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Abstract

Monads are a central object of category theory and constitute crucial tools for many
areas of Computer Science, from semantics of computation to functional programming.
An important aspect of monads is their correspondence with algebraic theories (their
‘presentation’). As demonstrated by the history of this field, composing monads is a
challenging task: the literature contains numerous mistakes and features no general
method. One categorical construct, named ‘distributive law’ allows this composition, but
its existence is not guaranteed.

This thesis addresses the question of monad composition by presenting a method
for the construction of distributive laws. For this purpose, we introduce a notion
of preservation of algebraic features: considering an arbitrary algebra for the theory
presenting a monad S, we examine whether its structure is preserved when applying
another monad T . In the case of success, it allows us to construct a distributive law and
to compose our monads into TS.

In order to develop a general framework, we focus on the class of monoidal monads. If
T is monoidal, the algebraic operations presenting S are preserved in a canonical fashion;
it remains to examine whether the equations presenting S are also preserved by T .

As it turns out, the preservation of an equation depends on the layout of its variables:
if each variable appears once on each side, the considered equation is automatically
preserved by a monoidal monad. On the other hand, if a variable is duplicated or only
appears on one side, preservation is not systematic. The main results of this thesis
connect the preservation of such equations with structural properties of monads.

In the case where T does not preserve an equation presenting S, our distributive
law cannot be built; we provide a series of methods to slightly modify our monads and
overcome this issue, and we investigate some less conventional distributive laws.

Finally, we consider the presentations of both S and T and revisit our construction
of distributive laws, this time with an algebraic point of view.

Overall, this thesis presents a general approach to the problem of monad composition
by relating categorical properties of monads with preservation of algebras.



Impact Statement

The research work presented in this thesis is a study on the topic of category theory; we
address the notoriously difficult problem of monad composition with a fresh approach
focusing on the preservation of algebraic features. The impact of our findings is mostly
theoretical and academic. We summarise below the main areas to which our work applies.

• On a purely theoretical level, this work answers the long-standing question of
monad composition in many cases and offers a general method for this problem.

• The use of monads is widespread for the study of semantics of programming
languages. Once again, this work resolves the issue of compositionality of monads
modelling computations in diverse cases where our method applies.

• The categorical formalisation of automata, and in particular the process of gener-
alised determinisation, benefits from both our study of preservation of algebraic
features and our strategies for non-composing monads. We explicitly show in this
thesis how our results relate to probabilistic automata and alternating automata.

• Because of the correspondence between monads and algebraic theories, our findings
can prove useful to the study of universal algebra. Each distributive law obtained
through our method offers a method to combine two algebraic theories in a consistent
way.

Outside the academic community, our work has a potential impact through its
applications to programming.

• In the field of functional programming, monads offer a unified framework for a
wide range of computational features. It can be crucial to combine several of
these programming effects, and our approach gives a canonical approach to the
construction of valid distributive laws for this purpose.
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Chapter 1

Introduction

The search for a theoretical system encompassing mathematical objects of a different
nature is an everlasting challenge. Category theory, a field started by Saunders Mac Lane
and Samuel Eilenberg in the 1950s [25], attempts to answer this question by placing the
focus on the idea of a mathematical structure, and on the transformations which preserve
it. This approach allows to unite diverse areas of mathematics under a single scheme,
named ‘category’. For instance, one well-known category contains sets and the functions
between them. Other examples include ordered sets with order-preserving functions,
groups with group morphisms, topological spaces with continuous functions and vector
spaces with linear maps.

Monads are defined by Mac Lane and constitute a central object of category theory:
at first glance, they define a transformation of our category, subject to strict structural
conditions. For example, turning a set into the collection of its subsets constitutes a
monadic transformation (called powerset). If we consider a set A, mapping A to the set
of lists containing elements of A is also a monad (the list monad).

A crucial connection between monads and Computer Science is established in Moggi’s
work [30, 31]. As Moggi explains, monads correspond to ‘notions of computations’: they
can be used to model computational effects such as exceptions, probabilistic calculation
or non-determinism. In this spirit, monads are at the core of functional programming
and languages like Haskell because they encapsulate particular patterns and side-effects
of sequential computation (lists, exceptions. . . ) in a unified way.

Another aspect of monads is the correspondence with algebraic theories. They are
said to be ‘presented’ with a collection of operation symbols, and equations governing
them. The list monad, for instance, corresponds to the theory of monoids: an associative
binary operation and its unit. The powerset monad, on the other hand, is presented
by the theory of complete lattices. This notion of presentation is a crucial asset for the
study of universal algebra, since monads can now be seen as a categorical counterpart to
algebraic theories.

6
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One question that arises naturally is that of compositionality: can we combine two
monads and obtain a third monad? In term of computational effects, can we for instance
associate non-deterministic calculations with exceptions? Many attempts at combining
the features of different monads can be found in the literature, e.g. [19, 13, 14]. Some
methods to compose monads in a sequential way have been thoroughly examined [26, 27],
and some results of incompatibility between monads have been established [21, 42].
However, this field of research has been the subject of numerous errors and the problem
of monad composition is still lacking a general approach. As related in [42], the history
of the aforementioned powerset monad demonstrates this difficulty. Manes and Mulry
first claimed in [26] that this monad could be composed with itself. They later retracted
this result and acknowledged their mistake, but a similar claim was made in [20] by Klin
and Rot, only to be disproved by Klin and Salamanca in [21] as they show that no such
composition can be constructed.

This thesis takes a fresh approach to the question of monad composition and connects
it with the idea of algebraic presentation. Inspired by the works cited above, we develop
a general method to compose monads as well as precise conditions for its success. In a
nutshell, consider two monads that we wish to compose: we represent one of them with
its algebraic features, and the other as a categorical transformation. We then examine
whether this transformation preserves the aforementioned algebraic constructs, and show
that a successful preservation allows to compose our two monads. In this introductory
chapter we recall the main mathematical objects of interest, state our main contributions,
review related work and outline the thesis.

Monads and Algebras

A collection of objects together with a collection of arrows (or morphisms) between
objects constitutes a category [25]. As mentioned above, vector spaces and topological
spaces are examples of categories, but we focus our work on the category of sets and
functions, which we denote by Set.

Every monad T is based on a transformation from a category to itself (an endofunctor),
and is provided with additional categorical structure. A typical monad is the powerset
monad P, which maps a set X to P(X) = {U | U ⊆ X}. Other examples include the
aforementioned list monad L and the distribution monad D, which maps every set X to
the set of probability distributions on X.

A capital aspect of monads is their relation with universal algebra. An algebra for the
monad T (which we denote by A) is given by a carrier set A and an algebraic structure
defined by the monad T . All algebras for T form a category (called the Eilenberg-Moore
category of T ). For some monads called finitary, we can precisely describe these algebras
as instances of an algebraic theory: a set Σ of operations of finite arity, and a set of
equations E governing them. Consider for instance the list monad L. If A is an algebra
for L, then A has a structure of monoid: we can define on it a binary operation • and a
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unit 1 such that the following equations hold:

x • 1 = 1 • x = x x • (y • z) = (x • y) • z (1.1)

The list monad is said to be presented by the theory of monoids. Similarly, the distribution
monad is presented by the theory of convex algebras.

Two monads cannot always be composed. For instance, it has been shown in [21]
that composing P with itself can never form a monad. One crucial object permits to
compose monads T and S: a transformation called distributive law that we denote by λ
[2], which allows to define a monad structure on the sequential composition TS. A large
part of this thesis is dedicated to the general construction of distributive laws and the
conditions under which they can be built.

Approach

Our aim is to compose monads by constructing distributive laws. For this purpose, we
develop a method which relies on the preservation of algebraic features by a monad. In
this section, we introduce the problem of algebraic preservation and present the starting
point of our approach.

Consider for instance the transformation operated by the powerset monad, and the
algebraic theory of monoids. Let us assume that the set A is provided with a structure
of monoid (1.1). Can we say that PA has the same algebraic structure as A, namely is
it still a monoid? Answering this question must be done in two steps: first, investigate
what binary operation acts on PA and what its unit is, then examine if, for this new
operation, the equations of a monoid hold on PA.

In the case of P, this question has been extensively studied in a pioneering paper by
Gautam [11]. For the first step, he shows that an operation • on the set A and its unit 1
can be redefined in a very natural way on PA. Gautam then proves that all the equations
in (1.1) are preserved by P, therefore the powerset monad preserves the structure of
monoid — we say that P can be lifted to the category of monoids.

More generally, Gautam shows that the equations preserved by P are exactly the ones
where both sides feature the same variables, and with each variable appearing exactly
once on each side. This type of equality is called linear - it is easy to see that for instance,
all monoid laws (1.1) are linear. Incidentally, an equation such as x×x = x (idempotence)
is not preserved by P.

To move away from P and study the general question, we consider a monad T and
an algebraic theory (Σ, E), and we examine the preservation of the latter by the former.
Assume that T belongs to the class of monoidal monads ; such monads are introduced by
Kock [23] and happen to provide a canonical framework for the preservation of algebraic
features. For a set A provided with an Σ-algebra structure, we take inspiration from [36]
and make use of the monoidal structure of T to redefine algebraic operations, this time
with on the set TA. In other words, we lift the monad T to the category of Σ-algebras.



9

This lifting is always possible for monoidal monads and defines a new monad T̂ . It now
remains to show whether the equations in E preserved by T , which constitutes the main
challenge of this thesis.

Contributions

The central idea of this thesis is the construction of distributive laws via the preservation
of algebraic features by monoidal monads; in this section we present our original findings.

We consider two monads T and S, and the algebraic theory (Σ, E) presenting S.
Having first constructed the lifting T̂ to the category of Σ-algebras, we show that if T̂
preserves all equations in E, then there exists a distributive law permitting to compose T
and S (Theorem 3.14). This offers a general method for the construction of a composite
monad TS when T is monoidal and S is finitary.

Verifying that an equation of E is preserved by T̂ is however a tricky process. As
explained above, preservation is not automatic and may depend on the variable layout on
both sides of the equality. Inspired by [11], we outline two main classes of equations: drop
equations, in which one variable appears on one side only (for instance x× 0 = 0), and
dup equations, where some variables appear more than once on one side (x× x = x). We
call the equations which are dup but not drop ‘strict-dup’ (and conversely ‘strict-drop’).

First, we consider any equation and construct a tailor-made categorical condition for
its preservation.

• Sufficient condition for equation preservation (Theorem 4.11).

This process highlights the importance of the variable layout, and allows for the following
classification of monads: we show that affine monads (a well-known monadic class,
thoroughly studied in [15]) preserve equations that feature deleted variables. Then we
focus on strict-dup equations and prove that they are preserved by relevant monads (also
examined in [15]). The combination of affine and relevant properties results in Cartesian
monads, and our results compose nicely to show that such monads preserve all equations.

• Affine monads preserve strict-drop equations (Theorem 4.28).

• Relevant monads preserve strict-dup equations (Theorem 4.34).

• Cartesian monads preserve all equations (Theorem 4.38).

So far our results on equation preservation are only sufficient conditions; we also
assess whether they are necessary. If a monoidal monad T preserves a drop equation,
does that mean that T is affine? If we consider any equation in a class slightly larger
than strict-drop, then the answer is yes, which means that we obtain an equivalence
between affineness and preservation of strict-drop equations. The case of dup equations
and relevant monads turns out to be more complicated. For a large class of strict-dup
equations, preservation does imply relevance and a similar equivalence is obtained. For
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some other dup equations, we show that relevance is not necessary for T to preserve
them; instead, a weaker property of n-relevance characterises preservation. Note that our
results lead to an interesting corollary: the undecidability of the affineness of a monad.

• For strict-drop equations, preservation is equivalent to affineness (Theorem 5.5).

• Affineness of a monad is undecidable (Theorem 5.7).

• For some dup equations, preservation is equivalent to relevance (Theorem 5.17).

• For other dup equations, preservation is equivalent to n-relevance (Theorem 5.24).

Having shown that our categorical conditions are necessary, we now know where
our method does not apply: for instance if T is not affine and S is presented by some
strict-drop equations. In such cases, we present a series of strategies to overcome the
incompatibility of the two monads. We operate increasingly precise modifications on our
monads to enforce the preservation of some algebraic features, sometimes moving away
from the strictly monoidal context to construct less conventional distributive laws.

• Methods to combine monads when some equations are not preserved (Chapter 6).

In the final part of this thesis, we focus our attention on the algebraic presentation of both
T and S, and translate our previous categorical notions of monoidal, affine and relevant
monads in algebraic terms (Theorems 7.4 to 7.21). Then we recall the distributive law
constructed via our method and examine it under this new light. It then appears that
the algebraic transformation it operates shows a very familiar pattern. Finally, we use
algebraic techniques to prove a new characterisation of relevant monads and to study
non-monoidal distributive laws .

• Algebraic characterisation of our distributive law (Theorem 7.23).

• Relevant monads are characterised by the preservation of discerning equations
(Theorem 7.30).

• Properties of non-monoidal distributive laws (Theorems 7.31 and 7.32).

Generally speaking, the scope of this thesis covers monoidal monads on Set. In some
cases, generalisations outside this setting are possible and will be discussed.

Related Work

The problem of combining the features of several monads has been examined by Moggi
in [30, 31] with the notion of ‘monad transformer’. Later works by Hyland and Power
[13, 14] bring Moggi’s concept further as they devise diverse options for combination.
Our approach differs from theirs and is based on Beck’s seminal paper on distributive
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laws [2]. Constructing such a law has been the object of several papers; the closest
ones to our work being by King and Wadler [19] and Manes and Mulry [26, 27]. Some
of our results can be seen as an extention of the ideas of [26]: we confirm Manes and
Mulry’s findings on monoidal monads and generalise them to the classes of affine and
relevant monads. Our construction of distributive laws is closely related to the methods
of Bonsangue, Hansen, Kurz and Rot in [5], in which the authors exhibit a method to
‘quotient’ a distributive law by the equations of a theory.

Our work also finds its place in a more recent context of research on distributive
laws. First, a proof strategy by Gordon Plotkin is used by Varacca in [38] to show that
P and D cannot be composed via a distributive law. Inspired by this method, Klin
and Salamanca’s paper [21] provides a definite result on the incompatibility of some
monads with P, which resonates with our characterisation of relevant monads by their
preservation of idempotence. On a more algebraic level, Zwart and Marsden generalise
Plotkin’s idea in [42] to classify a wide selection of cases where no distributive law can
be found. As mentioned before, our approach of the preservation of algebraic features
can also be related to Gautam’s pioneering work in [11]. His study of ‘complex algebras’
(brought further by Grätzer in [12]) makes no use of category theory but describes exactly
the monoidal lifting of P to Alg(Σ); this thesis generalises his findings to other monoidal
monads. Our proof strategy for relevant monads and dup equations involves a graphical
framework inspired by existing works. Describing monoidal functors with a box-like
diagram dates back to [9] and more recently to [29]. McCurdy gives a detailed study of
this approach in [28], however our framework differs slightly as he assumes properties of
affineness and relevance to always hold, leading to a more robust graphical representation.
Some of our methods for treating the case of incompatible monads are heavily inspired
by works by Bonchi, Sokolova and Silva [3] as well as Bonchi, Sokolova and Vignudelli [4],
as both papers describe a modification of the powerset monad enforcing the preservation
of some dup equations.

Finally, the algebraic techniques we apply to monad composition are closely related
to the ones employed by Zwart and Marsden in [42]. However contrary to them we
focus on monoidal monads and our constructive results on the corresponding distributive
law, which complements their findings on incompatible monads. Our work in the final
chapter also relies on existing results on the combination of algebraic theories, mostly
from [42, 40, 34].

Outline

In Chapter 2, we precisely define the notions of category, monoidal monad, algebraic
theory and distributive law, as they form the theoretical backbone of this thesis. The
end of the chapter features a summary of the different approaches to monad composition.

Chapter 3 introduces our method to compose a monoidal monad T with a finitary
monad S. We present a canonical construction for the preservation of algebraic features
by making use of the monoidal structure of T , and we build the lifting T̂ . Finally,
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we complete this chapter by showing that our construction yields a distributive law
λ : ST → TS when the equations presenting S are preserved. Chapter 3 is based the
following published paper.

• [10] Fredrik Dahlqvist, Alexandra Silva, and Louis Parlant. Layer by layer: Com-
posing Monads. ICTAC 2018.

Chapter 4 focuses on the preservation of equations. Starting with the lifting defined
in Chapter 3, we define residual diagrams which act as precise sufficient conditions for a
given equation to be preserved. This construct allows to demonstrate that all monoidal
monads preserve linear equations (confirming a result of [26]). We then move on to affine
monads and show that they preserve strict-drop equations, and by the same mechanism
we show that relevant monads preserve strict-dup equations. Finally, Cartesian monads
(which are both relevant and affine) preserve all equations. Once more, these findings are
based on the following publication.

• [10] Fredrik Dahlqvist, Alexandra Silva, and Louis Parlant. Layer by layer: Com-
posing Monads. ICTAC 2018.

In Chapter 5, we aim to establish the necessity of the sufficient conditions constructed
in Chapter 4. We succeed in the case of affine monads, which are characterised by the
preservation of any strict-dup equation. This permits us to show that the question of
whether a given monad is affine is undecidable. Moving on to strict-dup equations, we
prove that the preservation of many of them implies the property of relevance. However,
some strict-dup equations are shown to coincide with a weaker property called n-relevance.
Chapter 5 is based on the following recent publication.

• [33] Louis Parlant, Jurriaan Rot, Alexandra Silva, and Bas Westerbaan. Preserva-
tion of Equations by Monoidal Monads. MFCS 2020.

Chapter 6 focuses on the cases where one monad T fails to preserve some equations
presenting another monad S. We give a series of tactics to overcome this issue: the first
one is a coarse modification of S to ensure that the composition succeeds. The second
one is a restriction of T to its affine, relevant or Cartesian part which, depending on
the equation, will automatically allow to preserve it. A more precise method is then
presented: intuitively, we construct the lifting T̂ then restrict it to preserve the equations
of S, forming a monad on S-algebras; this framework is inspired by unpublished joint
works with Gerco Van Heerdt. Our last strategy leaves the framework of monoidal
monads and builds an ad hoc lifting of T which, by construction, preserves the desired
equations.

Finally, Chapter 7 examines again the concepts of monoidal, affine and relevant
monads as well as the distributive law from Chapter 3 from the point of view of algebraic
theories. This time, we consider the presentations of both S and T and we regard the
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object TX as a set of algebraic terms verifying the equations presenting T . We give
algebraic counterparts to categorical properties introduced in Chapters 2 and 4, and we
study the action of the distributive law from Chapter 3 on terms of STX. The final
two sections focus on a new characterisation of relevant monads and on a study of a
particular non-monoidal distributive law, both explored via algebraic techniques.



Chapter 2

Preliminaries

We summarise in this chapter the mathematical basis of our work. We assume that the
reader is familiar with category theory, but we recall the definitions of the main objects.
We define monads, algebras and the existing methods to combine them.

2.1 Category Theory

This work arises in the context of category theory. This framework (see [25] for a
comprehensive introduction) finds an essential use in many settings, of interest here are
the study of universal algebra and the modelling of computation. We recall here the
basic notions and refer to [25] and [1] for details.

Definition 2.1 (Category). A Category C consists of:

• A collection of objects denoted X,Y, Z . . .

• A collection of arrows denoted f, g, h (or morphisms) between two objects. We

write f : X → Y , X and Y are respectively denoted domain and codomain of f .

Arrows f : X → Y and g : Y → Z can be composed into an arrow g ◦ f : X → Z, and

each object admits an identity arrow idX : X → X. Composition of arrows is associative

and identity arrows act as units for it.

Essentially, category theory places the focus on consistent structures (objects) and
transformations that preserve them (arrows).

14
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Example 2.2. We denote by Set the category whose objects are sets and whose arrows

are functions between them. 4

Most of our constructions are done in Set. Other examples of categories include
groups with group homomorphisms and partially ordered sets (posets) with monotone
functions.

Definition 2.3 (isomorphism). The arrow f : X → Y is an isomorphism if there is an

arrow g : Y → X such that :

f ◦ g = idY and g ◦ f = idX

We say that two objects X and Y are isomorphic if there is an isomorphism between

them, and write X ' Y .

Example 2.4. In Set, all finite sets of the same size are isomorphic. In particular, all

singletons are isomorphic. Working up to isomorphism, we represent any singleton as the

object 1 = {∗}. 4

Definition 2.5 (Functor). A functor F : C→ D between two categories is a mapping

of objects to objects and arrows to arrows such that:

• F (f : A→ B) = F (f) : F (A)→ F (B)

• F (g ◦ f) = F (g) ◦ F (f)

• F (idX) = idF (X)

An endofuntor is a functor F : C→ C mapping a category to itself. The identity functor

Id maps all objects and arrows to themselves.

Definition 2.6 (Natural Transformation). For categories C, D and functors F,G : C→

D, a natural transformation ζ : F → G is a family of arrows in D indexed by objects

in C:

(ζX : FX → GX)X∈C
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which make the following diagram commute for any f : X → Y arrow of C.

FX

Ff
��

ζX // GX

Gf
��

FY
ζX
// GY

(2.1)

In a nutshell, a natural transformation defines a morphism between functors. This
concept is crucial in our studies as it defines a consistent mapping across objects of a
category. Another notion is central in our work: providing a category with the structure
of a monoid. We recall here the corresponding definitions.

Definition 2.7 (Monoidal Category). A monoidal category consists of a category C

equipped with:

• a bifunctor ⊗ : C×C→ C

• an object I called unit or identity

• a natural isomorphism αX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z) called associator

• a natural isomorphism ρX : X ⊗ I → X called right unitor

• a natural isomorphism ρ′X : I ⊗X → X called left unitor

α, ρ and ρ′ are subject to coherence conditions such as: ρA ⊗ idB = idA ⊗ ρ′B ◦ αA,I,B.

More details can be found in [25].

Example 2.8. The category Set together with the Cartesian product × and its unit 1

forms a monoidal category. Associators and unitors are given by natural isomorphisms

such as (X × Y )× Z ' X × (Y × Z) and X × 1 ' X 4

We concept of adjunction is crucial in category theory. We give here the general
definition, and give more details later when focusing on the adjunctions involved in
algebraic structures.

Definition 2.9 (Adjoint). Two functors F : D→ C and G : C→ D are said adjoint if

there exist two natural transformations ε : FG→ 1C and η : 1D → GF such that:

εF ◦ Fη = idF

Gε ◦ ηG = idG
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In this case, we write F a G and say that F is left adjoint to G.

2.2 Monads

Monads are the central object of our work. In this section, we define them and their
attributes, and give some introductory examples.

Definition 2.10 (Monad). A Monad (T, η, µ) on a category C is given by:

• An endofunctor T : C→ C

• A natural transformation η : Id→ T called the unit

• A natural transformation µ : TT → T called the multiplication

subject to the following commuting diagrams, for X any object of C:

TTTX

µTX
��

TµX // TTX

µX
��

TTX µX
// TX

TX

TηX
��

idTX

$$

ηTX // TTX

µX
��

TTX µX
// TX

For the purpose of this study, we will consider monads on Set. Here are some of the
most common ones:

Example 2.11. The full (covariant) powerset monad (P, η, µ) is given by:

• P : Set→ Set maps a set X to the set of all (not necessarily finite) subsets of X.

P acts pointwise on morphisms.

• The unit maps an element x to the singleton {x}.

ηX : X → PX

x 7→ {x}

• The multiplication takes the union of sets.

µX : PPX → PX

V 7→
⋃
{U | U ∈ V }
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A variation on P is the Non-Empty Powerset monad P+, which maps a set X to all its

subsets except for ∅. Its action on morphisms, its unit and its multiplication are all

defined as above. 4

Example 2.12. The finite (covariant) powerset monad (Pf , η, µ) is given by:

• Pf : Set→ Set maps a set X to the set of all finite subsets of X. Pf acts pointwise

on morphisms.

• The unit and the multiplication are defined as for P.

Again, the non-empty finite powerset monad also forms a monad, which we denote by

Pf
+. 4

Example 2.13. The List Monad (L, ηL, µL) is given by:

• L : Set→ Set maps a set X to the set of all finite lists with elements in X. The

action of L on morphism is pointwise: L(f [w1, . . . , wn]) = [f(w1), . . . , f(wn)]

• The unit maps an element x to the singleton list [x]

ηLX : X → LX

x 7→ [x]

• The multiplication concatenates a list of lists into a single list.

µLX : LLX → LX

[[w1, . . . , wk1 ], . . . , [wkn−1 , . . . , wkn ]] 7→ [w1, . . . , wkn ]

4

Example 2.14. For a semiring S, let (MS, η
S, µS) be the generalised multiset defined as

follows.
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• A multiset ξ ∈MSX is a map X → S with finite support, that we may also write as

the formal sum
∑

x ξ(x)x. For f : X → Y we define (MSf)(ξ)(y) =
∑

x; f(x)=y ξ(x)

which boils down to (MSf)(
∑

i sixi) =
∑

i sif(xi) when writing the multisets as

formal sums.

• The unit is defined by ηS(x) = 1 • x

• the multiplication is given by µS(δ)(f) =
∑

x δ(f)f(x), that is µS(
∑

i si
∑

j tijxij) =∑
i,j sitijxij .

4

Example 2.15. A natural special case of MS is obtained by taking S = N; we simply

call it the Multiset Monad (M,ηM , µM ). M : Set→ Set maps a set X to the set of all

finite multisets with elements in X. M acts pointwise on morphisms. The unit maps an

element x to the singleton {x}, which is the multiset containing one instance of x, and

the multiplication takes the union of multisets (which may contain duplicates).

ηMX : X →MX µMX : MMX →MX

x 7→ {x} V 7→
⋃
{U | U ∈ V }

4

Example 2.16. The Distribution Monad (D, ηD, µD) is given by:

• D : Set → Set maps a set X to the set of all finitely supported probability

distributions on X: DX = {P : X → [0, 1] |
∑

x∈X P(x) = 1, supp(P) finite}. The

action on morphisms is defined as Df : DX → DY,P 7→ λy.
∑

x∈f−1(y) P(x)

• The unit maps an element x to the Dirac distribution at x.

ηDX : X → DX

x 7→ δx
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• The multiplication is defined as:

µDX : DDX → DX

R 7→ λx.
∑

P∈supp(R)

R(P).P(x)

4

Example 2.17. For a set E, the Exception Monad (( + E), ηE , µE) is defined as:

• TE = ( +E) : Set→ Set maps a set X to the disjoint union X+E. TE(f) = f+idE .

• The unit is the inclusion X → X + E.

• The multiplication (X + E) + E → X + E is the identity on X and maps both

copies of E to a single one.

A special instance of the exception monad, called Maybe Monad, corresponds to the case

E = 1. We denote this monad by ⊥ or sometimes X + 1. 4

Example 2.18. For a set C, we define the Reader monad RC as ((−)C , ηC , µC), some-

times written XC .

• RC = (−)C : Set→ Set maps a set X to the set of morphisms C → X. For c ∈ C,

f : X → Y , s ∈ XC , we have RC(f)(c) : s 7→ f(s(c)).

• The unit maps a ∈ X to the constant function x 7→ a.

• The multiplication (XC)C → XC evaluates twice and for c ∈ C, t ∈ (XC)C yields

(µ(t))(c) = t(c)(c)

4

Example 2.19. For a commutative monoid (M, •, 1), we define the Writer monad WM

as ((−)×M,ηM , µM ); we will sometimes write it X ×M .

• W maps a set X to the product X × M ; for f : X → Y we have WM (f) =

f × id : X ×M → Y ×M .
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• The unit maps a ∈ X to the pair (x, 1).

• The multiplication (X ×M)×M → X ×M maps ((x,m), n) to (x,m • n).

4

See for instance [32] for uses of the exception, reader and writer monads.

Example 2.20. For a set S, the State Monad ((S × )S , ηS , µS), sometimes called

Side-effects Monad is defined as:

• (S × )S : Set→ Set maps a set X to the set of morphisms S → S ×X. Given a

morphism f : X → Y , we define (S × f)S : (S ×X)S → (S × Y )S in the following

manner. If for h ∈ (S ×X)S we have h : s 7→ (s′, x), we define h′ : s 7→ (s′, f(x)).

Finally, (S × f)S : h 7→ h′.

• The unit maps an element x to the trivial morphism:

ηSX : X → (S ×X)S

x 7→ λs.(s, x)

• The multiplication successively applies morphisms:

µPX : (S × (S ×X)S)S → (S ×X)S

f 7→ λs.g(s′) where f(s) = (s′, g)

4

Definition 2.21. A monad morphism between (S, ηS , µS) and (T, ηT , µT ) is a natural

transformation u : S → T verifying the following properties:

u ◦ ηS = ηT µT ◦ Tu ◦ uT = u ◦ µS
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2.2.1 Strong Monads

We consider a monoidal category (C,⊗, I), we write α for the associator of (C,⊗, I)
and ρ, ρ′ the right and left unitors respectively. swap : (−) ⊗ (−) → (−) ⊗ (−) is the
argument-swapping transformation (natural in both arguments). In [31], Moggi defines
the following concept, crucial for our study:

Definition 2.22 (Strong Monad). A strong monad is a monad (T, η, µ) provided with a

natural transformation stX,Y : X ⊗ TY → T (X ⊗ Y ) subject to the following commuting

diagrams:

1⊗ TX
ρ′TX //

st1,X ''

TX

TρX
��

T (1⊗X)

(2.2)

(X ⊗ Y )⊗ TZ
αTX,TY,TZ //

stX⊗Y,Z⊗idTZ
��

X ⊗ (Y ⊗ TZ)

idX⊗stY,Z
��

T ((X ⊗ Y )⊗ Z)

TαX,Y,Z **

X ⊗ T (Y ⊗ Z)

stX,Y⊗Z
��

T (X ⊗ (Y ⊗ Z))

(2.3)

X ⊗ Y id⊗ηY //

ηX⊗Y &&

X ⊗ TY
stX,Y
��

T (X ⊗ Y )

(2.4) X ⊗ T 2Y

idX⊗µY
��

stX,TY// T (X ⊗ TY )
T stX,Y // TT (X ⊗ Y )

µX⊗Y

��
X ⊗ TY

stX,Y // T (X ⊗ Y )

(2.5)

For instance, the powerset monad on Set is strong: we can define stX,Y : X ⊗ PY →
P(X⊗Y ) by stX,Y (a, U) = {a}×U . This construction can be generalised to the following
result:

Theorem 2.23 ([31]). All monads on Set are uniquely strong.

For every strong monad T , a costrength st′X,Y : TX ⊗ Y → T (X ⊗ Y ) can be defined
as T (swapY,X) ◦ stY,X ◦ swapTX,Y . T is then said to be commutative when strength and
costrength can be combined in any order, in other words when the following diagram
commutes:

TX ⊗ TY

st′X,TY
��

stTX,Y // T (TX ⊗ Y )
T st′X,Y // TT (X ⊗ Y )

µX⊗Y
��

T (X ⊗ TY )
T stX,Y // TT (X ⊗ Y )

µX⊗Y // T (X ⊗ Y )

(2.6)



2.2. MONADS 23

2.2.2 Monoidal Monads

Some monads interact in a well-behaved way with the monoidal structure of the category.
We define here their properties as they will be the center of our study.

Definition 2.24 (Monoidal Functor). A lax monoidal functor, or simply a monoidal

functor, is an endofunctor F : C→ C together with natural transformations ψX,Y : FX⊗

FY → F (X ⊗ Y ) and ψ0 : I → FI satisfying the diagrams:

FX ⊗ I idFX⊗ψ0
//idFX⊗ψ0
//

ρFX
��

FX ⊗ FI
ψX,I

��
FX F (X ⊗ I)

FρXoo

(MF.1)

(FX ⊗ FY )⊗ FZ
αFX,FY,FZ //

ψX,Y ⊗idFZ
��

FX ⊗ (FY ⊗ FZ)

idFX⊗ψY,Z
��

F (X ⊗ Y )⊗ FZ

ψX⊗Y,Z
��

FX ⊗ F (Y ⊗ Z)

ψX,Y⊗Z
��

F ((X ⊗ Y )⊗ Z)
FαX,Y,Z // F (X ⊗ (Y ⊗ Z)))

(MF.3)

I ⊗ FX ψ0⊗idFX//ψ0⊗idFX//

ρ′FX
��

FI ⊗ FX
ψI,X

��
FX F (I ⊗X)

Fρ′Xoo

(MF.2)

Definition 2.25. Finally, we require precise interactions between the monoidal structure

and the unit and multiplication of the monad. A monoidal monad T on a monoidal

category is a monad whose underlying functor is monoidal for a natural transformation

ψX,Y : TX ⊗ TY → T (X ⊗ Y ) and ψ0 = ηI , the unit of the monad at I, and whose unit

and multiplication are monoidal natural transformations, that is to say:

X ⊗ Y ηX⊗ηY//

ηX⊗Y &&

TX ⊗ TY
ψX,Y
��

T (X ⊗ Y )

(MM.1)

T 2X ⊗ T 2Y

µX⊗µY
��

ψTX,TY// T (TX ⊗ TY )
TψX,Y // TT (X ⊗ Y )

µX⊗Y

��
TX ⊗ TY

ψX,Y // T (X ⊗ Y )

(MM.2)
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Moreover, a monoidal monad is called symmetric monoidal if

TX ⊗ TY
ψX,Y //

swapTX,TY

��

T (X ⊗ Y )

T swapX,Y
��

TY ⊗ TX
ψY,X

// T (Y ⊗X)

(SYM)

Example 2.26. The powerset monad P is monoidal, by defining ψ as the Cartesian

product.

