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Abstract

Over the last decade it has become clear that discrete Painlevé equations appear in a wide range of im-
portant mathematical and physical problems. Thus, the question of,ecognizing a given non-autonomous
recurrence as a discrete Painlevé equation and determining its type according to Sakai’s classification
scheme, understanding whether it is equivaléntsto some known (model) example, and especially find-
ing an explicit change of coordinates transformingit to such an example, becomes one of the central
ones. Fortunately, Sakai’s geometric theory provides an almost algorithmic procedure for answering this
question. In this paper we illustrate this procedure by studying an example coming from the theory
of discrete orthogonal polynomials. There aresmany connections between orthogonal polynomials and
Painlevé equations, both differential and discrete. In particular, often the coefficients of three-term re-
currence relations for discrete orthogonal polynemials can be expressed in terms of solutions of discrete
Painlevé equations. In this work we study discrete orthogonal polynomials with general hypergeometric
weight and show that their recurrence, coefficients satisfy, after some change of variables, the standard
discrete Painlevé-V equation. We also provide an explicit change of variables transforming this equation
to the standard form.

N
1 Introduction

In describing interesting physical and'mathematical models we often rely on various special functions, such
as Airy or Bessel functions. Such functions satisfy certain linear ordinary differential equations, and over
a hundred years ago/P. Painlevé became interested in the question of whether it may be possible to define
purely nonlinear special functions as solutions of nonlinear ordinary differential equations. As usual, the
nonlinear case is quiteisubtle, since solutions of nonlinear differential equations do not satisfy the superpo-
sition principlesand in general, it may not even be possible to define the notion of a general solution since
solutions can develop unexpected singularities that depend not just on the equation, but also on the initial
conditions. Nevertheless, this line of reasoning led Painlevé to define a property of an algebraic nonlinear
ordinary differential'equation (essentially the absence of movable, i.e., dependent on initial conditions, critical
singular points) that guarantees the existence of a general solution; this property is now called the Painlevé
property. Painlevé and his student B. Gambier then studied a large class of algebraic second-order differen-
tial/equations that satisfy this property and found that, in addition to equations that are linear or can be
reduced to linear, there are six new families of equations that are now called Painlevé equations Py, ..., Pyr.
Solutiens of these equations, the so-called Painlevé transcendents, are indeed new purely nonlinear special
functions."Over the last fifty years Painlevé transcendents have been playing an increasingly important role
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in the description of many nonlinear models, from Quantum Cohomology to the theory of Random Matrices.
Probably the most important example is the famous Tracy-Widom distribution from Random Matrix Theory
that can be expressed in terms of the Hastings-McLeod solution of the Painlevé-11 equation.

The theory of discrete Painlevé equations is much more recent. These equations were originally defined
as second-order discrete non-linear equations (or second-order nonlinear recurrencé relations) that. become
one of the differential Painlevé equations in a continuous limit. The intensive study of these equations,began
in the early 1990’s [RGH91] and many examples were obtained in the works of B. Grammaticos, A. Ramani,
and their collaborators by the application of the singularity confinement criterion‘6o deautonomizations of
known discrete dynamical systems, see the review [GR04] and references therein. Diserete Painlevé equations
were also studied from the perspective of the representation theory of affine Weyl groups in a series of papers
by M. Noumi, Y. Yamada, and their collaborators, see, e.g, [NY98]. In 2001 H.\Sakai, in his seminal paper
[Sak01] that used techniques from birational algebraic geometry, gave the definitiverelassification scheme for
discrete Painlevé equations and clarified the relationship between discrete and différential Painlevé equations.
Since then the theory of discrete Painlevé equations has reached a certain level of maturity. We know many
examples of discrete Painlevé equations, their properties, special solutions for certain parameter values, Lax
pairs, various degenerations, etc.; the recent survey paper [KNY17] is both amexcellent introduction and a
comprehensive overview of the present theory of discrete Painlevé equations.

Moreover, there is an increasing body of evidence that discrete Painlevé equations, similar to their
differential counterpart, appear in a wide variety of important applied problems, such as the computations
of gap probabilities [Bor03] of various ensembles in the emerging field of integrable probability [BG16], or
in describing recurrence coefficients of semi-classical orthégonal poelynomials [VA18], and many others. To
make a connection between an applied problem and the wealth of known results, it is then important to be
able to answer the following sequence of questions:

(a) Suppose one obtains a certain non-linear seecondrorder recurrence relation. Does this recurrence fit into
the discrete Painlevé framework, i.e., into Sakai’s elassification scheme?

(b) If so, what is the type of this equationjiize., the type of its algebraic surface in Sakai’s classification?

(c) After the type of the equation is determined, the next question is whether it is equivalent to any known
examples of equations of the same type. In'general, there are infinitely many non-equivalent discrete
Painlevé equations, but usually some simplest forms of such equations are well-known. For example,
canonical examples of equations”of each type are listed in [KNY17], see also Sakai’s original paper
[Sak01].

(d) Finally, if the equation is indeed equivalent to a canonical form of some discrete Painlevé equation, how
to find an explicit change/of variables transforming one equation into the other. In particular, answering
this question requires matching of various parameters in the applied problem with parameters in the
standard form of thisidiscrete Painlevé equation. Note also that being able to do this may also result in
uncovering new connections between very different problems.

Fortunately, the algebro-geometric theory of Painlevé equations provides us with a powerful set of tools
and essentially a néar-algorithmic procedure to answer exactly these questions. Unfortunately, the necessary
mathematical background tofmaster this theory, such as birational algebraic geometry, the representation
theory of affing Weyl groupsyand the word equivalence problem in groups, is often quite different from that
of the researchers/working with' applied problems, and so the learning curve can feel steep. Nevertheless,
we believesthat ‘it is_still possible to learn, at least on a computational level first, the essentials of how to
approach these questions. Thus, the purpose of the present paper is to illustrate the above procedure in
detail using one concrete example, hoping that anyone interested would then be able to make necessary
changes to adjust this procedure for a different example.

The problem that we consider belongs to the theory of orthogonal polynomials. In fact, the relationship
between discrete Painlevé equations and orthogonal polynomials is much older than the actual definition
of a discrete Painlevé equation — the first example of a discrete Painlevé-1 equation originally appeared in
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the work of Shohat [Sho39]. There are many connections between recurrence coefficients of semi-classical
orthogonal polynomials and solutions of Painlevé equations, both discrete and differential (seegfominstance,
[VA18] and numerous references therein).

Let {pn(x) = ynz™+- - - } be the collection of polynomials that are orthonormal on the set N = {0,1,2,...}
of non-negative integers with respect to the hypergeometric weight wy,

kZ:Opn(k)pm(k)wk =m.ns wg = Wtzk, a,B,7v>0, 0<e<1, (1.1)

where (-);, is the usual Pochhammer symbol and d,, ,, is the Kronecker delta. This collectiomrof polynomials
is known as the discrete orthogonal polynomials with hypergeometric weights, since the moments of this
weight function are given in terms of the Gauss hypergeometric function o Ef(ev, 8;55.¢) and its derivatives; it
has been recently studied in [FVA18, Dom16]. These polynomials satisfythe thfée term recurrence relation

xpn(x) = an—i—lpn-l-l(x) + bnpn(x) + anpn—l(x)7 (1~2)

where ag = 0. The coefficients a,, and b,, are called the recurrencescoefficients)Chi78, Ism05, Sze67]. Note
that the corresponding monic orthogonal polynomials P, = p, /v, satisfy a similar three term recurrence
relation

2P, () = Poy1(x) + b, Py(x) F a2 P, (). (1.3)

In [FVA18] it was shown that these recurrence coefficients«fa, , by}, as functions of the discrete variable n,
satisfy, after some change of variables, a system of nonflinear difference equations and as functions of the
continuous parameter ¢ of the hypergeometric weight, they/satisfy the differential Toda system. From the
differential and discrete systems one can obtaina differential equation, which in turn can be reduced to the
o-form of the sixth Painlevé equation. In [HFC19], using a direct computation, it was then shown that the
discrete system is a composition of Backlund transformations of the sixth Painlevé equation. In the present
paper we give a geometric explanation of this result, show that the discrete system is in fact equivalent to
the standard discrete Painlevé-V equation, andsprovide an explicit change of variables achieving that.

