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Abstract 
  
Introduction: ​Amyotrophic lateral sclerosis (ALS) is a devastating disease with a lifetime            
risk of approximately 1:400. It is incurable and invariably fatal. Average survival is between 3               
and 5 years and patients become increasingly paralyzed, losing the ability to speak, eat, and               
breathe. Therapies in development either (i) target specific familial forms of ALS (comprising             
a minority of around 10% of cases) or ii) emanate from (over)reliance on animal models or                
non-human / non-neuronal cell models. There is a desperate and unmet clinical need for              
effective therapy. Deciphering both the primacy and relative contributions of defective protein            
homeostasis and RNA metabolism in ALS across different model systems will help to             
confidently identify putative therapeutic targets.  
Areas covered: This review discusses recent studies addressing putative common primary           
molecular events leading to ALS pathogenesis. We specifically review the deregulated RNA            
metabolism, protein mislocalization / pathological aggregation and the role of glia in            
ALS-related motor neuron degeneration. Against this background, we describe some          
promising targets for therapeutic evaluation in this arena.  
Expert opinion: ​An effective strategy will consider a poly-therapeutic approach targeting           
both deregulated RNA metabolism and protein dyshomeostasis together in the relevant cell            
types and at the appropriate phase of disease.  
  
Article highlights 
 

● ALS is a devastating neurodegenerative disease in which further investigation of           
molecular and cellular events is crucial to elucidate therapeutically targetable          
mechanisms. 

● Aberrant splicing (including intron retention) and nuclear loss of RNA binding proteins            
(RBPs) are observed in ALS. 

● Protein misfolding (including toxic oligomerization) underlies ALS pathogenesis to         
some degree, including aggregation and a prion-like cell-to-cell propagation. 

● Astrocytes and microglia undergo deleterious reactive transformation in ALS, which          
perturbs their neuroprotective capacity. 

● Elucidation of primary pathogenic events in motor neurons and glia through           
integration of different ALS models is crucial and will allow the identification of high              
confidence therapeutic targets. 

● Considering a poly-therapeutic approach will likely advance our efforts in discovering           
effective therapeutic strategies. 

 
 
 
 
 
 
 
 
 
 



Introduction 
  
ALS is relentlessly progressive and uniformly fatal. It is characterized by progressive motor             
neuron (MN) degeneration. There exists significant clinical heterogeneity in ALS, which has            
been categorized in a variety of ways including the clinical site of onset (upper limb, lower                
limb or bulbar), cellular substrate (upper MN, lower MN or both) and rate of progression ​[1]​.                
The current standard of care in ALS is essentially supportive: a feeding tube is inserted into                
the stomach to maintain nutrition, non-invasive ventilation is needed to support breathing            
and a disease modifying drug (Riluzole) is prescribed, which can increase life expectancy by              
approximately 3 months. ALS is multifactorial with contributions from genetic and           
environmental factors, and ageing ​[2]​. There is a desperate need to understand disease             
mechanisms in order to guide the development of effective therapies.  

Although different forms of neurodegeneration are frequently considered as predominantly          
protein aggregation disorders or defects in RNA metabolism, this taxonomy is potentially            
facile and misleading. Indeed, accumulating evidence suggests that both processes are           
fundamentally implicated in ALS (reviewed in ​[3]​). The common molecular denominators in            
ALS are ribonucleoproteins (RNPs). ​An RNP is a complex of RNA and RNA-binding proteins              
(RBPs)​. These multifunctional complexes play key roles in regulating gene expression and            
RNA metabolism. ​Eukaryotic cells possess myriad strategies to mitigate a diverse range of             
stressors, which generally lead to the assembly of RNPs into ‘stress granules’ (non             
membrane delimited organelles), likely through tightly regulated prion-like polymerization of          
RBPs together with RNAs. Indeed, genetic evidence strongly implicates aberrant RBPs in            
ALS, including disease-causing mutations in genes encoding RBPs called fused in sarcoma            
/ translocated in liposarcoma (​FUS​) and transactive response DNA-binding protein 43           
(​TDP-43​) ​[4–6]​. Increased formation and persistence of such granules may be important in             
the pathogenesis of ALS, although further investigation is required. Aberrant phase transition            
of RBPs with low-complexity domains may also drive the formation of pathologically-relevant            
intracellular inclusions, a process regulated by interaction with RNAs ​[7,8]​. More generally,            
evidence for RNA binding proteinopathy in ALS fundamentally implicates deregulation of           
both protein homeostasis and RNA metabolism. The integrated investigation of both           
processes is therefore crucial in the elucidation of therapeutically targetable underlying           
disease mechanisms.  