ψX,Y : PX × PY → P(X × Y )

(U, V ) 7→ U × V

Moreover, Pswap(U × V ) = {(y, x) | x ∈ U, y ∈ V } = V ×U = swap(U, V ), therefore P is

symmetric. 4

Example 2.27. The distribution monad P is monoidal, by defining ψ as the measure

product.

ψX,Y : DX ×DY → D(X × Y )

(ν1, ν2) 7→ ν1 × ν2

Again, for a set B we have Dswap(ν1 × ν2)(B) = ν1 × ν2{(x, y) | swap(x, y) ∈ B} =

ν2 × ν1(B) thus D is symmetric. 4

Example 2.28. The monad RC is monoidal.

ψX,Y : XC × Y C → (X × Y )C

(f, g) 7→ (c 7→ (f(c), g(c)))

4

The following result classically relates strength and monoidality.

Theorem 2.29 ([23]). A monad is symmetric monoidal if and only if it is strong

commutative.



2.2. MONADS 25

We now present a more general version of this theorem. For monoidal categories which
are sufficiently similar to (Set,×, 1), being monoidal is equivalent to being symmetric
monoidal. The criteria on (C,⊗, I) in the following theorem are due to [35] and generalize
the strength unicity result of [31, Prop. 3.4].

Theorem 2.30. Let T : C→ C be a monad over a monoidal category (C,⊗, I) whose

tensor unit I is a separator of C (i.e. f, g : X → Y and f 6= g implies ∃x : I → X s.th.

f ◦x 6= g◦x) and such that for any morphism z : I → X⊗Y there exist x : I → X, y → Y

such that z = (x⊗ y) ◦ ρ−1
I . Then the following are equivalent

(i) There exists a unique natural transformation ψX,Y : TX⊗TY → T (X⊗Y ) making

T monoidal

(ii) There exists a unique strength stX,Y : X ×TY → T (X ⊗Y ) making T commutative

(iii) There exists a unique natural transformation ψX,Y : TX⊗TY → T (X⊗Y ) making

T symmetric monoidal

In particular, monoidal monads on (Set,×, 1) are necessarily symmetric (and thus
commutative), in other words diagram (SYM) always commutes for such monads. As we
will see in Chapter 3, the class of (symmetric) monoidal monads on Set is the base of
our work because of their compatibility with categorical algebraic structures. However,
the conditions of Theorem 2.30 can be used to generalise our work outside Set ; we will
see later how the uniqueness of the strength and the symmetry property are essential in
our construction.

Example 2.31. Consider the writer monad WM with (M, •, 1) a monoid. We show that

this monad is monoidal if M is commutative.

ψX,Y : (X ×M)× (Y ×M)→ ((X × Y )×M)

(x,m), (y, n) 7→ (x, y,m • n)

Let X,Y be sets and x ∈ X, y ∈ Y,m, n ∈ M . We have ψ ◦ swap((x,m), (y, n)) =

((y, x), n•m) and WM swap◦ψ((x,m), (y, n)) = ((y, x),m•n). Therefore WM is symmetric

(hence monoidal) if and only if m • n = n •m for all m,n ∈M . In the rest of this work,

we focus on monoidal monads and will assume that M is commutative. 4
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Theorem 2.30 gives us a powerful way to determine whether a monad is monoidal, as
we only have to verify that their unique strength map is commutative.

Example 2.32. The exception monad is not monoidal, for |E| > 1. For x ∈ X, y ∈ Y, e ∈

E, we see that the unique arrow X × (Y + E) → (X,Y ) + E verifying the conditions

for strength maps (x, y) to itself and (x, e) to e. Consider now f ∈ E and the pair

(e, f) ∈ (X + E)× (Y + E). For this element, the diagram 2.6 does not commute: one

branch yields e while the other one returns f . Therefore X +E is not commutative, and

not monoidal. 4

Example 2.33. For the same reason, the list monad is not monoidal. The unique

strength arrow maps (x, [y1, . . . yn]) to [(x, y1), . . . (x, yn)]. Again, diagram 2.6 does not

commute, which can be seen for sets X,Y such that a, b ∈ X, c, d ∈ Y and a, b, c, d are

distinct. On the input [[a, b], [c, d]], one branch of the diagram yields the list of pairs

[(a, c), (a, d), (b, c), (b, d)] whereas the other branch results in [(a, c), (b, c), (a, d), (b, d)].

Hence L is not commutative, and is not a monoidal monad. 4

Although ψ is essentially a binary operator, several instances of it may be composed
in a natural way to form a n-ary monoidal map. Because of Diagram (MF.3), this
composition is associative and gives rise to the following definition.

Definition 2.34. For any n ≥ 2, we define ψ(n) : TX1 × · · · × TXn → T (X1 × · · · ×Xn)

as the n-ary version of ψ, constructed in an associative manner from the binary version.

The associativity of this construction follows from Diagram (MF.3).

We now present a few technical lemmas describing how monoidal monads interact
with the monoidal structure of Set. They will become useful in some proofs appearing
in Chapter 5.

Lemma 2.35. Let T be a monoidal monad, let k, l ∈ N. Then the following diagram

commutes:

(TA)k × 1× (TA)l
idk×η1×idl //

idk×ρ′
��

(TA)k × T1× (TA)l

ψ(k+l+1)

��
(TA)k+l

ψ(k+l)
// T (Ak+l) T (Ak × 1×Al)

T (idk×ρ′)
oo
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Proof.

T (idk × ρ′) ◦ ψ(k+l+1) ◦ (idk × η1 × idl)

= T (idk × ρ′) ◦ ψ(k+2) ◦ (idk × id× ψ(l)) ◦ (idk × η1 × idl) by associativity

= T (idk × ρ′) ◦ ψ(k+2) ◦ (idk × η1 × idl) ◦ (idk × id× ψ(l)) by product

= T (idk × ρ′) ◦ ψ(k+1) ◦ (idk × ψ) ◦ (idk × η1 × idl) ◦ (idk × id× ψ(l)) by associativity

= ψ(k+1) ◦ (idk × Tρ′) ◦ (idk × ψ) ◦ (idk × η1 × idl) ◦ (idk × id× ψ(l)) by naturality of ψ(k+1)

= ψ(k+1) ◦ (idk × ρ′) ◦ (idk × id× ψ(l)) by MF.2

= ψ(k+1) ◦ (idk × ψ(l)) ◦ (idk × ρ′) by naturality of ρ′

= ψ(k+l) ◦ (idk × ρ′) by associativity

Recall the unitor isomorphism ρX : X × 1 → X. For n ≥ 0, we denote by ρn the
composition ρn = ρ ◦ (id×!) : X × 1n → X, and we obtain a property similar to a n-ary
version of Diagram MF.1, but only involving the object 1.

Lemma 2.36. For a monoidal monad T on a Cartesian monoidal category C, the

diagram

T1× 1n
id×ηn1 //

ρn ��

T1× (T1)n

ψ��
T1 T (1× 1n)

Tρn
oo

(2.7)

commutes for all n ≥ 1.

Proof. For n = 1 the result is simply (MF.1). Assuming we’ve shown it for n, consider

the following diagram.



28 CHAPTER 2. PRELIMINARIES

T1× 1n
a

id×(η1)n //
id×η1n

++
id×!

��
ρn

��

c

(T1)n+1

id×ψn
vv

ψn+1

��

T1× T (1n)

ψ

��

id×T !
��

d

b T1× 1

ρ

~~

id×η1 // T1× T1

fψ
��

T (1× 1)
Tρ

ssT1

e

g

T (1n+1)

T (id×!)hh

Tρnoo

a commutes by (MM.1). b and g follow from the definition of ρn. c and f

commute by naturality of ψ, d by monoidality, and e by the (MF.1) again.

We can now generalise the previous lemma to obtain a n-ary version of Diagram MF.1.

Lemma 2.37. For a monoidal monad T on a Cartesian monoidal category C, the

diagram

TA× 1n
id×ηn1 //

ρn ��

TA× (T1)n

ψ��
TA T (A× 1n)

Tρn
oo

(2.8)

commutes for all n ≥ 1.

Proof.

TA× 1n
id×ηn1 //

id×ηn
1 ×idn−1

))
id×ρ

n−1

$$
ρn

��

a

b
TA× (T1)n

ψn+1

��

id×ψnuu
TA× T1× 1n−1

id2×ηn−1
1

22

id×ρn−1 **
c

d

TA× T (1n)

ψ

��

id×Tρn−1

��
TA× 1

e

id×η1

//

ρ

zz

TA× T1

f

g

ψtt
T (A× 1)

Tρ

uu
TA

h

T (A× 1n)

T (id×ρn−1)

ll

Tρn
oo
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a and h commute by definition of ρn. b commutes trivially; c commutes by

naturality of ρn−1; d by Lemma 2.36; e by (MF.2); f by naturality of ψ.

Finally, we show that different instances of n-ary and m-ary unitors interact in a
natural way.

Lemma 2.38. Let T be a monoidal monad on a Cartesian monoidal category C, let

A be an object of C. Let m,n > 0, let f be a morphism 1m → 1n. Then the following

diagram commutes:

TA× 1m
id×f //

ρm ((

TA× 1n

TA
(ρn)−1

66 (2.9)

Proof. Consider the following commuting diagram.

TA× 1m
id×f //

ρm

&&

id×!

((

TA× 1n

ρn

xx

id×!

vv
TA× 1
ρ
��

TA

(2.10)

Thus ρm = ρn ◦ (id× f), whence (ρn)−1 ◦ ρm = id× f .

2.2.3 Algebras and Theories

In the rest of this work, we make extensive use of category theory and monads to model
algebraic structures. First we will define those structures as generated by operation
symbols and laws governing them, then we will examine the relations with categorical
constructs.

Algebraic Theories

Definition 2.39 (Signature). A signature Σ is a set of operation symbols, each provided

with a natural number defined as its arity. We write |σ| for the arity of σ ∈ Σ.

Definition 2.40 (Σ-terms). For X a set, the set of Σ−terms over X is defined as follows:

• For x ∈ X, X is a term (sometimes called ‘generator’ or ‘variable’).
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• If t1, . . . tn are terms and σ is a symbol of Σ with arity n, then σ(t1, . . . tn) is a

term.

For a term t with variables in Y , f a function mapping variables in Y to terms, we
write t[f(y)/y] or t[f ] the corresponding substitution.

Definition 2.41 (Algebraic Theory). An Algebraic Theory T is defined as:

• A signature Σ

• A set X of variables

• A set E of pairs of Σ-terms over X. We refer to E as equations or axioms of T

and the pair (u, v) ∈ E will be written u = v.

We will often leave the set of variables implicit. When two Σ-terms t1, t2 can be proved

equal using equational logic and the axioms of T, we write t1 = t2.

Definition 2.42 (Linear Theory). An equation u = v is called linear if u and v are

formed on the same variables, with each variable appearing exactly once in each term. A

theory T is said linear if all of its axioms are linear.

Example 2.43. The theory of binary trees has a signature containing a binary symbol

•, and no axiom. 4

Example 2.44. The theory of semigroups has a signature containing a binary symbol •,

and a law of associativity:

x • (y • z) = (x • y) • z

4

Example 2.45. The theory of monoids has a signature containing one constant e and a

binary symbol •. The axioms express associativity and unit:

x • e = x

e • x = x

x • (y • z) = (x • y) • z
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4

Example 2.46. The theory of Abelian groups has a signature containing one constant

0, one unary symbol − and one binary symbol +. The axioms extend the axioms of

monoids with laws of commutativity and inverse:

x+ 0 = x 0 + x = x

x+ (y + z) = (x+ y) + z x+ (−x) = 0

x+ y = y + x

4

Example 2.47. The theory of join semilattices has signature Σ = {+} and axioms

expressing associativity, commutativity and idempotence:

x+ (y + z) = (x+ y) + z

x+ y = y + x

x+ x = x

4

Example 2.48. The theory of bounded join semilattices extends the previous theory

with a unit. This time we write Σ = {+, 0}, and the equations are:

x+ 0 = x 0 + x = x

x+ y = y + x x+ x = x

x+ (y + z) = (x+ y) + z

4

The first two theories presented here are linear, but the theories of join semilattices
and bounded join semilattices are not, as the variable x appears twice in the same term
in the law of idempotence x+ x. We will see later in Chapters 4 and 5 that linear and
non-linear equations interact with categorical constructs in very different ways.
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Example 2.49. The theory of convex algebras is described as follows: the signature

contains an operator ⊕λ for each λ ∈]0, 1[ and the axioms are:

x⊕λ x = x

x⊕λ y = y ⊕1−λ x

x⊕λ (y ⊕τ z) = (x⊕ λ
λ+(1−λ)τ

y)⊕λ+(1−λ)τ z

4

Example 2.50. As shown in [3], there exists another theory representing convex algebras.

Its signature includes the symbols of Example 2.49, but also convex sum operations ⊕0

and ⊕1. Their axioms are laws of projection:

x⊕0 y = y

x⊕1 y = x

It is easy to see that these operators are not much expressive power, they are sometimes

called ‘trivial’. We will see in later chapters that this dual definition of convex algebras

leads to interesting distinctions in terms of categorical behaviour. 4

So far we focused solely on algebraic constructs; they are however related with
categorical structures, as signatures and equations correspond to notions of algebras that
we detail in the next section.

Σ-Algebras and (Σ, E)-Algebras

We now introduce two categorical notions: first, the algebra defined by a signature, then
the one generated by the whole theory.

Definition 2.51 (Σ-algebra). For Σ a signature, a Σ-algebra A is formed of:

• A carrier set A

• For each symbol σ ∈ Σ of arity |σ|, a morphism σA : A|σ| → A.
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Categorically speaking, a Σ-algebra is in fact an algebra for the polynomial functor

HΣ =
∐
σ∈Σ(−)|σ|.Therefore a Σ-algebra morphism between β : HΣX → X and γ : HΣY →

Y is a map f : X → Y such that γ ◦ HΣf = f ◦ β. The category of Σ-algebras and

Σ-algebra morphisms is denoted Alg(Σ).

Definition 2.52 (Free and Forgetful Functors). We define two structural functors:

• FΣ : Set → Alg(Σ) is the functor building free Σ-algebras: FΣX is the set of all

Σ-terms built on X.

• UΣ : Alg(Σ)→ Set is the functor that ‘forgets’ the structure of a Σ-algebra and

returns its carrier set.

Definition 2.53. Given a Σ-algebra A, a free Σ-term s built over variables in a set V ,

and a valuation map v : V → UΣA, we define the interpretation JsKv of s in A recursively

in the obvious manner. We say that an equation s = t between free Σ-terms is valid in

A, denoted A |= s = t, if for every valuation v : V → UΣA, JsKv = JtKv.

Definition 2.54 ((Σ, E)-Algebra). For a signature Σ and a set E of equations we define

a (Σ, E)-algebra as a Σ-algebra in which all the equations in E are valid.

We denote by Alg(Σ, E) the subcategory of Alg(Σ) consisting of (Σ, E)-algebras.

Algebras and Adjunctions

Recall the concept of adjunction from Definition 2.9. It is related to the categorical study
of algebraic theories since categories of Σ-algebras and (Σ, E)-algebras admit adjunctions
with Set through the well-known construction using free and forgetful functors.

• FΣ and UΣ form an adjunction:

FΣ a UΣ : Alg(Σ)→ Set (2.11)

• Similarly, there exists a functor F : Set→ Alg(Σ, E) building free (Σ, E)-algebras
which is left adjoint to the obvious forgetful functor:

F a U : Alg(Σ, E)→ Set (2.12)
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For a set A, F(A) is the free (Σ, E)-algebra generated on A, in other words it can be
seen as the set of equivalence classes of Σ-terms built on A under provable equality in
equational logic with axioms in E.

Definition 2.55 (Free Model Monad). For a theory T with signature Σ and equations

in E, we say that the free model monad induced by T is the monad arising from the

previous adjunction as U ◦ F.

It is well-known [25] that every finitary monad on Set arises from an adjunction 2.12.
Specifically in this context, every finitary monad on Set is the free model monad induced
by some algebraic theory.

Definition 2.56 (Presentation). We say that the monad T corresponds to the theory T,

or that T is presented by T, if T is a free model monad induced by T.

We can now associate previous monads with algebraic theories:

• The List Monad L is presented by the theory of monoids (see Example 2.45)

• The Non-empty Finite Powerset Monad Pf
+ is presented by the theory of join-

semilattices (see Example 2.47)

• The Finite Powerset Monad Pf is presented by the theory of bounded join-
semilattices (see Example 2.48)

• The Distribution Monad D is presented by the theory of convex algebras. (see
Example 2.49)

The powerset monad P is presented by the theory of complete lattices, which requires
an operation symbol of infinite arity to represent the infimum of an infinite subset.
Therefore P is not finitary; when our study requires the use of an algebraic presentation
we will instead focus on its finite version Pf .

We can now consider new monads that arise as the free model monad of a theory: we
will write A the monad of Abelian groups, obtained via Definition 2.55 from the theory
of Example 2.46.

Eilenberg-Moore categories

In this section, we define categories of algebras which arise from monads. An algebra
for the monad T is a set X together with an map α : TX → X such that the diagrams

in (2.13) commute. A morphism (X,α)
f→ (Y, β) of T -algebras (also called algebra
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homomorphism) is a morphism X
f→ Y in Set verifying β ◦ Tf = f ◦ α.

TTX
µX //

Tα ��
TX

α��
X

ηX //

idX &&

TX
α��

TX
α // X X

(2.13)

The category of T -algebras and T -algebra morphisms is called the Eilenberg-Moore
category of the monad T , and denoted EM(T ). There is an obvious forgetful functor
UE : EM(T )→ Set which sends an algebra to its carrier, it has a left adjoint FE : Set→
EM(T ) which sends a set X to the free T -algebra (TX, µX). Note that the adjunction
FE a UE gives rise to the monad T .

Definition 2.57 (Lifting to EM(T )). A lifting of a functor F : Set→ Set to EM(T ) is

a functor F̂ on EM(T ) such that UE ◦ F̂ = F ◦ UE

EM(T )
F̂ //

UE
��

EM(T )

UE
��

Set
F // Set

(2.14)

It appears now naturally that when a monad arises from an adjunction related to an
algebraic theory, the algebras for this monad are algebras for this theory.

Lemma 2.58 ([25] VI.8. Theorem 1). For any adjunction of the form (2.12), EM(UF)

and Alg(Σ, E) are equivalent categories.

Example 2.59. By using the presentation given above for Pf , we know that EM(Pf ) is

equivalent to the category of bounded join-semilattices, which we denote by JSL. 4

The functors connecting EM(UF) and Alg(Σ, E) are traditionally called comparison
functors, and we will denote them by M : EM(UF)→ Alg(Σ, E) and K : Alg(Σ, E)→
EM(UF). Consider first the free monad FΣ for a signature Σ (i.e. the monad generated
by the adjunction (2.11)). The comparison functor M : Alg(Σ) → EM(FΣ) maps the
free FΣ-algebra over X, that is µFΣ

X : F2
ΣX → FΣX to the free HΣ-algebra over X which

we shall denote by αX : HΣFΣX → FΣX. It is well-known that αX is an isomorphism.

For the monad T = UF, the adjunction between EM(T ) and Set results in a universal
property. This becomes crucial in the study of algebras, as it intuitively means that any
map from a set to the carrier of a T -algebra factors uniquely through the free T -algebra.

Lemma 2.60. Let A ∈ EM(T ) be a T -algebra with carrier A. For every set X, for

every map f : X → A, there exists a unique algebra homomorphism h : (TX, µX) → A

such that h ◦ ηX = f .
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A similar universal property applies to FΣ:

Lemma 2.61. Let A be a Σ-algebra with carrier A. For every map f : X → A, there

exists a unique map f# : FΣX → A such that f# ◦ ηFΣ
X = f .

This allows for an alternative formulation of Definition 2.53. For a Σ-algebra A with
carrier A and a map f : X → A, we write f# the unique map FΣX → A obtained via
the universal property of Lemma 2.61, which intuitively extends f to free Σ-terms.

Definition 2.62. Let A be a Σ-algebra with carrier A. We say that an equation s = t

between terms of FΣX is valid in A, denoted A |= s = t, if for every map f : X → A we

have f#(s) = f#(t).

Kleisli Categories

Monads also give rise to another type of categories, which we briefly define. The Kleisli
category Kl(T ) has the same objects as Set, but morphisms X → Y in Kl(T ) are maps
X → TY in Set. The identity map X → X in Kl(T ) is the unit ηX : X → T (X).
Composition g � f in Kl(T ) uses T ’s multiplication: g � f = µ ◦ T (g) ◦ f . There is a
forgetful functor UK : Kl(T )→ Set, sending X to T (X) and f to µ ◦ T (f), which has a
left-adjoint FK : Set→ Kl(T ) leaving objects unchanged and postcomposing maps with
the unit. Again the monad associated with this adjunction is T itself.

Definition 2.63 (Lifting to Kl(T )). A lifting of a functor F to Kl(T ) is a functor T̂ on

Kl(T ) such that the F̂ ◦ FK = FK ◦ F .

Kl(T )
F̂ // Kl(T )

Set

FK

OO

F // Set

FK

OO
(2.15)

2.3 Composing Monads

We are now familiar with the concept of monad, which is the central object of this work.
We have explored a series of examples and established a correspondence between monads
and algebraic theories. The question of composition arises naturally: can we combine
monads? Can the features of two different monads be captured by a single composite
monad? Or, in a similar manner as functors, can we sequentially compose monads and
expect the result to also have a monadic structure? In this section, we examine several
methods used to combine monads.
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2.3.1 Monad Transformers

Moggi’s seminal paper [31] lays the foundation for the study of monads, as the author
relates categorical constructs with features of computation. In [30], Moggi pursues his
study and defines a first procedure to combine the features of different monads. He
constructs objects named ‘monad transformers’, which augment one monad with the
algebraic features of another. Given a monad T , Moggi exhibits a series of constructions:

• For E a set of exceptions, T ( + E) forms a new monad modelling T -computations
with exceptions.

• For a set S representing states, Tseff( ) = (T ( × S))S defines the monad of T -
computations with side-effects.

His work is groundbreaking in many ways. Even though his Kleisli-like model differs
from ours, we are inspired by his approach: Moggi gives a toolbox for combining monadic
features, and we aim to replicate this modus operandi in the scope of our study.

2.3.2 Sum, Tensor

Hyland, Plotkin and Power pursue this search for moand combination and extend Moggi’s
work in [13] and [14]. They generalise Moggi’s transformers to binary operations: can
the transformation of T into T ( + E) incorporating exceptions into T -computations be
seen as an operation TE ◦ T on monads? They define the sum of two monads, combining
them without any algebraic interaction between the theories presenting them. Moggi’s
exception transformer T ( +E) is a special case of sum. On the contrary, the tensor, or
commutative combination, yields a monad where operations of one theory always commute
with operations of the other. Moggi’s side-effects transformer Tseff ( ) = (T ( × S))S

realises in fact the tensor of T and ( × S)S .

2.3.3 Distributive Law

We focus our efforts on a third tool for monad combination, the one that follows from
functorial composition.

Definition 2.64 (Distributive Law). Let (S, ηS , µS) and (T, ηT , µT ) be monads. A

distributive law of S over T (see [2]) is a natural transformation λ : ST → TS satisfying:

S
SηT

��

ηTS

��
ST

λ
// TS

(DL. 1)

T
ηST

��

TηS

��
ST

λ
// TS

(DL. 2)

STT

SµT

��

λT // TST
Tλ // TTS

µTS
��

ST
λ

// TS

(DL. 3)

SST

µST
��

Sλ // STS
λS // TSS

TµS

��
ST

λ
// TS

(DL. 4)
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If λ only satisfies (DL. 2) and (DL. 4), we will say that λ is a distributive law of the
the monad (S, ηS , µS) over functor T , or in the terminology of [17], an EM-law of S
over T . Dually, if λ only satisfies (DL. 1) and (DL. 3), λ is known as a distributive
law of the functor S over the monad (T, ηT , µT ), or Kl-law of S over T [17]. This
notation will become clear later with Theorem 2.66 which relates distributive laws with
Eilenberg-Moore and Kleisli categories.

A distributive law is therefore at first glance a transformation ‘commuting’ monads
S and T . Let us consider an example and define a distributive law of the list monad
over the finite powerset monad. We require a natural transformation LP→ PL, in other
words a operation mapping lists of sets to sets of lists. It must be defined regardless
of the the object we apply it to, in order to be natural. An instinctive choice is, when
considering a list of sets, to pick successively an element in each set to form a new list,
then to take the set of all such lists:

λPLX : LPX → PLX

[U1, . . . , Un] 7→ {[u1, . . . , un], ui ∈ Ui, 1 ≤ i ≤ n} (2.16)

Checking commutativity of the naturality diagram, as well as (DL. 1), (DL. 2) (DL. 3)
and (DL. 4) proves that λPL forms indeed a distributive law.

We now show how distributive laws define a monadic structure for the functorial
composition ST .

Theorem 2.65. If there exists a distributive law λ : TS → ST of the monad T over the

monad S, then the composition of S and T also forms a monad (ST, u,m), whose unit u

and multiplication m are given by:

X
ηTX //

uX
55TX

ηSTX // STX STSTX
SλTX //

mX

22SSTTX
µSTTX // STTX

SµTX // STX

Finally, we show that distributive laws are related to monad algebras. The following
well-known result will be crucial for our work, as it describes the correspondence between
liftings to Eilenberg-Moore or Kleisli categories and distributive laws.

Theorem 2.66. [2, 18]

• EM-laws λ : SF → FS and liftings of F to EM(S) are in one-to-one correspondence.

• Kl-laws λ : FT → TF and liftings of F to Kl(T ) are in one-to-one correspondence.

As this construction of the correspondence between EM-laws and liftings of F to
EM(S) will be used later in our work, we recall here some explicit details. This corre-
spondance is based on Beck’s seminal paper [2] where he shows the canonical equivalence
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between monad liftings and distributive laws ; we make use of this classical construction
and refer the reader to his work for more details.

From a distributive law to a lifting

Assuming we have a distributive law λ : SF → FS, we lift F to the category of
S-algebras in the following manner. Let (X,α) be such an algebra with α : SX → X; we
map it to the algebra (FX,α) with α′ = (Fα ◦ λ) : STX → FX.

From a lifting to a distributive law

Let F̂ be a lifting of F to EM(S). We consider the free S-algebra A = (SX, µSX)

and compute A′ = F̂ (A) = (TSX,α′). Let us now consider the set FX and the map
FηSX : TX → TSX: by the universal property of S-algebras (Lemma 2.60), there exists
a unique algebra homomorphism h : A → A′ such that h ◦ ηSX = FηSX . The distributive
law is then constructed by defining λX = h. The explicit definition of λ is given by
λX = α′ ◦ SFηSX .

Using distributive laws to compose monads will be our method of choice, but we
will see that their construction is a complicated task. The next chapter focuses on the
method we have developed to tackle this problem.



Chapter 3

A Method for Composing

Monoidal Monads

Composing two given monads is known to be a difficult process. The existence of a
distributive law is not guaranteed, and the literature features no general method to
address this question.

The scope of this method (and of most of this thesis) is monoidal monads on Set.
In this chapter we describe a method for their composition with a given finitary monad.
When our procedure succeeds, we obtain the desired distributive law and may build a
composite monad.

This construction is the central object of our work and relies on the following idea.
Given monads (T, ηT , µT ) and (S, ηS , µS), we want to form the composition TS. As
seen in Section 2.2.3, if S is a finitary monad, it admits a presentation in the form of a
signature Σ and a set of equations E. Then we consider an algebra A for S, described
as a (Σ, E)-algebra. We show that our composition problem amounts to a very natural
question about this structure: if we apply the monadic transformation T to A, do we
obtain another (Σ, E)-algebra? In other words, are the algebraic features of S preserved
by the application of T?

Consider for instance the powerset monad P and the ring of integers Z. is PZ, the
set of all subsets of Z, still a ring? To answer this question, we must first examine how
the algebraic symbols of a ring, namely ×, +, −, 1 and 0, can be understood on sets
rather than integers. For U, V ∈ PZ, what is the meaning of U + V ? A natural choice
is the pointwise lifting of the interpretations we had on Z, which yields for instance
{k, l}+ {m,n} = {k +m, k + n, l +m, l + n}, −{m,n} = {−m,−n} and 0 = {0}. Once
we have redefined the operations in this natural way, we may verify the validity of the
ring equations on PZ . We see for instance that the equality x+ (−x) = 0, which held

40
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on Z, does not hold on subsets:

{2, 3}+ (−{2, 3}) = {2, 3}+ {−2,−3}
= {2 + (−2), 2 + (−3), 3 + (−2), 3 + (−3)}
= {−1, 1} 6= {0}

On the contrary, the law of commutativity is preserved by P as for U, V ⊆ Z we have:

U + V = {u+ v | u ∈ U, v ∈ V }
= {v + u | v ∈ V, u ∈ U}
= V + U

The example of P and Z clearly shows that a monadic transformation does not
automatically preserve algebraic constructs. In this chapter, we first recall some results
from the literature; then we focus on monoidal monads and show that their structure
allows for a canonical approach to this problem. Finally, we show that the preservation by
T of the algebraic features of S actually results in a distributive law, therefore permitting
to compose T and S into a monad TS.

3.1 Preservation of Algebraic Features

3.1.1 Preservation in the case of P

We discussed above the example of the powerset monad and a few cases of (non-)
preservation. A more general study of this instance has been done by Gautam in [11],
a paper much prior to any category theory. The author defines the construction of a
complex algebra, which describes exactly the application of P to an arbitrary algebra A.
For any n-ary operation • of A (with carrier A), Gautam defines a new version of it,
this time on subsets of A. We will write •̂ this complex version of •. As we did above,
the author characterises it as the pointwise application of • on elements of the subsets
U1, . . . , Un ⊆ A.

An → A

•̂ : (U1, . . . , Un) 7→ {•(u1, . . . , un) | u1 ∈ U1, . . . , un ∈ Un}

This construction turns all operations on A into operations on PA, thus constructing a
Σ-algebra structure on the latter. Gautam calls this new algebra the complex version of
A. By combining the complex versions of all operation symbols, Σ-terms can now be
interpreted on subsets rather than on elements of A, and we can then compare them
to verify if equalities of A still hold. This defines a first notion of preservation for the
powerset monad: given an equation u = v, we say that it is preserved by P if for every
algebra A where u = v holds, u = v also holds on the complex version of A.
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Gautam then proceeds to categorise equations depending on their preservation by P.
His criteria for this classification will turn out to be crucial in our work, as they place
the focus on the layout of the variables in the equation. He shows that for an equality to
be preserved by P, only one thing matters: how many times each variable appears on
each side of the equation.

Theorem 3.1 ([11]). Let u and v be distinct terms. The equation u = v is preserved by

P if and only if each variable appears exactly once in u and once in v.

We have seen above that the law of inverse was not preserved by P, because it is
not preserved in the case of Z. This actually follows from Gautam’s theorem, as the
variable layout in the equation x+ (−x) = 0 is incompatible with P: x appears twice on
the left side, and does not appear at all on the right side. Other laws that cannot be
preserved by P include idempotence (x ∗ x = x) because it contains a duplicated variable,
and absorption (x× 0 = 0) because x is missing on the right side. In contrast, the law of
commutativity x+ y = y+x verifies Gautam’s conditions, confirming our example above:
it is preserved by P on any algebra. The question we want to address in this chapter is:
can we adapt this approach to monads other than the powerset?

In the rest of this chapter we formalise Gautam’s lifting of algebraic features in
categorical terms and for an arbitrary monoidal monad; the following two chapters will
focus on generalising the ideas of Theorem 3.1 to classify diverse classes of monads and
equations.

3.2 Lifting the Signature

Let us now consider the general case of a monad T , and let Σ be a signature. In this
section, we define a way to reinterpret algebraic symbols after the application of T . In
categorical terms, we must lift the structure of Σ-algebra. We show here that if T is
monoidal (2.25), there exists a canonical approach to this question: for any Σ-algebra
A with carrier A, we can use the map ψ : TA × TA → T (A × A) to provide the set
TA with the same algebraic structure as A. Ultimately, we proceed to lift T to the
category Alg(Σ). This canonical process is the main reason for which we focus our work
on monoidal monads.

To illustrate the general idea, suppose Σ contains a binary operation •. Let A be a
Σ-algebra with carrier A; it is provided with a morphism interpreting • as •A : A×A→ A.
Since T is monoidal, using the associated natural transformation ψ we can define a binary
operation •

T̂A on TA as follows.