To be more specific, let us introduce two new. variablesx,, and y,, parameterizing the recurrence coefficients
a? and b, via

n—1
l1-c¢c nn fa+p—v—1) n+n+a+pf)e—ry
a, c=%+;¥m— W : by = @ + — : (1.4)

It was shown in [FVA18, Theorem 8.1} that z,, y,, n € N, satisfy the first-order system of non-linear
non-autonomous difference equations

(yn—afB +ad B ¥ n)z, < 22)(Ynt1 — af + (a+ B+ n + D)z, — 7))
1.5
:%(xn_l)(xn_a)(xn_ﬁ)(xn_’y)v ( )
(W +10) (Y +10)(yn + 17 — (v = a)(y = ) (Yn +n — (1 —a)(1 - ) (1.6)
(m@nta+p—vy-1D+n((n+ta+pf)(n+a+pf—y—1)—af+7))?

where «, 3,7, ¢ aré the parameters of the hypergeometric weight wy in (1.1) and

V2 +ys(nn+a+pB—y—1)—aB+7) —afnn+a+B—-v—1)

= . 1.7
T p@ntatBoa-Din((ntatAntats-y 1) aBiy) 7
The initial conditions for this recurrence are given by
Fila+1,0+1Liv+ 1 + —
To = abezfila & - "7 J + (a+Be ’Y’ yo = 0. (1.8)
Y 2F1(Oé,ﬁ,’}/,c) c—1
3
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For the hypergeometric weights the connection with the o-form of the sixth Painlevé equation, (with
independent variable ¢) is known (see [FVA18, Theorem 5.1]). The essential role is playedebyithe Toda
system for the recurrence coefficients (see, e.g., [Ism05, §2.8] or [VA1S8, §3.2.2]). For the hypergeometric
weights, it is given by

d

c%ai = a2(bp —bn_1), n>1, (1.9)
d

c%bn = a’,, —al, n > 0. (1.10)

It is proved in [FVA18, Theorem 5.1] that a simple linear change of variable transforms(sS,, = ZZ;& T into
the solutions of the o-form of the sixth Painlevé equation. Knowing S,, onescan find z,4 v, and, hence, the
recurrence coefficients a2, b, in terms of S,, and its derivatives. Moreovef, it isshown in [HFC19] that the
differential equation for x,, can be directly reduced to the sixth Painlevé 'equation.

Our main objective for this paper is to illustrate the general processtof identifying a discrete dynamical
system as a discrete Painlevé equation and explicitly rewriting it in some standard form, using equations
(1.5-1.6) as an example of an applied system. This process consist§ief the following steps, where we assume
that we indeed have some discrete Painlevé equation, otherwise the proeess will terminate at some step.

(Step 1) Identify the singularity structure of the problem. For that, if necessary, rewrite our recur-
rence equation as a system of two first-order recurrencesy.(zn4+1, Yn+1) = (") (2, yn). The mapping
(™ : C? — C2 should be a birational mapping/that may depend on various parameters, including
the iteration step n that we consider to be generic/ Then cﬁmpactify the configuration space from
C? = C x C to P! x P'. Find the base.points of the mapping and resolve them using the blowup
procedure. Continue doing that until ‘all'base pointsfor both 1™ and (1(™)~! are resolved (for
discrete Painlevé equations this process should.terminate in finitely many steps). Thus, we get an
isomorphism of resulting rational algebraie surfaces, (™ : X,, = X,41. In making this computa-
tion, it is important to keep in mindithat positions of base points usually evolve with the mapping,
so one needs to be careful distinguishing between the points in the domain and the points in the
range. We also remark that sometimes the singularity structure can be seen before even studying
the dynamics; e.g., singularities can occur as a result of a parameterization of some moduli space
appearing in the problem, as iny[DK19], for example.

(Step 2) Linearize the mapping on Pic(X).» This can be done explicitly in relatively simple cases, such
as the present examples=Butisometimes the evolution mapping can be too complicated even for a
Computer Algebra System: In this case, it may be possible to deduce the action of the mapping on
Pic(X) from the knowledge of parameter evolution via the Period Map, see [DK19] for an example
of such a computation.

(Step 3) Determine the surface type, according to Sakai’s classification scheme. For a discrete
Painlevé equation,ralthough the positions of base points may evolve, the configuration will stay
fixed, and so the surfaces {X, } will all have the same type. There should be eight such base
points; those points will lie on some (generically unique) biquadratic curve on P! x P! (i.e., a curve
whose(defining polynomial, when written in a coordinate chart, has bi-degree (2,2)) and the point
configuration is defined to be the configuration of the irreducible components of this curve. Each
such eomponent should have self-intersection index —2 and is associated with a node of an affine
Dynkin diagram; nodes are connected when the corresponding components intersect. The type of
this Dynkin diagram is called the surface type of the equation. This description assumes that the
surfaces X,, are minimal, but it can happen that after the initial blowup procedure is complete,
some —=1-curves would have to be blown down. This will also result in some irreducible components
having higher negative self-intersection index. The blowing down procedure is quite delicate, so
here we assume that the surfaces X,, are indeed minimal, but see [DST13] and [DK19] for examples
requiring a blowing down.
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(Step 4) Find a preliminary change of basis of Pic(X). At this step, we only need to ensure that this
change of basis identifies the surface roots (or nodes of the Dynkin diagrams of ourSurface) with
the standard example.

(Step 5) Find the translation vector and compare it with the standardédynamic., Using this
preliminary change of basis we can define the symmetry roots for our surface that match the
standard example. Using the action ¢, of the mapping on Pic(X) we caubthen see the induced
action on the symmetry sub-lattice and, in particular, on the symmetrysroots. For the discrete
Painlevé equations, this action on each root should be a translation by some multiple of the anti-
canonical divisor class. Even when this vector is not the same as the translation vector for the
reference dynamic, it may be conjugate to it. To find out whether this is the case, we represent
each translation as a word in the generators of the extended affine Weyl group and solve the
conjugacy problem for words in groups. If they are conjugaté, the. comjugation element is the
necessary adjustment to our preliminary change of basis.

(Step 6) Find the change of variables reducing the applied problem to the standard example.
Adjusting the change of bases in Pic(X), if necessary, wesnow have the identification on the level
of the Picard lattice. Next, we need to find the actual changeiof variables that induces that linear
change of basis. For that, identify the curves that form the,basis in the corresponding coordinate
pencils. Those curves then are our projective coordinates, up te a Mobius transformation. To fix
the Mobius transformations, use the mapping of coordinate divisors. An important part of this
computation is the identification of various parameters between the two problems. This, in fact,
can be done ahead of time by using the Period Map, which gives the parameterization in terms
of canonical (for the given choice of root bases) root variables. Expressing these root variables in
terms of parameters of the problem gives the necessary identification of parameters.

In the next section we carefully illustrate each step of this procedure using equations (1.5-1.6) as an
example of an applied system. Our mainaesult is the following Theorem.

Theorem 1. Recurrences (1.5-1.6) are equivalent to the standard discrete Painlevé equation (A.19). This
equivalence is achieved via the following change ofwariables:

_ (n+p6)f
x(f7g)_7_g_ﬁ7

Y1) = (g @+ 8-+ n— (e 20 ) —na - LLIELZD) (111)
N n+8)((c—1)(2d+ a=+38+3n—2y)+ (a+B+n—7)+n) N (c—1)(n+B)?
of=1) o(f—1)?
The inverse change of variables is given by
tx — B)(x — )
f(may) = >

o y):_(w—v)(((x—a)(x—ﬁ)—mﬁ—y)—t(m—ﬁ)(w—v+ﬁ+n)).
¢ (z—a)(w—=p) —nz —y) =tz - )z —7)

Note thatdhe parametérs ¢ and t are related by ct = 1, and the relationship between parameters o, B, v, n
and the oot variables ag, . .. a4 in the standard example is given by (2.14).

The standard’ difference Painlevé-V equation is one of the equations in the d-P (Df) / Df)) family of
diserete Painlevé equations whose geometric (i.e., point configuration) and algebraic (extended affine Weyl

symmetry group) data are both encoded by affine Dynkin diagrams of type Dfll); we collect some basic facts
and data‘about this family in the Appendix (see also [KNY17]).
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2 The Identification Procedure

2.1 The Singularity Structure

The first step in the geometric analysis of discrete Painlevé equations is to understand the singularity
structure of the system (which is best done with the help of some Computer Algebra Sy8tem; in this project
we used Mathematica®).

g") : (@, Yn) > (Tn, Ynepr) and equation (1.6)

Note that equation (1.5) defines the forward mapping
defines the backward mapping wén) : (@n, Yn) = (Tn—1,Yn), thisis fairly typical for.disecretePainlevé equations
obtained as deautonomizations of QRT mappings, see [CDT17].

First, we compactify the affine complex plane C? to P! x P! by introducing homogeneous coordinates
[29: 21] and [y° : y'] with 2 = 20/2! in the affine chart z; # 0, X = 1/z =21 /2%in thé affine chart ¢ # 0
and y and Y = 1/y defined similarly. Next, we look for indeterminacies of ratiofial 1 maps, i.e., the points ¢;
where both the numerator and the denominator of the map vanish. At.those points we perform the blowup
procedure to resolve such indeterminacies.