Beyond such molecular considerations, the role of non-neuronal cells in ALS has become an              
increasingly important area of investigation. Until approximately 25 years ago, the           
consensus view regarding ALS pathogenesis was that selective injury to motor neurons is             
mechanistically cell autonomous. This ‘neuron-centric’ view has been increasingly         
challenged beginning with important mice-chimera studies using lineage-specific expression         
of mutant superoxide dismutase 1 (SOD1) ​[9]​[10]​. These, and subsequent, studies have            
confirmed major non cell-autonomous roles for astrocytes, microglia, and oligodendrocytes,          
reviewed in ​[11,12] ​[13]​. Increasing recognition of glial involvement in ALS raises the             
prospect of targeting these cells to increase neuroprotective capacity and/or to reduce            
acquired neurotoxic attributes.  
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Through integrated and multi-modal approaches to modeling ALS combined with key           
technological advances, recent discoveries are changing the landscape of therapeutic          
possibility. Here, we review a range of potential opportunities in this context, and provide a               
personal view on the most promising approaches towards developing new therapies. 
 
Defects in pre-mRNA splicing 
 
Several studies have now examined splicing changes in ALS (or the related disorder             
frontotemporal lobar degeneration (FTLD), which ​shares pathogenetic features with ALS)​.          
For example loss of nuclear TDP-43 protein has been associated with cryptic splice site              
usage, which might ultimately induce RNA degradation via nonsense mediated RNA decay            
and thereby reduce abundance of (correctly spliced) mRNAs for translation ​[14]​[15]​. A recent             
important example here is aberrant splicing of the microtubule-associated stathmin-2          
(​STMN2​) transcript caused by TDP-43 depletion in human neurons ​[16,17]​. ​TDP-43 levels            
are regulated via a negative feedback loop, where TDP-43 binds to its own transcripts and               
destabilizes them, thereby reducing their translation and controlling the levels of TDP-43            
protein​. ​Perturbed TDP-43 autoregulation can lead to accumulation of cytoplasmic TDP-43           
protein and subsequent neurodegeneration. We recently analyzed RNA sequencing data          
from human iPSC-derived MNs from ALS patients carrying mutations in valosin containing            
protein (​VCP​), ​SOD1 and ​FUS genes and discovered aberrant intron retention as a unifying              
molecular hallmark in these diverse genetic causes of ALS (Figure 1) ​[18]​. Intron retention is               
an understudied type of alternative splicing whereby mature polyadenylated transcripts          
retain one or more introns. Indeed intron retention is increasingly recognized as a             
fundamental mechanism for myriad cellular homeostatic processes ​[19–22]​, reinforcing the          
importance of understanding its role in ALS. We additionally found evidence in support of a               
model whereby the RBPs splicing factor proline and glutamine rich (SFPQ) and FUS bind              
avidly to retained introns and are transported out of the nucleus by intron-retaining             
transcripts ​[18]​. It follows that silencing intron retention may offer a tractable therapeutic             
target as removing the aberrant (intron-retaining) transcripts may then prevent nuclear           
displacement of their avidly bound RBPs (Figure 1). Importantly, by targeting the intronic             
sequence, this should leave intact the correctly spliced transcripts. Noting that >150            
ALS-related intron retention transcripts have been identified, it would be important to            
prioritise therapeutically tractable events by their abundance in the cytoplasm, intron length            
and affinity for binding RBPs that are implicated in ALS. Depending on the approach for               
intervention adopted, considering polytherapy, targeting several aberrant transcripts, may be          
required to induce cellular remission. However, importantly, these aberrant intron retention           
events have not yet been proven to be pathogenic, which clearly argues for further              
evaluation in ​in vitro and ​in vivo models before considering progressing any individual             
candidates as potential therapeutic targets.  
 