•
T̂A ≡

(
TA× TA

ψA,A // T (A×A)
T•A // TA

)
(3.1)

The meaning of our notation •
T̂A will become clear in the following sections of this

chapter, as our method will result in the lifting T̂ on the category Alg(Σ).
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Example 3.2. Gautam’s construction happens to be an instance of our monoidal

approach. Let A be an algebra with carrier A and signature Σ. In the case of P and for

U, V ∈ PA, recall that ψ(U, V ) = U × V , and that P acts pointwise on morphisms. Thus

any binary operation + ∈ Σ can be lifted in the following manner.

(U +
P̂A V ) = P(+A) ◦ ψA,A(U, V )

= P(+A)(U × V )

= {u+A v | u ∈ U, v ∈ V }

The lifting of operations by the multiset monad M can be written in the same way,

keeping in mind that elements may have duplicates. We now show what happens in the

cases of the distribution monad and the RC monad. 4

Example 3.3. Consider the distribution monad D and an algebra A with carrier A and

a binary operation ∗. Recall that in the case of D, the monoidal map is given by the

measure product.

DA×DB → D(A×B)

ψA,B : (δ1, δ2) 7→ δ1 × δ2

This allows to lift ∗A to a binary operation on measures: for δ1, δ2 ∈ DA, we have for

a ∈ A:

(δ1 ∗D̂A δ2)(a) = (D(∗A) ◦ ψA,A(δ1, δ2))(a)

= δ1 × δ2{(u, v) | u, v ∈ A, u ∗A v = a}

4

Example 3.4. Consider the monad RC . The function ψA,B maps the pair of f ∈ AC , g ∈

BC to x 7→ (f(x), g(x)). Again, we consider a Σ-algebra A with carrier A that features a

binary operation + and define its lifting in the following manner. Let f, g ∈ RC(A) = AC
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and let c be an element of c.

(f +
R̂CA

g)(c) = (RC(+A) ◦ ψA,A(f, g))(c)

= f(c) +A g(c)

Note that ψ1 = id and ψ0 = η1, which allows us to define a lifting for constants and

unary operations. Let 0 and − respectively be such symbols of Σ. Then we have:

0
R̂CA

(c) = (RC(0A) ◦ η1)(c)

= 0A

As RC(0A) constructs the constant function 0A. Finally, as ψ1 = id, unary operations

have a pointwise lifting. For instance the unary operator − is lifted as follows:

(−
R̂CA

f)(c) = −Af(c)

4

This conversion of algebraic interpretations can be done in a similar fashion for any
n-ary operation σ ∈ Σ, therefore providing the set TA with interpretations of each symbol
of the signature. This can be formalised in categorical terms using a distributive law
λΣ : HΣT → THΣ, as in [36]. To define it, first note that for any σ ∈ Σ we have the map

(TX)|σ|
ψ|σ| // TX |σ|

Tθσ // T
∐
σ∈Σ

X |σ| ,

where θσ is the coproduct injection. The distributive law λΣ is obtained as the cotupling
of these maps:

λΣ
X ≡

(
HΣTX =

∐
σ∈Σ

(TX)|σ|
[Tθσ◦ψ|σ|]σ∈Σ // THΣX

)
. (3.2)

This construction results in the following well-known Theorem.

Theorem 3.5 ([36]). Let T : Set → Set be a monoidal monad, then for any finitary

signature Σ, there exists a distributive law λΣ : HΣT → THΣ of the polynomial functor

associated with Σ over the monad T .
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The distributive law (3.2) forms the core of our construction. First, we use it to
construct a lifting of the functor T .

Definition 3.6. We denote by T̂ the functorial lifting of T to Alg(HΣ) = Alg(Σ)

obtained from λΣ via Theorem 2.66.

This lifting operates the following transformation on HΣ-algebras:

T̂ :
(

HΣX α
// X

)
7→

(
HΣTX

λΣ
// THΣX

Tα
// TX

)
From the monadic structure of (T, ηT , µT ), we construct the liftings η̂, µ̂ of respective

type η̂ : I → T̂ and µ̂ : T̂ T̂ → T̂ and show that we obtain a monad on the category of
Σ-algebras.

Theorem 3.7. (T̂ , η̂, µ̂) is a monad on Alg(Σ).

Proof. We show that for any algebra (X,α) of Alg(Σ), ηTX and µTX are algebra homomor-

phisms. Their naturality follows immediately from the naturality of ηT , µT . Let (X,α)

be an arbitrary algebra with α : HΣX → X.

HΣX

α

��

HΣη
T
X//

ηTHΣX $$

a

b

HΣTX

λΣ
X
��

THΣX

Tα
��

X
ηTX

// TX

HΣTTX
HΣµ

T
X //

λTX
�� c

HΣTX

λX

��

THΣTX

TλX
��

TTHΣX
µTHΣX //

dTTα
��

THΣX

Tα
��

TTX
µTX

// TX

(3.3)

a and c commute because they correspond to the distributive law properties

(DL. 1) and (DL. 3) of λΣ; b and d commute by naturality of ηT and µT .

The monad laws for ηT and µT immediately imply the same properties for their

liftings η̂ and µ̂.

3.3 Preserving Equations

Now that we can lift T to T̂ , we can also interpret equations after the application of the
monad: if t1 = t2 holds on a Σ-algebra A, we can now study the validity of this equation
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on T̂A. This leads naturally to the central notion of preservation of equations, that we
define here in a general setting.

Definition 3.8. Let Σ be a signature, V a set of variables, and t1, t2 ∈ FΣV . We say

that the monad T preserves the equation t1 = t2 if for every Σ-algebra A we have:

A |= t1 = t2 ⇒ T̂A |= t1 = t2 . (3.4)

A set of equations is preserved if each one of them is.

Remark 3.9. In the case of P, this notion of preservation corresponds exactly to Gautam’s

concept of ‘validity of complex equations’ presented at the beginning of this chapter.

Because Gautam’s lifting is a special case of our construction T̂ (see Example 3.2), the

definition employed for Theorem 3.1 turns out to be an instance of Definition 3.8.

Example 3.10. Does the multiset monad preserve the commutativity of an operation?

Let us consider an algebra A with carrier A featuring a commutative operation •.

we can verify that for U, V ∈MA we have:

U •
M̂A V = {u •A v | u ∈ U, v ∈ V }

= {v •A u, v ∈ V, u ∈ U} by commutativity of •A

= V •
M̂A U

Therefore M preserves commutativity. 4

Example 3.11. Consider an algebra A with carrier A and an idempotent operation •

and the monad D of probability distributions. Let a, b ∈ A, such that a • b 6= a, a • b 6= b

and a • b 6= b • a. Let P ∈ DA be the distribution on A such that P(a) = P(b) = 0.5.

Note that, for all u, v ∈ A, we have ν(u) • ν(v) 6= 0 iff u, v ∈ {a, b}.

(P •
D̂A P)(a • b) =

∑
{(ν × ν)(u, v) | u, v ∈ A s.t. u • v = a • b}

= ν(a) • ν(b) = 0.25 6= 0 = ν(a • b)

Thus we have ν 6= ν •
D̂A ν, which means that idempotence is not preserved by D. 4
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Example 3.12. For a set C, consider the monad RC mapping X to XC and recall the

liftings defined in Example 3.4. Does RC preserve the law of inverse x+ (−x) = 0? We

consider an algebra A featuring this law, an element f of R̂CA and c ∈ C.

(f +
R̂CA

(−
R̂CA

f))(c) = f(c) + (−f(c))

= 0A

(f +
R̂CA

(−
R̂CA

f)) is a function that always maps to 0A regardless of its input, in other

words it is the constant function 0
R̂CA

. Hence RC preserves the equation of inverse. 4

It clearly appears from this series of examples that equations may or may not be
preserved depending on the monad and on the equality itself. The literature only offers
a few results on the matter; one is due to Gautam (Theorem 3.1), and a second one
presented below generalises one direction of Gautam’s result. Recall that we call an
equation linear when every variable appears exactly once on each side (Definition 2.42).
Theorem 3.1 shows that the class of linear equations is exactly what P preserves, and
Manes and Mulry show with the more general result that all monoidal monads are able
to lift such equalities.

Theorem 3.13 ([26]). Let T : Set → Set be a monoidal monad. Then T preserves

linear equations.

Note that if an equation is not linear, then either there is a variable which occurs on
one side but not the other (which we will later refer to as a drop equation, Definition 4.18)
or there is a variable that occurs twice (referred to as a dup equation, Definition 4.19).
Different questions naturally arise from this result: which monads preserve a dup equation
such as idempotence? Which monads preserve the inverse law? We have seen in this
section that the respective answers for D and P are negative, but that RC does preserve
inverse. These problems will be precisely addressed in the following chapters. But first,
we focus on the case where a monad T successfully preserves all equations presenting S,
and we show that our construction results then in a distributive law ST → TS.

3.4 Completing the distributive law

Theorem 3.14. Suppose T, S : Set → Set are monads, that T is monoidal and that

EM(S) ' Alg(Σ, E), and let T̂ : Alg(Σ) → Alg(Σ) be the unique lifting of T defined

via Theorem 3.5. If T̂ preserves the equations of E, then there exists a distributive law

λ : ST → TS of (S, ηS , µS) over (T, ηT , µT ).
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Proof. We assume that the equations in E are preserved by T̂ , hence the monad (T̂ , η̂, µ̂)

restricts to Alg(Σ, E) = EM(S). By Theorem 2.66, this results in a distributive law λ

of (S, ηS , µS) over T . We show that λ is actually a distributive law of (S, ηS , µS) over

(T, η, µ). We must then show that (DL. 1) and (DL. 3) commute.

First, note that µTS ◦ Tλ ◦ λT and λ ◦SµT are algebra morphisms of type STT → TS;

moreover ηTS and λ ◦ SηT are algebra morphisms of type S → TS. Finally, we remark

that for a set X, both SX and TSX have a structure of S-algebra, moreover SX is the

free S-algebra. Hence we can make use of Lemma 2.60 to show that ηTS and λ ◦SηT must

be equal by uniqueness of the algebra morphism of type S → TS. For this purpose, we

precompose µTS ◦ Tλ ◦ λT and λ ◦ SµT with ηS and show that they are equalised:

µTS ◦ Tλ ◦ λ ◦ ηSTT = µTS ◦ Tλ ◦ TηST by (DL. 2)

= µTS ◦ TTηS by (DL. 2)

= TηS ◦ µT by naturality of µT

= λ ◦ ηST ◦ µT by (DL. 2)

= λ ◦ SµT ◦ ηSTT by naturality of ηS

We operate the same reasoning on ηTS and λ ◦ SηT :

ηTS ◦ ηS = TηS ◦ ηT by naturality of ηT

= λ ◦ ηST ◦ ηT by (DL. 2)

= λ ◦ SηT ◦ ηS by naturality of ηS

Therefore by the property of free algebras expressed in Lemma 2.60, we obtain the
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following equalities:

µTS ◦ Tλ ◦ λT = λ ◦ SµT (3.5)

ηTS = λ ◦ SηT (3.6)

Hence the diagrams (DL. 3) and (DL. 1) commute, concluding our proof that λ is a

distributive law of (S, ηS , µS) over (T, ηT , µT ).

This theorem is the final piece of our construction, which we briefly recall: first, the
structure of monoidal monads allowed to canonically lift a set monad T to the category
of Σ-algebras (3.2). We then applied this lifting T̂ to any algebra A and verified if the
equalities between Σ-terms that are valid in A are preserved by this transformation (3.3).
If they are preserved for all algebra A, and if (Σ, E) presents the monad S, then we
now obtain a distributive law of S over T (3.4). Searching for distributive laws between
monads is a notoriously difficult task; We now have a general tool to address the problem
when our conditions are met, allowing to give a positive answer in many cases.

Example 3.15. Consider the monads P and L. Recall that L is presented by the theory

of monoids; we have seen at the beginning of this chapter how P lifts binary operations

and constants. Furthermore, Theorem 3.1 shows that the equations of monoids (2.45)

are all preserved by P because they are linear. Therefore by Theorem 3.14, we obtain

a distributive law LP → PL and we may construct the composite monad PL. Note

that the distributive law that we obtain is a well-known transformation, namely the one

presented in 2.3.3. 4

Example 3.16. We have seen in example 3.12 that RC preserves the law of inverse. By

Theorem 3.13, it also preserves the equations of unit, commutativity and associativity

because it is monoidal (2.28). Therefore RC preserves the theory of Abelian groups

(described in example 2.46), hence by Theorem 3.14 there exists a distributive law

ARC → RCA between RC and the monad A of free Abelian groups. 4

Note that we have not yet explicitly described the action of the distributive law
constructed in Theorem 3.14. This will be the object of chapter 7, where we examine
precisely the algebraic interactions produced by this law.

We now have a procedure to compose monads when their features are compatible.
However, the general question of whether a given monad preserves an equation remains
unclear. Examples 3.10 to 3.12 show that the outcome depends on the monad and the
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equality considered. Linear equations do not constitute a problem (Theorem 3.13), but
if variables are duplicated or dropped from one side to the other, preservation is not
guaranteed. In the next two chapters, we carry out a precise study of this question and
respectively provide sufficient and necessary conditions for preserving equations.

3.5 Related Work

The general question of building a distributive law between two monads S and T has
proven to be difficult. The mere existence of such a law is already a tricky subject, as
shows the history of this area of category theory. Consider for example the aforementioned
case of composing the powerset monad P with itself. An attempt is made in 2007 in [26],
where Manes and Mulry offer the following candidate for a distributive law (we write P′

to differentiate one instance of P):

PP′X → P′PX

λX : A 7→ {{aA : A ∈ A} : (aA) ∈
∏
A∈A

A}

In a nutshell, this transformation is similar to the distributive law we defined in 2.3.3 it
acts on a set of sets A by selecting an element in each set A. However, this construct
does not satisfy axiom (DL. 3), therefore λ is not a distributive law. For X = {a, b, c},
A = {{{a}, {b, c}}} ∈ PP′P′X gives a counterexample as follows:

µP
′

PX ◦ P′λX ◦ λP′X(A) = {{a, b}, {a, c}}

λX ◦ PµP
′
X (A) = {{a}, {b}, {c}}

Manes and Mulry themselves acknowledged this mistake in their follow-up paper. In
2015, Klin and Rot made a similar claim [20], but recently Klin and Salamanca have in
fact shown that there is no distributive law of P over itself. They explain carefully why
mistakes in the previous results were so subtle and hard to spot [21]. More recently, Zwart
and Marsden generalised the ideas behind [21] to prove the non-existence of distributive
laws in a wide variety of cases, settling many questions left open until now.

As this problem seems to be very technical and sometimes counter-intuitive, our
contribution is a general method clearing up many cases with positive results, and
exploiting the structure of monoidal monads. A few different approaches for constructing
distributive laws have been discussed in the literature: first, King and Wadler examine
how to construct one in some particular cases in [19]. Later, Manes and Mulry present a
first a general theorem in [26]: commutative monads compose with monads presented by
a linear theory via a distributive law λ. This result comes complete with the constructive
definition of λ, using a method very similar to ours. However, our work extends beyond
the linear case to place the focus on the idea of preservation of algebraic features. As we
will see in the next chapter, we generalise Manes and Mulry’s result to several classes of
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non-linear theories and the monads preserving them. The work of Eugenia Cheng was
also a source of inspiration, particularly [8] where she studies how several distributive
laws may be consistently combined to form a the composite of multiple monads.

Our work connects distributive laws with algebraic presentations, in a very similar
manner to the study undertaken by Bonsague, Hansen, Kurz and Rot in [5]. In a nutshell,
their paper establishes a method to ‘quotient’ a distributive law in order to accomodate
the equations presenting a monad, a process which relates closely to our preservation
of equations. As we mentioned before, a pioneering work on algebraic preservation was
done by Gautam in [11], and extended by Grätzer in [12]. Although Gautam’s work was
done in a purely mathematical context and prior to category theory, his construction
corresponds precisely to the case of the powerset monad in our monoidal setting. Our
work then generalises his notion of ‘complex algebras’ to a lifting of algebraic structures
by an arbitrary monoidal monad. The next chapter explores more similarities with
Gautam’s work with our classification of equations.

Finally, it is worth mentioning that Manes and Mulry’s second paper on monad
composition [27] follows an approach comparable to ours. Making use of the monadic
concept of ‘Kleisli strength’, very similar to a monoidal structure, the authors build a
step-by-step lifting of algebraic structures. Zwart and Marsden later established that
Manes and Mulry’s attempt at distributing the list monad over itself results in a faulty
transformation (as in fact there exists no distributive law LL→ LL), confirming once
again the difficulty of this topic.



Chapter 4

Preservation of Equations

In the current chapter, we establish sufficient conditions for equations to be preserved
by a monoidal monad T . For this purpose, we must precisely study the interactions
between the monad and the algebraic terms of the equation. We have seen in Chapter 3
(Theorem 3.1) the importance of counting the variable occurences. Although this result
focuses on P, we will show here that Gautam’s sufficient conditions can be generalised to
different classes of monoidal monads. First, we examine the mechanisms underlying the
preservation of an equation, and we define a decomposition of algebraic terms focusing
on variable rearrangements. Finally, we will show how this framework leads to a series of
sufficient conditions for preservation for an arbitrary monoidal monad T .

4.1 New Representations for Equations

We start with some notation used in this chapter. We fix a finite set V of variables and
a bijection b : V → {1, . . . , n}, where |V | = n is the size of V . We will refer to b as the
enumeration of our variables, allowing us to order them as x1, x2, . . . , xn when b(xi) = i
for every i. We will sometimes write variables x, y, z when studying an example. If t is
an algebraic term, we will denote by Var(t) the set of variables in t and by Arg(t) the list
of arguments used in t ordered as they appear in t. For example, the list of arguments
of t = f(x1, g(x3, x2), x1) is Arg(t) = [x1, x3, x2, x1]. We consider an equation t1 = t2
between two Σ-terms with variables in V , and a Σ-algebra A with carrier A.

We interpret algebraic terms by decomposing them into two transformations: consider
for instance the term x× x. Its interpretation on A can be intuitively described in two
steps. First, we pick an element a of the algebra to substitute to the variable x, and we
duplicate it; then we apply the operation ×A to both copies.

In the general case, the first part of the interpretation is a morphism with domain
A|V |, the Cartesian product of |V |-times A; it picks an element of A for each variable

52



4.1. NEW REPRESENTATIONS FOR EQUATIONS 53

(we will call these elements the inputs of t). Then we rearrange, copy and duplicate the
inputs to match the layout of the arguments of t.

Definition 4.1. For a term t with k = |Arg(t)|, we define the morphism δVA(t) : A|V | → Ak

as the following pairing of projections:

if Arg(t) = [xi1 , xi2 , xi3 , . . . xik ] then δVA(t) = 〈πi1 , πi2 , πi3 , . . . πik〉

If k = 0, δVA(t) is the unique map ! to the final object 1. Note that this definition
depends on our enumeration of variables b. We will see later that this dependency does
not affect our results on preservation of equations.

Example 4.2. Consider the term t = (x1 + (x2 • x1)) + x3, with V = {x1, x2, x3}. Then

we have δVA(t) = 〈π1, π2, π1, π3〉 : A3 → A4. 4

Once the inputs have been correctly rearanged, we can focus on the algebraic opera-
tions of t. For each symbol of the signature, we refer to its interpretation in A and apply
it in the natural way.

Definition 4.3. For a term t with k = |Arg(t)|, γVA(t) : Ak → A is defined inductively:

γVA(x) = idA

γVA(σ(t1, . . . , tn)) = Ak
γVA(t1)×...×γVA(tn)
−−−−−−−−−−−−→ Ai

σA−−→ A

We write σA the interpretation of σ ∈ Σ in A.

The product γVA(t1)× . . .× γVA(ti) has the desired type, because we have

|Arg(t1)|+ · · ·+ |Arg(tn)| = k = |Arg(t)|

Note that the case of a constant term t = c also follows from the definition above, namely
γVA(c) = 1

cA−→ A.

Example 4.4. Again for the term t = (x1 + (x2 •x1)) +x3, we have γVA(t) = +A ◦ (+A×

id) ◦ (id× •A × id) : A4 → A. 4

Finally we combine the two transformations and define JtKVA as γVA(t) ◦ δVA(t). The
following lemma follows easily from the definitions.
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Lemma 4.5. For any t ∈ FΣV , δVA(t), γVA(t), and thus JtKVA, are natural in A.

We are now provided with a natural transformation JtKV : (−)(|V |)UΣ → UΣ interpret-
ing t ∈ FΣV . We aim to use this interpretation to reason on equations, therefore we
must show that the natural soundness and completeness property holds. First, we show
that γVA(t) is connected with our previous valuation-based interpretation JtKv (defined
in 2.53).

Lemma 4.6. Let t be a term with variables in V , for which we write Arg(t) = [xi1 . . . xik ].

Let v be a valuation V → A. We write ai = v(xi) for all i ≤ |V |, with a1, . . . , a|V | ∈ A.

If |Arg(t)| > 0, then we have:

γVA(t)(ai1 , . . . , aik) = JtKv

Similarly, if |Arg(t)| = 0 we have γVA(t)(∗) = JtKv where ∗ represents the unique element

of 1.

Proof. The case |Arg(t)| = 0 is treated easily: since t contains no variable, JtKv does not

depend of v and is simply the combined interpretation in the algebra A of all symbols

used in t. By definition of γVA , this corresponds to γVA(t)(∗).

If |Arg(t)| = k > 1, we proceed by induction on t.

• if t = xi1 , then γVA(t) = id, hence we have

γVA(t)(ai1) = ai1 = v(xi1) = JtKv

• For the case t = σ(t1, . . . , tn), we examine closely the list of arguments. Because

Arg(t) sequentially creates a list of all the variables appearing in the term, we have

Arg(t) = Arg(t1) : . . . : Arg(tn), where the sign : denotes the concatenation of

lists. More precisely, there exist integers p1, p2 . . . pn and we have:

[xi1 . . . xik ] = [xi1 . . . xp1 ] : [x(p1+1) . . . xp2 ] : . . . : [x(pn−1+1) . . . xpn ]

Where pn = ik. Moreover, for all m ≤ n we have [x(pm−1+1) . . . xpm ] = Arg(tm).

Note that the case of a constant subterm, in other words the case Arg(ti) being
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an empty list, is covered by taking pi = pi−1. With this subdivision in mind, the

definition of γVA yields

γVA(t)(ai1 , . . . , aik) = σA(γVA(t1)(ai1 , . . . , ap1), . . . , γVA(tn)(a(pn−1+1), . . . , apn))

Then we apply the induction hypothesis and obtain:

γVA(t)(ai1 , . . . , aik) = σA(Jt1Kv, . . . , JtnKv)

= JtKv

With the help of this technical result, we can show soundness and completeness of
our new interpretation by combining δVA and γVA .

Theorem 4.7. For A a Σ-algebra and t1, t2 ∈ FΣV , Jt1KVA = Jt2KVA iff A |= t1 = t2.

Proof. Let A be a Σ-algebra and t1, t2 ∈ FΣV , let a1, . . . a|V | ∈ A.

We first consider t1 and write Arg(t1) = [xi1 , . . . xi1 ] as previously. By definition of

δVA , we have δVA(u)(a1, . . . , a|V |) = (ai1 , . . . , aik); this function rearranges the inputs to

match the arguments. We combine this information with the previous lemma and obtain

that for any valuation v such that v(xi) = ai for 1 ≤ i ≤ |V |, we have

γVA ◦ δVA(t1)(a1, . . . , a|V |) = γVA(t1)(ai1 , . . . , aik) = Jt1Kv

The same observation applies to t2, hence we have:

Jt1KVA = Jt2KVA ⇔ γVA ◦ δVA(t1) = γVA ◦ δVA(t2)

⇔ ∀(a1, . . . , a|V |) ∈ A|V |,

γVA ◦ δVA(t1)(a1, . . . , a|V |) = γVA ◦ δVA(t2)(a1, . . . , a|V |)

⇔ ∀v : V → A, Jt1Kv = Jt2Kv

⇔ A |= t1 = t2
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We now have a new method to interpret algebraic terms which exactly translates
algebraic equalities, but also focuses on the layout of variables in terms. In order to
study the preservation of an equation, we will compare two different interpretations of
each term: the one on an algebra A, and the one on the lifted algebra T̂A.

4.2 Residual Diagrams

In this section, we define diagrams that we call residual ; we construct them from
an equation and they provide sufficient conditions for its preservation. Recall from
Definition 3.8 that an equation t1 = t2 is preserved if A |= t1 = t2 ⇒ T̂A |= t1 = t2, or
equivalently as we know now, if Jt1KVA = Jt2KVA ⇒ Jt1KVT̂A = Jt2KVT̂A. In this section, we

show that our construction of Jt1KVT̂A allows to reduce the question of preserving t1 = t2
to simple properties of the monad. As a first step, we prove a technical property relating
γV
T̂A

and γVA .

Lemma 4.8. For any A ∈ Alg(Σ), t ∈ FΣV , k = |Arg(t)| we have:

TγVA(t) ◦ ψ(k) = γV
T̂A(t)

Proof. Recall that γVA is defined inductively; therefore we proceed by induction on the

term t.

• if t is a variable x, then k = 1, γVA(t) = γV
T̂A

(t) = ψ(k) = id and the equality trivially

holds.

• If t = σ(t1, . . . ti), let kj = |Arg(tj)|. We have k = k1 + · · · + ki. We show the

commutativity of the following diagram, which represents TγVA(t) ◦ ψ(k) = γV
T̂A

(t).

(TA)k
ψ (k

1 )×···×ψ (k
i )

**

ψ(k)
//

γV
T̂A

(t1)×...×γV
T̂A

(ti)

��

T (Ak)

T (γVA(t1)×...×TγVA(ti))

��

T (Ak1)× · · · × T (Aki)c

e

d

ψ(i)

55

Tγ
V
A

(t1)×...×
γVA

(ti)

tt
(TA)i

ψ(i)
//

σTA

��

T (Ai)

TσA

��
f

TA
id

// TA
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e commutes by monoidality of ψ; c commutes by induction hypothesis for

each term tj ; d commutes by naturality of ψi; f commutes by definition of our

monoidal lifting of algebraic operations: σTA = TσA ◦ ψi.

We now define an important original construct: the residual diagrams. Their commu-
tativity will lead to a tailor-made sufficient condition for the preservation of an equation.
First, we introduce a rather complex diagram representing the operation of our lifting
T̂ on an algebraic term; we will then show that we only need to consider a simpler
subdiagram.

Definition 4.9. For a term t, consider the diagram below on the category Alg(Σ).

We call Pres(T, t, V ) the outer square of Diagram (4.1); it is subdivided into two inner

squares, and we call the top one r the residual diagram R(T, t, V ).

(−)(|V |)UΣT̂

JtKV
T̂

��

δV
T̂

(t)

��

ψ
|V |
UΣ //

r

T (−)|V |UΣ

TδV (t)

��
T JtKV

��

(−)kUΣT̂

γV
T̂

(t)

��

ψ
(k)
UΣ

// T (−)kUΣ

TγV (t)

��

UΣT̂
UΣid

T̂

// UΣT̂

(4.1)

Since UΣ ◦ T̂ = T ◦ UΣ by definition of T̂ being a lifting, it is clear that the hor-

izontal arrows ψ
(|V |)
UΣ

and ψ
(k)
UΣ

are well-typed. Intuitively, Pres(T, t, V ) represents the
‘preservation’ of the term t on its own by the monad T . Note that both R(T, t, V ) and
Pres(T, t, V ) apply to objects on the category Alg(Σ). Throughout this section we will
always study their commutativity by evaluating them on an arbitrary algebra A with
carrier A, thus obtaining a diagram on Set instead. The following lemma shows that
R(T, t, V ) is the crucial part of diagram (4.1): the bottom square always commutes,
whereas the top square r is not necessarily commuting.

Lemma 4.10. If R(T, t, V ) commutes, then Pres(T, t, V ) commutes.

Proof. We evaluate Diagram (4.1) on any arbitrary algebra A. Then Lemma 4.8 imme-

diately shows that the bottom square commutes. Therefore the outer diagram commutes
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if R(T, t, V ) commutes.

Thus we do not need to consider the entirety of diagram (4.1): the residual part
is enough. Now we can combine residual diagrams for t1 and t2 to obtain a condition
under which t1 = t2 is preserved. The following soundness theorem follows easily from
Lemma 4.10.

Theorem 4.11. If t1, t2 ∈ FΣV are such that R(T, t1, V ) and R(T, t2, V ) commute, then

T preserves t1 = t2.

Proof. Again, we consider an arbitrary algebra A. If A |= t1 = t2, then Jt1KVA = Jt2KVA by

Theorem 4.7 and thus T Jt1KVA ◦ψ
(|V |)
A = T Jt2KVA ◦ψ

(|V |)
A . Since R(T, t1, V ) and R(T, t2, V )

commute, so do Pres(T, t1, V ) and Pres(T, t2, V ) by Lemma 4.10, which is to say by

evaluating them on A that T Jt1KVA ◦ ψ
(|V |)
A = Jt2KVT̂A (and similarly for t2). Therefore we

have Jt1KVT̂A = Jt2KVT̂A, which means by Lemma 4.7 that T̂A |= t1 = t2.

We now see that residual diagrams act as sufficient conditions for equation preservation:
we only have to study the commutativity of R(T, t1, V ) and R(T, t2, V ) to prove that
t1 = t2 is preserved. Let us now present a few examples and show the practical
consequences of our result.

Example 4.12. Consider the equation of commutativity x+y = y+x. By Theorem 4.11,

it is preserved by T if the following diagrams commute.

R(T, x+ y, {x, y}) given by: R(T, y + x, {x, y}) given by:

(TA)2 ψ //

〈π1,π2〉
��

T (A2)

T 〈π1,π2〉
��

(TA)2
ψ
// T (A2)

(TA)2 ψ //

〈π2,π1〉
��

T (A2)

T 〈π2,π1〉
��

(TA)2
ψ
// T (A2)

(4.2)

We remark that in R(T, x + y, {x, y}), the morphism 〈π1, π2〉 actually is the identity.

Therefore this diagram trivially commutes. On the other hand, R(T, x + y, {x, y})

amounts to a non-trivial property. Because 〈π2, π1〉 = swap, this diagram is identical to

(SYM), which commutes if T is monoidal. Therefore both residual diagrams commute,

and commutativity is always preserved by monoidal monads. 4
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Example 4.13. Consider the law of associativity of a binary operation x • (y • z) =

(x • y) • z. It is preserved if the residual diagrams presented below commute.

R(T, x • (y • z), {x, y, z}) given by: R(T, (x • y) • z, {x, y, z}) given by:

(TA)3 ψ(3)
//

〈π1,π2,π3〉
��

T (A3)

T 〈π1,π2,π3〉
��

(TA)3

ψ(3)

// T (A3)

(TA)3 ψ(3)
//

〈π1,π2,π3〉
��

T (A3)

T 〈π1,π2,π3〉
��

(TA)3

ψ(3)

// T (A3)

(4.3)

Note that both diagrams are identical: that is because both sides of the equation have the

same layout of variables. Moreover, note that the morphisms 〈π1, π2, π3〉 : (TA)3 → (TA)3

and 〈π1, π2, π3〉 : A3 → A3 are actually both equal to id. Therefore our diagrams trivially

commute, thus associativity is always preserved. 4

The same reasoning apply to both left and right unit laws, with residual diagrams
encoding trivial equations id = id. It follows that:

Theorem 4.14. Monoidal monads preserve associativity, unit and commutativity.

We have seen in the previous section, for instance in Example 3.12, that some
equations are not systematically preserved by commutative monads; we now have precise
conditions under which preservation succeeds.

Example 4.15. Consider the laws of idempotence x • x = x and absorption x • 0 = 0.

Once again, some of their residual diagrams are trivial: R(T, x, {x}) and R(T, 0, {x})

both amount to id = id. We are left with one diagram for each equality, displayed below.

Idempotency: x • x = x Absorption: x • 0 = 0

R(T, x • x, {x}) given by: R(T, x • 0, {x}) given by:

TA
id //

〈π1,π1〉
��

TA

T 〈π1,π1〉
��

(TA)2
ψ
// T (A2)

TA
id //

!
��

TA

T !
��

1 η1

// T1

(4.4)

Unlike the diagrams studied before, R(T, x • x, {x}) and R(T, x • 0, {x}) are not trivially

commuting. In fact, we can show that they sometimes fail to commute.
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Consider for instance the powerset P, and an algebra A such that its carrier A has at

least two elements. Now consider two distinct elements a, b ∈ A and the set {a, b} ∈ PA.

The left branch of R(T, x • x, {x}) maps this set to {(a, a), (b, b)} whereas the right

branch maps it to {(a, a), (a, b), (b, a), (b, b)}. For the case of R(T, x • 0, {x}) , consider

the empty set ∅ ∈ PA. We have T !(∅) = ∅, but on the contrary η1◦!(∅) = {∗} 6= ∅, hence

the diagram does not commute. 4

When residual diagrams fail to commute, can we say that the considered equation
is not preserved? In general we cannot, because the converse of Theorem 4.11 does not
hold. We explain this below with the example of P.