Let us now very briefly recall the blowup procedure, see, e.g., [Shal3]for details, that is particularly
simple in the two-dimensional case that we consider. Geometricallypthe blowup procedure “separates” the
lines passing through the point ¢; (the center of the blowup) by “lifting” thent according to their “slopes” (see
the left picture on Figure 1 for the local illustration of a blowup in theweal-variable case). Topologically, for
complex surfaces, blowup is a surgery that creates a Riemann sphere “bubble” (projectivized tangent space)
S? ~ Pl in place of the center of the blowup ¢;, thus addiiig. a hew spherical class to homology (and, via
the Poincaré duality, cohomology) of the surface. Algebraically, the dlowup procedure is an introduction of
two new charts (u;,v;) and (U;, V;) in the neighborhood of ghe blowup point ¢;(x;,y;), where the change of
variables is given by x = z; + u; = x; + U;V; and y = y;\+ v, 9; = y; + V;. This change of variables is a
bijection away from g;, but the point ¢; is replaced by the PI-line of all possible slopes, called the central
fiber or the exceptional divisor of the blowup. We'denoterthis central fiber by F; (and sometimes by F;), it
is given in the blowup charts by local equations u; =0 and V; = 0. For these charts the upper/lower-case
naming convention is only for convenience and,imrcontrast to the naming of affine charts, it does not hold
that U; = 1/u;. However, it is true that v, =»l/U; — these local coordinates on P! represent all possible
slopes of lines passing through the point ¢;, and so this variable change “separates” all curves passing through
q; based on their slopes. Schematically, it is convenient to illustrate the blowup on a diagram as shown on
the right on Figure 1. The notationsf = F; denotes the proper transform n=1(L — (x;,y;)), that needs to
be distinguished from the total tramsform m= L) = (L — F;) + F;. Note that, despite the presence of the
negative sign, L — F; is an actual geometric ¢urve, i.e., an effective divisor.

F;
M- F,

T=x; +u; = x; + UiV
y=yi+uvi=yi+Vi

é ________________

Ui =T — T; Ulzm_ml

Y—Yi

H,: vi= 7Y =y

T — T
UL'UZ'—l

Figure 1: The Blowup Procedure
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2.1.1 The Forward Mapping
We begin by considering the forward mapping. We put = = x := x,,, ¥y := yn, ¥ := yn4+1 and omit the index
n in the mapping notation. The map ¥4 : (x,y) — (T,7) then becomes

o (x (z - Dz - a)(x - )z —7)
Ly = (z—a)(z = B) + nx)

+ o= a)lo—5) - (n+ DAy 1)
and we immediately see the following base points (in the affine coordinates (x,y)):

Q1(17(1_a)(1_ﬂ)_n)7 q2(C¥7 —710[), QS(ﬂa _nﬁ)a CM('Y, (’7—01)(’}/—ﬁ)—n7)~
Rewriting the mapping for 7 in the (X, Y)-chart, we get
Y (1 X)(1 - aX)(1 — AX)(1 - 7X)
(X2 - Y (1= aX)(1- BX) - nX) ) (1 - aX)(EBX) — (n+1)X)

<
|

cX? <X2 —Y((1-aX)(1-BX)= nX))

we see that we get a new base point gs5(z = 0o,y = 00) or g5(X = 0,¥.= 0). It is easy to see that these
points are the only base points on P! x P! for the forward dynamic. Thus, if this mapping is indeed in the
discrete Painlevé family, there are three more points ondexceptional divisors (these points can also appear
for the backward dynamic, but we show later that this fis not| the case).

Resolving ¢1,...,q4. We introduce blowup coordinates at gi(1, (1 — a)(1 — §) — n) via
r=14+wu =1+U V1, y=1-a)@—-Pf=n+uvvn=01-a)(1l-08)—n+V.
In the coordinates (u1,v1) we get

(1 —a+u)(d—F+u)(I=m+u)
cui(vy — (2—@=B+u)+n)

T=14wu;, T= +(l—a+u))(1-04u)—(n+1)(1+u), (2.2)

and we first see that the cancelation of u; imthe fraction resolves the indeterminacy, and so the mapping
lifts to the exceptional divisor F} ‘whose equation in this chart is u; = 0. Studying the mapping in the
(Uy, V1)-chart does not give any new information.

The computation is exactly the same for the points g9, ..., q4, the mapping extends without new base
points to the exceptional divisors F;.

Resolving ¢5 and its degeneration cascade. The situation at the point g5(0o, 00) is more interesting.
Introducing blowup ¢oordinates at this point via

X =us =UsVs, Y = usvs = Vs,

and considering the/mapping.in the (us,vs)-chart, we get, after cancelling the us-factor in the numerator
and denominator,

vs(lo— us)(1 — aus)(1 — Pus) (1 — yus)
+ c<u5 — 05 ((1 — aus)(1 — Bus) — nus) ) ((1 —aug)(1 = Pus) — (n+ 1)u5)

cu? (U5 — 5 (1 — aus)(1 — Bus) — ”U5))

Y(us,vs) =
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We see that this mapping has a new base point gs(us = X = 0,v5 = Y/X = 0) (note that this base point
is not visible in the (Us, Vs)-chart). Continuing in this way, we get the following cascade of “infinitely close”
base points:

Y
q5(X:O,Y:O)<—q6 U5=X=0,’U5:*=0 <« qr U6=U5:0,1}6——‘25‘= .
X Us c—1

— ur = us = 0. v 7(0*1)116*07C(C(a+5+n)+n—7)
gs | ur = us =V, v7 = (c—Dug (c —1)2

Note that the positions of base points depend on n, and so evolve with the dynamics, but the configuration
of base points remains fixed. Put X,, := Bly,...qs (P! x P') and let 7, : X,/ P"X P! be the corresponding
blow down map. This gives us a typical surface in the family on which the dynamic is defined. In what
follows we may sometimes omit the index n when only the point configuration and not the exact location of
the base points is important.

2.1.2 The Backward Mapping
Consider now the backward mapping. We put z := @, * = Tp—1; §= ¥ := Yn, The backward mapping

V2 ¢ (2,y) > (2,y) then becomes

1) = ( (y+na)(y +nB)(y + 1y — (v = ) — Pgp—0 — (1 - a)(1 = B))
T @) entatr By - Dtn((ntatB)nga+f-y—1)-af+7))

2 9:%2—/)3

(2.3)
where 9) is given by (1.7) (we omit the index n). The same standard computation shows that the only
base points of the backwards dynamic are the same points qi,...,q4 as for the forward dynamic, but the

singularity cascade at gs is not present.

2.2 The Mapping on Pic(X)

Recall that for a regular algebraic variety X, its Picard group (or Picard lattice) is the quotient of the divisor
group Div(X) = Spany(D), that isa'free Abelian group generated by closed irreducible subvarieties D of
codimension 1, by the subgroup P(X) of principal divisors (i.e., by the relation of linear equivalence),

Pic(X)~GLX) = Div(X)/ P(X) = Div(X)/ ~,

see [SKKTO0] or [Shal3]. In‘ous case, it is enough to know that Pic(P' x P') = Span,{H,,H,}, where
H, = [Hy—,) is the clasgiof a vertical and H, = [H,—p] is the class of a horizontal line on P* x P'. Each
blowup procedure at a pointhg; adds the class F; = [F;] of the exceptional divisor (i.e., the central fiber)
of the blowup, so Pig(X,,) = Span,{H,,H,, F1,...,Fs}. Further, the Picard lattice is equipped with the
symmetric bilinear intersection form given by

%x.%mzﬂy.%y:}fm.?i:}cy.?j:07 g‘fz.g{y:l, 9'1-09']-:—5”- (24)

on the generators,and then extended by linearity.

Both thefforward and the backward mappings induce linear maps on Pic(X). We use the notation Pic(X)
(resp. Pig(X)) for the range of the forward (resp. backward) mappings; note that all these groups are clearly
canonically isomorphic, so we sometimes just use the notation Pic(X). We use F; to denote the divisor of
the gentral fiber-of the blowup at the point §; = 11(¢;), and similarly for the backwards mapping and for
the' classes.

Since the mapping is not very complicated, we can compute its action on Pic(X) directly. The result is
given by:the following Lemma, where we use the notation F;; = F; + F; and so on.