In the case that one or more aberrant intron retention events are found to be pathogenic,                
one approach to selectively targeting these transcripts is the use of antisense            
oligonucleotides (ASOs), which are short stretches of synthetic DNA that hybridize with            
complementary RNA. Within ASO biology, there exist an increasing number of possible            
chemical modifications to the oligonucleotide allowing target binding with predictable          
functional outcomes ranging from mRNA degradation (by activation of endogenous RNAse           
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H) to blocking RBP binding by steric hindrance on otherwise intact mRNAs). The ability to               
predictably manipulate the life cycle of targeted RNAs in this manner has already proved              
transformational in clinical trials for an FDA-approved ASO in patients with spinal muscular             
atrophy ​[23,24]​. ​SMN2 ​specific alternative splicing modifier, Nusinersen, significantly         
improves motor function and event-free survival of patients with spinal muscular atrophy            
[25]​. Eteplirsen, another ASO that induces exon skipping within the dystrophin gene, has             
also been assessed to be both safe and effective in patients with Duchenne muscular              
dystrophy ​[26]​. Several ASOs are currently being developed for genetic causes of ALS,             
including a first-in-human ALS ASO against ​SOD1 ​[27] and others against the intronic             
hexanucleotide repeat expansion in ​C9ORF72 ​[28]​. Furthermore, noting that the majority of            
ALS patients are sporadic, ASO-based therapy might be extended to modulate transversal            
biological pathways involved in the pathogenesis of ALS, including the aforementioned           
deregulated splicing events or RBP mislocalization directly. 
 
RBP mislocalization and nucleocytoplasmic compartmentalization 
 
The pathological hallmark in >95% of all ALS cases is nuclear-to-cytoplasmic mislocalization            
of the RBP TDP-43, where it becomes abnormally phosphorylated, cleaved and forms            
insoluble protein inclusions ​[29] (Figure 2). This occurs in all sporadic cases and in most               
familial cases, including those where protein function is not directly linked to RNA             
metabolism. However, ​SOD1 and ​FUS ALS-causing mutations do not generally exhibit           
TDP-43 mislocalization ​[30]​, thus representing a conundrum for ALS researchers striving to            
identify common mechanisms across the full ALS spectrum. This is further reinforced by the              
fact that patients with ​SOD1 or ​FUS mutations are largely clinically (phenotypically)            
indistinguishable from other forms of familial or sporadic ALS. To this end, we recently              
described 2 further molecular hallmarks in ALS: nuclear loss of RBPs SFPQ and FUS, which               
we found in human induced pluripotent stem cell (hiPSC) ​models and validated in both              
mouse transgenic tissue and human post-mortem tissue from sporadic cases ​[18]​[31]​. Of            
these hallmarks, nuclear loss of SFPQ was observed in all models studied, including familial              
(​VCP and ​SOD1 mutants) and sporadic tissue, and therefore seemingly represents a            
universal hallmark of ALS ​[18]​. Historical bias towards studying the constituents of            
aggregates themselves - rather than nuclear cytoplasmic ratio or the concentration of            
unaggregated cytoplasmic protein for example - likely explains why these findings have            
evaded detection until now. The importance of perturbed nucleocytoplasmic         
compartmentalization is exemplified by the fact that impaired FUS nuclear import correlates            
with the disease severity in ALS ​[32–34]​. Indeed, deletion of its nuclear localization signal              
(NLS) leads to dramatic FUS cytoplasmic mislocalization and an earlier age of onset ​[35]​.              
Two possible pathogenic mechanisms emerge from the nuclear-to-cytoplasmic        
mislocalization of RBPs: i) a nuclear loss-of-function causing aberrant pre-mRNA processing           
(e.g. intron retention, discussed above) or ii) a toxic gain of cytoplasmic function. Importantly,              
these mechanisms are not mutually exclusive and may occur simultaneously or sequentially            
in ALS pathogenesis. 
 