Example 4.16. Consider P and a trivial equation that holds in any algebra: x•x = x•x.

It is clear that P̂A |= x • x = x • x whenever A |= x • x = x • x. By definition, it is

preserved by P. However R(P, x • x, {x}) does not commute, because it is the same

diagram as R(P, x+ x, {x}) studied in Example 4.15. 4

We remark that residual diagrams only involve ψ, projections and the monad T ,
sometimes inside pairings. It is meaningful to note that the actual operations of Σ
appearing in an equation t1 = t2 have no impact on its preservation. What matters is
the variable rearrangement transformations δV (t1) and δV (t2), and how they interact
with the monoidal maps ψ.

The two equalities considered in Example 4.15 present particular features: either a
duplicated variable (x • x = 0) or a variable missing from one side (x • 0 = 0). In the
next section, we define equation classes corresponding to such features; then we will show
that in each case, a simple residual diagram captures the preservation of the entire class.

4.3 Classes of Equations

For the purpose of preservation by a monad, it makes sense to classify equations depending
on their variable layout. We have already mentioned linear equations, where each variable
appears exactly once on each side (see Definition 2.42); we now recall two other classes
found in the literature.

Definition 4.17. • An equation is called affine if each variable appears at most

once on each side.

• An equation is called relevant if each variable appears at least once on each side.
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We will see in the following chapters that the names of these classes correspond to
categorical properties of monads preserving them. Note that both affine and relevant
equations include linear equations; in order to obtain later an accurate correspondence
between monads and equations we must define more precise classes of non-linear equations.
Intuitively, an equation is non-linear if either a variable fails to appear on one side, or if
a variable appears more than once on one side. These two situations outline the classes
of drop and dup equations, which we define below together with some of their subclasses.

Note that by definition, an equation is non-linear if and only if it features a duplicated
variable or a deleted variable. Therefore the classes of linear, dup and drop equations
cover all possible algebraic equations.

Definition 4.18 (Drop equations). An equation t1 = t2 is

1. drop when at least one variable appears in t1 but not in t2 (or conversely);

2. one-drop when it features a variable that appears once in t1 and does not appear

in t2 (or conversely);

3. strict-drop when at least one variable appears in t1 but not in t2 (or conversely)

and no variable appears twice in t1 or t2.

The set of strict-drop equations is included in the set of one-drop equations, and the
latter in the set of drop equations. Both inclusions are strict. Strict-drop equations can
equivalently be characterised as non-linear equations in which variables appear at most
once on each side.

Definition 4.19 (Dup equations). An equation t1 = t2 is

1. dup when at least one variable appears more than once in t1 or in t2;

2. 2-dup when it is dup and each variable appears at most twice in t1 or t2;

3. strict-dup when at least one variable appears more than once in t1 or in t2 and

Var(t1) = Var(t2)

Equivalently, an equation is strict-dup when it is not linear and each variable of
Var(t1) ∪ Var(t2) appears at least once in t1 and in t2. Every strict-dup equation is a
dup equation. Figure 4.1 depicts an overview of dup and drop equations as well as their
subclasses. As shown on this diagram, the classes of dup and drop equations overlap.
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drop dup

x • y = y

x • y = x • x

x • x = y • y

x • x = x

strict-dup
one-drop
strict-drop

Figure 4.1: Classes of equations

Example 4.20. The law of absorption x • 0 = 0 is a drop equation because x does

not appear on the right side. More precisely, it is strict-drop because it contains no

duplication. The equation x • (y • y) = y • y shows one occurrence of x on the left side

and none on the right side, therefore it is a one-drop equation. Because y is duplicated,

it is also a dup equation and not strict-drop. The equation x • x = y • y is drop but not

one-drop. 4

Example 4.21. The law of idempotence x = x•x is a strict-dup equation. Distributivity

of • over +, written x • (y + z) = x • y + x • z is strict-dup as well. The equation

x • (y • y) = y • y is dup, because y is duplicated, but it is not strict-dup. 4

Example 4.22. The law of inverse x + (−x) = x is both a dup and a drop equation:

the variable x is duplicated and appears on one side only. 4
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4.4 Classes of Monads and What They Preserve

The various residual diagrams presented in Section 4.2 offer sufficient conditions for
the preservation of the equations they represent. We have seen that only the layout of
variables matters: for example, the residual diagrams of (x + y) ∗ z = x ∗ z will also
permit to preserve x ∗ (y + z) = x+ z. In this section, we bring this remark even further
by showing that the diagrams seen in Example 4.15 actually allow to preserve entire
classes of equations.

4.4.1 Monoidal Monads

First we show that, without requiring any additional property, monoidal monads preserve
any linear equation. First, we prove with this rather technical lemma that such monads
are well-behaved regarding permutations.

Lemma 4.23. Let n ∈ N and let T be a monoidal monad. Let α be an isomorphic natural

transformation (−)n → (−)n realising a permutation of the elements of the product; in

other words α = 〈πp(1), . . . , πp(n)〉 for p an element of the symmetric group Sn. Then we

have:

ψ(n) ◦ α = Tα ◦ ψ(n)

Proof. Let p be a permutation. If p is the identity, our result holds immediately. If

not, p can be decomposed as a composition of adjacent transpositions. Hence α can be

decomposed as αm ◦ · · · ◦α1 with each αi realising an adjacent transposition, that is with

αi of the form:

〈π1, . . . , πj−1, πj+1, πj , πj+2, . . . , πn〉 = id× · · · × id× swap× id× · · · × id

We prove that ψ(n) ◦ (αm ◦ · · · ◦α1) = T (αm ◦ · · · ◦α1) ◦ψ(n) by induction on the number

m of adjacent transpositions. Note that m > 1 as there is at least one transposition in

the decomposition of p.

• If m = 1, δVA(t1) = α1 that we write α1 = idk × swap× idl with k+ l+ 2 = n. Then
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our property is represented as the following diagram:

(TA)n

idk×ψ×id l **

ψ(n)
//

α1

��

T (An)

T (α1)

��

(TA)k × T (A2)× (TA)l

a

ψ
(n−

1)

44

idk×T swap×idl

��
(TA)k × T (A2)× (TA)l

d

c

b

ψ (n−1)
**

(TA)n
id
k ×ψ×

id
l

44

ψ(n)
// T (An)

a and d commute by monoidality, b commutes by naturality of ψ(n−1), c

commutes because T is symmetric (it corresponds to Diagram (SYM)), which

proves the base case of our induction.

• We assume that the property holds for m. Then we have:

T (αm ◦ · · · ◦ α1) ◦ ψ(n) = ψ(n) ◦ (αm ◦ · · · ◦ α1)

Tαm+1 ◦ T (αm ◦ · · · ◦ α1) ◦ ψ(n) = Tαm+1 ◦ ψ(n) ◦ (αm ◦ · · · ◦ α1)

T (αm+1 ◦ · · · ◦ α1) ◦ ψ(n) = ψ(n) ◦ (αm+1 ◦ · · · ◦ α1) by our base case.

In a linear equation, each variable appears only once on each side. In terms of
rearrangement, this means that the arguments of both terms are formed by permutation:
no duplication nor deletion is allowed, only a shuffling of our inputs. By Lemma 4.23,
monoidal monads are compatible with this process, which results in the following preser-
vation result.

Theorem 4.24. Let T be a commutative monad. If t1 = t2 is a linear equation, then it

is preserved by T .

Proof. Since t1 = t2 is linear, each variable appears exactly once in each term. Therefore,

for any algebra A with carrier A, δVA(t1) and δVA(t2) operate permutations of the product
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(TA)|V |. By Lemma 4.23 we have ψ(|V |) ◦ TδVA(t1) = δV
T̂A

(t1) ◦ ψ(|V |), in other words

R(T, t1, V ) commutes; and the same applies to t2. Thus T preserves t1 = t2.

Monoidal monads flawlessly preserve this type of equation, and therefore can be
composed with with monads presented by linear signatures (Theorem 3.14), which
confirms Manes and Mulry’s result in [26].

The proof of Lemma (4.23) shows the structural importance of the symmetry property
(Diagram (SYM)) for monoidal monads. Without this property, it would be impossible
to preserve an equation when variables do not appear in the same order on both sides
(for instance x × y = y × x). The very definition of linear equations legitimizes our
requirement of symmetry, as it only involves the occurrence of variables and not their
order. It is of course very convenient that monoidal monads on Set are automatically
symmetric. In order to generalise our results outside Set one would have to require this
property, or to use the conditions of Theorem 2.30 to ensure that monoidal monads are
necessarily symmetric in the considered category.

Lemma (4.23) offers another valuable consequence: for monoidal monads on Set, the
preservation of an equation does not depend on possible permutations of the variables.
In other words, if T is monoidal, reordering the variables in an equation does not affect
its preservation by T . This is perhaps reassuring, as our definition of δVA depends on the
ordering of variables in V .

4.4.2 Affine Monads

In drop equations, for instance x•0 = 0, a variable is missing from one side. Theorem 4.24
does not apply there, and as we have seen in Example 4.15, not all monoidal monads
preserve such equations. Intuitively, our monads need to be well-behaved regarding
variable deletions. We show in this section that affine monads have the ability to preserve
strict-drop equations.

Definition 4.25 ([22, 15]). A monoidal monad T on a Cartesian monoidal category C

is called affine if it has one of the following equivalent properties.

• T1 is final.

• The following diagram commutes:

T1
! //

id

661
η1 // T1

(4.5)



66 CHAPTER 4. PRESERVATION OF EQUATIONS

• The following diagram commutes:

TA
! //

T !

661
η1 // T1

(4.6)

• The following diagram commutes for all objects A,B:

TA× TB ψ //

id ))

T (A×B)
χ��

TA× TB
(4.7)

Example 4.26. Note that the first property can be conveniently written as

T1 = 1 (4.8)

Both the distribution and non-empty powerset monad are affine (as T1 is easily seen

to be final in both cases). On the other hand, the powerset monad is not affine because

P1 = 2. 4

Lemma 4.27. Let m < n ∈ N, T an affine monoidal monad. Let ε be a natural

transformation defined as εm ◦ · · · ◦ ε1, with each εi of the form (idk × ρ′l) ◦ (idk×!× idl)

for some k, l ∈ N. Then we have:

Tε ◦ ψ(n) = ψ(n−m) ◦ ε

Proof. We proceed by induction on m, the number of deletions realised by ε.

• If m = 1, then ε = (idk × ρ′l) ◦ (idk×!× idl) for some k, l ∈ N. We prove below that

ψ(j) ◦ ε = Tε ◦ ψ(|V |). c commutes by Lemma 2.35, a commutes by naturality

of ψ(|V |), b commutes because T is affine.
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(TA)n
idk×T !×id l

**

ψ(n)
//

idk×!×idl

��

T (An)

T (idk×!×idl)

��

(TA)k × T1× (TA)l

c

b

a

ψ (n) ))
(TA)k × 1× (TA)l

idk×ρ′
(TA)n−1

��

id×
η1×

id

44

T (Ak × 1×Al)

T (idk×ρ′
An−1 )

��
(TA)n−1 ψ(n−1)

// T (An−1)

• Again we assume that the property holds for m. Then we have:

T (εm ◦ · · · ◦ ε1) ◦ ψ(n) = ψ(n−m) ◦ (εm ◦ · · · ◦ ε1)

Tεm+1 ◦ T (εm ◦ · · · ◦ ε1) ◦ ψ(n) = Tεm+1 ◦ ψ(n−m) ◦ (εm ◦ · · · ◦ ε1)

T (εm+1 ◦ · · · ◦ ε1) ◦ ψ(n) = ψ(n−m−1) ◦ (εm+1 ◦ · · · ◦ ε1) by our base case.

Theorem 4.28. Let T be an affine monoidal monad. If t1 = t2 is a strict-drop equation,

then it is preserved by T .

Proof. If t1 = t2 is strict-drop, then Arg(t1) and Arg(t2) are obtained from V by deleting

some variables and rearranging them. Again we write δVA(t1) as α ◦ ε, where α operates a

permutation, and ε = εm ◦ · · · ◦ ε1 with each εi deleting exactly one input. Thus εi is of

the form (idk × ρ′l) ◦ (idk×!× idl) for some k, l ∈ N. We write |Arg(t1)| = k; note that

since m inputs are deleted by ε we have |V | −m = k. Then we obtain:

TδVA(t1) ◦ ψ(|V |) = Tα ◦ Tε ◦ ψ(|V |)

= Tα ◦ ψ(|V |−m) ◦ ε by Lemma 4.27

= ψ(|V |−m) ◦ α ◦ ε by Lemma 4.23

= ψ(k) ◦ δV
T̂A(t1)
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Therefore R(T, t1, V ) commutes. The same reasoning applies to R(T, t2, V ), thus t1 = t2

is preserved.

Example 4.29. We have seen in example 4.15 that P does not preserve the law of

absorption x • 0 = 0. On the contrary, the non-empty powerset monad P+ is affine,

therefore it does preserve this equation. 4

Note that the residual diagram for absorption, presented in Example 4.15, exactly
corresponds to Diagram (4.6) which defines affineness. In a sense, x•0 = 0 is the simplest
case of strict-drop equation. Affine monads clearly preserve it, along with all the other
equations from this class.

4.4.3 Relevant Monads

Definition 4.30 ([22, 15]). A monoidal monad T : C → C on a Cartesian monoidal

category C is relevant if one of the following equivalent conditions holds.

• The following diagram commutes for all object A:

TA
∆ //

T∆ **

TA× TA
ψ��

T (A×A)

(4.9)

• The following diagram commutes for all objects A,B:

T (A×B)
χ //

id **

TA× TB
ψ��

T (A×B)

(4.10)

Example 4.31. The Maybe monad ⊥ is relevant. Consider a set A and let x ∈ ⊥A =

A + 1. if x = a ∈ A we have (⊥∆)(a) = (a, a) = (ψ ◦ ∆)(a). Similarly, if x = ∗ ∈ 1

we have (⊥∆)(∗) = ∗ = (ψ ◦∆)(∗). Hence Diagram 4.9 commutes and the monad is

relevant. 4

Example 4.32. Consider the writer monad WM with (M, •, 1) a monoid. Let A be

a set and a ∈ A,m ∈ M . Again we compute (WM∆)(a,m) = ((a, a),m) whereas

(ψ ◦∆)(a,m) = ((a, a),m •m). Therefore WM is relevant if and only if m •m = m for
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Monad Affine Relevant

Powerset P × ×

Non-empty Powerset P+ X ×

Distributions D X ×

Maybe X + 1 × X

Reader RC X X

Writer WM X iff M is trivial X iff M is idempotent

Multiset MS X iff S is trivial X iff S is trivial

Table 4.1: Affineness and relevance of well-known monads

every m ∈M , in other words if M is an idempotent commutative monoid, also known as

a bounded join-semilattice. 4

In a similar way as we did for affine monads, we show that this categorical property
models the ability for a monad to handle variable duplications.

Lemma 4.33. Let n ∈ N, T a relevant monoidal monad. Let β be a natural transfor-

mation (−)n → (−)n+m defined as βm ◦ · · · ◦ β1, with each βi of the form id× · · · × id×

∆× id× · · · × id. Then we have:

Tβ ◦ ψ(n) = ψ(n+m) ◦ β

Proof. We proceed by induction on m, the number of duplications realised by β.

• For the case m = 1, we write β1 = idk ×∆× idl. We show that the diagram below
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commutes, which represents our property.

(TA)n
idk×T∆×id l

**

ψ(n)
//

idk×∆×idl

��

T (An)

T (idk×∆×idl)

��

(TA)k × T (A2)× (TA)l

c

b

a

ψ (n)
**

(TA)n+1 id
k ×ψ×

id
l

44

ψ(n+1)
// T (An+1)

c commutes by monoidality, a commutes by naturality of ψ(n), b commutes

because T is relevant.

• We assume that the property holds for m. Then we have:

T (βm ◦ · · · ◦ β1) ◦ ψ(n) = ψ(n+m) ◦ (βm ◦ · · · ◦ β1)

Tβm+1 ◦ T (βm ◦ · · · ◦ β1) ◦ ψ(n) = Tβm+1 ◦ ψ(n+m) ◦ (βm ◦ · · · ◦ β1)

T (βm+1 ◦ · · · ◦ β1) ◦ ψ(n) = ψ(n+m+1) ◦ (βm+1 ◦ · · · ◦ β1) by our base case.

Theorem 4.34. Let T be a relevant monoidal monad. If t1 = t2 is a strict-dup equation,

then it is preserved by T .

Proof. For a strict-dup equation t1 = t2, Arg(t1) and Arg(t1) are obtained from V

by duplicating some variables and rearranging them. In a similar fashion as in the

proof of Theorem 4.24, we write δVA(t1) as α ◦ β, where α operates a permutation, and

β = βm ◦ · · · ◦ β1 with βi of the form id× · · · × id×∆× id× · · · × id. Intuitively, we first

duplicate using ∆ all the inputs that need to appear several times, then we rearrange

them all with α. If we write |Arg(t1)| = k, because there are exactly m duplications we
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have |V |+m = k. Thus we have:

TδVA(t1) ◦ ψ(|V |) = Tα ◦ Tβ ◦ ψ(|V |)

= Tα ◦ ψ(|V |+m) ◦ β by Lemma 4.33

= ψ(|V |+m) ◦ α ◦ β by Lemma 4.23

= ψ(k) ◦ δV
T̂A(t1)

Therefore R(T, t1, V ) commutes. The same reasoning applies to R(T, t2, V ), thus t1 = t2

is preserved.

Example 4.35. The equation of idempotency x • x = x is a typical dup equation. We

have seen before that P cannot preserve it. We know now that the Maybe monad ⊥ does

preserve it, by its property of relevance. 4

Again we remark that the residual diagram for idempotency, visible in Example 4.15,
is identical to the definition of relevance (4.9).

4.4.4 Cartesian monads

Definition 4.36 ([15]). A monad T is called Cartesian if it is both affine and relevant.

Example 4.37. The monad RC is Cartesian. It is easy to see that because (X × Y )C =

XC × Y C , χ and ψ are isomorphisms and inverse of each other, therefore diagrams 4.7

and 4.10 both commute. 4

Cartesian monads combine the powers of relevant and affine monads, yielding the
following preservation result.

Theorem 4.38. Let T be a commutative, relevant and affine monad. For all t1 and t2,

T preserves t1 = t2.

Proof. We decompose the morphism δVA(t1) as α ◦ β ◦ ε, where ε drops the unnecessary

variables, β duplicates the ones that need copying, then α rearranges them to match the

arguments of t1. It is clear that all variable combinations can be obtained this way. For
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the term t1, let us assume that there are l deletions and m duplications, hence we have

k = |Arg(t1)| = |V | − l +m

TδVA(t1) ◦ ψ(|V |) = Tα ◦ Tβ ◦ Tε ◦ ψ(|V |)

= Tα ◦ Tβ ◦ ψ(|V |−l) ◦ ε by Lemma 4.27

= Tα ◦ ψ(|V |−l+m) ◦ β ◦ ε by Lemma 4.33

= ψ(|V |−l+m) ◦ α ◦ β ◦ ε by Lemma 4.23

= ψ(k) ◦ δV
T̂A(t1)

Therefore R(T, t1, V ) commutes, and again the same reasoning applies to R(T, t2, V ),

thus t1 = t2 is preserved.

Example 4.39. We have seen before the case of the inverse law x + (−x) = 0. This

equation is both dup and drop, therefore neither Theorem 4.28 nor Theorem 4.34 apply.

However, as seen at the beginning of this chapter, this equation is preserved by RC

because this monad is both affine and relevant. 4

This series of preservation properties can now be connected with the results of
Chapter 3 to obtain distributive laws.

Example 4.40. The monad RC preserves all the laws of Abelian groups because it

is Cartesian, therefore by Theorem 3.5 there exists a distributive law ARC → RCA.

As a matter of fact, RC can be composed with any finitary monad as it preserves all

equations. 4

Example 4.41. The non-empty finite powerset monad Pf
+ is presented by the theory of

bounded semilattices (Example 2.48). It is not a linear theory as it features an equation

of idempotence, but by Theorem 4.34 this law is preserved by a relevant monad such as

⊥. Therefore we can compose ⊥ and Pf
+ via a distributive law. Note that in this case

we retrieve the distributive law defined by Jacobs in [15], and that the composite monad

⊥Pf+ is equal to the finite powerset monad Pf . 4
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4.5 Discussion and Related Work

In this chapter we have discussed a series of classes of monads and the equations they
preserve by making use of their monoidal structure. Our findings can be seen as an
extension of some existing works in the literature. As mentioned in the previous chapter,
Gautam’s study of complex algebras already features the main ideas behind our work.
The author studies the equations that are preserved by the powerset monad and classifies
them in terms of variable rearrangements, already outlining the classes of linear, dup and
drop equations. A first generalisation of part of Gautam’s work appears in Manes and
Mulry’s paper [26], where it is shown that all monoidal monads (and not only P) preserve
linear theories. In this chapter, we have confirmed this result with Theorem 4.38, then
further generalised it to the classes of monoidal, affine and relevant monads together
with the equations they preserve with Theorems 4.28, 4.34 and 4.38.

Gautam has shown with Theorem 3.1 that P does not preserve dup nor drop equations.
In the light of the current chapter, it is tempting to explain this non-preservation by the
properties of P: the monad lacks affineness and relevance, which would allow non-linear
equations to be preserved. However, can we affirm that a non-relevant (resp. non-affine)
monad never preserves dup (resp. drop) equations? Can we obtain converse results to
Theorems 4.24, 4.28, 4.34 and 4.38? The next chapter will explore this question and build
a series of necessary conditions corresponding to various cases of equation preservation.



Chapter 5

Necessary Conditions for

Preservation

The previous chapters have explored the notion of equation preservation by a monoidal
monad, and presented a series of sufficient conditions. We have seen that the property
of affineness of a monad is sufficient to ensure that a strict-drop equation is preserved.
Similarly, if a monad is relevant, then it preserves equations that feature duplicated
variables.

In this chapter, we investigate the converse of these results. If a monad T preserves
a drop equation, is it necessarily affine? Or, by contraposition: if T is not affine (resp.
relevant), can we say that it does not preserve strict-drop equations (resp. strict-dup
equations) in general? Once more, Gautam’s results in [11] shed some light on the
question. The author studies the case of the powerset monad: P is neither affine nor
relevant, and indeed does not preserve any strict-drop or strict-dup equation. This
chapter focuses on generalising Gautam’s result. First, we focus on drop equations and
show that our conjecture is verified: if a monoidal monad T preserves a strict-drop
equation, then it is affine. Then we examine the case of dup equations, which turns out
to be more complicated. The equation of idempotence is strict-dup, and we show that its
preservation does imply relevance of the monad. However we also uncover certain cases
of strict-dup equations that are preserved by non-relevant monads. Generalising the
case of idempotence, we outline a subclass of strict-dup equations whose preservation is
equivalent to relevance. Finally we show that preserving some equations does not imply
relevance but a weaker property, which we call n-relevance.

74
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5.1 Affine Monads and Drop Equations

A sufficient condition for the preservation of certain equations is expressed in Theorem 4.28:
if a monoidal monad T preserves a strict-drop equation, then it is affine. In this section,
we focus on the converse and, in fact, prove a stronger result: preservation of one-drop
equations implies affineness. This covers strict-drop equations, but also other equalities
outside the scope of Theorem 4.28, such as x • (y × y) = y.

In this section, we study the preservation of a one-drop equation by a monoidal
monad T on a particular algebra, and we show that it implies affineness. We need to
choose a convenient algebra to carry out our proof: for the case of affine monads and
drop equations, the trivial algebra 1 is a sensible choice for several reasons. First, because
it is an algebra for every theory: we do not need to prove that our drop equations hold on
it. Recall also that affineness of a monad T can be characterised by the equality T1 = 1
(4.8). Intuitively, this means that the set 1 is a good candidate to capture the property
of affineness of a monad T .

We now proceed to the main lemma, which despite being quite technical expresses
a simple idea. Recall the conditions given by the residual diagrams. In the case of a
drop equation, they may or may not commute, but if we precompose them with a certain
morphism α, we can ensure that one of them commutes and that the other characterises
the affineness of T .

Lemma 5.1. Let t1 = t2 be a one-drop equation with t1, t2 ∈ FΣV and Var(t1) ∪

Var(t2) = V . Let T : Set → Set be a monoidal monad. We define B = T1 × 1n and

α = id× (η1)n : T1× 1n → (T1)n; then:

1. The following diagram commutes:

B
α //

α
��

(T1)|V |
δVT1(t2)

// (T1)k2

ψ
��

(T1)|V |
ψ

// T (1|V |)
TδV1 (t2)

// T (1k2)

(5.1)

2. If the following diagram commutes, then T is affine:

B
α //

α
��

(T1)|V |
δVT1(t1)

// (T1)k1

ψ
��

(T1)|V |
ψ

// T (1|V |)
TδV1 (t1)

// T (1k1)

(5.2)

Or the other way around, by substituting t1 and t2.
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Proof. Let t1 = t2 be a one-drop equation. For n ∈ N, we denote |V | by n + 1, as by

definition a one-drop equation contains at least one variable. Without loss of generality,

we can say that this variable x appears once in t2 but not in t1. Again without loss

of generality, we can reorder our variables and assume that x is the first variable in

our enumeration of V . Let |V | = n + 1. Recall that we define B = T1 × 1n and

α = id× (η1)n : T1× 1n → (T1)n.

Note that because the first variable is dropped in t1, δVA(t1) can be decomposed as

δVA(t1) = ρ ◦ (!× β) where β : (−)n → (−)k1 is a natural transformation carrying out the

rearrangement of the remaining inputs. Similarly, because x appears only once in t2,

δVA(t2) can be decomposed as δVA(t1) = (β2) ◦ (id× β1). The first input is not modified,

β1 : (−)n → (−)k2−1 is the natural transformation that may drop or duplicate some of

the other inputs, and finally β2 : (−)k2 → (−)k2 realises a permutation of all its inputs.

We start with point 1. Note that k2 = Arg(t2) > 0 as t2 features at least one variable

by assumption. Let us subdivide the diagram as follows:

T1× 1n

c

b

id×(η1)n //

id×β1
,,

id×(η1)n

��

ρn

!!

(T1)n+1 id×β1 // (T1)k2

ψ

��

β2 // (T1)k2

e ψ

��

T1× 1k2−1

id×ηk2−1
1

OO

(T1)n+1
a

ψ

��

T1

d

T (ρk2−1)−1

((

(ρk2−1)−1

66

T (1n+1)

f
Tρn

66

T (id×β1)
// T (1k2)

Tβ2

// T (1k2)

a and d commute by Lemma 2.36. b and f commute by Lemma 2.38. c

commutes by naturality of β1. Finally, e commutes by Lemma 4.23 since β2 encodes a

permutation. We’ve proven point 1.

Next up is point 2. We assume commutation of the diagram (5.2) and show the

commutation of the following diagram. Note that the outer diagram amounts to η1◦ ! = id,
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which characterises the affineness of T (4.5).

T1

b

aρn−1

��

! //

id

��

1

f

η1

��

T1× 1n
!×id //

id×(η1)n

��

1× 1n

d

id×(η1)n

��

ρ
// 1n

β

��
T1× (T1)n

cψ

��

1× (T1)n

id×β
��

1k1

e

!

??

η
(1k1 )

yy

(η1)k1

��
1× (T1)k1

ρ
// (T1)k1

ψ

��
T (1n+1)

g

T (!×β)
//

Tρn

��

T (1× 1k1)
T (ρ)

// T (1k1)

T !
''

T1 T1
idoo

a and g commute by finality. b commutes by property (2.8). c corresponds to our

assumption (5.2). d commutes by naturality of ρ and f by naturality of η, whereas

e commutes by monoidal property (MM.1).

We are ready to prove the following result. It is crucial to our purpose, because
it shows that studying preservation only on the trivial algebra 1 is sufficient to derive
affineness.

Lemma 5.2. Let t1 = t2 be a one-drop equation as in Lemma 5.1, and T : Set→ Set a

monoidal monad. If t1 = t2 holds on T̂1, then T is affine.

Proof. t1 = t2 trivially holds on 1, therefore we have:

γV1 (t1) ◦ δV1 (t1) = γV1 (t2) ◦ δV1 (t2) (5.3)

Let α be the morphism given by Lemma 5.1. The equation is preserved by T , hence it

holds on T̂1. Then we have:
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TγV1 (t1) ◦ ψ ◦ δV
T̂1

(t1) ◦ α

= γV
T̂1

(t1) ◦ δV
T̂1

(t1) ◦ α by Lemma 4.8

= γV
T̂1

(t2) ◦ δV
T̂1

(t2) ◦ α t1 = t2 holds on T̂1

= TγV1 (t2) ◦ ψ ◦ δV
T̂1

(t2) ◦ α by Lemma 4.8

= TγV1 (t2) ◦ TδV1 (t2) ◦ ψ ◦ α (5.1)

= TγV1 (t1) ◦ TδV1 (t1) ◦ ψ ◦ α (5.3)

The map γV1 (t1) is an isomorphism, therefore we can precompose the previous equality

with TγV1 (t1)−1 and obtain (5.2). Hence T is affine by Lemma 5.1.

The above lemma leads naturally to the main result of this section.

Theorem 5.3. Let t1 = t2 be a one-drop equation with t1, t2 ∈ FΣV and Var(t1) ∪

Var(t2) = V . Let T : Set→ Set be a monoidal monad. If T preserves t1 = t2, then T is

affine.

Proof. Any equation t1 = t2 trivially holds on 1. If T preserves t1 = t2, then it holds on

T1. Thus by Lemma 5.2, T is affine.

The above theorem is particularly useful in contrapositive form: if a monad is not
affine, then we know that it does not preserve any drop equations. In particular, it
generalises Gautam’s result: that P does not preserve any one-drop equation [11].

Example 5.4. The maybe monad X + 1, the writer monad X × M for M a non-

trivial monoid, and the generalised multiset monad MS for S a non-trivial semiring (see

Table 4.1) are not affine. Hence by Theorem 5.3 they do not preserve one-drop equations,

for instance x× 0 = 0. 4

Note that Theorem 5.3 treats preservation of single equations. Another consequence
of Lemma 5.2 is that, if a monoidal monad T : Set→ Set preserves a non-empty set of
equations E that includes a one-drop equation, then it is affine. To see this, note that any
equation holds on the algebra 1; therefore also on T1, hence T is affine by Lemma 5.2.
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Because one-drop equations include strict-drop equations, we can combine Theorems
5.3 and 4.28 to obtain the following comprehensive result.

Theorem 5.5. Let t1 = t2 be a strict-drop equation, T a monoidal monad.

T is affine if and only if T preserves t1 = t2.

This theorem highlights the importance of the strict-drop class ; such an equivalence
could not be obtained with the class of affine equations (see Definition 4.17) as they also
include linear equations.

5.1.1 Decidability

The previous section establishes the equivalence between affineness of a monad T and
preservation of one-drop equations. We now use this result to analyse a more algorithmic
question: is it decidable whether a monad T (presented by finitely many operations and
equations) preserves a given equation t1 = t2? Unfortunately the answer is negative, which
we prove by showing that the question whether a given monad is affine is undecidable.

We use an encoding of the following decision problem, which is known to be undecid-
able [6].

Theorem 5.6. The following problem is undecidable:

• Instance: a finite presentation (G,R) of a monoid M;

• Question: Is M trivial?

This allows us to conclude on the decidability of affineness.

Theorem 5.7. The following problem is undecidable:

• Instance: a finite signature Σ, a finite set E of equations;

• Question: Is the monad T presented by (Σ, E) affine?

Proof. Let (G,R) be a finite presentation. We construct the following theory:

Σ = unary operations fg, for g ∈ G

E = fg1(fg2(. . . fgn(x) . . . )) = fh1(fh2(. . . fhk(x) . . . ))

for each pair (g1 . . . gn, h1 . . . hk) ∈ R
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Let T be the monad presented by (Σ, E). We show that T1 is isomorphic to M. We

write e for the unit ofM and ∗ for the element of 1. Each element of T1 can be seen as a

(Σ, E)-term on the generator ∗, through the map F : T1→M defined by F (x) = e and

F (fg1(fg2(. . . fgn(∗) . . . ))) = g1g2 . . . gn. This map is an isomorphism: by construction,

F (u) = F (v)⇔ u = v for u, v terms of T1, and all m ∈M can be written as some F (t)

for t ∈ T1. Hence T1 = 1 iff M is trivial. By this reduction we conclude that affineness

is undecidable.

Because we have established the equivalence between preserving a class of equations
and affineness, and because the latter is undecidable, we obtain a general result on the
decidability of equation preservation.

Corollary 5.8. The following problem is undecidable:

• Instance: a finite theory (Σ, E), an equation t1 = t2

• Question: does the monad T presented by (Σ, E) preserve t1 = t2?

5.2 Relevant Monads and Dup Equations

Having treated affine monads, we now turn to the other main class of interest: relevant
monads. Theorem 4.34 shows that if a monad is relevant, it preserves strict-dup equations;
in this section we explore the converse.