Page 8 of 25
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1
2
2 Lemma 2.
5 (a) The action of the forward dynamic (1), : Pic(X) — Pic(X) is given by
? Ha — H,, Fi Hy —F1, Fa Hy —Fs, Fss Hy — Fs, Fpo H, — T,
8 Hy > 4H, + Hy — Frogasers, Fo s Ho — F2, Far Hy — Fa, Fo > Hy — Ty Fs = Hy™ Fs,
9 and the evolution of base points §; = ¥1(q;) is given by
10
1 7(1,(1-a)1=p5) = (n+1)), @a(a, —(n+ D)a), g3(B, —(n+1)B), qu(v, (v —a){y — ) — (n + 1))
12 for finite points, and for the degeneration cascade we get
13 _

_ — — Y Vs c
14 (X =0,Y =0) « U =X =075 = = = — Ug = uzg= 0,79 = — =
. 75 ( ) QG( < ) Q7<6 6= T cl)
f A S N

Uy =g = 0,07 = =
18 Fll S A CZR (e 1)2
19
20 (b) The action of the backwards dynamic (12)s : Pic(X) — Pic(X)yis given by
;; Ho s Hyp + 20, — Froay, FrH, =Ty, Ta H, s, Tse F5, F7 o Ty
23 Hy’%ﬂy; 372’_>£y_rizv 3"4'—>ﬂy—’i4, ?6'_>ri67 ?SHE&
24 From this we can also easily compute the evolution (of base points. We get
25
2% ¢,(L(1=a)(1—=pB)—n), g,(a,zna), ¢,(8,—n3), q,(7,(v —a)(y — B) —nv),
27 as well as the degeneration cascade
28
X Vs &
;g QS(KZ(LX:O) 4, <u5 =X=0,v5= X :0> =4, (UG =u; = 0,05 = 55 = o _ 1)
; L N e erarnin—ay
BGOSR ey (c—1)2

33
34
35 (c) The action of the composed mapping ¢£n) = 1, = (2)7 1 o (¥1)s : Pic(X,) — Pic(X,41) is given by
g? Hy > Haee 2@;; — T 1234, Hy > 43, + 5, — 3F 1234 — Fse7s,
38 F1 > M+, = TFaa, Fs — Hyp + 2H, — Frosas
23 Fo 0 Hagt Hy o Fraa, Fo > Hy + 2H, — Fra3ar,
41 Fg eI, + Iy — Fio4, Fr = Hy + 2K, — F1346,
42 Fren I £, — Fros, Fs — Hyp + 2H, — Fr2345.
43
44 The evolution‘of the base points (here §; = 1™ (¢;)) is
45 7, (1, (1 —@)(I =B)=(n+1)), @a(a, —(n+ L)a), g3(8, —(n+1)B), qu(v, (v —a)(y = B) = (n + 1))
46 ” » J
47 for finite points, an
48 — — — Y v c
49 7(X =0 =0) G (u5 =X =075 == :0) 7 <u6:u5 =0,T = ﬂ—z = C_1>
50
o I c(ca+B+n+1)+n+1-7)
52 s | U= e =TS T g, (c—1)2
53
54 for the degeneration cascade.
55
56
57 )
58
59
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Moreover, from the evolution of base points we see that 11 (n) = n 4 1, a(n) =n, and Y™ (n) = e 1.

Proof. This is a standard computation in charts that we illustrate by a few examples for the forward mapping

1. First, since 9 (x) = x, we see that (¢1)«(Hz) = H,. To find (¢1).(F1) we restrict the mapping (2.2) to
u1; = 0 to get

(1-a)d-p)(1—-7)
"elvi+a+B+n—2)

rlan = 0.0 = (1 H1-a)1-p) - (0 HD)).

so ¢ is just a fractional linear transformation of the parameter v; and thus the exeeptionaldivisor F} maps,
parametrically, to the line T = 1 in the affine chart (Z,7) of the range. This line lifts, as a proper transform, to
the divisor H,—F'; on the surface X, which, after passing to divisor classes, gives the required map on Pic(X).
Note that this also implies that (¢1).(H, — F1) = Fy, e, ¢¥1(z =1) = @, (1 —a)(=5) — (n + 1)) =7,
and so we see that under ¥ the step n evolves to n 4+ 1. The computations for F5, ..., F, are very similar.

This computation gets slightly more complicated in the degeneration cascade. For example, to find
(1)« (F5) we need to compute ; in the chart (us,vs) and restrict to us = 0. However, since there is a base
point g on Fy, the mapping ¥1(us = 0,vs) corresponds to mapping, parametrically, the proper transform
F5 — Fs of F5 on X. We compute 11 (0, v5) = (00, 0), so Fy — Fg collapses onto the base point g5 on P! x P!.
Switching to coordinates (us,T5) in the range, we get (us, Us)(0,v5) = (0,0). Thus, we have further collapse
to G and need to do the computation in the chart (ug,7s). We get (Tg,¥s)(0, v5) = G; and finally,

_1 1 _
(w7,77)(0,vs5) = (0, G +(Z(_ —;)Zv—:.a +5) 7)U5> )

and so (1)« (F5 — Fs) = F7 — Fg. Note that the mappings (v;)4 should preserve the intersection form, and

7
thus the self-intersection index. Indeed (F5 — Fg)2=(F; — Fg)? = —2, as it should be. Other computations
in the degeneration cascade are similar and result in

(Y1)« (Fs — Fr) = Fg — Fr, (@)= Fy) = Fs — Fg, (¢1)«(Fs) = H, — Fs.

Passing to classes, we get

(11)«(F7) = (1)« (Fr =F&)+ (¥1):(Fs) = (F5 — Fe) + (Ho — F5) = Ho — T,

and so on.
To find (¢1)«(3y), it is convenient to choose a vertical line passing through some base points. For
example H, — F5 — Fg is the proper transform of the line y = oo, and we get

@YY =0) = (z,2> + af —z(n+ 1+ a+ B)),

which parameterizes the(2, 1)%eurve 7 in the range given by the equation 72 +af —Z(n+1+a+8) -7 = 0.
Taking into account the evolution of parameters we note that this curve corresponds to the (2, 1)-curve v in
the domain given by

v: 2*4+af—z(n+a+pB)—y=0. (2.5)

Since the self-interséction index of 7 should be —2, we expect it to pass through 6 (or fewer, in case of
multiplicities) ‘basé points in the range. Indeed, we can check that it passes through @y, ...,qs, each with
multiplicity one, and.so

(1)« (FHgh= (1) lFy — Fs — Fo) + (101)(F5) + (1) «(F6) = (2FH, +Hy — Fio3as6) + (Hz — Fs) + (H, — Fr).

This completes the computation for the forward mapping ;. The computation for the backward mapping
1 is.similar, and the computation for the composed mapping ¥ immediately follows. O

10
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=0 g8 dv Qe -

—>0—> €
\ qs
Hy q1

q2

a3 q4

H,

Hm H:L‘ Hm H:l: - E5
Blg,...qs lgs
Iy Fr; — Fy
Fy— F; 2H, + Hy — Fia3456
H, — F5¢ —]

Figure 2: The Sakai Surface for the Hypergeometric Weight Recurrence

2.3 The Surface Type

Given the base points q1, . . ., gs, the point configuration is, essentially, the configuration of irreducible curves
on which these points lie. These cuLyes are in fact the irreducible components of some unique (unless we
have very special values of parameters that correspond to an autonomous limit) bi-quadratic curve T'. Let
the equation of T in the (X, ¥)-chart be

(a22X2 + a9 X + aoz)Y2 + (a21X2 + a1 X + a01)Y + (a20X2 + a10X + aoo) =0.

From the condition ¢5€ Twe seethat agp = 0. To impose the condition that the infinitely close point (i.e., a
point on an exceptional diviser) g € T', we rewrite this equation in the (us, vs)-chart (we should also include
the (Us, V5 )-chart,but,unless it gives any new information, we omit those computations) via the substitution
X =us, Y = uz0s. The resulting equation factorizes,

2 2 2
Us ((a22u5 + a19Us + ag2)usvi + (a21us + ar1us + ao1)vs + azous + alo) =0.

This factorization corresponds to the decomposition of the total transform of I' under the blowup mapping
Blgs : Xg5 — P! x P! into the irreducible components, Bl (T") = F5 + (I'— F5), where Fj is the central fiber
of thesblowup, and T' — F5 is the proper transform of I'. We then see that the condition g5 € I" — F5 implies
a19/= 0. Continuing in this way through the degeneration cascade at g5, as well as imposing the conditions
g €L fori=1,...,4, we get the following equation for I':

=V (Ys(X,Y)),  where s(X,Y)=X?-aBX?Y + (n+a+pB)XY Y.