Perturbed cellular compartmentalization of molecular constituents (RBPs and/or RNA) also          
raises the important issue of nucleocytoplasmic transport defects. Nuclear transport          
deregulation is a common theme in the majority of ALS cases. Recognizing that ageing is               
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the major risk factor for ALS, it is noteworthy that cellular ageing also induces changes in                
nucleocytoplasmic transport. Protein complexes of the nuclear pore have long half lives and             
therefore will not be replenished in postmitotic cells such as neurons ​[36]​. Therefore, these              
cells become ‘leaky’ with ageing likely secondary to cumulative oxidative damage and            
structural dysfunction at the level of the nuclear pore ​[37]​. Likewise, the importin receptors,              
which transport NLS-containing protein cargo through the nuclear pore, are downregulated           
with ageing ​[38,39]​. Whilst evidence of a mechanistic relationship between ALS pathogenic            
events and ageing is emerging, ​nuclear-to-cytoplasmic mislocalization of TDP-43 in most           
cases together with other recent studies implicate perturbed nuclear transport. However, the            
temporal relationship between TDP-43 mislocalization, nuclear transport dysfunction, and         
neuronal loss remains unclear. An age-related defect in nuclear transport might cause            
mislocalization and cytoplasmic aggregation of RBPs ​[40]​. Indeed, ageing cells accumulate           
misfolded and aggregated proteins due to compromised protein homeostasis ​[41]​.          
Conversely, cytoplasmic aggregation of RBPs might drive a secondary defect in nuclear            
transport. In support of this hypothesis, accumulation of cytoplasmic aggregates (e.g.           
C-terminal fragments of TDP-43), cause a partial dislocation of nuclear pore complex            
proteins to the cytoplasmic inclusions ​[42]​. Of course these two possibilities are not mutually              
exclusive and may occur simultaneously or sequentially. Promoting nuclear import of           
mislocalized TDP-43, FUS or more generally stimulating the canonical nuclear import           
pathway mediated by the importin β family of proteins has beneficial effects in ALS models.               
Conversely, decreasing nuclear import of these RBPs results in neurodegeneration,          
reviewed in ​[43]​. Histopathological studies of ​C9ORF72​-associated patients have raised the           
hypothesis that dipeptide repeat (DPR) pathology may precede TDP-43 mislocalization ​[44]           
[45,46]​. In animal models, ​C9ORF72 hexanucleotide repeat expression leads to TDP-43           
nuclear loss and pathological aggregation in the cytoplasm. Therefore, therapeutic          
approaches correcting the deficits of nuclear transport may be an important consideration in             
ALS.  
 
The prospect of relocalizing RBPs to the nucleus as a therapeutic strategy might also be               
realized through pharmacological targeting of their post-translational modifications. For         
example, the C-terminal NLS of FUS is juxtaposed to an arginine/glycine-rich region where             
several arginines and the NLS together are recognized by karyopherin β2 (also termed             
transportin-1) to regulate FUS localization. However, ALS-associated mutations within or          
near the NLS alter it’s interaction with karyopherin β2 (either directly through the mutation or               
disrupted methylation). Arginine methyltransferase inhibitors have been shown to ameliorate          
the cytoplasmic mislocalization of FUS ​[47]​. It follows that factors associated with            
nucleocytoplasmic transport (e.g. nuclear importins or exportins, transport-partners) may         
represent tractable therapeutic targets. Indeed, overexpressing importin ​α, karyopherin β1 or           
β2 has been shown to decrease and even reverse aberrant fibrillization of TDP-43, FUS,              
TAF15, EWSR1, hnRNPA1, and hnRNPA2 through interaction with their NLS ​[48]​.           
Karyopherin β2 can also dissolve aberrant fibril-containing hydrogels, prevent the RBP           
accumulation into stress granules and restore nuclear localization of misplaced RBPs           
[49]​[50]​[51]​. ​S​elective ​i​nhibitors of the ​n​uclear ​e​xport receptor CRM1 (SINE compounds)           
have proved effective in ameliorating TDP-43 mediated locomotor defects in neuronal cells            
and animal models ​[52]​[53]​. However the effect on TDP-43 localization could not be             
reproduced when using a neuroprotective concentration by a subsequent study, suggesting           
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that RBP export from the nucleus operates through a more complex mechanism including             
CRM1-independent receptor-mediated or passive diffusion pathways ​[53]​[54]​[55]​. 
 