The question turns out to be more complicated than the case of affine monads. Unlike
affineness, the property of relevance is not related to the final object 1; instead, its
definition (4.30) refers to arbitrary objects of the category. This time, we cannot hope
to prove relevance by considering only the trivial algebra. In this section we present a
rather complex strategy to tackle the problem. It is built around the same idea as the
previous case: for a dup equation, we first find a convenient algebra where the equation
holds, then assuming its preservation we derive the property of relevance.

Our proof method for dup equations and relevant monads is quite technical; for more
clarity we choose to illustrate it with a new type of diagram. First, we get familiar with
those ‘Sleeve’ diagrams, then we show how they allow us to understand that preservation
of dup equations leads to relevance.
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5.2.1 A Diagrammatic Approach

Our diagrams are inspired from several well-known graphical representations for monoidal
categories. The concept of functorial boxes is introduced by Cockett and Seely in [9] then
further examined by Melliès in [29], where functors are represented as boxes surrounding
morphisms and objects. Monoidal properties then allow to gather several objects inside
a single box. More details on this representation are given by McCurdy [28], although
he focuses on monoidal functors verifying some particular properties. Most of these
assumptions, which include the Frobenius property, cannot be made in our case as they
would entail affineness and relevance and defeat the purpose of this section. For this
reason, we do not benefit from the same soundness and completeness properties as
McCurdy for our diagrammatic calculus. We will therefore only use such diagrams as an
inspiration and an illustration of our method and still provide a categorical proof for our
results. Let us first summarise a few central ideas of this type of diagrams.

An arbitrary object X of our category is now represented by a thread (or ‘wire’), and
the application of T on this object results in a ‘sleeve’ covering it. We read a diagram
from bottom to top and represent products implicitly as horizontal adjacency. The
morphism χ : T (X × Y )→ TX × TY is modelled by a cup-like shape where one sleeve
containing two objects splits into two sleeved objects, whereas ψ is modelled in the
opposite way and merges two sleeved objects into a single sleeve.

TX × TY T (X × Y )

T (X × Y ) TX × TY
χ ψ

Note that the object 1 is not represented in our diagrams. By the isomorphism
X×1 ' 1, we can imagine the presence of 1 as a vertical thread anywhere on the diagram
without affecting the calculations. Some deformations of the outline of sleeves are allowed:
for instance, the following diagrammatic equality corresponds to the right unitality of a
monoidal functor (MF.2). Note that the neither the product nor the unitor ρ is explicitly
represented in the diagram.

= (5.4)

We can ‘delete’ an object by mapping it to the final object 1. We represent this
process with an unfinished vertical thread. Naturality of χ and ψ allow to ‘pull’ these
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threads to the bottom of the diagram:

=

(T !× id) ◦ χ = χ ◦ T (!× id) (5.5)

Finally, unfinished threads may be ignored:

Lemma 5.9. For morphisms f, g : T (X × 1) → TY , we have f = g if and only if the

following diagram equality holds for all X,Y non-empty sets.

f
=

g

Proof. In Set, the map ! : X → 1 is an epimorphism when X is a non-empty set, therefore

T (id×!) as well as id× T ! are epimorphisms. Thus we have

f ◦ T (id×!) = g ◦ T (id×!)

f = g

In the rest of this chapter, we will sometimes make use of these properties to ignore
certain threads by mapping them to the object 1. Intuitively, we pull the thread to the
bottom of the diagram then apply Lemma 5.9.

We finally recall a specific property that will become useful in some of our proof. The
following holds trivially for a monoidal monad on Set and a set A (see for instance [15]).

∆TA = χA,A ◦ T∆A : TA→ TA× TA (5.6)

In terms of our diagrams, it implies that duplicating a sleeved object amounts to
duplicating the object inside the sleeve, then separating both copies using χ.

The composition ψ ◦ χ splits a sleeved product, then reunites both components into
one sleeve. We recall from (4.10) that in the case of relevant monads, this yields the
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identity.

T (X × Y ) T (X × Y )

=

T (X × Y ) T (X × Y )

ψ ◦ χ = id (5.7)

In [28], this diagrammatic equality is presented as a property of connectivity of
functorial regions. We like to describe the graphical aspect of this property as follows:
applying χ followed by ψ results in a ‘bubble’ in our sleeve, surrounded by two threads
representing arbitrary objects, and relevance allows to pop this bubble. In the rest of
this section, we develop a method to reduce complex equational problems to this ‘bubble
popping’ property.

First, we show a slightly different characterisation of relevance which will become
more convenient in the rest of this chapter. The property expressed in diagram (5.8) is
similar to our definition of relevance (4.10) (in particular, it is easy to show that it is
verified by relevant monads). However, it only involves a single set A.

Lemma 5.10. A monoidal monad T on Set is relevant if and only if the following

diagram commutes for all A ∈ Set.

T (A×A)
T∆ // T (A2 ×A2)

χ // T (A2)× T (A2)
ψ // T (A2 ×A2)

T (π1×π2)

��
T (A×A)

(5.8)

Proof. • (⇒) We assume that T is relevant, hence ψ ◦ χ = id and (5.8) commutes

immediately.

• (⇐) Let C,D be non-empty sets, and let A = C ×D. Assume that Diagram (5.8)

commutes for this choice of A. We precompose it with

T∆: T (C ×D)→ T ((C ×D)× (C ×D))

and postcompose it with

T (π1 × π2) : T ((C ×D)× (C ×D))→ T (C ×D)
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Then we obtain the following equalities between morphisms of type T (C ×D)→

T (C ×D):

id = T (π1 × π2) ◦ id ◦ T∆

= T (π1 × π2) ◦ T (π1 × π2) ◦ ψ ◦ χ ◦ T∆ ◦ T∆

= T (π1 × π4) ◦ ψ ◦ χ ◦ T∆ ◦ T∆

= ψ ◦ T (π1)× T (π4) ◦ χ ◦ T∆ ◦ T∆ by naturality of ψ

= ψ ◦ χ ◦ T (π1 × π4) ◦ T∆ ◦ T∆ by naturality of χ

= ψ ◦ χ

Which proves the relevance of T .

We will now present our proof method and illustrate it with sleeve diagrams. We
start with a simple case, then study a more complex example, and finally we define a
general strategy for a large subclass of dup equations.

5.2.2 The Case of Idempotence

Now we focus on the simplest dup equation: idempotence of a binary operation x •x = x.
Assuming that T preserves it, our strategy is to define an algebra A and an operation •A
such that x •A x = x, and then to derive the relevance of T from the preservation of the
idempotence of •A. For such an algebra (whose carrier is denoted by A), we draw the
following diagrams. The grey box represents our binary idempotent operation •A, and
the left diagram represents the term x •A x on the lifted algebra T̂A. By preservation of
idempotence, it must be equal to the identity, modelled by the right diagram.

TA TA

=

TA TA

T (•A) ◦ ψ ◦∆ = id (5.9)
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In order to derive the property of relevance from this equality, we conveniently choose
A and •A. Let A be a non-empty set, we define on A×A the following binary operation:

•A : (A×A)× (A×A)→ (A×A)

((a, b), (c, d)) 7→ (a, d)

The operation •A may be defined categorically as (π1×π2) and is idempotent: •A((a, b), (a, b)) =
(a, b). For this algebra, the previous diagrams become:

T (A×A) T (A×A)

=

T (A×A) T (A×A)

T (•A) ◦ ψ ◦∆ = id (5.10)

We are now very close to (5.7).

Theorem 5.11. Let T be a monoidal monad. If T preserves x•x = x, then T is relevant.

Proof. Consider the algebra A we have constructed; x • x = x holds on A and •A =

(π1 × π2). By preservation of idempotence, x • x = x also holds on T̂A. Therefore, as

shown in the diagrams above, we have the following equality on T (A×A):

T (•A) ◦ ψ ◦∆ = id

T (π1 × π2) ◦ ψ ◦∆ = id

Hence immediately by Lemma 5.10, T is relevant.

The preservation of idempotence therefore implies relevance. As we did for drop
equations, can we generalise this result to the whole class of strict-dup equations? the
answer is no: consider for instance the equation

x • (y • y) = y • x (5.11)
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and the generalised multiset monad MZ2 (counting multipicity in the ring Z2). We show
that MZ2 preserves the equation (5.11) despite not being relevant(see Table 4.1). Before
we prove this, we remark that (5.11) implies x • y = y • x. Indeed:

x • y = y • (x • x) = (x • x) • (y • y) = (x • x) • (y • (y • y))

= (x • x) • ((y • y) • (y • y)) = (y • y) • (x • x) = x • (y • y) = y • x.

To show that MZ2 preserves (5.11), let us assume that we are given an algebra A with
carrier A and a binary operation •A : A2 → A. Moreover we assume that(x •A (y •A
y)) = (y •A x) for all x, y ∈ A. Note that ξ •

M̂Z2
A ξ
′ =

∑
x,x′ ξ(x)ξ′(x′)(x •A x′) for

any ξ, ξ′ ∈MZ2X, thus

(ξ •
M̂Z2
A ξ) =

∑
x

ξ(x)2(x •A x) =
∑
x

ξ(x)(x •A x)

as the off-diagonals terms cancel each other due to (x •A y) + (y •A x) = 2(x •A y) = 0.
Hence

(ξ •
M̂Z2
A (ξ′ •

M̂Z2
A ξ
′)) =

∑
x,y∈X

ξ(x)ξ′(y)(x •A (y •A y))

=
∑
x,y∈X

ξ(x)ξ′(y)(y •A x)

= (ξ′ •
M̂Z2
A ξ).

If we want to prove that preservation of an equation implies relevance of a monad,
we must restrict our scope to a subclass of dup equations. The next section defines such
a class and a corresponding proof strategy inspired by our approach of relevance.

5.2.3 Sketching the Method for t[x]-Equations

The method we applied to idempotence can be generalised to a more general class of
equations. Let us now consider a linear Σ-term t and a binary operation • ∈ Σ; we
focus here on a particular case of dup equation: equalities of the form t[x • x] = t[x].
In other words the equation features only one variable duplication and it is the only
difference between the two sides; therefore it is always a strict-dup equation. We call such
an equality a t[x]-equation, and we will show that preserving such an equation implies
relevance of the monad.

First, we consider a relatively simple case of t[x]-equation: when t[x • x] = t[x] only
uses one symbol of the signature, the binary operation •. Such an equation can be for
example z • (y • (x • x)) = z • (y • x), or the law of idempotence x • x = x. This is
sufficient to treat many dup equations, but some others such as the law of distributivity
(x× y) + (x× z) = x× (y + z) are not covered. First, we sketch the method by treating
a concrete example of dup equation:

(y • (x • x)) • z = z • (y • x). (5.12)
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As we have done with idempotence, we proceed in two steps. First, we define a
convenient algebra satisfying the equality. Then we derive relevance from the preservation
of the equation.

Step 1: Constructing the Algebra

Note that this equality is of the desired form with t[x] = z • (y • x). Assume T
preserves (5.12) and let A be a non-empty set. Once again, we define a convenient
algebra A. For idempotence we chose A2 as a carrier; this time we take the product A5.
We will see later that this choice gives us enough instances of A for our construction.
We define the interpretation •A : A5 × A5 → A5 as follows. It is simply a tupling or
projections, therefore it is convenient to represent it as a series of connections between
inputs (the 10 copies of A in A5 × A5) and outputs (A5). We illustrate it graphically
below.

(5.13)

The map •A can be categorically defined as 〈π1, π7, π2, π6, π4〉, but we will rather
describe it as the connections (seen as wires) between its inputs and outputs.

Lemma 5.12. The binary operation m on X5 satisfies the equation (5.12).

Proof. We show that the evaluations of (y • x) • z and (y • (x • x)) • z are equal when

variables x, y, z are substituted with elements of X5 and • is interpreted with •A. In

this framework, this means that on both sides of the diagram equality below, the wires

reaching the top of the diagrams are the same (we say that the outputs of both diagrams

are matching). For clarity, we label the elements of A that are fed into the diagram with
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letters from a to o.

algkf

abcde fghij klmno

=

algkf

abcde fghij klmno

(5.14)

We exploit the similarity between the diagrams above and the syntax trees of (y •

(x •x)) • z and (y •x) • z. To make our illustration more explicit, we represent the syntax

tree of (y • (x • x)) • z (which is almost identical to the syntax tree of (y • x) • z, up to

the variable duplication).

y
x x

z (5.15)

Let us now shed some light on our construction. We encode positions in binary trees

with words in {0, 1}∗. To trace down each thread, we will label each connection of the

box (5.13) with a language on the alphabet {0, 1}. To understand this, we picture a

binary tree where all nodes feature an instance of •A (as the diagrams (5.14), above the

variable duplication), this language will represent the set of locations in the tree that are

connected to the output (the root of the tree).

In our example, the wires coming out of the box (5.13) are respectively labelled

L∗, R∗, LR∗, RL∗, LRL∗. The first wire is labelled L∗ because it connects the first

component of the output to the first component of the left input. Therefore, no matter

how many occurrences of our box are connected in whichever way, this thread always

leads to the wire on the far left. On both sides of (5.14), it connects to the input labelled

a. Similarly the R∗ wire goes through every occurrence of m on the far right (in our
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case ending up in l). The LR∗ wire turns left, then connects to the R∗ output of the

next box: from that point, just like the previous thread, it always goes right. In the case

of the left hand side term of (5.12), it connects directly to x on its second component.

On the left side, it goes through one more box and connects to the input g. The next

wire RL∗ is connected to the L∗ thread of the right input, which for both sides of the

equations connects to the input k. The final wire LRL∗ takes it a step further, going

left then right and connecting to a L∗ output. On the left hand side of the equation, it

connects to f . On the right hand side, it goes through one more instance of m but also

connects to f . Therefore the outputs of both sides of the equation match, in other words

•A satisfies (5.11).

As we will see in the next section, our construction of •A does not only verify the
desired equation, but also provides us with two special wires in the diagrams (5.14),
which will allow us to deduce the property of relevance.

Step 2: Deriving Relevance

Now that we have an algebra A on which our equality holds, let us consider an arbitrary
monoidal monad T . We show that the preservation of our equation implies the relevance
of T .

1. We assume that (y • (x•x))• z = (y •x)• z is preserved by T , hence it holds on T̂A.
In other words hence the ‘sleeved’ version of the diagram equality (5.14) holds.

= (5.16)

2. Now we discard many threads by pulling them to the bottom of the diagram, then
deleting them (as explained in Lemma 5.9 and property (5.5)).We only conserve
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two main threads of interest.

= (5.17)

3. Both diagrams now figure some sleeves that only contain the object 1. Each one
can now be closed by precomposing with η1.

= (5.18)

4. Each of these sleeves can now be pulled up to the top and absorbed into the main
sleeve by using the property of diagram (5.4).

= (5.19)

As in the case of idempotence, we now have one one side a sleeve containing two wires
left untouched, and on the other side a sleeve containing two wires ‘wrapping’ the bubble
(LR∗ and LRL∗). Note that on both sides, the wires go through a swapping, but it
suffices to postcompose our equality by T swap to obtain a very familiar picture: the
property of relevance shown in diagram (5.7). The following result follows immediately
from these two steps:

Theorem 5.13. Let T be a monoidal monad. If T preserves (y • (x •x)) • z = (y •x) • z,

then T is relevant.
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5.2.4 General Case of a t[x]-Equation

Having understood the example of (y • (x •x)) • z = (y •x) • z, we can now generalise the
method to a general t[x]-equation. Let t be a linear Σ-term containing only one symbol
of the signature, the binary operation •.

In this section, we move away from sleeve diagrams and rely on more conventional
category theory proof techniques. The reason for this is the lack of soundness and
completeness of our diagrams : unlike McCurdy in [28], we do not assume the Frobe-
nius property and therefore cannot guarantee the robustness of a diagrammatic proof.
Showing soundness and completeness would be a promising direction for future work,
but fortunately the proofs needed in this thesis can be expressed using category theory
techniques.

Step 1: Constructing the Algebra

As we did in the example, we start by defining a convenient algebra on which the
t[x • x] = t[x] holds. Recall the natural transformations δVA and γVA from Definitions 4.1
and 4.3. First, let us define a few constructs involving the term t.

Note that in t[x • x], only one variable duplication occurs. Without loss of generality,
we can reorder our variables to make x the first one. Then we have δVA(t[x • x]) =
β1 ◦ (∆× id× · · · × id) with β1 a natural isomorphism which operates a permutation (as
seen in Lemma 4.23). t[x] shows no duplicated variable, hence δVA(t[x]) is a similar natural
isomorphism that we note β2. We note γ1 = γVA(t[x•x]) and γ2 = γVA(t[x]). We denote by
n the number of variables in the equation, and therefore we have Arg(t[x•x]) = n+ 1 > 1
and Arg(t[x]) = n > 0. We can now introduce a lemma that characterises what we
require from a ‘convenient’ algebra.

Lemma 5.14. For every non-empty set A, there exists a Σ-algebra A, a natural number

k ∈ N and a natural isomorphism s : (−)k → (−)k such that

(i) A has carrier Ak

(ii) t[x • x] = t[x] holds in A

(iii) s ◦ γ1 ◦ β1 = α1 and s ◦ γ2 ◦ β2 = α2, where:

α1 = 〈πi1 , . . . , πik〉 : (Ak)n+1 → Ak ; α2 = 〈πj1 , . . . , πjk〉 : (Ak)n → Ak

and where i1 = 1, i2 = k+2, il 6= 1, 2, k+1, k+2 for l > 2, and j1 = 1, j2 = 2, jl 6= 1, 2

for l > 2.
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Our condition (iii) seems very technical, but it has an intuitive meaning. Recall the
previous example and Diagram (5.16): in order to derive later the property of relevance,
we must ensure that two specific threads reach the top of the diagram, one of each side
of the ‘bubble’. The tuplings α1 and α2 describe the threads reaching the top, starting
above the ‘bubble’. On the left side (corresponding to t[x • x]), there are n1 − 1 inputs
of type Ak. After duplicating of the first input (thus obtaining the n+ 1 arguments of
the term), we want to keep track of two main threads: the first element of the first copy
(hence α1 must include π1), and the second element of the second copy (corresponding to
the projection πk+2 in α1). For the case of t[x], the situation is simpler as there is no
duplication: we keep track of the very first element by requiring j1 = 1, and of the second
element with j2 = 2. As we saw in Diagram (5.17), our two remaining threads are not
necessarily the first two outputs of the diagram; they may even be swapped together. We
can then permute all outputs by postcomposing both sides with a natural isomorphism s
to ensure that our main threads are now placed first.

Proof. The idea of this lemma is simple: for every t[x]-equation, for every set A, we

can build a convenient algebra A whose carrier is a product of several copies of A

and where t[x • x] = t[x] holds. To construct this algebra, we build an interpretation

•A : Ak×Ak → Ak for the unique binary operation used in t. We proceed as in (5.13). Let

w = w1 . . . wl ∈ {L,R}∗ be the word representing the position of the variable duplication

in t[x] = t[x • x]. Again, we illustrate our interpretation of • as a box with inputs and

outputs, which we connect with labelled wires. We use the notation O1, O2 . . . for the

outputs, L1, L2, . . . for the left inputs and R1, R2, . . . for the right ones. First, we connect

L1 to O1, R2 to O2, and we respectively label these wires with the languages L∗ and R∗.

We then make successive connections depending on the letters of w to obtain threads

labelled wlL
∗, wl−1wlL

∗, . . . , wL∗ and wlR
∗, wl−1wlR

∗, . . . , wR∗.

For instance if wl = L, we want one wire labelled LR∗ and another one labelled

LL∗. The latter is equivalent to L∗, which we already have. To obtain LR∗, we link a

‘fresh’ output O3 with L2. This wire will therefore turn left then connect with the thread
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labelled R∗ in the next box it encounters; hence the language of this output is LR∗.

R∗L∗ LR∗

We repeat this process until we obtain wires labelled wL∗ and wR∗, which will become

our two main threads leading to the variable duplication then ‘wrapping’ the bubble.

Let k be the number of wires; by construction we have obtained an algebra A on Ak on

which the equation holds. We now show that the property (iii) is verified. The second

part of (iii), requiring that j1 = 1, j2 = 2, jl 6= 1, 2 for l > 2 immediately follows from

our construction. Consider the diagram corresponding to t[x]; its output, at the very

top, features two threads wL∗ and wR∗ leading to the first two components of the input

substituted with the variable x (which yields j1 = 1, j2 = 2). For example in (5.14), they

correspond to the letters f, g. Because no thread is duplicated, all other outputs are

distinct wires, hence jl 6= 1, 2 for l > 2. Let us now consider the side of t[x • x]: the

same applies to show that i1 = 1, i2 = k + 2, by construction these two wires are the

ones that wrap the bubble and make it to the top of the diagram. Let us finally show

by contradiction that il 6= 1, 2, k + 1, k + 2: if this condition was not verified, then there

would be at least a thread that reaches the top of the diagram and that is not part of the

two main threads, but that comes from the same input as wL∗ and wR∗. In this case, by

construction, its label would be wL∗ or wR∗ (depending on which side of the bubble it

goes). However we halt our construction when we obtain these two labels for the first

time, therefore we will never be in the situation of duplicate labels. In the example (5.14),

this appears in the fact that we have outputs f, g but no other output h, i or j.

Step 2: Deriving Relevance

Now that we have constructed a convenient algebra and its specifications, we prove that
preserving the equation t[x • x] = t[x] on this particular algebra implies the relevance of
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T , which leads to the main result of this section.

Theorem 5.15. Let t be a linear term with only binary operations. If T preserves

t[x] = t[x • x] then T is relevant.

Proof. Although this proof may appear very technical because it treats the question in

full generality and only uses category theory, we follow the same strategy as in diagrams

(5.17) to (5.17). We consider the algebra A previously constructed and proceed as follows.

1. First, we state that the equation is preserved, as we did in (5.16). We use

Lemma 5.14 to postcompose both sides by Ts, which rearranges threads so that

our two ‘useful’ threads are placed first.

T (Ak) T (Ak)

T (Ak)

Ts

OO

T (Ak)

Ts

OO

T (Ak × · · · ×Ak)

Tδ1

OO

T (Ak × · · · ×Ak)

Tδ2

OO

T (Ak × · · · ×Ak)

Tα1

;;

a

Tβ1

OO

T (Ak × · · · ×Ak)

Tα2

cc

b

Tβ2

OO

T (Ak)× T (Ak)× · · · × T (Ak)

ψ

OO

T (Ak ×Ak)× · · · × T (Ak)

χ×id×···×id

OO

T (Ak)n

T∆×id×···×id

OO

T (Ak)n

ψ

OO

a and b commute by Lemma 5.14.

2. As a second step, we can now drop all the unnecessary threads. This corresponds

to diagrams (5.17) above. This categorical version is more cumbersome as we need

to keep track of all the instances of 1 that are made implicit in (5.17).
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T (A2 × 1× · · · × 1) T (Ak)
T (id×id×!×···×!)oo T (Ak)

T (id×id×!×···×!) // T (A2 × 1× · · · × 1)

T (A2 × 1k−2 ×A×A× 1 · · · × 1)
a

Tα1

OO

T (Ak × · · · ×Ak)

Tα1

OO

T (Ak × · · · ×Ak)
b

Tα2

OO

T (A2 × 1 · · · × 1)

Tα2

OO

T (A2 × 1k−2)× T (A2 × 1k−2)× T (1k)× · · · × T (1k)

ψ

OO

T (Ak)× T (Ak)× · · · × T (Ak)

ψ

OO

T (A2 × 1k−2 ×A2 × 1k−2)× T (1k)× · · · × T (1k)

χ×id×···×id

OO

T (Ak ×Ak)× · · · × T (Ak)

χ×id×···×id

OO

T (A2 × 1k−2)× T (1k)× · · · × T (1k)

T∆×id×···×id

OO

T (Ak)× · · · × T (Ak)
foo

T∆×id×···×id

OO

T (Ak)× · · · × T (Ak)
f
//

ψ

OO

T (A2 × 1k−2)× T (1k)× · · · × T (1k)

ψ

OO

f = T (id × id×! × · · ·×!) × T (! × · · ·×!) × · · · × T (! × · · ·×!) note that f is an

epimorphism since A is non-empty. a and b commute respectively by naturality

of Tα1 ◦ ψ ◦ (χ× id× · · · × id) ◦ (∆× id× · · · × id); and by naturality of Tα2 ◦ ψ.

Therefore we obtain the equality of the two vertical outer sides of the diagram.

3. Our diagram is still very intricate and contains many instances of T (1k) = T (1).

In (5.17), this is represented by the ‘empty sleeves’. In order to discard them, we

precompose each of them with the arrow η1k . By using naturality and properties

of products, we obtain the following construction, corresponding in our example to

(5.18).

T (A2 × 1k−2 ×A2 × 1 · · · × 1)

a

Tα1 // T (A2 × 1× · · · × 1) T (A2 × 1 · · · × 1)

T (A2 × 1k−2 ×A2 × 1k−2)× T (1k)× · · · × T (1k)

ψ(n−1)

OO

T (A2 × 1k−2 ×A2 × 1 · · · × 1)

Tα1

OO

T (A×A× 1× · · · × 1)

Tα2

OO

T (A2 × 1k−2 ×A2 × 1k−2)× 1k × · · · × 1k

id×η
1k
×···×η

1k

OO

T (A× 1k−1)× T (A2 × 1k−2)× T (1k)× · · · × T (1k)

ψ

OO

T (A2 × 1k−2)× T (A2 × 1k−2)× 1k × · · · × 1k

ψ×id×···×id

OO

T (A2 × 1k−2 ×A2 × 1k−2)× T (1k)× · · · × T (1k)

χ×id×···×id

OO

T (A2 × 1k−2 ×A2 × 1k−2)× 1k × · · · × 1k

χ×id×···×id

OO

T (A2 × 1k−2)× T (1k)× · · · × T (1k)

T∆×id×···×id

OO

T (A2 × 1k−2)× T (1k)× · · · × T (1k)

ψ

OO

T (A2 × 1k−2)× 1k × · · · × 1k

T∆×id×···×id
ll

id2×η
1k
×···×η

1k

OO

T (A2 × 1k−2)× 1k × · · · × 1k

id×η
1k
×···×η

1k

OO

The commutation of a is immediate; all we do is decompose ψ(n) as ψ(n−1) ◦ ψ ×

id× · · · × id and swap independent elements of morphism products.
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4. Now we use the monoidal properties of T illustrated in diagram (5.4) to suppress

the copies of T (1k), which we illustrated above as ‘pulling up the empty legs’ in

(5.19). Because unitors are isomorphisms, we obtain the equality of the two vertical

outer sides of the diagram below.

T (A2 × 1× · · · × 1)

Tρi

rr

T (A2 × 1× · · · × 1)
Tρi

//

d

T (A2 × 1j)

T (A2 × 1j) T (A2 × 1k−2 ×A2 × 1k−2 × 1k × · · · × 1k)
a

Tα1

OO

Tρ(n−1)k+1

rr
T (A2 × 1k−2 ×A2 × 1k−2)

Tα′1

OO

T (A2 × 1k−2 ×A2 × 1k−2)× T (1k)× · · · × T (1k)

ψ(n−1)

OO

T (A×A× 1 · · · × 1)

Tα2

OO

Tρ(n−1)k+1

//

e

T (A2 × 1k−2)

Tα′2

OO

T (A2 × 1k−2 ×A2 × 1k−2)× 1k × · · · × 1k
ρ(n−1)k+1

ee
b

id×η1×···×η1

OO

T (A2 × 1k−2)× T (A2 × 1k−2)

ψ

OO

T (A2 × 1k−2)× T (A2 × 1k−2)× 1k × · · · × 1k

ψ×id×···×id

OO

T (A2 × 1k−2 ×A2 × 1k−2)

χ

OO

T (A2 × 1k−2 ×A2 × 1k−2)× 1k × · · · × 1k

χ×id×···×id

OO

T (A2 × 1k−2)× T (1k)× · · · × T (1k)

ψ

OO

T (A2 × 1k−2)

c

T∆

OO

T (A2 × 1k−2)× 1k × · · · × 1k

T∆×id×···×id

OO

ρ(n−1)k+1oo T (A2 × 1k−2)× 1k × · · · × 1k

id×η
1k
×···×η

1k

OO

ρ(n−1)k+1

// T (A2 × 1k−2)

id

OO

The morphism α1 is defined in Lemma 5.14 as a tupling of projections selecting k

elements in the product (A2 × 1k−2 × A2 × 1k−2 × 1k × · · · × 1k). Note that the

condition (iii) of Lemma 5.14 implies that its codomain in this case is (A2 × 1k−2)

(only two elements of type A are selected).

Inside the tupling α1, let i be the number of projection corresponding to elements

from 1k × · · · × 1k(that is, projections πl for l ≥ 2k). We define α′1 as the same

tupling as α1 but without such projections. This makes sense as elements from

1k × · · · × 1k are the ones that are deleted by ρ(n−1)k+1. Finally, a commutes by

composition of projections, as unitors equate projections in a Cartesian category.

The same reasoning applies to α2, and d commutes. b and e commute by

Lemma 2.36; c commutes by naturality of ρn.

5. Once more, the categorical proof must cover some properties left implicit in the

illustration (5.18); namely discarding the unnecessary instances of 1 inside the
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object T (A2 × 1k−2). This is easily achieved using naturality and properties of the

unitors.

T (A×A)
a

T (A2 × 1j)
Tρjoo T (A2 × 1j)

c

Tρj // T (A2)

T (A2 ×A2)

b

T (π1×π2)

OO

T (A2 × 1k−2 ×A2 × 1k−2)
T (ρk−2×ρk−2)oo

Tα1

OO

T (A2 × 1k−2)

Tα′2

OO

T (A2)× T (A2)

ψ

OO

T (A2 × 1k−2)× T (A2 × 1k−2)

ψ

OO

T (A2 ×A2)

χ

OO

T (A2 × 1k−2 ×A2 × 1k−2)

χ

OO

T (A2)

T∆

OO

T (A2 × 1k−2)
Tρk−2oo

T∆

OO

T (A2 × 1k−2)

id

OO

Tρk−2

// T (A2)

id

OO

a , c by the same reasoning as above, i.e. composition of unitors and projections.

b commutes by naturality of ψ ◦ χ ◦ T∆. Again because ρk−2 is an isomorphism

we obtain the equality T (π1 × π2) ◦ ψ ◦ χ ◦ T∆ = id

6. Finally, observe that this equality is exactly the one of Diagram (5.8). Hence by

Lemma 5.10, T is relevant.

This result may seem very specialised since we only consider terms featuring a
single operation symbol. However, the process described above actually applies to other
equations. Our strategy relies on defining a convenient algebra to derive relevance from
the preservation of a particular equation, in particular we define the interpretation •A
of a binary operation. If T preserves (x + x) • y = x • y, in particular T preserves it
on an algebra where • and + are interpreted as identical. Therefore our method for
(x • x) • y = x • y also applies to (x+ x) • y = x • y. We may generalise this further to
treat operations of any arity greater than 2 (in other words, anything but constants):
if f(x, x, z) = x • z is preserved by T , then in particular it is on an algebra where
f(x, x, z) = (x • x) • z (as long as we can define such an algebra where the considered
equation also holds). Since we have treated (x • x) • z = x • z above, our conclusion also
applies to f(x, x, z) = (x • x) • z. We have obtained the property of relevance from any
possible case featuring binary operations, thus we also obtain for free the case of n-ary
operations (where n > 1).
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Theorem 5.16. Let t be a linear term with no constants. If T preserves t[x] = t[x • x]

then T is relevant.

Our method can therefore be applied regardless of the symbols involved in t, provided
that the term is constant-free. For this reason, we can now omit operation symbols in
our equations. For instance we refer to our example as (yx)z = (y(xx))z.

Again, because t[x] = t[x • x] is a strict-dup equation we can combine Theorems 5.16
and 4.34 to obtain the following equivalence.

Theorem 5.17. Let t be a linear term with no constants, T a monoidal monad.

T is relevant if and only if T preserves t[x] = t[x • x].

Let us now outline an even more ambitious generalisation to cover equations outside
the strict-dup class. If we use the above approach to treat an equation t = t[x • x], it
turns out we can slightly modify the equation without affecting our result. Consider the
example (y •x) • z = (y • (x •x)) • z again (which we will write (yx)z = (y(xx))z). At the
end of our process, the only component of the y that is connected to the output is the first
one (through the L∗ wire). By construction, adding another iteration of •A with y on its
left input would not change this fact. Let us then substitute y with yv in the equation
(for v any new variable). The position of v is coded as the word LLR, which does not
belong to the language of any of our outputting wires, therefore v has no influence on the
matching of the outputs. In other words, the definition of m allowing to prove relevance
from the preservation of (yx)z = (y(xx))z also applies to ((yv)x)z = (y(xx))z, which is a
one-drop equation. One could even substitute v with a more complicated term to obtain
another equation, whose preservation would still lead to relevance. This last theorem
applies therefore to many equalities outside the case t[x] = t[x •x], even though the exact
class described by these modifications is cumbersome to define.

For instance, because Theorem 5.16 applies to z(xx) = zx, it also applies to z(xx) =
(zy)x.