11
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The curve I is in fact the pole divisor of a symplectic form w, and that is why T is called an anti-canonical
divisor, [I'] = =K. Note also that the equation s(X,Y) = 0 is nothing but the equation of the eurve 4,in
(2.5) written in the (X,Y)-chart. This is not surprising, since both H, — F5 — Fg and +y are(—2-curves, that
are irreducible components of the anti-canonical divisor, and so they are permuted by the‘mapping.

do 3
do =I5 — Js, 03 = F7 = T3,
02 01 = 2H, + Hy — F123456, 04 = Hy — Fs6. (2.6)
0y = Jg — T,
51 54

~
Figure 3: The Surface Root Basis for the Hypergeometric Weight Recurrence

This symplectic form w in the affine (X,Y')-chart is given by
L dXANdY . dX Nds

YT Y)Y T Ts(s AXR) 27)
since
ds = (2X —2aBXY + (n+a+ B)Y) dX = (agX? — (n+a + B)X +1)dY,
and
w =afX? - (n+a+pB)X+1

This point configuration, the blowup diagram,and.the decomposition of the anti-canonical divisor —Ky =T
is shown on Figure 2. Thus, we see that — Kgdecomposes into irreducible components as follows:

— Ky =QH,+H,—F\—Fy— F'=Fy— F5 — Fg) +(Hy — F5 — Fs) + (F5s — Fs) +2(Fs — Fr) + (Fr — Fg), (2.8)

whose intersection structure is given by the Dz(ll) affine Dynkin diagram shown in Figure 3, where §; = [d;].
Note that here the assignment' of d; is arbitrary with the exception of dy. Also, at this point we see

that our equation is of type d-P (DZQ/DS)), and so our recurrence falls into the same family as the d-Pvy
equation. However, to see whether our tecurrence is equivalent to d-Pvy, we need to compare the dynamics.
We describe the choicepofsthe standard d-P <D4(11)/ Dil)) point configuration, choices of the root bases for

the surface and the symmetry sub-lattices, and other data, in the Appendix; we follow [KNY17] in our
conventions.

2.4 Initial Geometry Identification

To compare the applicationidynamics with the standard dynamics of d-Pvy, we need to work with the same
root bases. Thus,we begin by finding some change of basis of Pic(X) that will identify the surface roots
between ourrecurrenceand the standard example, and then use this change of basis to identify the symmetry
roots and compare, the translations. At this point, although we need to make some choices, we do not need
to worry whether those choices are correct, since they will be adjusted later on.

Lemma 3. The following change of basis of Pic(X) identifies the root bases between the standard Dfll) surface

12
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1
2
3 and the surface that we obtained for the hypergeometric weight recurrence:
4
5 j‘fx:j‘fg, Hf:2%x+jfy*3~3*3~4*3:5-?6,
6 j‘fy:j‘ff+2}fg—83—84—85—86, J‘fg:%m,
; F1 = 81, 81 = ?1,
9 9~2 = 82; 82 = 372;
10 Fy=FHy — &, &z = Hy — T,
11 ?4:%9—85, 84:%$_?57
1; ?5:}(9—84, 85:Hm_?47
14 976:}(‘9783, 86:}(:%7353)
15 Fr=E&xr, &7 =y, -~
16 3‘8288; 882358.
17
18 Proof. Consider the surface sub-lattice root basis on Figure 3 and compare it with the standard one on
19 Figure 6. Since the Dfll) affine Dynkin diagram has the distinguished node 4, We must have
;‘1) 8y = Fs — Fr = H, — 4 Ch,
22 Thus, we can put Fg = Hy — €3 and F7 = €7, and then, matching J7 — Fg'= €7 — Eg, we see that we can put
23 3:8 = 88. Next, matching 3:5_3:6 = 83—84, we see that 9:5 = %9—84. Matching j‘fy—3'~5—36 = }Cf—85—86
24 we get H,. The final node matching gives us the equation 2H, = Figzs = €5 + ¢ — &1 — €2. Thus, we can
25 put (again, at this point we do not worry about making the right choice) F1 = &1, Fo = €3, &5 = H, — F4
26 and & = H, — I3, so that H, = € + T3 = HydThe inverse change of basis is straightforward. O
27
28 2.5 The Symmetry Roots and the Translations
29
30 We are now in a position to compare the/dynamics. Starting with the standard choice of the symmetry root
31 basis (A.3) and using the change of basis in Lemma 3, we get the symmetry roots for the applied problem
32 shown on Figure 4.
33
34 @0 P
35 olp.= Hy — Taa, ag = 2H, + Hy — Fausers,
36 Q2 alszl—f}'g, ay = F3 — Fy. (29)
37 y ay =F4 — 51,
38 Qaq Oy
39
40
41 Figure 4: The Symmetry Root Basis for the Hypergeometric Weight Recurrence (preliminary choice)
42
43 From the action of ¢, on Pic(X) given in Lemma 2 we immediately see that the corresponding translation
44 on the root lattice‘is
45 lf)* X = <0407a1704230437a4> Hw*(“) = OC+<1,O,O,71,0>5, (210)
46
47 which is differentdrom the standard translation vector (1,0, —1,1,0) given in (A.20). However, decomposing
48 1 in terms$ of generators of the extended affine Weyl symmetry group, see Section A.3, and comparing it
49 with thelexpression for ¢ given in (A.22),
g? ) = 0302WaWaWWI WoW3, P = O3TLWWHWWAWI W2, (2.11)
52 we| immediately see that ¥ = wsopo w;l (recall that wsosoe = o309wp and that ws is an involution,
53 w; Y= ws). Thus, our dynamic is indeed equivalent to the standard d-Py equation, but the change of basis
3
54 in Lemma 3 needs to be adjusted by acting by ws.
55
56
13
57
58
59
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Remark 4. At this point we verified the decompositions in (2.10) on the level of the Picard lattice: That
is, if we use expressions for symmetry roots in (2.9) to define w; and o; as acting on the Picard lattice;we
get the expression for the mapping (1)(™), in Lemma 2. To obtain this decomposition on thé level of actual
maps first requires finding the change of variables that induces the change of basis in Lemma 3 and then
using it to rewrite the birational representation in Section A.3 in the application coordinates (z,y)»However,
since the translation vectors do not match, we first adjust the linear change of basis on the, Picard lattice in
Section 2.6 to match the dynamics, and only then find the change of coordinates for this adjusted change of
basis in Section 2.8.

2.6 Final Geometry Identification

ag as -
o = Hy — Faa, asg =2y — Hy/+ Faus67s,
(% ay = F, — T, oy = T3 =T 44 (2.12)
ag = 23, + Hy — Fi3s678,
o1 Oy

Figure 5: The Symmetry Root Basis for the Hypergeometric Weight Recurrence (final choice)

Lemma 5. After the change of basis of Pic(X) given by y

Ho = Hy +Hy — &7 — Es, Hp 23, + H, — Fs — Fa — F5 — Fe,

Hy =3H;+2H, —E3— &4 — &5 — Eg — 2E7 — 2E3y Hy=3H, +H, —F3 —Fs — Fs — Fs — Fr — Fs,
F1=2¢&q, €1 =T1,

Fa = &, Ea =T,

Fy=Hs+Hy,— & — E7 — Es, &3 =Hy — Fs,

Fo=H;+H,— &5 — &7 — Es, €4 =H; — Fs,

Fs=Hs+Hy—E1—E7 — &g, &5 = Hy, — Ty,

Fo=Hy+H, — €5 — &7 — Es, €6 = I, — T,

Fr=H; — Es, N &7 =2H, +Hy —F3 - F4 — F5 — Fg — T,
Fs =Hyp — &7, € =2H, +Hy —F3 = F4 — F5 — F — Fr,

the recurrence relation$ for variables.ay, and y, coincides with the standard d-Py discrete Painlevé equation
given by (A.19). The resulting identification of the symmetry root bases (the surface root bases do not change)
is shown in Figure 5,

Next we need torrealize this change of basis on Pic(X) by an explicit change of coordinates. For that, it
is convenient to first-match the parameters between the applied problem and the reference example. This is
done with the help of the Period Map.

2.7 The PeriodMap and the Identification of Parameters

The Period Map computation is similar to the slightly simpler standard case explained in Section A.2. Thus,
we onlysstate . the result.

Lemma 6.

14
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i) The residue of the symplectic form w = k9XAD — f dXAds_ gofined in (2.7) along the irreducible
s(X,) Y)Y s(s—X?2)

components of the polar divisor is given by

resy w= kT resyw= kPt eEBd = k3%
do W — vg ) dyg W = (Uﬁ — 1)2 ’ dy X2
dX (¢ —1)%dv;
resq, w = kﬁ’ resq, W = —k#.

(i) The root variables are given by
ap=k(y—n—a), a1 =kla—1), a=k(1+n+8-—7), az3=—-k(n+p0), as=k(yv—03). (2.13)

The normalization condition ag + a1 + 2as + ag + a4 = 1 then implies that'k = 1, and we get the
following relations between our parameters and the root variables:

Oé:a1+17 5:a0+a1+a2, "}/:170,27(13, n:a2+a471. (214)

Note that the root variable evolution, which is the same as_given'in (A.20), is consistent with what we
expect: a =a, B =B, =1, and W = n+ 1. Also observe that wé can not yet see the relationship
between parameters t and c in this identification. After, we find theractual change of coordinates in the
next section, we get that ct = 1.

2.8 The Change of Coordinates y

We are now ready to prove Theorem 1, which i§ the main result’of the paper.