 
 
 
RBP aggregation - prion like characteristics 
 
RBP mislocalization from the nucleus to the cytoplasm is also associated with misfolding and              
cytoplasmic aggregation in ALS. Initiating events of this process possibly relate to            
deregulated liquid-liquid phase separation (LLPS). From the viewpoint of RBP aggregation,           
the ALS field has benefitted from studies in the prototypic protein misfolding disorders, the              
prion diseases. It is widely accepted that misfolded proteins underlie the cellular            
pathogenesis and cell-to-cell propagation in classic prion diseases by forming distinct           
conformations of amyloid cross β sheets, which then serve as self-templates recruiting            
native monomers to misfold. Indeed, analogous ‘seeding’ / propagation phenomena have           
been demonstrated experimentally for different ALS proteins including TDP-43 ​[56]​[57]​, FUS           
[58] and SOD1 ​[59]​. These experimental models usually rely on protein overexpression in             
non-human or non-neuronal cell lines. However, we have recently demonstrated seeded           
aggregation in hiPSC-derived motor neurons treated with serially passaged         
sarkosyl-insoluble extract from sporadic ALS post-mortem tissue. In this work, we also            
demonstrated that TDP-43 oligomers are at least part of the toxic principle in ALS ​[60]​. This                
raises the possibility of designing therapeutics that target these toxic oligomers. Broadly,            
three main strategies can be considered here: i) perturbing the formation of protein             
aggregates within the cell; ii) promoting their clearance from affected cells and iii) preventing              
their uptake into other cells. These approaches are discussed in more detail below. 
 
