenario is substantially higher 

than the impact in the “Low carbon (no CCS)” as in the former negative emissions21 are delivered 

through CCS technologies. 

Table 4. Employment effect for the UK Times (UKTM) model energy security scenarios [80] 

Scenario CCGT Nuclear Renewables 
Net 

employment 

1) Energy island -21,492 19,303 -10,219 -12,408 

2) Slow decarbonisation -9,278 -19,089 60,034 31,668 

3) Low carbon 4,499 -19,089 53,549 38,960 

4) Low carbon (no CCS) -32,931 0 185,594 152,539 

5) Low carbon (no BECCS) 14,956 -19,089 16,124 11,992 

6) Technology optimism -17,886 -19,089 75,136 38,162 

In contrast to the counterfactual in which there is negative net employment effect, all scenarios generate 

positive net employment effect which takes the minimum value of about 12,000 and maximum of about 

152,500 jobs under the “Low carbon (no BECCS)” and “Low carbon (no CCS)” scenarios, respectively. 

The rest of the scenarios indicate that net employment in the long-term is expected to vary between 

about 31,000 to 39,000 jobs.22 Overall, results indicate that further support of policies supporting the 

deployment of renewables in the UK (e.g. CfD) can boost employment significantly in the power sector.  

8. Conclusions  

This article proposes a transparent and easily replicable methodology to estimate the employment effect 

of electricity generation technologies by using aggregated data on economic activity and employment 

in the power sector, and amount of electricity produced by different technologies. It analyses the UK 

power sector, using annual data from 1990 to 2016, although this approach can be easily applied to 

other countries. Results indicate renewable electricity creates about six times the number of jobs created 

                                                 
19 “Low carbon (no CCS)” scenario assumes that nuclear technologies will generate in 2030 the same amount of 

electricity as in 2016. This leads to no employment effect. The rest of the scenarios share the same assumption 

about nuclear electricity in 2030, which results in the same negative employment effect equal to -19,089 (Table 

4). 
20 The “Low carbon (no BECCS)” scenario is the most conservative regarding renewable electricity as only 29% 

of the electricity is generated by renewables while the “Low carbon (no CCS)” assumes that 64% is generated by 

renewables and overwhelmingly by wind turbines. The rest of the scenarios, excluding “Energy island”, assume 

that on average 48% of the electricity is generated by renewables. 
21 The best scenario in terms of CO2 emissions reduction is the “Low carbon” with negative emissions predicted 

while the second best is “Low carbon (no CCS)” [80]. The worst performance comes under the counterfactual 

“Energy island”. 
22 Although we are aware of potential limitations due the implicit assumption of linearity in the effects, the 

plausibility of the results presented in Table 4 indicates the robustness of the suggested approach. 
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by an equally sized increase in nuclear generation. The similarity of this study’s findings with existing 

IO employment effect estimates indicates the robustness of the proposed approach. It also indicates that 

although simple, this approach is equivalently powerful to complex methods such as IO or CGE models.  

The estimated long-run employment effect is applied to a set of scenarios for UK electricity generation 

in 2030 produced by the UKTM model [80] so as to analyse the employment implications of those 

scenarios. Bearing in mind recent reduction in the cost of solar generation technology and the fact that 

the UK has the largest global capacity in offshore wind energy [82], it becomes evident that renewables 

can have a considerable positive long-term employment effect. It is crucial that policymakers 

incentivise and support the deployment of renewable electricity technologies as this study provides 

robust evidence of their employment impact in scenarios aimed at progressing the decarbonisation of 

the UK economy. Nevertheless, it has to be taken into account that findings focus on the power sector 

and therefore this study does not identify potential indirect job employment effects (e.g. manufacturing 

sector). Since the focus is on the aggregate level of the UK economy, the model cannot control for 

structural changes on the micro level of the labour market such as changes in wages and opportunity 

costs, changes in competitiveness due to demographic factors and potential supply constraints.  

Future studies should try to address the limitation of the current implementation and develop reduced-

form models able to identify the broader employment effect of the deployment of renewables 

technologies in sectors such as manufacturing, construction or services. In particular, it would be helpful 

if technological change influencing the composition of renewable generation, e.g. a further shift toward 

solar PV, or the labour intensity of the renewable technologies could be incorporated in the model, 

perhaps through a non-observable factor approach. Collection of data for smaller geographical areas 

would enable the estimation of ”local” models, therefore taking into account the fact that the 

employment effect of renewables might be influenced by the location of the technology on the grid or 

their distance from the shore, in case of offshore wind. Similarly, collection of data for periods shorter 

than one year, such as quarter, would enable the analysis of seasonal effects in the employment which 

could be expected for technologies affected by rough wintery conditions, such as offshore wind. On the 

other hand, it is also possible that the schedule of regular maintenance in the summer period, could 

make up for the increase in unforeseen repairs likely to be observed in the winter season. Based on 

purely statistical considerations, access to more granular data would increase the size of the sample 

available for empirical analysis, therefore probably increasing the confidence in the obtained estimates 

of the employment effects discussed here, while reducing loss of information related to heterogeneity 

of the effect across time and space. 