Proof. (Theorem 1)

Since equations (1.12) are simpler, we_explain how to obtain them. Equations (1.11) can then be either
obtained in the same way or by finding the explicit,inverse change of variables from (1.12).

From our change of basis, we see that

%f:2ﬂw+}fy—3r3—3~4—3~5—3~6.

Thus, f(z,y) is a projective coordinate onapencil of (2, 1)-curves in the (z,y)-plane passing through points
a3, Q4, 5, and gg. Working in the (X,Y)-chart, we consider a generic (2,1)-curve agy + ag1 X + a2 X? +
aY +a11 XY +a12X%Y =0. To pass through ¢5(0,0) we much have ago = 0, and to pass through the point
g6(X = 0,Y/X = 0) we must/have;o = 0. Imposing conditions at ¢3 and ¢4 gives us more constraints on
the coefficients, and we get

an (Y(1 = XBU8XY) ) = az (Y (n+a =) = X2(BY (aB — By =) = (B+7))) = 0.

The expressions at the coefficients a1; and asg define two basis curves in the pencil and the coordinate
f(X,Y) is their ratio,up to a)Mobius transformation. When written in the (z,y)-chart, we get

Mx—mwfvﬂixﬁm+a*w+y@+w*5@B*%~%ﬂ)
C(o - B)w =)+ D(s2(n+a =) +y(B+7) - BlaB— By —n7))

e y) = : (2.15)

where the, coefficients A, B,C, D are still to be determined. To do that, we use the information about

the exceptional divisor correspondence in Lemma 5. For example, the condition €5 = F5 means that
(fv g)(QQ) = (fa g)(av _na) = (OO, b2) = P2, i'e'a
C+Dn+a+pB)
F(a,—na) = =0, andso C=-D(n+a+p).
( ) A+ B(n+a+p) ( #)
15
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The condition & = H, — F3 means that f(5,y) = B/D = 0, and so B = 0. As a result,{after_some
simplifications, we get ~

Az — B)(x =)
(z—a)(z =) —nz—y’

flz,y) =

where A is some proportionality constant. To find A, we use the condition &5 — 4= F5 — Fg, which
means that, after doing a sequence of substitutions to express f in the (us,vs)-chaft and then restrieting
to us = 0, the image of the (proper transform F5 — F5) of the exceptional divisor &5 should cellapse to the
point p3(t, 00), i.e., f(us = 0,v5) = t. This results in A = 1. Similarly, the conditionn&, — €g = F7 — Fg
results in the relationship between ¢ and ¢, ¢t = 1. Computing g(x,y) is done éxactly alongythe same lines,
but the equations for the basis curves in the H, pencil are more complicated, and so this computation is

omitted. O
~

2.9 Partial Decompositions and Gauge Ambiguities

In this section we want to make the following important point. Note that equation (1.5) is a relation between
Ty Yn, and yp 41 that we used to define the forward map ¥1 : (X, Yah—> (Tn, Ynt1). Similarly, equation (1.6)
is a relation between x,,_1, x,, and y, that we used to define the-backward map s : (Xn, yn) = (Tn_1, Yn)-
In doing so we ignored possible PGL2(C) x PGLy(C) gaugé grouphactions on both the domain and the
range of the mappings. Thus, the mappings 1; may not cerrespond exactly to elements of the birational
representation of the symmetry group, where some normalization must be imposed to ensure the group
structure on the level of the mappings. This point is egsential, sincg we may not see the correct evolution
of parameters in these partial maps. If necessary, this preblem ean be corrected using the action of the
mappings on the Picard lattice (that does not depend on the gauge actions) and the Period Map.

This issue can already be seen in the simpler model exampleof the difference Painlevé-V equation (A.19).
This mapping can also be partially decomposed, inithe hatural way, as ¢ = @5 Yo ¢, where ¢, is a forward
mapping ¢1 : (f,g) — (f, —g) and 3 is a backward mapping ¢- : (f,g) — (f, —g). Note that the additional
negative sign (which is an example of the{gatigesgtoup action mentioned above) is essential for the mappings
; to be representable as a composition of‘elementary birational maps described in Theorems 10 and 11,

where the normalization condition that we imposedin constructing the birational representation of W (fo’)

is given by (A.9). In fact, there are two'slightly different ways to write these mappings in terms of generators;
o=y o =@, o (this is a difect calculation):

¢1 = ozoawiwawawiws : (f,9) = (fa—g); @ =1—ao, @ = a1, G = —ay —az, a3 =1 —as, a4 = —ay;
2 = wowzwy : (f,9) = (f,—g); @y = =00, a; = a1, ay=1—ay —ay, a3 = —az, a; = —ay, (2.16)
or

@1 = osoowiwowgwiwawr < (f, 9) = (f,—g); @ =1—ag, @1 = —a1, Gy = —ay, a3 = 1 —as, a4 = —ay;
@2 = wowrwswy : (fy9) = (f, —9); ay = —ao, a; = —a1, ay =1 —ay, a3 = —az, a; = —ay. (2.17)

Looking at the action of the mappings on the root variables a; it is clear that the individual mappings ¢ 2
do not correspond to translations on the symmetry sub-lattice; in fact, the need for the negative sign can be
clearly seen at this/point. Thenegative sign disappears, which is fairly typical, when we consider complete
forward or backward steps in the dynamics, since those correspond to translations

—1

(F9) & (F—g) 2 (F.9) 25 (Fo—g) 225 (F.9).

The same is true for the mappings 1; from Lemma 2. Looking at the action of (11), on the symmetry
roots (2.12), we get

(P1)slen) =6 — ap, (Y1)s(a1) = —a1, (P1)«(a2) =6 —az, (Y1)«(az) = =0 —az, (P1)«(a) = —au.

16
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This immediately gives us the decomposition of ¥ and the action on the root variables:

’(/Jl = 0302WW W W W Waw3wW1; ag =1—ag, ay = —ay, aec =1—ag, a3 = —1—as, ay4 = —a4. (218)
Using (2.14) we get the evolution of parameters (that is non-physical, since weight parameters should not
change) B

522—017 522_6a 7:2_% ﬁ:—(’l’b+1)7
which, in turn, gives us the forward evolution of the base points, which is different from the evelution given
in Lemma 2(a):

(L (a-1)@BE-1D)+n+1), G2-aon+1)2-aq),
73(2 =5, (n+1)(2-5)), 2= (=B -7+ {0+D(2-7)),

G5(X =0,Y =0) + g4 (u5 =

>
I
=
<l
ot
|

Then the correct choice of the gauge to ensure that the mapping 4y eomes from the birational representation
of the symmetry group is given by ¥ (z,y) = (2—z,7+2(n+1)), where Giis given by (2.1). This can either be
deduced from the evolution of the base points (2.18) or obtained directly from the birational representation
of 11 using the change of variables (1.11-1.12).

Similarly, for (13). the action on the symmetry roots is 4

(V1)«(a0) = —ao, (Y1)«(on) = —an, (Y1)«(ap) = 20— @z, (Y1):(a3) = =20 — a3, (Y1)«(os) = —aa.
The resulting decomposition of 1, and the action on the root variables is
Vg = WaW3W2W WW2W4W2 W WoW2W3WIW0; Qg = =00, Gjy= —0G1, Gy =2 — ap, a3 = —2— a3, 4y = —a4.

(2.19)

Using (2.14) we get the evolution of parameters (thatiisiagain non-physical)
QZQ—(X, ﬁ:2_57 122_77 n=-n,

which, in turn, gives us the backward evelution of the base points, which is again different from the evolution
given in Lemma 2(b):

gl(lv(a_l)(ﬂ_1)+n)a g2(2_aan(2_a))7
o2~ Bn@-gY 7 (

4,2=7, (=B -7 +n2-17),
2,(X =0,¥ =0)%q, (@5=X=0,v5 =

v Cc

<[~

(c—1)vg — ¢ c(c(4—a—ﬂ—n)—2—n+’y)

1 (c— 1)ug (c—

25
Hence the correctrchoicerof the gauge to ensure that the mapping ¥y comes from the birational representation
of the symmetty group is given by vq(x,y) = (2 — z,y + 2n), where z is given by (2.3).

Note that these gauge transformations cancel each other when we consider the full step. Indeed, let us
define win) (@, Yn)=(2— Ty, Ynt1 +2(n+ 1)) and wén) (Tnyyn) = (2 — Tp_1,Yn +n). Then

-1 —1
w(n)(xnvyn) » ( §n+1)> © dJYL) (xnayn) = ( én+1)> (2 — Tn,y Yn+1 + Q(TL + 1)) = (mn—‘rla yn—l—l)'

Remark 7. Given that both mappings ¢ and ¢ decompose in a natural way, and that both mappings are
equivalent, it is reasonable to ask whether these decompositions are equivalent individually. This, unfortu-
nately; is not the case. Indeed, as can be seen from the above decompositions, ¥ = w3 0 1 0 w3 L but
1y =11 0 ! and this can not really be simplified much further.