ALS-associated RBPs with prion-like domains, such as TDP-43, FUS, TAF15, EWSR1 and            
hnRNPA1, are prone to form pathological aggregates ​[61–65]​. Multiple studies have           
suggested that FUS, hnRNPA1, and TIA-1 can form dynamic liquid droplets ​in vitro ​that,              
over time, form more stable hydrogels and pathological fibrils, resembling the behaviour of             
protein aggregates in ALS ​[66–69]​[70]​. Protein aggregates observed in ALS are likely the             
consequence of overwhelmed cellular machinery coping with aberrant phase separation and           
protein misfolding. Therapeutic approaches to either enhance the endogenous regulation of           
RNP-granule disassembly or intervene in RBP recruitment to granules are therefore           
potential candidates in ALS therapy ​[71]​. These approaches essentially target aberrant RBP            
phase transitions, which may then play a key role in preventing pathological aggregation             
[72]​[73]​. Somewhat paradoxically, recent studies have suggested that blocking the formation           
of stress granules may actually facilitate pathological inclusion formation and/or toxicity ​[7,8]​.            
Taken together, it is clear that further investigation is required here. The precise             
consequences of stress granule formation are likely determined in a context-specific fashion            
by factors such as disease chronicity and cell type(s) involved. The aforementioned studies             
at least demonstrate that pathological inclusion formation can occur independently of stress            
granules but are likely the consequence of deregulated LLPS.  
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Heat shock proteins, or chaperones, can refold misfolded proteins into native functional            
conformations. Small molecules harnessing the disaggregase potential of heat shock          
proteins hold therapeutic potential for aggregate clearance. Arimoclomol (BRX-345), a          
potent activator of heat shock transcription factor 1 (HSF1), has been shown to increase the               
expression of Hsp70 and Hsp90, leading to reduced insoluble TDP-43 aggregate levels.            
Indeed, this compound has also shown promising results in the phase II trial in patients with                
rapidly progressive familial SOD1-ALS (NCT00706147) ​[74]​[75]​[76]​[77]​[78]​. Potentiated       
chaperones, such as engineered Hsp104, also bear real significance for therapeutic strategy            
by reversing ALS-linked TDP-43 and FUS aggregation ​[79]​[80]​[81]​. Small molecules that           
enhance endogenous chaperone activity in cells or the introduction of ​de novo ‘designer’             
chaperone proteins can effectively remodel misfolded proteins and maintain disaggregase          
activity to reverse aberrant phase separation ​[82–86]​. Additionally, specific kinases, such as            
DYRK3 and CK2, have been found to modify stress granule proteins and regulate granule              
disassembly ​[87]​[88]​[89]​. As the β-sheet structure of aggregates plays an important role in             
seeding capacity, TDP-43 seeding might potentially be abrogated by formic acid ​[89,90]​.            
Tafamidis meglumine (Fx-1006A), the only FDA-approved anti-amyloidogenic drug, is a          
potential candidate to test in preventing monomer misfolding and aggregation of TDP-43 in             
ALS ​[91]​. Several further compounds have been identified that decrease the aggregation of             
TDP-43 in stress granules through an acridine-imidazole derivative (AIM4), 4-aminoquinoline          
derivatives, copper complexes, and other compounds ​[92]​[93]​[94]​[95]​. Using ASOs or small           
molecule inhibitors targeting molecular seeding factors, such as ataxin-2 and PAR, are            
further therapeutic strategies to reduce aberrant phase transition in several ALS models            
[67,96–98]​. For example, using ASOs to downregulate ataxin-2 affected stress granule           
dynamics and decreased TDP-43 recruitment, which then improved the lifespan and motor            
function of ​TDP-43 transgenic mice ​[96]​. It is noteworthy that RNA can either function as a                
molecular seed of RBP-containing membraneless condensates or to counter aberrant phase           
separation, although the precise molecular mechanism(s) underlying these processes         
remain incompletely resolved. Recognition that a high concentration of RNA in the nucleus             
acts as a buffer to prevent RBP phase separation (e.g. FUS and TDP-43) may have               
therapeutic significance ​[99]​[7]​. Indeed, delivery or induced expression of particular RNAs           
can rescue RBP aggregation pathology. Specifically, a high concentration of ribosomal RNA,            
tRNA, and a noncoding RNA (​Neat1​) that is known to bind to FUS, have individually been                
shown to solubilize FUS droplets ​[99]​. Furthermore, the solubility of TDP-43 increases with             
delivery of its cognate single-stranded DNA (ssDNA) or RNA (ssRNA) ​[100]​, and            
overexpression of nontoxic short ​UGGAA repeat RNA can also suppress mutated RBP            
aggregation (TDP-43, FUS, and hnRNPA2B1) and toxicity in ALS drosophila models ​[101]​.            
On the other hand, blocking the RNA-binding ability of TDP-43 has been shown to enhance               
protein ​destabilization ​and ​ameliorate TDP43-dependent neurotoxicity ​probably through        
affecting transcripts encoding ribosome and oxidative phosphorylation components ​[102]​.         
Overall, the molecular ‘logic’ of how sequence specific RNAs can affect phase separation of              
particular RBPs is an exciting and intensely active field where much remains to be              
understood. 
 