It would also help if future studies could implement this approach, perhaps while tackling some of the 

limitations pointed above, to other countries to increase the empirical evidence base on the employment 

effect but also to explore the extent to which the effect varies across countries. It is reasonable to expect 
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differences in the employment effect of renewables across countries due to: i) differences in the 

composition of the renewable sector; ii) in the phase of renewable deployment, i.e. some countries are 

at an advanced stage, while others less so); iii) in the share of renewable electricity production which is 

exported; and finally iv) in terms of industrial and labour policy. One would potentially expect similar 

results for countries that have followed similar trajectories in investing in renewable resources during 

the last two decades such as Denmark and Germany [81]. In fact, both countries along with the UK 

have been leading world’s offshore wind installed capacity in 2016 [82, 83]. Thus, it would be 

interesting to replicate the model for those countries and compare employment effects. On the other 

hand, the proposed methodology might not be the most helpful for countries such as Greece and Poland 

that have historically over-relied on fossil fuels (mainly lignite) to generate energy by centrally 

controlled conventional thermal plants [84, 85, 86], due to the fact that historical deployment of 

renewable technologies is limited. It is also very likely that the results in these two countries would 

likely be very different from those obtained for the UK not only because they are at an earlier stage of 

deployment but also because the labour market in the UK is much more flexible. 
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Table A1. Unit root test results for Major Power Producers (MPPs) 

 Logs First differences Logs First differences 

 
DF-GLS 

test 
lags 

Deterministic 

components 
DF-GLS test lags 

Deterministic 

components 
ZA test lags ZA test lags 

Jobs -1.46 1 Trend -3.91 (*) 0 Trend     

GVA -1.18 2 Trend -6.43 (**) 0 Trend     

Conv. thermal -1.43 0 Trend -1.49 2 Trend -1.86 2 -7.31 (**) 0 

CCGT -1.97 1 Trend -2.81 1 Trend -3.67 0 -4.59 (*) 1 

Nuclear -2.27 0 Trend -1.85 3 Trend -3.45 3 
-10.19 

(**) 
0 

Renewables -1.57 0 Trend -6.15 (**) 0 Trend     
(+) 

,
(*)

,
(**)

 in the superscripts indicate significance of the test statistics of the unit root tests at 90%, 95% and 99% significance level, respectively. If the DF-

GLS test cannot prove sufficient evidence that the series is I(1), one has to implement the Zivot and Andrews test (ZA) that allows for a break at an 

unknown point in time. 
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Table A2. Johansen test cointegration results 

 Trace Max Eigenvalue 
 H0 H1 λtrace p-value H0 H1 λmax p-value 

MPPs 

r = 0 r ≥ 1 0.973 (**) (0.00) r = 0 r = 1 0.973 (**) (0.00) 

r ≤ 1 r ≥ 2 0.897 (**) (0.00) r = 1 r = 2 0.897 (**) (0.00) 

r ≤ 2 r ≥ 3 0.827 (**) (0.00) r = 2 r = 3 0.827 (**) (0.00) 

r ≤ 3 r ≥ 4 0.737 (**) (0.00) r = 3 r = 4 0.737 (**) (0.01) 

r ≤ 4 r ≥ 5 0.507 (0.14) r = 4 r = 5 0.507 (0.11) 

Results from the Trace and Max Eigenvalue cointegration tests. (+) 
,
(*)

,
(**)

 in the superscripts indicate 

significance of the test statistics of the unit root tests at 90%, 95% and 99% significance level, 

respectively. 

 

Table A3. Cointegrating vectors β from alternative VECM specifications to those presented in Table 1  

VECM 1A  

 Jobs GVA Conv 
CCG

T 
Nuclear Renewables Trend Constant 

β1 1 -0.73     0.05 -5.32 

β2   1 0.56    -18.17 

β3   1  1.30  0.03 -26.90 

β4     1 0.64 -0.02 -16.80 

VECM 1B 

 Jobs GVA Conv 
CCG

T 
Nuclear Renewables Trend Constant 

β1 1 -1.03     0.21 -4.76 

β2   1 0.35   -0.30 -11.38 

β3   1  1.15   -24.71 

β4     1 0.27 0.37 -19.09 

VECM 2A 

 Jobs GVA Conv 
CCG

T 
Nuclear Renewables Trend Constant 

β1 1 -1.06     0.06 -2.27 

β2   1 0.44 0.77 0.28  -28.19 

VECM 1A: specification as in VECM 1 in Table 1 with trend in β2 restricted to zero. VECM 1B: 
specification as in VECM 1 in Table 1 with trend in of β3 restricted to zero. 2. VECM 2A: specification 

as in VECM 2 in Table 1 with trend in β2 is restricted to zero.  

 

Table A4. P-values of the Likelihood Ratio tests for the coefficients in the cointegrating vectors β 

presented in Table A3 

 
GVA 

CCG

T 
NUC REN 

Trend 

β1 
Trend 

β2 
Trend 

β3 

Trend 

β4 

All 

trends 

VECM 

1A 
0.00 0.00 0.00 0.00 0.01  0.00 0.40 0.00 

VECM 

1B 
0.00 0.00 0.00 0.00 0.02 0.00  0.00 0.00 

VECM 

2A 
0.00 0.00 0.00 0.00 0.00     
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Table A5. Diagnostic tests for the residuals of the VECMs cointegrating vectors presented in Table A3 

 Lags Serial correlation Heteroskedasticity 

VECM 1A 1 0.37 0.32 

VECM 1B 1 0.03 0.32 

VECM 2A 1 0.20 0.38 
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Figure A1. Variables employed in the empirical analysis. The graphs depict the time series for all 

variables expressed in logarithms 
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