17
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3 Conclusions

In this paper we illustrated a systematic procedure on determining whether a second-order non-linear non-
autonomous recurrence relation is a discrete Painlevé equation, and if so, how to reduce it 'to the standard
form. We considered in detail an example from the theory of discrete orthogonall polynomials; where we
showed that the evolution of recurrence coefficients for these polynomials is expressed in‘terms of a particular
solution of the standard difference Painlevé-V equation. However, it is clear that this(approach.can be easily
adapted to a wide range of other applied problems where discrete Painlevé equations appear.

A Standard example of d-P (DEH /DER)

~
In this section we review the standard example of discrete Painlevé equationof type d-P (Dfll) / Dfll)), also

known as the d-Py equation. Note that this equation describes Béacklund transformations of the usual
differential Py equation. We follow the standard reference [KNY17] for the choice of root bases and the
form of the equation.

A.1 The Point Configuration

We start with the root basis of the surface sub-lattice that is given by the classes §; = [d;] of the irreducible
components of the anti-canonical divisor
L
(;ijCx:29{f+2j‘fg781782783784785*86487788:50+61+252+53+54.
The intersection configuration of those roots is given by thesDynkin diagram of type Dil), as shown on
Figure 6.

% 03 dor=E3 =4, b3 = &7 — s,
61:J-ff—81—82, 5425'()0—85—86.
(D 5y =y — €5 — &1, (A1)
51 5, 6 =00+ 61 + 202 + O3 + 4.

Figure 6: The Surface Root Basis for the standard d-P (Dil)> point configuration

Using the action of the/PGL5(C) x PGLy(C) gauge group (i.e., the action of a Mébius group on each of
the factors of P! x P!), we can, without loss of generality, put d;, with §; = [d;] to be

di =V(F)={f=ec}, d2=V(G)={g=00}, dys=V(f)={f=0},
which then reduces, the gauge group action to that of a three-parameter subgroup, (f,g) — (Af, ug + v).
The corresponding.point configuration and the Sakai surface are shown on Figure 7.
This point ¢onfiguration can be parameterized by eight parameters by, ..., bg as follows:
pi(oo, br),  p2(c0,b2), ps(bs, 00) < pa(bs, 005 g(f — bs) = ba),
P5(0,b5),  p6(0,b6),  pr(b7,00) < ps(b7,00;g(f — br) = bs).
The three-parameter gauge group above acts on these configurations via
bi by b3 ba f pbr+ v pby +v Aby Apbs Af
. ~ . A2
(b5 bs br bs'g ubs + v pbs v Abr Aubspg+v) PO (A-2)

and sopthe true number of parameters is five. The correct gauge-invariant parameterization is given by the
root variables that we now describe.

18
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| |
Pe ® | — ~
ps P4 Bly, . ps Es s /i/ \|\ By FEs

71 I b, — Er—Es By~ B, T,

— ¢ 3
*—>0
S

V]

Hy Hy H; — E5 — Eg Hp— E, — E,

Figure 7: The model Sakai Surface for the d-P (Dil) / Dfll)) exgnple

A.2 The Period Map and the Root Variables

To define the root variables we begin by choosing a root basis in the.symimetry sub-lattice Q = II(R+)<Pic(X)
and defining the symplectic form w whose polar divisor —Ky is thenconfiguration of —2-curves shown on
Figure 7. For the symmetry root basis we take the same bagis as in [KNY17], see Figure 8.

&0 &3 ag = Hy €3 —Ean w03 = Hy — &7 — &g,
041:81—82, 054:85—86.

N 052=g{g*81_857

a; ay 6 = @p + apdt 2a0 + ag + ay.

Figure 8: The Symmetry Root Basis for the standard d-P (Di”) case

A symplectic form w € —Kx such that [w] = dp + &1 + 22 + 03 + d4 can be given in local coordinate
charts as
df/\dg__de/\dg_ wdf NdG] T dF NdG dUs N dV3 dUs N dVz

=k = —k - — — _
“ f F aTeR FG? (b3 + UsV5) Vs (br + U Vo) V7

(A.4)

where, as usual, F' = 1/f, G =\1/g are the coordinates centered at infinity, the blowup coordinates (U;, V;)
at the points p;, i = 3,7 are given-by f = b; + U;V; and G = V;, and k is some non-zero proportionality
constant that we normalize later. Then we have the following Lemma.

Lemma 8.

(i) The residue of the symplectic form w along the irreducible components of the polar divisor is given by

d d
resq, wi= k%, resq, w = —kdg, resg,w =0, resgw = k%, resq, w = kdg. (A.5)
3 7
(i) The root variables a; are given by
b4 bS
ag = —ka, a; = k(bg — bl), as = k(bl - b5)7 as = —kE, a4 = k(b5 - bﬁ) (AG)
It is convenient to take k = —1. We can then use the gauge action (A.2) to normalize b5 =0, by = 1,

and x(0) = ap + a1 + 2a2 + a3 + a4 = 1. In view of the relation of this example to Pyy, it is also
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convenient to denote bs by t. Then we get the following parameterization of the point configuration in
terms of root variables:

b1 = —Aag, b2 = —a1 — asg, bg = t, b4 = tao, b5 = 07 bG = a4, b7 = ]., bg = as. (A7)

Note that if we use the notation ps4 (t(1 +€ag),1/¢), prs(l + cas, 1/€) for the degeneration cascades,
we get exactly the parameterization of the point configuration in section 8.2.17 ©f [KNY.17].

Proof. Part (a) is a standard computation in local charts. For example, with dg = Eg= E; = V(V3) in the
chart (Us, V3), we get

res w — res g AUsAdVs 1\ dUs
do = 1=5VE=0 (bs + UsVs)Vs ) — " baes

Other computations in part (a) are similar. o

For part (b), first recall that the Period Map x : @ — C is definedwon the /simple roots «;, where
a; := x(«;) are called the root variables, and then extended to the full symmetry sub-lattice by linearity. To
compute the root variables a;, we proceed as follows, see [Sak01] for details.

e First, we represent «; as a difference of two effective divisors, ay = [C1] — [CY];

e second, note that there exists a unique component dj, of — Ky such that d ¢ C} = d,, ¢ CY = 1, put

P, =dyNC and Q; = dj, N CL:
Pi 2
’ ) {’
o, C}

o) = (€16 = [ b f = [T

where w is the symplectic form defined by (A.4).

e then

We illustrate this procedure by computing theroot variable ag, the other computations are similar (see also
[DT18] for more examples of such computations). First represent og = Hy — E3 — €4 = [Hy — E3] — [E4].
These two curves intersect with the?ﬁ component of div(w), and so we get

do=FEs — E,4
us = <b:
| Mo o5,

V3

Qo O au. b
08 - E4 ag = X(ao) = / resq, w = k TS = —kbi
Po(Us = by = 0) Py ba 78 ’

U
Vs 56

Cl — H —E;
QO(U?):O,‘/?):O ! ’

)
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1
2
3 A.3 The Extended Affine Weyl Symmetry Group
4
[ For completeness, we also include here the description of the birational representation of the éxtended affine
6 Weyl symmetry group W (Dil)) = Aut (Dfp) x W (Dfll)), which is a semi-direct product of the usual
7
8 affine Weyl group W (Dil)) and the group of Dynkin diagram automorphisms Aut (Dfll)).
9 The affine Weyl group W (DS)) is defined in terms of generators w; = w,, and relations that are encoded
10
1 by the affine Dynkin diagram Dil),
12 9 o o
13 W Qo Qas w; =e, W;0W; = W;0wW; when o, a;
14 W(D4 )ZW (&%) =\ Wo,..., W4 wiowjowi:wjowkijhen o0—o .
15 a1 Qg (673 a]
16
17 The natural action of this group on Pic(X) is given by reflections in the roots «;,
18 Ceqy
19 w;(C) = wq, (€) =C—2 “a; = CH (Cedy) ey, G € Pic(X), (A.8)
20 a; @ Oy
21 which can be extended to an action on point configurations by elementary birational maps (which lifts to
22 isomorphisms w; : Xy, — X on the family of Sakai’s surfaces), this is known as a birational representation
23 of W (D{").
24
;5 Remark 9. Recall that for an arbitrary w € W (Dfll)), the action of w on the root variables is inverse to
2? its action on the roots. This is not essential for the generating reflections, that are involutions, but it is
28 important for composed maps.
29 Theorem 10. Reflections w; on Pic(X) are induced by the elementary birational mappings given below and
30 also denoted by w;, on the family Xy. To ensureithesgroup structure, we require that each map preserves our
31 normalization
32
33 b1 b2 b3 b4 b b1 b2 t b4 _ —Q2 —ai; — az t tao (A 9)
34 b5 b6 b7 bg 0 bG 1 bg 0 [¢7} 1 as ’ ’
35 We give the action of the mappings both on parameters b; related to the parameterization of point configu-
36 rations, and on the root variabless(note that/the parameter t can also change when we consider the Dynkin
37 diagram automorphisms, so itlis convenient to include it among the root variables). For the initial configu-
38 ration
39 b, bztb4_f:a0 a1 a2,f
40 0 bg 1 bg’ g a3 aqg t’ g ,
2; the action of w; is given by the following expressions:
43 b b
by — 3 b —F L by ) <—ao ap + az f >