Theorem 5.18. Let T a monoidal monad. T is relevant if and only if T preserves

z(xx) = (zy)x.

5.2.5 n-relevance

We have shown in Theorem 5.11 that the preservation of x • x = x implies relevance.
What about the preservation of f(x, x, x) = x? We will see that it does not imply
relevance, but rather a property of 3-relevance. To define n-relevance in general, we
introduce n-ary variations of existing maps: ∆(n) is the n-times duplication operator
X → Xn and χ(n) ≡ 〈Tπ1, . . . , Tπn〉.
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Definition 5.19. Let T be a monoidal monad, T is n-relevant if the following diagram

commutes

TA
∆n

//

T∆n ((

(TA)n

ψ(n)
��

T (An)

(5.20)

Or equivalently iff ψ(n) ◦ χ(n) = id.

Note that the usual notion of relevance corresponds to 2-relevance.

Theorem 5.20. Let M be a commutative monoid and consider the corresponding writer

monad. M ×X is n-relevant iff wn = w for all w ∈M .

Proof. Let w ∈M . We have:

(ψ(n) ◦ χ(n))(w, (x1, . . . , xn)) = ψ(n)((w, x1), . . . , (w, xn))

= (wn, (x1, . . . , xn))

Hence M ×X is n-relevant iff wn = w.

Therefore some monads may be n-relevant but not m-relevant for any m with n > m;
we now show an example of such a monad.

Example 5.21. For all x ∈ Z2 we have x + x + x = x × 3 = x (note that despite

the difference in additive and multiplicative notations, this corresponds exactly to the

property wn = w used in the previous theorem). Therefore X ×Z2 is 3-relevant; however

1× 2 = 2 6= 1 hence X × Z2 is not relevant. 4

Both notions of relevance are however related.

Proposition 5.22. Relevance implies n-relevance for any n ≥ 2.

Proof. We proceed by induction on n, the case n = 2 is trivial. We assume that T is
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relevant and (n− 1)-relevant, we show that it is n-relevant.

ψ(n) ◦∆(n)

= ψ ◦ (id× ψ(n−1)) ◦ (id×∆(n−1)) ◦∆

= ψ ◦ (id× T∆(n−1)) ◦∆ (n− 1)-relevance

= (id× T∆(n−1)) ◦ ψ ◦∆ naturality

= (id× T∆(n−1)) ◦ T∆ relevance

= T∆(n)

Although n-relevance is weaker than relevance, these two properties are sometimes
connected. As it turns out, they are equivalent in the case of affine monads.

Proposition 5.23. Given any n > 2, if T is n-relevant and affine, then T is relevant.

Proof. Let n ∈ N. By Lemma 4.27, an affine monad T verifies ψ ◦ 〈π1, π2〉 = T 〈π1, π2〉 ◦

ψ(n) because this equality corresponds to the residual diagram of the drop equation

(x1 • (x2 • . . . (xn−1 • xn) . . . )) = x1 • x2. Then we have:

ψ ◦∆ = ψ ◦ 〈π1, π2〉 ◦∆n

= T 〈π1, π2〉 ◦ ψ(n) ◦∆n affineness

= T 〈π1, π2〉 ◦ T∆n n-relevance

= T∆

Therefore T is relevant. For more clarity, we express this proof as a diagram.

TX

∆

%%
a

∆(n)
//

b

d

T∆(n)
''

T∆ 22

(TX)n

c

ψ(n)

��

〈π1,π2〉 // (TX)2

ψ

��

T (Xn)

T 〈π1,π2〉 ''
T (X2)
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a and d commute trivially ; b commutes by n-relevance and c commutes by

affineness as expressed above. Therefore the outer triangle commutes, which shows

n-relevance. Because affine monads are well-behaved towards projections (and pairings

or projections), one can reduce the property of n-relevance to the conventional notion of

relevance.

Finally, we show that n-relevance is a necessary and sufficient condition to preserve
certain equations:

Theorem 5.24. Assume Σ features an n-ary operation fn. Then a monoidal monad T

preserves fn(x, . . . , x) = x if and only if T is n-relevant.

Proof. (⇐): Consider an algebra A where fn(x, . . . x) = x holds. We make use of

Theorem 4.11 and show that the corresponding residual diagrams commute. id◦δV
T̂A

(x) =

TδVA(x) ◦ id trivially holds because δVA(x) = δV
T̂A

(x) = id. Furthermore, note that

δVA(fn(x, . . . x)) = δV
T̂A

(fn(x, . . . x)) = ∆n, therefore by n-relevance we have: ψn ◦

δV
T̂A

(fn(x, . . . x)) = TδVA(fn(x, . . . x)) ◦ id. By Theorem 4.11, the equation is preserved.

(⇒): We assume that fn(x, . . . x) = x is preserved on every algebra. Then in

particular, it is preserved for the n-ary operation fn = π1 × · · · × πn defined on a set An.

The equation holds, in other words we have (π1 × · · · × πn) ◦∆n = id. Then by the same

reasoning as in Theorem 5.11, we obtain:

id = Tfn ◦ ψn ◦∆n

= Tfn ◦ ψn ◦ χn ◦ T∆n

= T (π1 × · · · × πn) ◦ ψn ◦ χn ◦ T∆n

= ψn ◦ (Tπ1 × · · · × Tπn) ◦ χn ◦ T∆n

= ψn ◦ χn ◦ T (π1 × · · · × πn) ◦ T∆n

= ψn ◦ χn ◦ T ((π1 × · · · × πn) ◦∆n)

= ψn ◦ χn



102 CHAPTER 5. NECESSARY CONDITIONS FOR PRESERVATION

5.3 Discussion and Related Work

This chapter was centered on finding necessary conditions for preserving diverse classes
of equations. In the case of affine monads, we established the converse of our results
from Chapter 4: if a monad T preserves any strict-drop equation, then it must be affine.
Our theorem is even stronger, as it also holds for some equations outside the strict-drop
class (namely one-drop equations). For the case of dup equations, a variety of cases may
occur. When such equalities can be written as t[x • x] = t[x] for t a term containing no
constant, we have shown that preservation implies relevance. For other equations such as
f(x, x, . . . , x) = x, it turns out that relevance is not necessary; instead it is the notion of
n-relevance that characterises monads preserving this equation.

In light of these results, a remark on the topic of equation preservation arises naturally.
We have seen that if T preserves the theory Σ, E presenting S, then there exists a
distributive law λ : ST → TS (Theorem 3.14). The converse does not hold, that is, the
existence of such a distributive law does not necessarily mean that T preserves E. The
point is that S might have several different presentations by operations and equations,
and the notion of preservation makes explicit use of the presentation at hand. Consider
for example T to be a non-affine, relevant monad (for instance X + 1), and S = D

the distribution monad. Algebras for D are convex algebras, which are presented by
several equivalent theories (see Examples 2.49 and 2.50). We first consider the theory T1,
whose signature contains binary convex combination symbols ⊕λ for λ ∈ [0, 1], and whose
equations include the projection axioms ⊕0(x, y) = y and ⊕1(x, y) = x (see for instance [3]
for more details). These two laws are one-drop equations and cannot be preserved by
T . But D is also presented by T2 (seen in example 2.49), whose signature only contains
convex combination operators ⊕λ for λ ∈]0, 1[. Therefore T2 has no projection axioms;
all its equations are linear or dup. By Theorem 4.34, the relevance of T is sufficient
to preserve T2, hence there exists a distributive law DT → TD. Indeed, the failure to
preserve one presentation of D does not mean that no distributive law can be found.

Once more, these results confirm Gautam’s findings on the powerset monad [11] and
allow us to answer the question we asked at the end of Chapter 4. The monad P does
not preserve drop equations because it is not affine, and does not preserve the law of
idempotence because it is not relevant. Gautam’s original counterexamples showing that
drop equations are not preserved by P are also our inspiration for the definition of the
map α in Lemma 5.14. The incompatibility between P and the law of idempotence is also
a central notion of Klin and Salamanca’s work in [21]. In this paper, the authors settle
a long-standing question of category theory: does the powerset monad distribute over
itself? The answer comes after the numerous historical mistakes mentioned in Chapter 3,
and is negative. A connection between their work and ours can be observed in this
paper: first, recall that the presentation of P contains an idempotent binary operation,
which cannot be preserved by P as it is not a relevant monad (Theorem 5.11). In an
analogous reasoning, Klin and Salamanca define the concept of nontrivial idempotent
term, a categorical object which prevents any distributivity over the powerset monad.
Their proof strategy, which ultimately allowed to prove that P cannot be composed
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with itself, is based on an idea of Gordon Plotkin, and used in a similar manner for
the case of P and D by Varacca and Winskel in [38]. Bringing this idea further, Zwart
and Mardsen show later in [42] that under reasonable conditions, any monad whose
presentation includes idempotent operations cannot be distributed over P (and more
generally, over any monad that verifies certain algebraic conditions). Idempotence seems
to be a clear obstacle to the composition with the powerset monad; our work generalises
this idea to the entire class of non-relevant monads, which cannot preserve this equation
(by contraposition of Theorem 5.11). However, one distinction between our work and [42]
must be made. In the case of P and of a monad presented with an idempotent operation,
we have shown that preservation fails. But there could exist other distributive laws,
not based on a monoidal approach, allowing to compose the considered monads. We
will explore some examples of alternative distributive laws in Chapter 6. The work of
Zwart and Marsden goes beyond the monoidal setting and establishes clear properties of
incompatibilities between the algebraic presentations of some monads.



Chapter 6

Strategies For Non-Composing

Monads

The previous chapters have explored diverse aspects of our method for building distributive
laws. We have seen in Chapter 3 that monoidal monads provide a structure allowing
for a canonical construction of a distributive law by preservation of algebraic features.
Then Chapters 4 and 5 respectively establish sufficient and necessary conditions for
preservation of equations. We can now precisely pinpoint the cases in which our method
succeeds: for instance, composing an affine monad with a monad presented by linear and
strict-drop equations. Similarly, we are now certain that some compositions will not be
possible in our monoidal framework. Consider a non-relevant monad, such as P, and
a theory containing the equation x+ x = x, for instance the theory of convex algebra
presenting D. By the contraposition of Theorem 5.11, we know that P does not preserve
this equation. If we want to compose P and D, we find ourselves faced with an obstacle.

In the current chapter, we focus on cases where a monad T does not preserve the
features of S, and we present a series of methods to overcome this problem by slightly
modifying our monads. The first strategy is the simplest, but is worth mentioning:
removing the problematic equations from the presentation of S, forming a monad S′

instead and allowing to successfully build the composition TS′. The second method
operates modifications on T by enforcing relevance or affineness; thus allowing to preserve
a whole class of equations. The third method is the most precise: still focusing on
T , we can tweak the monad to ensure that it preserves a particular equation on a
fixed algebra. This necessitates a rather technical construction but results in a monad
preserving the algebraic structure of S. Finally, we present in some cases one last method:
constructing an ad-hoc lifting of algebraic features without using the monoidal structure
of the considered monad.

104
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6.1 Removing Faulty Equations

Our first method follows a simple idea. Let T and S be two monads that we want to
combine to form TS. By examining the properties affineness, relevance and n-relevance
of T and the conditions on equations given in Chapters 4 and 5 we can pinpoint any
obstacle to monad composition. As signatures are always preserved by monoidal monads,
the only possible issues result from equations. Let (Σ, E) be a presentation of S, and let
us assume that some equations are not preserved by T . We denote by E′ the set obtained
from E by removing the faulty equations. We can now define S′ as the free model monad
of the theory (Σ, E′). By construction, T preserves this theory, therefore by Theorem 3.5,
there exists a distributive law S′T → TS′ and the corresponding composite monad TS′.

Example 6.1. Let us try to compose Pf with itself. Pf is not relevant, therefore it

cannot preserve the equation of idempotence in its presentation. As a matter of fact, we

know that PfPf is not a monad (see [21]). In the monad S, we can discard this equation

to obtain a slightly different monad, presented by the theory of commutative monoids:

it is the multiset monad M. Having removed the only difficulty, we can now flawlessly

compose Pf and M. 4

Note that this method has been put in effect by Varacca and Winskel in [38], where
the authors remove the equations of idempotence from the theory presenting D in order
to compose P with their newly obtained monad of indexed valuations.Of course, this
strategy requires to operate an important modification on one of the monads; the next
sections will present finer methods.

6.2 Enforcing Affineness and Relevance

We know from Chapter 5 that in order to preserve certain equations, a monad may be
required to be affine or relevant. When a monad T does not preserve some equations
presenting S, we present a new strategy: enforcing composition by restricting T to its
affine or relevant part, which we define below.

6.2.1 Affine part of a monad

Definition 6.2 (Affine Part of a Monad). [24] Let (T, η, µ) be a monad on Set. There

exists a monad (Ta, η
a, µa) on Set, called the affine part of T , together with a monad

morphism va : Ta → T , determined both uniquely up to isomorphism, such that for every
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object X the diagram (6.1) is an equalizer diagram.

TaX
vaX // TX

T ! //

!
��

T1

1

η1

<< (6.1)

Note that this construction can be done in any finitely complete category, in other
words a category admitting all finite limits (which is the case for Set).

If a monad S is presented by linear and strict-drop equations and T is a non-affine
monad, our method is to restrict T to its affine part Ta. By Theorem 4.28, preservation
is ensured and the composition TaS forms a monad.

Example 6.3. Let us consider the theory (Σ, E) where Σ = {•, 0} and E only contains

the law of absorption x • 0 = 0. We denote by S the free model monad of (Σ, E), and

consider the powerset monad P. By the contraposition of Theorem 5.3, P does not

preserve absorption because it is not affine. We can then define the affine part of P: for

a set X, Pa(X) is composed of the subsets U of X such that T !(U) = η1◦ !(U). It is

clear that this equality is verified for every U 6= ∅, therefore the affine part of P is the

non-empty powerset P+. By Theorem 4.28, P+ composes with S as it preserves all its

features. 4

6.2.2 Relevant part of a monad

In a similar fashion as the affine case, we can restrict a monad to its relevant part.

Definition 6.4 (Relevant Part of a Monad). [15] Let (T, η, µ) be a commutative monad

on C. There is a monad (Tr, η
r, µr) on C, called the relevant part of T , together with a

monad morphism vr : T ′ → T , determined both uniquely up to isomorphism, such that

for every object X the diagram (6.2) is an equalizer diagram.

TrX
vrX // TX

T∆ //

∆
��

T (X ×X)

TX × TX
ψ

77
(6.2)

Example 6.5. Consider (M, •, 1) monoid and the monad WM (X) = M × X. In the

same manner as in Example 4.32, we see that the equalizer of the above diagram is the
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subset of WM (X) made of pairs (x,m) such that m •m = m. Therefore the relevant

part of T is M ′ × (−) where M ′ is the greatest join-semilattice included in M , in other

words the elements m of M such that m •m = m. 4

If a monad S is presented by linear and strict-dup equations and T is a non-affine
monad, we can restrict T to its relevant part Tr. By Theorem 4.34, preservation of all
equations presenting S is ensured and the composition TrS forms a monad.

Example 6.6. P is not relevant, and its relevant part is the maybe monad X + 1 = ⊥.

The problem of PPf can be addressed in the following way: if the P was relevant, then

composition would succeed. Thus we substitute this P with ⊥ to obtain the monad ⊥Pf .

This is however quite an extreme solution. Although the monads do compose, we have

discarded most of the components of one of them: its algebraic theory now only consists

of one constant and no axiom. 4

Finally, we can combine those techniques to enforce relevance and affine at the same
time by restricting a monad to its Cartesian part.

Definition 6.7 (Cartesian Part of a Monad). [24] A monad that is relevant and affine

is called Cartesian. For T monoidal monad, the Cartesian part Tc of T is both the affine

part of Tr and the relevant part of Ta.

When trying to compose T and S, we can therefore always replace T with Tc and
obtain a successful composition via Theorem 4.38. However, in most cases the Cartesian
part of T becomes too trivial to be useful in our construction, as the following example
shows.

Example 6.8. Let S be the free model monad corresponding to the theory (Σ, E) with

Σ = {•, 0} and E the set of equations containing x • x and x • 0 = 0. We know from

Chapter 4 that being Cartesian is sufficient to preserve this theory. If we want to compose

P with S, we can therefore consider the Cartesian part of P. Pc = (Pr)a = (⊥)a = Id,

hence this construction results in the trivial identity monad. The composition succeeds,

but we have lost all the content of P. 4

This method offers a general way to restrict monoidal monads to enforce equation
preservation, but lacks precision in some cases. Intuitively, it is because taking the affine,
relevant or Cartesian part of a monad is already a very strong restriction. The next
section presents a finer strategy that focuses on the equations of one precise algebra.
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6.3 Restricting to Enforce an Equation

Taking the affine or relevant part of a monad can be considered excessive: consider the
case of PfPf again. The outer monad Pf lacks the ability to preserve the equation
x+ x = x. Making it relevant enforces that not only this equation is preserved, but a
whole class of axioms, namely all equalities with duplicated variables. This is because,
as we explained in Chapter 3, our sufficient conditions for equation preservation, such
as residual diagrams and properties of relevance or affineness, only relate to variable
rearrangements and never to actual operations of the considered algebra. For an algebra
A ∈ EM(Pf ), we could therefore build a finer approach where we tweak Pf to preserve

exactly x+A x = x. More precisely, we will build P̂f , lifting of Pf to Alg(Σ) in the same
manner as in Chapter 3, then restrict this lifting to a monad on Alg(Σ) that preserves
idempotency of +A. First, we define a few technical constructs involved in our method.

6.3.1 Re-interpreting Terms

Recall that in Chapter 4, we constructed an interpretation of terms by separating variable
rearrangements (with the natural transformation δVA) and operations (with γVA). For the
purpose of the current method, we do not need to keep track of variable rearrangements
anymore. Hence we define a new interpretation of terms using a more conventional
inductive approach.

For all objects X and m,n ∈ N, let φ : (Xm)n → (Xn)m be the natural isomorphism
that for all 1 ≤ i ≤ n makes the diagram

(Xm)n (Xn)m

Xm

φ

πi
πmi

(6.3)

commute, which implies that for all objects Y and f1, . . . , fn : X → Y the diagram below
commutes.

Xm

(Y m)n (Y n)m

〈fm1 ,...,fmn 〉
〈f1,...,fn〉m

φ

(6.4)

Finally, note that given a Σ-algebra A with carrier A and any n ∈ N, there is a
Σ-algebra An with carrier An. Its interpretation of an operation σ ∈ Σ is given by

σAn = (An)|σ|
φ−→ (A|σ|)n

σnA−−→ An (6.5)

For more clarity throughout this section, we will denote σA by σ when no confusion is
possible.
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As we did in Chapter 4, we fix a finite set V of variables and a bijection b : V →
{1, . . . , |V |} (the enumeration of variables), where |V | is the size of V . A term is either a
variable v ∈ V or σ(t1, . . . , t|σ|), which is a syntactical application of an operation σ to
terms t1, . . . , t|σ|. We can now introduce our new interpretation.

Definition 6.9 (Interpretation of Terms). Given a term t and a Σ-algebra A with carrier

A, define LtMA : A|V | → A inductively by

LxMA = A|V |
πb(x)−−−→ A

if t is a variable x and

Lσ(t1, . . . , t|σ|)MA = A|V |
〈Lt1MA,...,Lt|σ|MA〉−−−−−−−−−−→ A|σ|

σ−→ A

if t = σ(t1, . . . , t|σ|).

For a term t, our new construct LtM is very similar to JtK, except that we do not
separate variable rearrangements and algebraic operations anymore. We will show later
that both interpretations are actually identical, but the definition of LtM is more convenient
in this chapter. First, we prove a series of properties of this interpretation.

Lemma 6.10. For all Σ-algebras A with carrier A, terms t, and n ∈ N, the diagram

below commutes.

(An)|V | (A|V |)n

An

φ

LtM
LtMn

Proof. Proof by induction on the structure of t. If t = x ∈ V , we have a special case of

(6.3). For the inductive case where t = σ(t1, . . . , tn), we conclude by commutativity of

(An)|V | (A|V |)n

(An)|σ| (A|σ|)n

A

φ

〈Lt1M,...,Lt|σ|M〉 c
〈Lt1M,...,Lt|σ|M〉n

〈Lt1Mn,...,Lt|σ|Mn〉

φ

σ

a

b
σn

The triangle a commutes by the property (6.4), and b by (6.5). Finally, c commutes

by induction hypothesis.
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Lemma 6.11. For all terms t, LtMA is natural in A.

Proof. Consider a Σ-algebra homomorphism f : A → B, where A and B are Σ-algebras

carried by A and B respectively. We will prove by induction on the structure of t that

A|V | B|V |

A B

f |V |

LtM LtM
f

commutes. For t = x ∈ V this follows directly from naturality of πb(x). Consider the case

of t = σ(t1, . . . , t|σ|). Then

A|V | A|σ| A

(A|V |)|σ|

(B|V |)|σ|

B|V | B|σ| B

〈Lt1M,...,Lt|σ|M〉

∆

f |V |
a

b

σ

f |σ|

c

f

Lt1M×···×Lt|σ|M

(f |V |)|σ|

Lt1M×···×Lt|σ|M

〈Lt1M,...,Lt|σ|M〉

∆

σ

a naturality of ∆

b induction hypothesis

c f is a Σ-algebra homomorphism

commutes, which completes the proof. Note that ∆ is the diagonal (pairing of identities).

This interpretation is more appropriate for the constructions we will study in this
section. It is however equivalent to the one we previously constructed, as JtK and LtM are
merely made of the same morphism in a different order.

Lemma 6.12. For an algebra A, a set of variables V , a term t, we have JtKVA = LtMVA.

Proof. We proceed by induction on t.

• If t = x then LxMVA = πb(x), where b is the bijection enumerating variables in V as

before. We have JxKVA = id ◦ πb(x) = LxMVA.

• If t = σ(t1, . . . , tn), we assume that JtiKVA = LtiMVA for 1 ≤ i ≤ n. Recall that for term

ti, JtiKVA = γVA(ti) ◦ δVA(ti). For clarity we write here γVA(ti) = γi and δVA(ti) = δi.
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First, recall that Arg(t) = Arg(t1) : . . . : Arg(tn), where : denotes concatenation.

Moreover, we recall the following property of tuplings: for all f, g, h we have

〈f, 〈g, h〉〉 = 〈〈f, g〉, h〉 = 〈f, g, h〉. Therefore δVA(t) = 〈δi, . . . δn〉. We write k =

|Arg(t)|, ki = |Arg(ti)| and we have k = k1 + · · ·+ kn.

LtMVA = A|V |
〈Lt1M,...,LtnM〉 // An

σ // A

= A|V |
∆n
// (A|V |)n

Lt1M×···×LtnM // An
σ // A

= A|V |
∆n
// (A|V |)n

Jt1K×···×JtnK // An
σ // A

= A|V |
∆n
// (A|V |)n

δ1×···×δn // Ak1+···+kn γ1×···×γn // An
σ // A

= A|V |
〈δ1×···×δn〉// Ak1+···+kn γ1×···×γn // An

σ // A

= A|V |
δVA(t)

// Ak
γ1×···×γn // An

σ // A

= A|V |
δVA(t)

// Ak
γVA(t)

// A

= JtKVA

6.3.2 Restricting to Enforce an Equation

Now that we have defined the interpretation LtM, we can present our third method which
relies on restricting the lifting of a monad to enforce equation preservation. The idea for
this strategy stems from the works of Silva, Bonchi and Sokolova in [3]. In that paper,
the authors examine the composition of the powerset monad P with the distribution
monad D in order to lift P to EM(D). It is however well-known that the composition
PD is not a monad (see for instance [38]). In particular, our method highlights the
incompatibility between the non-relevant monad P and the equation of idempotence in
the presentation of D. The authors of [3] make use of a clever trick to overcome this
issue, that we summarise here. Recall that a EM(D) is the category of convex algebras:
sets provided with a family of binary operations ⊕λ for λ ∈ [0, 1] satisfying the following
axioms:

p⊕λ p = p p⊕λ q = q ⊕1−λ p

p⊕λ (q ⊕ψ r) = (p⊕ λ
λ+(1−λ)ψ

q)⊕λ+(1−λ)ψ r
(6.6)
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Note that this theory includes equations of idempotence, which P cannot preserve
(Theorem 5.11). To understand the situation more precisely, consider a convex algebra A
with carrier A. The set PA does not in general have the structure of convex algebra. For
instance consider two distinct elements a, b ∈ A; then we see that the subset {a, b} does
not verify the equation of idempotence.

{a, b}⊕λP̂A{a, b} = {a⊕λ a, a⊕λ b, b⊕λ a, b⊕λ b}
= {a, a⊕λ b, b} 6= {a, b}

On the other hand, if we consider the subset {a, b, a⊕λb}, the equation of idempotence
is verified:

{a, b, a⊕λ b}⊕λP̂A{a, b, a⊕λ b} = {a, b, a⊕λ b}

The idea is then to restrict PA and only keep the subsets that verify the equation of
idempotence of ⊕λ (for every λ ∈]0, 1[). A quick calculation shows that such subsets
are the ones that are closed under ⊕λ for every λ ∈]0, 1[, in other words convex subsets.
As the authors of [3] do, we construct the convex powerset monad PC to preserve the
structure of convex algebra.

Note that this procedure bears resemblance to the construction of the affine or relevant
part of a monad: once again, we operate a restriction to a coequalizer-like object to
only conserve the elements that verify the desired property. However, contrary to the
previous method, the current construction explicitly involves the operation ⊕λ from the
considered algebra A. Therefore our resulting monad must be defined on the category
of convex algebras rather than Set. In the rest of this chapter, we formally define this
procedure for an arbitrary monoidal monad T . For a Σ-algebra A with carrier A and
a set of equations E, we assume that we can define a ‘restriction’ of the set TA that
verifies the equations in E, and we show that this restriction has a monadic structure on
the category EM(S).

For the purpose of this section, we highlight the following properties of monoidal
monads, for X ∈ Set and m,n ∈ N.

Xn

(TX)n T (Xn)

η
ηn

ψ

(T 2X)n (TX)n

T ((TX)n)

T 2(Xn) T (Xn)

µn

ψ

ψ

Tψ

µ

((TX)m)n ((TX)n)m

T (Xm)n T (Xn)m

T ((Xm)n) T ((Xn)m)

ψn

φ

ψm

ψ ψ

φ

(6.7)

Note that these conditions follow easily from (MF.1), (MF.2) and (MM.2). Now we
move on to defining a new notion of a morphism ‘satisfying equations’, with a construction
similar to an equalizer.
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Definition 6.13. Given a Σ-algebra A with carrier A, a morphism j : X → TA is said

to satisfy an equation t1 = t2 if the diagram below commutes.

X |V | (TA)|V |

(TA)|V | TA

j|V |

j|V | Lt1M

Lt2M

(6.8)

Moreover we assume that this construct verifies a universal property: whenever there

is an object J with a morphism j : J → TA satisfying all equations in E, then there

exists a unique morphism u : J → TA rendering the diagram below commutative.

J

TA TA

j
u

i

(6.9)

Now let us fix Σ and E and assume that for each (Σ, E)-algebra A with carrier A,
there exists an object TA with a morphism iA : TA→ TA satisfying all equations in E.
Intuitively, this means that we assume having found, for all algebra A, a ‘restriction’ of
TA where the desired equations hold, and that this restriction is maximal. So far, it is
only an object that we denote by TA, but we will see in the following paragraphs that
this construction defines a monad.

Lemma 6.14. For any (Σ, E)-algebra A, iA is monic.

Proof. Let A be the carrier of A. Consider an object X with morphisms f, g : X → TA

such that iA ◦ f = iA ◦ g. Because iA satisfies every equation in E, so does iA ◦ f .

Thus, there exists a unique morphism h : X → TA such that iA ◦ h = iA ◦ f . Since

iA ◦ h = iA ◦ f = iA ◦ g, we have h = f = g. We conclude that iA is monic.

Let U : Alg(Σ, E) → Alg(Σ) be the functor that forgets that the equations in E
hold, and let (T̂ , η̂, µ̂) be the lifting of (T, η, µ) to Alg(Σ) defined in Chapter 3. First,
we show that our restriction T can be used to define a functor on Alg(Σ, E).

Lemma 6.15. There exists a functor T̂ : Alg(Σ, E)→ Alg(Σ, E) such that the collection

of morphisms i constitutes a natural transformation UT̂ → TU .
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Proof. Let A and B be (Σ, E)-algebras with respective carriers A and B, and consider a

Σ-algebra homomorphism f : A → B and an equation t1 = t2 in E. Commutativity of

(TA)|V | (TA)|V | (TB)|V |

(TA)|V | TA

(TA)|V | TB

i|V |

i|V |
a

(Tf)|V |

Lt1M
b

Lt1M
Lt2M

(Tf)|V |
Tf

Lt2M

b

a iA satisfies t1 = t2

b Lemma 6.11

shows that Tf ◦ iA satisfies t1 = t2, and therefore there is a unique morphism Tf : TA→

TB making the diagram below commute.

TA TA

TB TB

i

Tf Tf

i

(6.10)

Note that the third diagram in (6.7) says that ψ is a Σ-algebra homomorphism. Since

for any (Σ, E)-algebra A with carrier A and all n ∈ N and equations t1 = t2 in E the

diagram

((TA)n)|V | ((TA)n)|V | T (An)|V |

((TA)|V |)n ((TA)|V |)n

((TA)n)|V | ((TA)|V |)n

(TA)n

T (An)|V | T (An)

(in)|V |

φ

(in)|V |

a

a

ψ|V |

φ

Lt1M

b c

Lt1M

(i|V |)n

(i|V |)n

d Lt1M
φ

ψ|V |

Lt2M

b

Lt2M

ψ

Lt2M

c

a naturality of φ b Lemma 6.10 c Lemma 6.11 d i satisfies t1 = t2

commutes, we have a unique morphism ψ : (TA)n → T (An) completing the diagram
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below.

(TA)n (TA)n

T (An) T (An)

in

ψ ψ

i

(6.11)

This allows us to define a Σ-algebra T̂A with carrier TA: for each σ ∈ Σ, define

σ
T̂A

= (TA)|σ|
ψ−→ T (An)

Tσ−−→ TA.

Composing (6.11) with (6.10) in

(TA)|σ| T (A|σ|) TA

(TA)|σ| T (A|σ|) TA

ψ

i|σ|

Tσ

i i

ψ Tσ

we see that iA is a Σ-algebra homomorphism T̂A → T̂A.

Consider any equation t1 = t2 in E. From commutativity of

TA

(TA)|V | TA

(TA)|V |

(TA)|V | TA

TA

i

a
Lt1M

b

Lt1M

Lt2M

i|V |

i|V |

Lt2M

i

a

a Lemma 6.11

b iA satisfies t1 = t2

and Lemma 6.14 we find that t1 = t2 holds in T̂A. Therefore, T̂A is a (Σ, E)-algebra.

From the uniqueness property it is standard to argue that the operation T̂ on Σ-

algebra homomorphisms between (Σ, E)-algebras preserves identities and composition:

it follows from the fact that T preserves them. Naturality of i comes down precisely to

(6.10).

Our restriction therefore defines a functor on Alg(Σ, E). We now show how to
provide it with a monadic structure. For this purpose and to later prove the uniqueness
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of this monad, we make a brief use of the notion of oplax morphism of monads and refer
the reader to [41] for more details on this construct. In a nutshell, it defines a natural
transformation verifying similar properties to a Kl-law.

Definition 6.16. An oplax morphism of monads is a natural transformation u : FT →

SF , for F a functor and S, T two monads, such that the following diagrams commute.

F
FηT

��

ηSF

��
FT

λ
// SF

(6.12) FTT

FµT

��

uT // SFT
Tu // SSF

µSF
��

FT
λ

// SF

(6.13)

Theorem 6.17. The functor T̂ forms a monad on Alg(Σ, E), in such a way that the

natural transformation i : UT̂ → TU is an oplax morphism of monads.

Proof. Consider any (Σ, E)-algebra A with carrier A and an equation t1 = t2 in E. From

commutativity of

A|V | (TA)|V |

A

(TA)|V | TA

η|V |

Lt1M

Lt2Mη|V |

b
a

a

Lt1M
η

Lt2M

a Lemma 6.11

b t1 = t2 holds in A

(T
2
A)|V | (TTA)|V | (T 2A)|V | (TA)|V |

(TTA)|V | (TTA)|V |

(T 2A)|V | T 2A

(TA)|V | TA

i|V |

(T i)|V |

i|V |

(T i)|V |

c

µ|V |

Lt1M a

Lt1M(T i)|V |

c

i|V |

i|V |
d

µ|V |

Lt2M

a
µ

Lt2M

c naturality of i d i satisfies t1 = t2

we find that ηA : A → TA and µA ◦ TiA ◦ i
T̂A

: T
2
A → TA satisfy t1 = t2. Therefore,

there are unique morphisms ηA : A → TA and µA : T
2
A → TA making the diagrams

below commute.

A

TA TA

ηAηA

i

T
2
A TTA T 2A

TA TA

i

µA

T i

µA

i

(6.14)
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Recall from Lemma 6.14 that iA is a mono. Therefore, commutativity of

A|σ| (TA)|σ| TA

A (TA)|σ|

TA TA

η|σ|

η|σ|
σ

a

σ

i|σ|(6.14)
b

i

η
η

(6.14)
σ

i

a Lemma 6.15

b Theorem 3.7

and

(T
2
A)|σ| (TA)|σ| TA

(TTA)|σ| (T 2A)|σ| (TA)|σ|

TTA T 2A

T
2
A TA TA

µ|σ|

i|σ|

σ

(6.14)

a

σ

i|σ|

c

i

(T i)|σ|

σ a

µ|σ|

σ
b σ

T i

(6.14)

µ

i

µ i

a Theorem 3.7

and Lemma 6.15

b Theorem 3.7

c Lemma 6.15

for every σ ∈ Σ shows that ηA and µA are Σ-algebra homomorphisms. Furthermore,

commutativity of

A B TB

TA TA

TB TB

f

η
η

(6.14)

η

η

a (6.14)

i
i

Tf
b Tf

i

a naturality of η

b Lemma 6.15

c naturality of µ

T
2
A T

2
B TB

TTA TTB

T 2A T 2B

TA

TA TB TB

T
2
f

i

µ

b

(6.14)

µ

i
(6.14)

i

TTf

T i b T i

T 2f

µ c µ

Tf
bi

Tf i

for all (Σ, E)-algebras A and B with respective carriers A and B and every Σ-algebra

homomorphism f : A → B implies naturality of η and µ. As for the monad laws, observe
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that the diagrams

TA T
2
A TA

TTA

TA T 2A

TA

η

η

i

(6.14)

a

µ

i

(6.14)
iT i

η

µ

a naturality of η

b Lemma 6.15

TA T
2
A TA

TTA

TA T 2A

TA

Tη

i

b

µ

i

(6.14)
iT i

Tη

Tη

(6.14)

µ

and

T
3
A T

2
A TA

TT
2
A

TTTA T 2TA TTA

TT 2A

T
2
A TTA T 3A T 2A

TTA T 2A

TA TA

µ

i

T i

Tµ

(6.14)

a

µ

i

(6.14)

i

T i

(6.14)

i

TT i
a

µ

T 2i b T i

iTµ

aT i

i
µ

a
i

µ

Tµ

µ

T i

µ
i

(6.14)

a Lemma 6.15

b naturality of µ

reduce them to the monad laws that hold for T . The diagrams in (6.14) state precisely

that i is an oplax morphism of monads.

Finally, we show the uniqueness of our construction with regard to the original
monad T .

Theorem 6.18. If (M̂, η̃, µ̃) is any monad on Alg(Σ) with an oplax morphism of monads

j : UM̂ → TU , then there is a unique monad morphism u : M̂ → T̂ making the diagram

below commute.

UM̂

UT̂ TU

j
Uu

i
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Proof. For any (Σ, E)-algebra A, M̂A is a (Σ, E)-algebra and therefore satisfies all

equations in E. From Lemma 6.11 it follows that jA satisfies all equations that hold in

M̂A, which include those in E. Therefore, there is a unique morphism uA : UM̂A → UT̂A

making the diagram below commute.

UM̂A

UT̂A TUA

juA

i

(6.15)

Since a morphism between (Σ, E)-algebras is just a Σ-algebra homomorphism, we can

say that uA is a morphism M̂A → T̂A and accordingly could have written UuA in the

above diagram.

Let A be the carrier of A. We write MA for the carrier of M̂A. To see that u is

natural, consider a (Σ, E)-algebra B with carrier B and a Σ-algebra homomorphism

f : A → B. The commutative diagram

MA MB TB

TA TA

TB TB

Mf

j
u

(6.15)

u

j

(6.15)

i
i

Tf
Tf

a

i

b

a naturality of j

b naturality of i

is a naturality square for u composed with the mono (Lemma 6.14) i. The commutative

diagrams below further use the fact that i is monic to show that u is a monad morphism.

A TA

MA

TA TA

η

η

η̃ b

a
i

j
u

(6.15)

i

a j is a monad

morphism

b i is a monad

morphism

c naturality of i

M2A MA TA

TMA TMA

TTA

T
2
A TTA T 2A

TA TA

µ̃

j
u

(6.15)

u

j

(6.15)

i

i

T j

Tu

(6.15)

Tj

a

c

i
c

T i

i

µ

T i

µ

i

b
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Uniqueness is pointwise and immediate.

Let us briefly summarise the contributions of this section: first we define, for an
algebra A and an equation t1 = t2, an object TA that is said to satisfy the equation. TA
admits an injection into TA and a universal property. We then proceed to show that

finding such an object for any A actually amounts to defining a functor T̂ on Alg(Σ, E).

Finally, we prove that T̂ is actually a monad on Alg(Σ, E). In terms of monads S and
T , our construction ca be described in the following way: if T does not preserve all the

equations of E, in other words admits no lifting to Alg(Σ, E), we can now define T̂ as
the closest candidate to such a lifting.

6.3.3 Examples

We now present a few examples of this construction, applying our method to well-known
cases of ‘incompatible’ monads.

Composing powerset and distribution PD

We broadly described the example of P and D at the beginning of this section, let us
now give a more formal explanation. The obstacle to monad composition was the family
of equations expressing idempotency p⊕λ p = p, which is not preserved by P. To apply
the current method, we need now to find an object PA and a morphism i : PA → PA
preserving all equations p = p⊕λ p for λ ∈ [0, 1].

Lemma 6.19. Let i : J → PA. i satisfies p = p ⊕λ p for all λ ∈ [0, 1] if and only if

∀x ∈ J , i(x) is a convex set.

Proof. Let λ ∈ [0, 1], x ∈ J, U = i(x).

(LpMPA ◦ i)(x) = U

(Lp⊕λ pMPA ◦ i)(x) = P(⊕λ) ◦ ψ ◦ (〈id, id〉)(U)

= P(⊕λ)(U × U)

= {x⊕λ y | x, y ∈ U}

Therefore i preserves the desired terms if and only if ∀x ∈ J , ∀λ ∈ [0, 1], U = {x⊕λ y |

x, y ∈ U}, which is equivalent to U being a convex set.
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In other words, i satisfies the desired preservation conditions if and only if it maps J
to the convex sets of P(A). We define P as the convex powerset : P(A) = PC(A) = {U ⊆
A | ∀x, y ∈ U, λ ∈ [0, 1], x⊕λ y ∈ U}, and i as the inclusion in P.

Lemma 6.20. i : P→ P satisfies the commutativity of diagram (6.9).

Proof. Let J be an object such that j : J → P(A) preserves the desired equations. Then

by Lemma 6.19, for all y ∈ J , j(y) is a convex set, in other words belongs to P(A). Then

u : U → P(A) defined by u(y) = j(y) is the only morphism making the diagram (6.9)

commute.

Therefore by theorem 6.17, P̂ forms a monad on Alg(Σ, E): the convex powerset
appears as a natural choice when trying to find a replacement for P on the category of
convex algebras. Note that this is precisely the choice made by Silva et al. in [3]. They
aim to define a determinisation procedure for probabilistic automata, but the lack of a
distributive law DP→ PD complicates the matter. They finally tweak their construction
to make use of the convex powerset instead, more compatible with D. Our method
confirms that their choice is meaningful on a categorical level.

Iterated Finite Powerset PfPf

Composing the powerset monad with itself does not yield a monad, as shown by Klin and
Salamanca in [21]. Similarly with the case of PD, an obstacle lies in the non-preservation
of idempotence by Pf . We can now apply our method to ‘fix’ this composition: let A
be a bounded join-semilattice, in other words an algebra for Pf , and A be its carrier
set. Let us now look for an object PfA and a morphism i : PfA→ PfA preserving the
equation p = p+ p.

Lemma 6.21. Let i : J → PfA. i satisfies p = p + p if and only if ∀x ∈ J , i(x) is a

subset of A closed under +.

Proof. Let x ∈ J, U = i(x).

(LpMPfA ◦ i)(x) = U

(Lp+ pMPfA ◦ i)(x) = Pf (+) ◦ ψ ◦ (〈id, id〉)(U)

= Pf (+)(U × U)

= {x+ y, (x, y) ∈ U}
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Hence i preserves p = p+ p if and only if ∀x, i(x) = {x+ y, (x, y) ∈ i(x)}.

For all x ∈ i(x), x+ x = x, hence it is always true that i(x) ⊆ {x+ y, (x, y) ∈ i(x)}.

The converse inclusion is true if and only if i(x) is closed under +.

In the same spirit as the above examples, we define P̂f as the set of join-closed subsets
of A. What we obtain here is the finite join-closed powerset monad PJ : JSL → JSL
defined on JSL by PJ(X) = {U | U ⊆ X,U finite, U closed under ∪X} where ∪X is
the binary join operation of X, PJf : PJX → PJY,U 7→ f [U ], ηX(x) = {x} and µX(S)
defined by our method. We define i as the inclusion of PJ in Pf .

Lemma 6.22. i : Pf → Pf satisfies the commutativity of diagram(6.9).

Proof. Let J be an object such that j : J → Pf (A) preserves the desired terms, then

by Lemma 6.21, for all y ∈ J , j(y) is an ideal of A. Then u : U → Pf (A) defined by

u(y) = j(y) is the only morphism making the diagram (6.9) commute.

Therefore by theorem 6.17, P̂f forms a monad on Alg(Σ, E) = JSL. This time it is
the join-closed powerset monad, which we will denote by PJ , that replaces Pf on the
category of bounded join-semilattices.

6.3.4 Application: Generalised Determinisation of Alternating Automata

Our method highlights the fact that, though Pf admits no lifting to JSL, PJ is a the
closest candidate to such a lifting. The same consideration applies to PC and D. In [3],
the authors apply this remark to the case of non-deterministic probabilistic automata.
Recall that these transition systems associate Pf and D, and the classical procedure
to determinise them fails because Pf cannot be lifted to EM(D). However, using PC
gives an alternate method to solve this problem. We show in this section how the same
property of PJ and Pf can be applied to the determinisation of another type of automata.

Definitions

Alternating automata are detailed in [7] and [39]. We give here a categorical version of
the definition. Recall that JSL = EM(Pf ) is the category of bounded join-semilattices.

1. An Alternating Automaton with respect to the alphabet A is a coalgebra for the
functor 2 × (PfPf (−))A, that is an object S together with a morphism S →
2× (PfPfS)A.
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2. Let U,F be respectively the forgetul functor JSL→ Set and the functor building
the free join-semilattice U 7→ (Pf (U), µU ). F is left adjoint to U and this adjunction
yields Pf = U ◦ F.

Generalised Determinisation of Alternating Automata

In this section we show how to operate a form of determinisation on alternating automata
by using our previous results. First, let us prove a few categorical properties. Throughout
this section, A is a non-empty set.

Lemma 6.23. For an alphabet A, 2× (−)A is a functor on JSL.

Proof. For this proof, we can reuse the results from Chapter 5 to show that 2× (−)A

preserves all equations of JSL. First, recall that for all set A, the reader monad RA is

Cartesian, thus preserves all equations (see Example 4.37). In particular, its functorial

part (−)A preserves all equations from JSL.

Similarly, B × (−) corresponds to the functorial part of the writer monad WB. We

have shown that if B has a structure of bounded join-semilattice, then WB is a relevant

monad (see Example 4.32). The set 2 provided with the usual binary operation (for

instance constituting Z2) is a bounded join-semilattice, therefore WB is relevant and

preserves all equations of JSL. Hence B × (−) is a functor of JSL.

We can immediately conclude that the composition of functors 2 × (PJ(−))A is a

functor on JSL.

We note F the composition of functors 2× (PJ(−))A on JSL. We now show a series
of transformations, by analogy with [3], that gradually turn an alternating automaton
into its deterministic version.

Lemma 6.24. There exists an injective natural transformation i : U ◦ PJ → Pf ◦ U.

Proof. It suffices to take the injection i(U) = U mapping each semilattice to its set.

We define C as U ◦PJ ◦F. This functor maps a set X to the set of ∪X -closed subsets
of subsets of X. We can now define a notion of quasi-lax lifting :

Definition 6.25 (Quasi-Lax Lifting). In [3], the authors define a functor H : EM(M)→

EM(M) as a (L1, L2) quasi-lax lifting if both:
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• There exists a natural transformation U ◦H → L2 ◦ U

• The following diagram commutes:

EM(M)
H // EM(M)

U
��

Set

F

OO

L1 // Set

(6.16)

This concept is used as a replacement for the usual notion of lifting when the latter
cannot be found. For instance in our situation, there exists no lifting of Pf to JSL. But
it follows from the previous lemmas and from the definition of C that PJ is a (C,Pf )
quasi-lax lifting, and 2× (PJ)A is a (2× (C)A, 2× (Pf )A) quasi-lax lifting.

2× PfPf
A coalgebras to 2× CA coalgebras

Let u : PfPf → C be the natural transformation realising the closure under ∪.

uX : PfPfX → UPJFX

U 7→ {A1 ∪A2 · · · ∪An | n ≥ 1, Ai ∈ U}

2× uA : 2× (PfPf )A → 2× (C)A, defined pointwise, is also a natural transformation.
It is the first step of our conversion, as it maps alternating automata to 2×CA coalgebras.
The next lemma show how transitions are preserved by closure under ∪.

Lemma 6.26. Let (S, c) be a F coalgebra represented as a transition system, S the

carrier of the semilattice S, x1, x2, y1, y2, z ∈ S, a ∈ A.

1. x1 ∨ x2
a7→ z iff z = y1 ∨ y2 and x1

a7→ y1, x2
a7→ y2

2. x1 ∨ x2

a
67→ y1 ∨ y2 iff x1

a
67→ y1 or x2

a
67→ y2

Proof. Since F is a functor on JSL, c is a join-semilattice homomorphism. Hence For

a ∈ A, c(x1 ∨ x2)(a) = (c(x1) ∨ c(x2))(a). By definition of (−)A, this is equivalent to

c(x1)(a) ∨ c(x2)(a).

2× CA coalgebras to 2× PJ
A coalgebras

Finally, recall that C and PJ are related by properties of quasi-lax lifting. We use this
fact to complete the conversion as summarised by the following lemma:
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Lemma 6.27. There is a one-to-one correspondence between 2× CA coalgebras on Set

and 2× PAJ coalgebras on JSL with carriers free algebras:

c : S → 2× (CS)A

c# : FS → 2× (PJFS)A

Proof. This result is a consequence the quasi-lax lifting properties, shown as Lemma 25

in [3].

Let us give more insight on the steps of our transformation. We progressively turn a
2× (PfPf )A automaton into a 2× (PJ)A automaton on free algebras:

1. Start with (S
c1→ 2× (PfPfS)A)

2. Close under ∪ and obtain (S
c2→ 2× (CS)A), defined as (S

c1→ 2× PfPfS
A 2×uSA−→

2× (CS)A)

The next steps explain the correspondence described in lemma 6.27.

3. Apply Pf and obtain (PfS
Pf c2−→ Pf (2× (CS)A))

4. FS = (µ : PfPfS → S) is an object of JSL. Let us apply 2 × (PJ)A to it and
obtain an algebra (α : Pf (2× (CS)A)→ 2× (CS)A) (whose type is determined by
being a Pf -algebra, with carrier 2× (CS)A by properties of the quasi-lax lifting)

5. Finally, compose α with Pfc2 to obtain PfS
Pf c2−→ Pf (2 × (CS)A)

α−→ 2 × (CS)A,
which is an arrow Uc# : UFS → U(2× (PJFS)A)

We refer to [3] for more details on how this conversion can be used in a context of
bisimulations.

6.4 Non-Monoidal Liftings

So far we have focused our attention on lifting the algebraic features of a monad S via
the monoidal structure of another monad T . When the lifted version of the operations do
not verify the equations presenting S, it seems to indicate that T and S do not compose.
However, it is possible that another lifting allows all laws to hold. In this chapter we
present cases where less conventional liftings succeed to build distributive laws when the
monoidal option fails.
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6.4.1 Lifting Associative and Commutative Operations

Let us first consider a monad S presented by a signature Σ = {∗} and the following
equations:

x ∗ (y ∗ z) = (x ∗ y) ∗ z (6.17)

x ∗ y = y ∗ z (6.18)

x ∗ (y ∗ (y ∗ z)) = x ∗ (y ∗ z) (6.19)

We focus our attention on combining S with the powerset monad. In this section,
we focus on the powerset monad P rather that its finite version Pf . In our monoidal
point of view, S does not distribute over P since the law 6.19 features a variable
duplication (Theorem 3.1). Let us however present an alternative lifting of ∗ that
preserves this equation. Note that we consider S as the monad generating free Σ-terms
under equivalences defined by the previous equations. Because of 6.17 we will omit
bracketing in those terms.

Theorem 6.28. There exists a distributive law SP→ PS.

Proof. Let us define the following lifting for ∗:

∗̂ : PSX × PSX → PSX

U, V 7→ {u1 ∗ · · · ∗ uk ∗ v1 ∗ · · · ∗ vn | ui ∈ U, vi ∈ V, n, k ≥ 1}

Since we no longer rely on monoidality, we cannot assume that linear equations are

automatically preserved. It is however straightforward to see that the commutativity of

∗ transfers to ∗̂.

U ∗̂V = {u1 ∗ · · · ∗ uk ∗ v1 ∗ · · · ∗ vn | ui ∈ U, vi ∈ V, n, k ≥ 1}

= {v1 ∗ · · · ∗ vn ∗ u1 ∗ · · · ∗ uk | ui ∈ U, vi ∈ V, n, k ≥ 1} by commutativity

= V ∗̂U

For the case of associativity, note first that each term t of U ∗̂(V ∗̂W ) is formed of a

subterm u1 ∗ · · · ∗un followed by a series of subterms of the shape v1 ∗ · · · ∗ vk ∗w1 ∗ . . . wn

(for ui ∈ U, vi ∈ V,wi ∈ W ). By commutativity, these elements can be rearranged to

obtain an term equivalent to t, this time of the shape u1∗· · ·∗uk ∗v1∗· · ·∗vn∗w1∗· · ·∗wm.
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Therefore we have:

U ∗̂(V ∗̂W ) = {u1 ∗ · · · ∗ uk ∗ v1 ∗ · · · ∗ vn ∗ w1 ∗ · · · ∗ wm | ui ∈ U, vi ∈ V,wi ∈W,n, k,m ≥ 1}

= (U ∗̂V )∗̂W

Let us now prove that the equation 6.19 holds for subsets of SX, keeping in mind

that ui ∈ U, vi, v′i ∈ V,wi ∈W,k, l,m, n ≥ 1.

U ∗̂(V ∗̂(V ∗̂W )) = {u1 ∗ · · · ∗ uk ∗ v1 ∗ · · · ∗ vl ∗ v′1 ∗ · · · ∗ v′m ∗ w1 ∗ · · · ∗ wn}

⊆ U ∗̂(V ∗̂W )

The converse inclusion relies on the following facts: first, any element of U ∗̂(V ∗̂W ) of

the form u1 ∗ · · · ∗ uk ∗ v1 ∗ · · · ∗ vl ∗ w1 ∗ · · · ∗ wn with l > 1 is clearly in U ∗̂(V ∗̂(V ∗̂W ))

as well. Moreover, any other element x is of the form u1 ∗ · · · ∗ uk ∗ v ∗w1 ∗ · · · ∗wn, and

by law 6.19 we have x = u1 ∗ · · · ∗ uk ∗ v ∗ v ∗ w1 ∗ · · · ∗ wn therefore x ∈ U ∗̂(V ∗̂(V ∗̂W )),

and the lifted version of the law holds.

We have shown that the algebraic structure of S is preserved by P. It is not sufficient

to prove that we have built a distributive law: we can lift P to EM(S), which amounts

to building an EM-law, but it remains to show that it is a Kl-law too (see section 2.3.3).

Note that in the previous chapters we obtained this result automatically when relying on

the monoidal structure.

Let us first give a more explicit definition of the distributive law associated with our

lifting. We consider SX as the set of free terms generated by the signature and equations

of S. It is easy to see that because of associativity of ∗, any t ∈ SX can be written as

x1 ∗ x2 ∗ · · · ∗ xn for n ≥ 1, xi ∈ X.

SPX → PSX

U ∈ PX 7→ U

U1 ∗ · · · ∗ Un 7→ {u1
1 ∗ · · · ∗ u1

k1
∗ u2

1 ∗ · · · ∗ u2
k1
∗ · · · ∗ un1 ∗ · · · ∗ unk1

| uij ∈ Ui, n, ki ≥ 1}

We now have to show that diagrams DL. 1 and DL. 3 commute:
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S
SηP

��

ηPS

��
SP

λ
// PS

(DL. 1)

SPP

SµP

��

λP // PSP
Pλ // PPS

µPS
��

SP
λ

// PS

(DL. 3)

Let us treat the diagram on the left: let X be a set. Any x ∈ X also belongs to

SX, and for those elements the diagram trivially commutes. Any other S-term on X

can be written x1 ∗ · · · ∗ xn. For the sake of clarity, let us treat a ∗ b, with a, b ∈ X. We

have ηPSX(a ∗ b) = {a ∗ b}, and λX ◦ SηPX(a ∗ b) = {a}∗̂{b} = {a ∗ · · · ∗ a ∗ b ∗ · · · ∗ b}. By

repeated applications of law 6.19, we have a ∗ · · · ∗ a ∗ b ∗ · · · ∗ b = a ∗ b, therefore both

branches of the diagram agree and build the set {a ∗ b}. The case of x1 ∗ · · · ∗ xn follows

naturally.

Similarly, we show that DL. 3 commutes. Let X be a set, commutation is again

immediate for a S-term U such that U ∈ SPPX. Let us now treat U ∗ V , for U =

{U1, . . . , Un}, V = {V1, . . . , Vm} ∈ PPX. The left branch merges all subsets of U and of

V then distributes, building {u1 ∗ · · · ∗ un ∗ v1 ∗ · · · ∗ vk}, where ui ∈ U1 ∪ · · · ∪ Un, vi ∈

V1 ∪ · · · ∪ Vm. The right branch builds the following set:

{u1
1 ∗ · · · ∗ u1

k1
∗ · · · ∗ up1 ∗ · · · ∗ u

p
kp
∗ v1

1 ∗ · · · ∗ v1
l1 ∗ · · · ∗ v

q
1 ∗ · · · ∗ v

q
lq
}

Where p, q, li, ki ≥ 1, and where all elements ui... belong to some U ′i ∈ U (similarly, all vi...

belong to one of the subsets of V ). It is easy to see that it corresponds to the set built

by the previous branch. Therefore the diagram commutes, proving that we have built a

distributive law.

We have succeeded to distribute the monad S over P, by making use of the infinite
subsets contained in the full powerset. Note that our distributive law can be used for
other monads: the way we preserve equation 6.19 extends to a whole class of equations.

Theorem 6.29. Let S be a monad presented by a signature Σ = {∗} and the following

equations:

• Associativity: x ∗ (y ∗ z) = (x ∗ y) ∗ z
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• Commutativity: x ∗ y = y ∗ x

• Any laws u = v where u and v both contain ∗ and only differ by duplications of

variables

Then S distributes over P.

The condition on variable duplication has to be understood as: there exists a linear
term t, there exist substitutions of the type x 7→ x ∗ x, such that u and v are both
obtained from t after a series of such substitutions. This idea is reminiscent of our concept
of t[x]-equations introduced in Chapter 5, but this time allowing several duplications.

Proof. We use the same distributive law as in Theorem 6.28 and show that u = v holds

for elements of PSX, in other words that, for V = V ar(u) = V ar(v), JuKVPSX = JvKVPSX ,

naturally interpreting terms according to our lifting of the signature. Assume that

|V | = n, let U1, . . . , Un ∈ PSX. Then by definition of our lifting, JtKVPSX(U1, . . . , Un) =

JuKVPSX(U1, . . . , Un) = JvKVPSX(U1, . . . , Un), as any U ∗̂V already contains terms with all

possible variable duplications. Therefore any equation of the desired type is preserved by

our lifting. Showing that this defines a valid distributive law is done in the same manner

as in the proof of Theorem 6.28.

The previous constructions seem to necessitate infinite subsets and therefore the use
of the full powerset. However, for the same type of lifting, the corresponding subsets
may sometimes fit in the finite powerset. Let us first consider a monad S presented by a
signature Σ = {∗} and the following set E of equations:

x ∗ (y ∗ z) = (x ∗ y) ∗ z (6.20)

x ∗ y = y ∗ x (6.21)

x ∗ (x ∗ y) = x ∗ y (6.22)

Consider the Finite Powerset monad Pf . We show the existence of a distributive law
SPf → PfS by showing that Pf is a monad on Alg(Σ, E). Let us define the following
lifting for ∗:

∗̂ : PfSX × PfSX → PfSX

U, V 7→ {u1 ∗ · · · ∗ uk ∗ v1 ∗ · · · ∗ vn | ui ∈ U, vi ∈ V, n, k ≥ 1}

This lifting is well-defined as, for U, V finite, {u1 ∗ · · · ∗ uk ∗ v1 ∗ · · · ∗ vn | ui ∈ U, vi ∈
V, n, k ≥ 1} is finite: terms u1 ∗ · · ·∗uk ∗v1 ∗ · · ·∗vn can be seen as words whose letters are
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distinct unless they only have two letters, and whose order does not matter. Therefore
Pf is a functor on Σ-algebras. It is easy to see that this lifting preserves equations
in E, hence Pf is a functor on (Σ, E)-algebras. We show now that Pf is a monad on
(Σ, E)-algebras:

• η is a (Σ, E)-algebra morphism as {a}∗̂{b} = {a ∗ b}.

• µ is a (Σ, E)-algebra morphism. Let (S, T ) = ({S1, . . . Sn}, {T1, . . . Tm}) ∈ PfPfA×
PfPfA. ∗̂◦(µ×µ)(S, T ) = {a1∗· · ·∗ak∗b1∗· · ·∗bl | ai ∈ some Sj , bi ∈ some Tj} =
µ ◦ ∗̂(S, T )

6.4.2 Lifting Non-associative Operations

So far our work has been greatly facilitated by the associativity of the considered law.
Without this law, similar liftings are still possible (we could for instance gather all possible
ways to place brackets and replicate the previous approach) but their general form may
not be easily readable. When presented with this situation, it may be more sensible to
define an ad-hoc lifting depending on the equations we want to preserve. We give here
an example of such a case, due to Bartek Klin and Julian Salamanca.

Let S be the monad presented by the signature Σ = {∗} and the following equation:

x ∗ (x ∗ y) = x ∗ y

Theorem 6.30. There exists a distributive law of S over P

Proof. In a similar manner as the previous section, we define a special lifting of ∗:

∗̂ : PSX × PSX → PSX

U, V 7→ {u1 ∗ (u2 ∗ (· · · ∗ (uk ∗ v)) . . . ) | ui ∈ U, v ∈ V, k ≥ 1}

It becomes clear that once again this lifting preserves the desired equation. We have

U ∗̂(U ∗̂V ) = {u1 ∗ (u2 ∗ (· · · ∗ (uk ∗ v)) . . . ) | ui ∈ U, v ∈ V, k ≥ 2}, and moreover

u ∗ (u ∗ v) = u ∗ v hence {u1 ∗ (· · · ∗ (uk ∗ v) . . . ) | k ≥ 2} = {u1 ∗ (· · · ∗ (uk ∗ v) . . . ) | k ≥

1} = U ∗̂V . Showing that this defines a valid distributive law is achieved the same way as

previously.

Our goal in this section was to show that some dup equations, although seeming
incompatible with the powerset monad, can be preserved by a clever lifting if we allow
infinite subsets. Note that our results do not cover laws of idempotency (x ∗ x = x), as
one side of the equation does not contain the operation ∗. Such a law is still very likely
to prevent composition with P.
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6.5 Discussion and Related Work

The previous chapters explored a series of conditions that allow for monad composition
via preservation of algebraic features. In the current chapter, we have explored situations
where our conditions are not verified, meaning that the method of Chapter 3 cannot
be applied. What are our options when trying to compose two monads T and S that
present incompatible features? Our contribution in this chapter is a series of strategies
to circumvent such obstacles by operating tailor-made modifications on our monads.

The first method amounts to removing from S the problematic feature: an equation
that T cannot preserve. This yields a modified monad S′ with which T can be composed,
but the cost is losing a potentially important feature of S. For a strategy that does not
affect S, recall from Chapter 5 that the categorical properties of affineness and relevance
are sufficient to preserve diverse classes of equations. When combined in the case of
Cartesian monads, all equations are guaranteed to be preserved. If T fails to preserve part
of the presentation of S, we can restrict it to its affine, relevant or Cartesian part. This
construction results in a new monad T ′ which automatically composes with S. Again,
the drawback of this method is that it results in potentially extreme modifications of
the original monad: for instance, enforcing relevance of the powerset monad P requires
to restrict it to the maybe monad ⊥, a much less expressive construct. The idea of this
strategy can be refined to obtain our third method.

When trying to compose T and S, we consider the free algebra SX and recall that
there exists a lifting T̂ of T to the category of S-algebra (Theorem 3.7). If some equations
presenting it cannot be preserved by T , we restrict T̂ to a functor on S-algebras which,
in the manner of an equaliser, preserves the desired equations. The idea behind this
strategy is based on the work of Bonchi, Silva and Sokolova in [3]. The authors are faced
with the task of composing the monads P and D, but it is well-known since the works of
Varacca in [37] and Varacca and Winskel in [38] that P does not preserve the structure
of a convex algebra A. To overcome this incompatibility, the authors of [3] tweak P to
obtain the convex powerset. This monad is defined on the category of convex algebras
and preserves the equations of idempotence incompatible with P. Bonchi, Sokolova and
Vignudelli bring this reasoning further with the study undertook in [4] and show that
this construction actually results in the monad C of convex subsets of distributions. This
monad, previously studied by Jacobs in [16], is shwon in [4] to be presented by the theory
of convex semilattices.

Our method takes inspiration from [3] and generalises the construction undertaken in
that paper to any monoidal monad and any non-preserved equation. A future direction
for our work could be to generalise the results of [4] together with our findings from
Section 6.3. In some cases where distributive laws cannot be constructed, one could show
that building a composite monad can still be achieved not only in the case of P, but for
any monoidal monad.

Finally, we presented a series of cases where a distributive law can be found between
a monad presented by a non-linear theory and the powerset monad. These ad-hoc
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constructions are mostly inspired by an idea of Bartek Klin and taken a step further in
this chapter. These ideas are however not yet generalised: our reasoning relies heavily on
defining a convenient lifting of only one algebraic operation, and does not extend yet to
a more complex signature.



Chapter 7

An Algebraic Perspective

The previous chapters have explored distributive laws in a purely categorical framework:
in Chapter 3, we define a method which allows to compose monads T and S, then
discuss conditions for its success in Chapter 5, expressed as properties of T and of a
theory S presenting S. However, one aspect that we have not studied yet is the algebraic
presentation T of T . Let X be a set. As we did with the monad S, we can consider
the set TX of free T-terms generated by X (the carrier of the free T -algebra). We can
then examine how categorical properties translate on algebraic terms, and study the
effect of our distributive laws ST → TS on objects of STX considered as algebraic
terms. Throughout this chapter, in order to focus on the algebraic presentation of T we
assume that it is a monoidal finitary monad (presented by a theory T of finite arity). For
instance, we do not consider the powerset monad P, because its presentation includes an
infinitary union operation; instead we will consider its finite counterpart Pf .

First, we study the action of the monoidal map ψ on algebraic terms. Then we
will prove that the monadic properties of commutativity, affineness and relevance have
algebraic formulations as well as intuitive consequences. We will examine the shape of
distributive laws resulting from our method with an algebraic approach, and finally we
apply those techniques to a new subclass of equations to show that their preservation
implies relevance.

7.1 Monoidal Maps for Terms

First we focus on the central feature of monoidal monads: the map ψX,Y : TX × TY →
T (X×Y ). Before studying it under a new light, let us first recall a few notions of algebra
and define some notation. We recall the definition of algebraic terms seen in Chapter 2.

Definition 7.1. For X a set, the set of Σ−terms over X (or ‘generated by X’) is defined

133
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as follows:

• For x ∈ X, x is a term which we denote by (x) for more clarity.

• If t1, . . . tn are terms and σ is a symbol of Σ with arity n, then σ(t1, . . . tn) is a

term.

For T = (Σ, E) a theory, the set of T-terms over X is the set of equivalence classes of

Σ-terms (that we will denote by a representative) under the equations in E.

For a monad T presented by the theory T = (Σ, E) and a set X, TX can be seen
as the set of T-terms generated by X. For a morphism for f : X → Y , Tf maps a
term M ∈ TX to M [f(x)/x]; ηX maps x to the term (x) and µX maps a term over terms
to the collapsed term. In this section, we consider elements of TX×TY as pairs of terms
and we study the effect of ψX,Y on them by using properties of monoidal monads. First,
we focus on the simplest terms: the generators (x), (y).

Lemma 7.2. for x, y ∈ X, ψ((x), (y)) = (x, y).