wy : t ; = ; , A.10
2‘5‘ 0 ( 0 by 41 by g-— t(l;;*ft) t 7 g-wl (A.10)
46 wr ba byl t bs of _ ar+ax  f Al
47 1(0 be 1 /bs’ g t " g ( )
4 — p _ _b f _ azf
42 w2:< by bo—0b; t by tbl; 1 > :<a0+a2 ay + as 02;f+ ;)7 (A12)
s 0 bg — by 1 bg—10b1 —bl as +ag as + ay t g+ as

bi=bs by —bg t b as +a f

51 W [C=0s 02 —bg 4 ) :< 2Tes a) A13
52 3 ( 0 b6 1 _b8 3 g— JIZBfl t ) g— f3_f1 ) ( )
53 . bl—bG bg—bg t b4. f . a2+a4_ f
54 w4.< 0 _bG 1 b8’ g—bs = ¢ 5 g—as . (A.14)
55
>0 21
57
58
59
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Proof. The proof is standard, see [DT18] for careful explanations, but to make this paper self-contained, we
briefly outline one such computation. The reflection wy in the root ag = Hy — €3 — €4 acts on'Pie(X) by

wo(j’ff) = j‘ff, wo(ﬂ{g) = j‘ff +j‘fg — 83 — 84, w0(83) = j‘ff — 847 ’LUQ(84> = g‘ff — 83, w()(g,‘) = Si,i 7é 374.

Thus, we are looking for a mapping wo : Xp — Xy that is given in the affine charty(f,g) by aformula
wO(f, g) = (fv?) so that

W) = 3y, ws(3g) = Hy 4 H, — €5 — Ea.

Thus, up to Mobius transformations, f coincides with f and g is a coordinaté on a pencilbof (1,1)-curves
passing through the degeneration cascade p3(bs, 00) < pa(bs,00; g(f — bs) = ba). Let |Hg| = {Afg+ Bf +
Cg+ D = 0}. Then ps imposes the condition Abs+ C = 0, and so |Hg| = {A(f —bg)g+Bf + D = 0}. Point
p4 then imposes the condition Aby + Bbs + D = 0 and we see that the Basis of #he pencil |Hg] is given by
(f —bs)g — by and f — bs. Taking the Mobius transformations into account;we get

?7Af+B _ K((f—0b3)g—bs) + L(f =bs3)
Cr+D" 77 M((f~bs)g — baYN(f — ba)’
where A,..., N are some constants to be determined. We also know that the root variables change as
ay = —ag, G2 = ag + ag, and a@; = a; otherwise. This then (gives us the evolution of parameters b;, e.g.,
by = —Gy = —as —ag = by — by/t (recall that ¢ = b3), and so em, The constants A, ..., N can be determined
from the action of wy on exceptional divisors. For example, wy (55) = &5 is equivalent to

&

= VB=0, A

(7’ g)(ov O) = (07 O) ga

wo(E7) = €7 implies that M = 0, then wo(&;) = &y gives
(f,9)(0c0,b1) = (00,b1 Je=.(00,by =bs/t) T = C=0, KJ/N=1,

and so on.
O

Let us now describe the group of Dynkin diagram automorphisms. It is clear that Aut (Dfll)) ~ 84, SO

we only describe three transpositions that generate the whole group.

Theorem 11. Consider the followz'n&genemtors 01,-..,03 of Aut (Dil)) that act on the symmetry and the

surface root bases as follows (here we use the standard cycle notations for permutations):

g1 = (013044) = (53(54), 09 = (040043) = (5063), 03 — (041054) = ((51(54) (A15)

Then o; act on the Picard lattice as
o2 = (E€3E€7)(E4E8), o3 = (€1&5)(E286),

where w), is a reflectiony(A.8)/in the root p = Hy—E5—E7 (note also that a transposition (€,€;) is induced by
a reflection in ghe root €5 —=&;). The induced elementary birational mappings are then given by the following

o1 = (€gEs)w,,

exTPressions:
crﬂ(%l ZZ 1It u;)i)m?(lf—_fl)fg>—<zz Z; 1a_2t;(1f—;1){7>, (A.16)
72 <lg ZZ % sz? g) = <Zj o a;; g) (A.17)
SR I ST B A SN e
22
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Proof. We briefly outline the proof for 0. First, note that we define the action of o7 on the symmetry roots
a; and then try to deduce its action on both the surface roots §; and also on all of Pic(X). Moreover; o is,an
involution and from o : a3 <> oy we see that it is natural to ask that o1 : Hy — €7 <+ €5 and o0, : €6 %> Cs.
Looking at the surface roots J; we see that then oy permutes the roots d3 and da, i.e., o014 H; — E5 & E7.
Thus, o fixes Hy. Requiring that o1 fixes «; and §; for ¢ = 0,1,2 implies that o; fixes &; fora=14...,4.
From this it immediately follows that o1(J3(;) = s + IHy; — €5 — 7. It is now easy to see that oyrcan be
realized as a composition of two reflections in the roots ¢ — € and Hy — €5 — &7,

01 = Weg—sgWI;—E5—E7 * j‘fg — g‘ff +g'fg — 85 - 87, 85 — f]-(:f - 87, 86 — 88, 87 — fH:f - 85, 88 — 86,

and the remaining generators of Pic(X) are fixed. The rest of the proof is/mow similar to the previous
Theorem. Let oy : X, — X5; be written in the affine chart (f, g) as o1(f, 9)=(f,g). Requiring that

~
of(Hg) =Hy,  of(Hg) =Hy+Hy—E5 = Ex

we get the mapping up to Mobius transformation,

Af+B  _ _ K(g(f—br) +bsbr) + Lf 3 Kg(f =1)+ Lf

T=CreD 77 Mlg(f —br) + bobr) + . Mglfl 1)+ Nf

where we used the normalization b5 = 0 and by = 1; as usualgd, . .., N are some constants to be determined.
We also know that a3 = a4, @4 = a3, and @; = a; otherwises, Thus, by = by, b = by, bg = bg, and

bs = bs. Note that by = t is just a notation, it can (and actuallypwill) evolve. From o1 (H; — &5) = &7

we see that (f,9)(0,9) = (£,—%) = (1,00) and so B = D and M= 0. From o1(H; — €7) = &5 we see
that (f,g9)(1,9) = (éig ﬁ) (0 0) and so A= —B and L = 0. Finally, from o1(&1) = &; we see that

(F.9)(00,b1) = (&, 52) = ;80 C' =0 and K =N. Thus,

(f =g
S

Finally, from o1(€3) = €3 we see that (f,7)(bs,00h= (f,9)(t,00) = (1 —t,00) = (,0), and so we see that

the parameter ¢ indeed evolves, t = 1'=t. This is related to the fact that elements from Aut (Dfll)) are no

le—f, g=

longer standard Bécklund transformations of Pyy. This completes the proof of (A.16). The proof for the
other os is similar and is omitted. O

Finally, the semi-direct product R’ructure is defined by the action of o € Aut (Dfll)) on W (Dfll)) via

— -1
Wo(a;) = OWq, 0 .

A.4 The standard discrete d-Py Painlevé Equation

As is well-known, thére areinfinitely many different discrete Painlevé equations of the same type, since they
correspond to the Mon-conjugate translations in the affine symmetry sub-lattice (). Some of these equations
are special, sincethey either appear in applications, or have a particularly nice form, or have degenerations to
other known equations. In the d-P (Dil) / DS)> family one such equation is known as a difference Painlevé-V

equation, since it/das a continuous limit to the differential Painlevé-V equation.
In [KNY17] thisrequation is given in the following form,

| tg(g — as) B as tao
ff_(g+a2)(g+a1+a2)’ Z i (A.19)

with the root variable evolution and normalization given by

ag=as—1, a=ay, as=as+1, asz=az3—1, a4 =ay, ag + a1 + 2a 4+ as + a4 = 1. (A20)
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From the root variable evolution (A.20) we immediately see that the corresponding translationon the root
lattice is
Vst = {ag, a1, an, a3, aq) = i) = a+ (1,0, —1,1,0)4. (A.21)

Using the standard techniques, see [DT18] for a detailed example, we get the following decomposition of
in terms of the generators of W (Dfll)):

Y = 0302W3WHW2W4W1W2. (A22)
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