Proof. This follows from the axiom MM.1. as we have ψ((x), (y)) = ψ(ηX(x), ηX(y)) =

ηX×X(x, y) = (x, y).

We can now move on to a slightly more difficult case with a term of the form σ(t1, . . . tn).

Lemma 7.3. for a ∈ Y , σ ∈ Σ, x1, . . . , xn ∈ X we have

ψX,Y (σ(x1, . . . , xn), (a)) = σ((x1, a), . . . , (xn, a)) (7.1)

Proof. First, consider ψX,1 : TX × T1→ T (X × 1). We denote by ∗ the unique element

of the set 1. by axiom MF.2 we have the following:

ψX,1 ◦ (id× η1)(σ(x1, . . . , xn), ∗) = (Tρ−1 ◦ ρ)(σ(x1, . . . , xn), ∗)

= Tρ−1(σ(x1, . . . , xn))

= σ((x1, ∗), . . . , (xn, ∗))
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For a ∈ X, we also denote by a the morphism 1→ X selecting the element a. Note that

for every t ∈ TX we have ψX,Y (t, (a)) = ψX,Y ◦ (id× η1) ◦ (id× a)(t, ∗).

ψX,Y ◦ (id× η1) ◦ (id× a) = ψX,Y ◦ (id× Ta) ◦ (id× η1) naturality

= T (id× a) ◦ ψX,1 ◦ (id× η1) naturality

Therefore we have:

ψX,Y (σ(x1, . . . , xn), (a)) = ψX,Y ◦ (id× η1) ◦ (id× a)(σ(x1, . . . , xn), ∗)

= T (id× a) ◦ ψX,1 ◦ (id× η1)(σ(x1, . . . , xn), ∗)

= T (id× a) ◦ ψX,1(σ(x1, . . . , xn), (∗))

= T (id× a)σ((x1, ∗), . . . , (xn, ∗))

= σ((x1, a), . . . , (xn, a))

We can now establish a more general inductive formulation of the action of ψX,Y on
algebraic terms.

Lemma 7.4. for v ∈ TY , f ∈ Σ, t1, . . . , tn ∈ TX we have

ψX,Y (σ(t1, . . . , tn), v) = σ(ψX,Y (t1, v), . . . , ψX,Y (tn, v)) (7.2)

This result relies on the axiom MM.2. First, note that σ((t1), . . . , (tn)) and (v) are
respectively terms of TTX and TTY . Then we have

ψX,Y (σ(t1, . . . , tn), v) = ψX,Y ◦ (µX × µY )(σ((t1), . . . , (tn)), (v)) by MM.2

= µX×Y ◦ TψX,Y ◦ ψTX,TY (σ((t1), . . . , (tn)), (v))

= µX×Y ◦ TψX,Y (σ((t1, v), . . . , (tn, v))) by Lemma 7.3

= µX×Y (σ((ψX,Y (t1, v)), . . . , (ψX,Y (tn, v))))

= σ(ψX,Y (t1, v), . . . , ψX,Y (tn, v))

So far we have only examined the binary monoidal map ψ, but this work is immediately
extended to the m-ary case. Let X1, . . . , Xm be sets and let v2 ∈ TX2, . . . , vm ∈ TXm

By definition of ψ(m) for m > 2, we immediately obtain

ψ
(m)
X1,...,Xm

(σ(t1, . . . , tn), v2, . . . , vm) = σ(ψ
(m)
X1,...,Xm

(t1, v2, . . . vm), . . . , ψ
(m)
X1,...,Xm

(tn, v2, . . . , vm))

(7.3)
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Our formulation for the case of ψ(m) is already very general, but only operates
inductively on the first term in the tuple. Luckily, we have shown in Chapter 5 that
monoidal maps behave well when their inputs are permuted. This allows to establish
an inductive formulation for the general case of ψ(m). Note that the cases of m = 0, 1
are not treated because of their triviality: ψ(0) = η1 which maps ∗ ∈ 1 to (∗) ∈ T1, and
ψ(1) = id.

Lemma 7.5. Let m > 2, i ≤ m.

ψ
(m)
X1,...,Xm

(v1, . . . , vi−1, σ(t1, . . . , tn), vi+1, . . . , vm)

= σ(ψ
(m)
X1,...,Xm

(v1, . . . , vi−1, t1, vi+1, . . . , vm), . . . , ψ
(m)
X1,...,Xm

(v1, . . . , vi−1, tn, vi+1, . . . , vm))

Proof. Let α be the permutation swapping the first and the i-th element of a m-tuple.

We have

ψ
(m)
X1,...,Xm

(v1, . . . , vi−1, σ(t1, . . . , tn), vi+1, . . . , vm)

= ψ
(m)
X1,...,Xm

◦ α(σ(t1, . . . , tn), . . . , vi−1, v1, vi+1, . . . , vm)

= Tα ◦ ψ(m)
X1,...,Xm

(σ(t1, . . . , tn), . . . , vi−1, v1, vi+1, . . . , vm) by Lemma 4.23

= Tα(σ(ψ
(m)
X1,...,Xm

(t1, v2, . . . , vi−1, v1, vi+1, . . . vm), . . . ,

ψ
(m)
X1,...,Xm

(tn, v2, . . . , vi−1, v1, vi+1, . . . , vm))) by (7.3)

= σ(ψ
(m)
X1,...,Xm

(v1, v2, . . . , vi−1, t1, vi+1, . . . vm), . . . ,

ψ
(m)
X1,...,Xm

(v1, v2, . . . , vi−1, tn, vi+1, . . . , vm))

The previous formula is exhaustive, but not very economical to write; we now present
a more convenient notation. For t a term of TX, we use denote by t[f(x)/x] the term
which we obtain when substituting each variable (represented as x) in t with f(x). For
instance for t = y + (z ∗ y), we have t[(x, a)/x] = (y, a) + ((z, a) ∗ (y, a)).

Theorem 7.6. for u ∈ TX, v ∈ TY we have

ψX,Y (u, v) = u[v[(x, y)/y]/x] (7.4)
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Proof. We proceed by induction on u.

• If u = (a) for a ∈ X, we reason by induction on v. First, if v = (b) for b ∈ Y we

have

ψX,Y (u, v) = ψX,Y ((a), (b)) = (a, b) by (7.1)

= u[v[(a, b)/y]/x]

If v = σ(t1, . . . , tn) then we have

ψX,Y (u, v) = ψX,Y ((a), σ(t1, . . . , tn))

= σ(ψ(a, t1), . . . , ψ(a, tn)) by (7.2) and Lemma 7.5

= σ(a[[t1/y]/x], . . . , a[[t1/y]/x]) by induction hypothesis

= a[[σ(t1, . . . , tn)/y]/x]

• Therefore our hypothesis is verified in the case where u = (a). let us now show the

case u = σ(t1, . . . , tn).

ψX,Y (u, v) = ψX,Y (σ(t1, . . . , tn), v)

= σ(ψ(t1, v), . . . , ψ(tn, v)) by (7.2)

= σ(t1[v[(x, y)/y]/x], . . . , tn[v[(x, y)/y]/x]) by induction hypothesis

= u[v[(x, y)/y]/x]

We can now make use of this formulation to study properties of monoidal monads in
terms of their algebraic presentation.

7.2 Algebraic Characterisation of Classes of Monads

In this section, we study the algebraic consequences of the categorical properties of
diverse monadic classes. For this purpose, we consider again for a monad T and a set X
the set TX of Σ-terms up to equivalence under the equations in E. The core idea of our
reasoning is the following: by examining the free algebra TX generated by X, we can
deduce equalities which hold in every T -algebra. Once again, we consider a monoidal
monad T presented by the theory (Σ, E).
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Theorem 7.7. Let t1, t2 be two Σ-terms generated by X. If t1 and t2 are equal in TX,

then for all T -algebra A the equality t1 = t2 holds (where this time, the elements of X

are seen as variables in t1, t2).

Proof. We recall the monad (FΣ, η
FΣ , µFΣ) of free Σ-terms. Let A be a T -algebra with

carrier A (hence also a FΣ-algebra), and let t1, t2 be terms of TX which we assume are

equal in the theory (Σ, E). Finally, we denote by q be the quotient map FΣX → TX.

TX is an algebra for FΣ, therefore by the universal property of Lemma 2.61, q is the

unique map such that ηTX = q ◦ ηFΣ
X .

We will now show that under our assumptions, t1 = t2 holds on A. Let f be any

map X → A, and let f# : FΣX → A be the map FΣX → A obtained from it via the

universal property of FΣ (Lemma 2.61). Let us now use the universal property of T : by

Theorem 2.60, there exists a unique map f ′ : TX → A such that f ′ ◦ ηTX = f . Now, f ′ ◦ q

and f# are two maps FΣX → A, moreover we have both f# ◦ηFΣ
X = f and f ′ ◦q◦ηFΣ

X = f .

By unicity, we must have f ′ ◦ q = f#. Finally, note that if t1 and t2 are equated in the

theory (Σ, E), then immediately we have q(t1) = q(t2). Hence

f#(t1) = f ′ ◦ q (t1)

= f ′ ◦ q (t2)

= f#(t2)

We conclude that t1 = t2 holds in the algebra A, which proves our theorem.

Note that this theorem requires to reinterpret elements of X as variables to express
the final equation in any algebra of the monad. For this purpose and for more clarity, it
will sometimes be convenient to rename them. We can now make use of this strategy to
derive algebraic properties of monads of each class, starting with the general setting of
monoidal monads.

7.2.1 Monoidal Monads

We first consider the case of monoidal monads in general and establish algebraic properties
of their presentation. Their main feature is the map ψ which we have now fully studied
on an algebraic level. First, recall that in our framework a monoidal monad T is
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always symmetric (or ‘commutative’, see Theorem 2.30). In other words, the equality
T swap◦ψ = ψ◦swap (SYM) is verified. By making use of (7.4), we translate this equality
in algebraic terms and immediately obtain the following characterisation.

Theorem 7.8. For a set X, a monoidal monad T and for every pair of terms s, t ∈ TX,

we have an equality between the following terms of T (X ×X).

s[t[(x, y)/y]/x] = t[s[(x, y)/x]/y] (7.5)

Proof. Follows immediately from (7.4) and T swap ◦ ψ = ψ ◦ swap applied to the pair of

terms (s, t).

By Theorem 7.7, this equation holds on any T -algebra for every monoidal monad T .
However, it does not constitute a very intuitive description of the theory presenting T .
In the rest of this section, we study a series of consequences of (7.5) to better understand
the presentation of monoidal monads. This subject often misunderstood; for instance
one common misconception is that for a symmetric monoidal (‘commutative’) monad,
operations of the signature have to be commutative. Is is not the case, as shows for
instance the distribution monad, presented by mostly non-commutative operations. In
what follows, we study precisely the question and examine several cases of presentations
of monoidal monads. Let us now make use of this result to derive a first equation in the
case where T is presented with binary operations.

Theorem 7.9. Let T be a commutative monad presented with Σ, E. If f, g are binary

symbols of Σ, then f(g(x, y), g(z, t)) = g(f(x, z), f(y, t)) holds.

Proof. By choosing s = f(a, b), t = g(c, d) we obtain the following equation on terms of

T (X ×X):

T swap ◦ ψ(s, t) = ψ ◦ swap(s, t)

T swap ◦ ψ(f(a, b), g(c, d)) = ψ(g(c, d), f(a, b))

f(g((a, c), (a, d)), g((b, c), (b, d))) = g(f((a, c), (b, c)), f((a, d)), (b, d))) by (7.4)

By Theorem 7.7, we interpret elements of (X ×X) as variables and conveniently rename

them to obtain the equation f(g(x, y), g(z, t)) = g(f(x, z), f(y, t)), which holds in any

theory presenting a commutative monad.
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Intuitively, one could say that the different binary operations of the signature must
‘commute’ with each other.

Corollary 7.10. Let T be a commutative monad presented with Σ, E. If • is a binary

symbol of Σ, then:

1. (x • y) • (z • t) = (x • z) • (y • t) holds.

2. Moreover, if • has a unit e, then x • y = y • x holds.

Proof. 1. We apply Proposition 7.9 with f = g = •.

2. From the previous equation we derive: (e • b) • (c • e) = (e • c) • (b • e), then apply

unit laws.

Therefore for any monoidal monad, if a binary symbol of the signature admits a unit,
it must also be commutative. This covers for instance the cases of the finite powerset
and multiset monads.

7.2.2 Affine Monads

Let us now focus on a first subclass of monoidal monads; we recall that T is affine if
T1 = 1. By reasoning on TX as containing algebraic terms again, we can derive the
following property:

Theorem 7.11. T is affine if and only if all T -terms generated by one variable x are

equal to x.

Proof. Let t1, t2 be terms of T1, in other words terms formed on a single generator.

Because T1 = 1 they must be equal, therefore by Theorem 7.7 the equation t1 = t2

(where all instances of ∗ ∈ 1 are replaced with a single variable x) holds on any T -

algebra.

Again, let us give more insight on this result by studying some consequences.

Corollary 7.12. If T is affine and (Σ, E) is a presentation of T -algebras, then:
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• Σ contains no constant

• for all f n-ary symbol in Σ, f is idempotent: f(x, x, . . . x) = x.

We can provide a precise and economical characterisation in the case of a presentation
including only one operation symbol.

Theorem 7.13. Let (Σ, E) be a presentation of T -algebras made up of only one symbol

f . Then T is affine if and only if f is idempotent.

Proof. Follows immediately from Theorem 7.11 for this case of presentation.

Example 7.14. The non-empty Powerset Monad is presented with an idempotent

operation + and no constant, it is affine. 4

7.2.3 Relevant Monads

We now move on to the class of relevant monads and recall their definition.

Definition 7.15. T is relevant if the following diagram commutes:

TX
T∆ //

∆
��

T (X ×X)

TX × TX
ψ

77
(7.6)

Again, our aim is to provide algebraic properties of such monads. We make use of
(7.2) to obtain the following equality between terms of T (X ×X).

Theorem 7.16. If T is relevant, then for all term t of TX we have

t[(x, x)/x] = t[t[(x, y)/x]/y] (7.7)

This equation does not immediately give explicit consequences, to understand it
better we study a few particular cases.

Corollary 7.17. Let T be a relevant monad presented with (Σ, E). If f is a unary

symbol of Σ, then f(f(x)) = f(x) holds in any T -algebra.
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Proof. By taking t = f(a) we obtain from (7.7) the equality f((a, a)) = f(f(a, a)), then

by Theorem 7.7 we obtain the desired equation on any algebra.

As for monoidal monads, the case of a unital binary operation yields interesting
results.

Corollary 7.18. Let T be a relevant monad presented with Σ, E. If f is a binary symbol

of Σ and has a right unit 1 ∈ Σ, then f is the left projection.

Proof. By taking t = f(a, b) we obtain the equality on T (X ×X):

f((a, a), (b, b)) = f(f((a, a), (a, b)), f((b, a), (b, b)))

Let x, y ∈ X. Again make use of Theorem 7.7 and rename our variables as:

(a, a) 7→ x

(a, b) 7→ 1

(b, a) 7→ y

(b, b) 7→ 1

We obtain f(x, 1) = f(f(x, 1), f(y, 1)), hence x = f(x, y) since 1 is the right unit.

Similarly, a binary operation with a left unit has to be the right projection. The next
theorems follows immediately and shed some light on possible presentations for relevant
monads.

Corollary 7.19. If T is a relevant monad, a presentation of T cannot have a binary

operation with a left unit and a right unit.

We call trivial a binary operation that is equal to a projection, as in fact one of its
argument is systematically ignored.

Corollary 7.20. If T has a presentation featuring a nontrivial binary operation with a

left or right unit, then T is not relevant.

We can clearly see with this last result that many relevant monads will not have a
very expressive presentation, because of the strong requirement of (7.7). We can bring
the idea of Theorem 7.16 even further to obtain a precise characterisation of relevant
monads in algebraic terms.
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Theorem 7.21. Suppose T is a monoidal monad presented by T. Then T is relevant iff

for every n-ary operator f of T we have

←→
f ((xij)ij) = ~f((xii)i)), (7.8)

where (xij)ij is a n× n matrix over any set X and

~f((yi)i) ≡ f(y1, . . . , yn)

←→
f ((yij)ij) ≡ f(f(y11, . . . , y1n), . . . , f(yn1, . . . , ynn)).

Proof. Assume (7.8) holds. Let X be given. Any element of T (X × X) is of the

form M [~x⊗ ~y], where M is a T-term and ~x⊗ ~y ≡ ((x1, y1), . . . , (xn, yn)) for xi, yi ∈ X.

Note that χ(M [~x⊗ ~y]) = (M [~x],M [~y]). We will prove by induction over M that

ψ(M [~x],M [~y]) = M [~x⊗ ~y], (7.9)

which shows that T is relevant. So assume f is any n-ary operation of T and Mi are

T-terms for which (7.9) holds. We compute

ψ
(
~f((Mi[~x])i) , ~f((Mi[~y])i)

)
=
←→
f
(

(ψ(Mi[~x],Mj [~y]))ij
)

(7.8)
= ~f

(
(ψ(Mi[~x],Mi[~y]))i

)
(7.9)
= ~f

(
(ψ(Mi[~x⊗ ~y]))i

)
and so indeed (7.9) holds for all M by induction and so T is relevant. The proof of the

converse is straightforward.

7.3 The ‘Times Over plus’ Law

The backbone of our work in Chapter 3 is the distributive law ST → TS obtained from
a monoidal structure. In this section we examine this object on an algebraic level by
studying elements of STX as S-terms over T -terms (denoted by s[tx/x]) generated by the
set X. We show that our method generates a very common distributive law, sometimes
called ‘times over plus’ (see [42]).
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Let S be a monad, T a monoidal monad such that a distributive law can be constructed
by the method of Chapter 3. Assume that S is presented by a theory S = (Σ, E). For
instance, recall that a distributive law can be constructed if S is linear (Theorem 3.13), or
if E only contains linear or strict-drop equations and T is affine (Theorem 4.28), or finally
if S is presented by linear and strict-dup equations and T is relevant (Theorem 4.34).
We call λ the corresponding distributive law ST → TS. First, let us study the effect of
λ on simple terms of TSX by using some basic distributive law properties.

Theorem 7.22. Let t be a term of TX, s a term of SX. We have:

1. λ((t)) = t[(x)/x]

2. λ(s[(x)/x]) = (s)

Proof. The equality 1 follows from Diagram DL. 2, as λ((t)) = λ ◦ ηSTX(t) = TηSX =

t[(x)/x]. The equality 2 follows similarly from Diagram DL. 1.

In this result, the explicit notation for variables such as (x) is necessary to clearly show
the type of our terms, for instance t[(x)/x] ∈ TSX. But notation aside, the intuition is
that our distributive law acts almost trivially on terms which originate solely from SX
or TX. A clear consequence of 1 is the action of λ on variables, namely on the term
((x)) ∈ STX for X ∈ X .

λ(((x))) = (((x))) (7.10)

We will now study the particular case of monads whose presentation includes binary
operations, as it corresponds to most known examples. Similar results can be obtained for
different arities by the same method. We show that with binary symbols, our distributive
law features a well-known pattern.

Theorem 7.23. Let •,+ be binary symbols from the theories respectively presenting S

and T . Let a, b, c ∈ X. for the term t = a • (b+ c) ∈ STX we have λ(t) = (a • b) + (a • c).

Proof. We recall the steps of the construction of λ, this time with an algebraic point of

view.

• Recall that we represent Σ with a polynomial functor HΣ, and that we construct

from the monoidal structure of T a distributive law λΣ : THΣ → HΣT .

• Recall the lifting T̂ of T defined in 3.7. T̂ maps a S-algebra (A,α) to the algebra

(TA, Tα ◦ λΣ). We have shown that this lifting is monadic, which is equivalent to
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the existence of a distributive law. To construct it explicitly, we follow the next

two steps.

• Consider the free S algebra (SX, µS). T̂ maps it to an algebra that we denote with

(TSX, µ̂S).

• Finally, we construct λ as µ̂S ◦ STηS (see Theorem 2.66).

We now apply this process to the term t = a • (b+ c) ∈ STX.

• First, we calculate STηS(a • (b+ c)) = (a) • ((b) + (c)).

• We consider the free S-algebra (SX, µS). It is isomorphic via a functor J : EM(S)→

Alg(Σ, E) to the HΣ-algebra (SX,α). Intuitively, α maps each tuple of HΣSX to

an S-term computed by referring to the corresponding algebraic operation. For

instance, for (a, b) a pair in the summand of HΣSX that corresponds to • ∈ Σ, we

have α(a, b) = a • b.

• To calculate the operation of µ̂S on (a) • ((b) + (c)) ∈ STSX, we first map via J

it to the corresponding element of HΣTSX, namely the pair ((a), ((b) + (c))). We

then apply Tα ◦ λΣ. Recall that λΣ is a cotupling of monoidal maps. The pair

((a), ((b) + (c))) is therefore mapped to ψ((a), ((b) + (c))) = ((a), (b)) + ((a), (c))

(see (7.2)). Finally, Tα((a), (b)) + ((a), (c)) = (a • b) + (a • c).

We now address the more general case of a term of STX constructed with the binary
operation •, and give an inductive formulation of the action of λ on this term.

Theorem 7.24. Let s[tx/x] and s′[t′x/x] be two terms of STX. Then we have:

λ(s[tx/x] • s′[t′x/x]) = T • ◦ ψ(λ(s[tx/x]), λ(s′[t′x/x])) (7.11)

Proof. By the correspondence in Theorem 2.66, our distributive law λ is the unique

HΣ-algebra homomorphism mapping (STX,αTX) to T̂ (SX,αX). We consider again the
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free HΣ-algebra constructed on STX and we denote it by (STX,α). Then we have

λX ◦ α = T̂ (STA,α) ◦ HΣ(λ).

The term (s[tx/x] • s′[t′x/x]) belongs to STX and corresponds to α(s[tx/x], s′[t′x/x]),

where once again the pair (s[tx/x], s′[t′x/x]) belongs to the summand associated with •

inside the coproduct HΣSTX. Hence we have:

λ(s[tx/x] • s′[t′x/x]) = λ(α(s[tx/x], s′[t′x/x]))

= T̂ (α) ◦ HΣ(λ)(s[tx/x], s′[t′x/x])

= T̂ (α)(λ(s[tx/x]), λ(s′[t′x/x]))

= T̂ (α)(λ(s[tx/x]), λ(s′[t′x/x]))

= T • ◦ ψ(λ(s[tx/x]), λ(s′[t′x/x]))

Let us now study the effect of our distributive law on a few algebraic terms.

Example 7.25. For a, b, c, d ∈ X, consider (a+ b) • (c+ d) ∈ STX. By Theorem 7.24

we can easily compute the effect of our distributive law on this term:

λ((a+ b) • (c+ d)) = T • ◦ ψ(λ(a+ b), λ(c+ d))

= T • ◦ ψ(a+ b, c+ d) by Theorem 7.22

= T • (((a, c) + (b, c)) + ((a, d) + (b, d))) by Theorem 7.6

= ((a • c) + (b • c)) + ((a • d) + (b • d))

4

Example 7.26. For a, b, c, d, e ∈ X, consider (a • (b + c)) • (d • e) ∈ STX. We first

compute λ(a • (b+ c)), which amounts to (a • b) + (a • c) by Theorem 7.23. Then we have

λ(d • e) = (d • f) by Theorem 7.22 (this time we omit the variable notation for clarity).
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We then calculate the action of the monoidal map and make use of Theorem 7.6.

λ((a • (b+ c)) • (d • e)) = T • ◦ ψ(λ(a • (b+ c)), λ(d • e)))

= T • ◦ ψ((a • b) + (a • c), d • e)

= T • ((a • b, d • e) + (a • c, d • e))

= ((a • b) • (d • e)) + ((a • c) • (d • e))

4

This ‘times over plus’ distributive law is a very intuitive transformation: it simply
describes the fact that operations of the monad S ‘distribute’ over operations of T in a
natural way, for instance in the way multiplication distributes over addition for natural
numbers. We will see in Section 7.5 that it is not the case for all distributive laws.

Recall that a distributive law ST → TS allows to construct the composite monad
TS. The question of the algebraic presentation of TS is rather tricky and we only briefly
focus on it in this thesis. For more details, we refer to the concept of composite theory
in [34] and [42] as well as Fabio Zanasi’s thesis [40]. In a nutshell, evaluating λ on terms
allows us to study the algebraic presentation of the composite monad TS. To understand
precisely this presentation, we borrow this result from the works of Maaike Zwart and
Fabio Zanasi [40]:

Theorem 7.27. Let S, T be two monads respectively presented with (ΣS , ES) and

(ΣT , ET ) and let λ be a distributive law ST → TS. First, we define a set of equa-

tions Eλ: let s[tx/x] and t[sy/y] be representatives of respectively an element in STX and

an element in TSX. Then s[tx/x] = t[sy/y] ∈ Eλ if and only if λ maps the equivalence

class of s[tx/x] to the equivalence class of t[sy/y].

TS is a monad presented by theory (ΣTS , ETS), where:

• ΣTS = ΣT ∪ ΣS

• ETS = ET ∪ ES ∪ Eλ

Therefore, one can obtain the full presentation of the composite monad TS by
combining the presentations for S and T as well the collection of all equations λ(t) = t
for t a term of STX, in a similar manner as the ones obtained in Examples 7.25 and 7.26.
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7.4 Preservation of Discerning Equations

We now present a slightly different result, related to the findings of Chapter 5 but this
time obtained via algebraic techniques. In this section, we characterise a new subclass
of equations for which relevance is a necessary property for preservation. As we did in
Chapter 5, we will consider a binary operation • of the signature and sometimes omit it
for more clarity.

Definition 7.28. A 2-discerning equation t1 = t2 is a dup, non-drop equation, where

only one variable, say x1 out of x1, . . . , xn is duplicated and only one side (say t2),

for which we can distinguish the places where x1 is duplicated in the following sense:

the linear equation s2 = s′2 in x1, x
′
1, x2, . . . , xn fixed by with t2 = s2[x1/x

′
1] and s′2 =

s2[x1/x
′
1, x
′
1/x1] is not derivable from t1 = t2.

Example 7.29. The equation x • (y • y) = y • x (that we will denote by x(yy) = yx) is

not 2-discerning as it implies xy = yx and thus in particular x(yy′) = x(y′y). On the

other hand y(xy) = yx is 2-discerning. This requires one to show that y(xy′) = y′(xy)

isn’t derivable from y(xy) = yx, which is easily seen by noting that all terms equal

to y′(xy) must start with y′ as well. In fact, all of the following equations are 2-discerning,

which are essentially all the different candidates on two variables besides x(yy) = yx.

(yy)x = yx (yx)y = yx (xy)y = yx

y(yx) = yx y(xy) = yx

4

The following theorem is the main technical result of this section, providing a new
and precise characterisation of relevance:

Theorem 7.30. Suppose t1 = t2 is a 2-discerning equation and T is a monoidal monad

on Set. Then T is relevant if and only if T preserves t1 = t2.

Proof. Assume T is a finitary monad presented by an algebraic theory T, such that T

preserves a 2-discerning equation t1 = t2. Suppose f is any n-ary operation of T. Write m

for the number of variables in t1 aside from the duplicated one. Let X be any set with n×n
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matrix (xij)ij over it. We have to show that (7.8) holds. We will take a slight detour:

let Y denote the free model of t1 = t2 over {y1, . . . , yn, r1, . . . , rm}. Using preservation

of t1 = t2, we see that

←→
f ( (s2[yi, yj , ~r])ij )

= s2[~f(~y), ~f(~y), ~r]

= t2[~f(~y), ~r]

= t1[~f(~y), ~r]

= ~f( (t1[yi, ~r])i )

= ~f( (t2[yi, ~r])i )

= ~f( (s2[yi, yi, ~r])i ).

As t1 = t2 is 2-discerning the terms s2[yi, yj , ~r] are distinct and so there exists a

map h : Y → X such that h(s2[yi, yj , ~r]) = xij . Hence

←→
f ((xij)ij)

=
←→
f
(

(h(s2[yi, yj , ~r]))ij
)

= (Th)
(←→
f ( (s2[yi, yj , ~r])ij )

)
= (Th)

(
~f( (s2[yi, yi, ~r])i )

)
= ~f( (h(s2[yi, yi, ~r]))i )

= ~f( (xii)i) ),

and so T is relevant by Proposition 7.21.

We have explored the notions of monoidal, affine and relevant monads as well as
distributive laws with an algebraic perspective. This sheds a new light on the findings of
Chapters 3 to 5 and yields a series of original contributions: algebraic properties of our
monadic classes of interest, description of our distributive law in terms of presentations of
the monads, and finally a new characterisation of relevant monads obtained via algebraic
techniques.
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7.5 Algebraic View on Non-monoidal Liftings

In this section, we focus on some distributive laws which are not obtained from our
monoidal method, this time with an algebraic point of view. Consider first the case of
distributing the non-empty List monad L+ with itself. One distributive law λL

+L+
is

described by Manes and Mulry in [26] the following way: note that a non-empty list of
non-empty lists can be written using brackets ‘[’, ‘]’, and commas ‘,’. The distributive
law operates by substituting every comma with ‘],[’ and conversely, thus:

λL
+L+

([[a, b], [c], [d]]) = [[a], [b, c, d]] (7.12)

The monad L+ is presented with an associative binary operation (which we respectively
denote by • and + for each copy of the monad). We calculate the action of λL

+L+
on

a • (b+ c) and (a+ b) • c to obtain the following equations:

x • (y + z) = (x • y) + z

(x+ y) • z = x+ (y • z)

This time, our equalities have little sense if we interpret + and • as operations on
real numbers. They nonetheless represent a valid distributive law, that we will call
rebracketing. Can this distributive law be applied to other monads? We show here a
series of necessary condition on such monads for this law to be usable. Let S, T be two
monads respectively presented with the binary operations •,+.

Theorem 7.31. If + is commutative and has a unit 0, and if rebracketing is a valid

distributive law of S over T , then • is commutative.

Proof. Consider the term t = 0 • (y + z). We have at the same time:

0 • (y + z) = (0 • y) + z (rebracketing)

= z + (0 • y) (commutativity of +)

= (z + 0) • y (rebracketing)

= z • y (unit)
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and:

0 • (y + z) = 0 • (z + y) (commutativity of +)

= (0 • z) + y (rebracketing)

= y + (0 • z) (commutativity of +)

= (y + 0) • z (rebracketing)

= y • z (unit)

Thus the terms y • z and z • y are equal on SX, thus by Theorem 7.7 • must be

commutative on any S-algebra.

In particular, rebracketing is not a distributive law of L over P. Similarly, we see
that this law entails invalid equations when monad T is not associative.

Theorem 7.32. If rebracketing is a valid distributive law of S over T , then + is

associative.

Proof. Consider the term t = (a+ b) • (c+ d). We have at the same time:

(a+ b) • (c+ d) = a+ (b • (c+ d)) (rebracketing)

= a+ ((b • c) + d) (rebracketing)

and:

(a+ b) • (c+ d) = ((a+ b • c) + d) (rebracketing)

= (a+ (b • c)) + d (rebracketing)

We obtain the equality (a+(b•c))+d = a+((b•c)+d) on TSX. By Theorem 7.7 and by

the renaming a 7→ x, (b•c) 7→ y, d 7→ z, we obtain that the equation x+(y+z) = (x+y)+z

holds on any T -algebra.

Therefore rebracketing cannot be used to distribute a monad over the free binary tree
monad, as the latter is not associative.
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7.6 Discussion and Related Work

Our work on algebraic techniques applied to distributive laws relates closely to Zwart
and Marsden’s paper [42]. In that study, the authors prove a series of ’no-go theorems’,
in other words results of incompatibility between monads. Their reasoning is based
on translating categorical objects into algebraic language: distributive laws give rise
to composite theories, and natural transformations allow to operate substitutions in
terms of an algebraic theory. This allows them to establish general algebraic conditions
under which no distributive law can be found between two monads. For instance, they
settle many questions about the finite powerset and distribution monads: P+ does not
distribute over D, and D does not distribute over itself.

The first notable difference between [42] and our work is our focus on monoidal
monads. Our results mostly involve the monoidal structure of a monad T to compose
it with another monad S, and in the case where the conditions of Chapter 5 are not
verified, we cannot say that no distributive law can be found: only that the monoidal one
fails. The study undertook by Zwart and Marsden is more general, as it encompasses
every possible distributive law. However, our work also differs by providing cases where
a distributive law can effectively be built, thus completing the study of [42] with positive
results.

Section 7.3 features a very brief connection with the study of composite theories.
This concept, which described how two algebraic theories can be consistently combined,
is the subject of precise studies in [34] and [42]. Composite theories can be seen
as an algebraic counterpart to distributive laws, but are not the focus of this thesis.
Fabio Zanasi’s thesis [40] was also a source of inspiration as he precisely establishes
the presentation of a composite monad, which corroborates some of Maaike Zwart’s
recent results. Theorem 7.27 also suggests an interesting direction for future works: the
reduction of this composite theory to a simpler one, possibly replacing Eλ with a finite
set generating the whole theory instead of considering all equations λ(t) = t′.
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