The cellular ubiquitin-proteasome system and autophagy pathways are also responsible for           
clearing misfolded and aggregated proteins. Compounds stimulating autophagy can improve          
TDP-43 clearance and localization in iPSC-derived neurons and astrocytes ​[103]​.          
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Colchicine, a potent HspB8 inducer, can facilitate cellular autophagy to remove insoluble            
TDP-43 species, which now is under a phase II clinical trial in ALS (NCT03693781)              
[104]​[105]​. The mTOR pathway inhibits autophagy and inhibitors of mTOR (rapamycin,           
resveratrol, BECN1, or calpastatin) can induce protective autophagy and restore neuronal           
homeostasis, which have been modelled and trialled in ALS, Alzheimer’s disease and            
Huntington's disease treatments ​[106]​[107]​[108]​. However, there is some recognized         
concern over the efficacy of mTOR inhibitors in neurons, and so mTOR-independent            
autophagy activation may ultimately be a preferable strategy for the clearance of aggregated             
misfolded proteins in this context ​[109,110]​. Beyond the clearance of accumulated aberrant            
protein aggregates, prion-like protein propagation can be also prevented by blocking cellular            
release and/or uptake, and promoting the degradation of misfolded proteins in the            
extracellular space. There is a unifying chaperone-dependent mechanism for the release of            
pathogenic proteins in various neurodegenerative diseases. DnaJC5, a heat shock protein           
co-chaperone, has been found to be associated with the release of TDP-43, α-synuclein and              
Tau. Small molecule inhibitors preventing the interaction between DnaJC5 and other heat            
shock protein chaperones may hold therapeutic promise ​[111]​. There is also a unifying             
mechanism involved in cellular uptake whereby protein aggregates bind heparan sulfate           
proteoglycans (HSPGs) on the surface of recipient cells. Therefore blocking the HSPGs            
pharmacologically by adding a synthetic heparin mimetic may prevent cell-to-cell uptake           
[112]​, but the overall effect of such a strategy on cellular homeostasis is clearly an important                
consideration here. Developing vaccines and passive immunisation with antibodies to block           
misfolded proteins from spreading is also worthy of consideration. For instance, the            
development of vaccination or monoclonal antibodies against SOD1 has been shown to            
clear extracellular SOD1 mutant proteins, delay disease onset and prolong survival of ​SOD1             
transgenic mice ​[113]​[114]​[115]​. A note of caution, however, is required here when            
considering the multiple failed drug trials using analogous approaches for other           
neurodegenerative disorders such as Alzheimer’s disease ​[116,117]​. These studies         
together reinforce the importance of selecting tractable and high confidence therapeutic           
targets that are orthogonally validated across a range of models, and which carefully take              
into account clinical heterogeneity, phase of disease, toxicity, cellular and molecular           
pathophysiology together with careful trial design. 
 
The contribution of glia in ALS 
 
Ourselves and others have demonstrated that hiPSC-derived patient-specific astrocytes         
exhibit cell autonomous and non-cell autonomous pathology in ALS (Figure 3) ​[118–122]​.            
We have also recently demonstrated seeded aggregation in human iPSC-derived motor           
neurons and astrocytes when they are treated with serially passaged sarkosyl-insoluble           
extract from sporadic ALS post-mortem tissue. We showed that neurons are generally more             
vulnerable to this process compared with astrocytes. Additionally, we found that astrocytes            
are neuroprotective to seeded aggregation within motor neurons by reducing (mislocalized)           
cytoplasmic TDP-43, TDP-43 aggregation and cell toxicity ​[60]​. These findings raise the            
prospect of invoking this endogenous reparative potential as a therapeutic option. However,            
it is likely that this initial protective capacity is eroded as the disease progresses, with the                
astrocytes undergoing a deleterious pro-inflammatory reactive transformation, as suggested         
by recent studies ​[123]​[11]​. Indeed, neuroinflammation induced centrally by activated          
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microglia, astrocytes and infiltrating T lymphocytes is increasingly recognized to play a key             
role in ALS pathophysiology and in fact may possibly be a primary event preceding the               
neurodegeneration cascade, reviewed in ​[124]​. The importance of this inflammatory          
component in ALS is exemplified by mass spectrometry of human ALS plasma showing a              
significant increase of ficolin-3 which results in an increased complement activation potential            
[125]​. Some attributes of this deleterious glial reactive transformation can also be observed             
upon normal ageing ​[126]​. Clearly the ability to predictably manipulate astrocyte and/or            
microglial reactive states across this inflammatory continuum, back to being more           
neuroprotective, represents a large therapeutic opportunity for ALS (Figure 3).  
 
Several studies have focused on glutamate transporter EAAT2 expression and the           
glutamate uptake capacity of astrocytes, primarily because excessive glutamate stimulation          
can cause excitotoxicity in surrounding motor neurons. Translational activation of EAAT2           
(e.g. through compounds such as LDN/OSU-0212320) has been demonstrated to protect           
neurons from glutamate-mediated excitotoxic injury, which extended the lifespan of ​SOD1           
transgenic mice ​[127]​. Neuroimmunophilins (e.g. tacrolimus) also induced the expression of           
EAAT2 in astrocytes that protected motor neurons ​in vitro and prolonged the lifespan of              
SOD1 transgenic mice ​[128]​. However, two further studies where upregulation of astrocytic            
EAAT2 was achieved through HDAC inhibitors or β-lactam antibiotics (e.g. ceftriaxone) failed            
to show clinical efficacy in ALS, suggesting that restoration of glutamate uptake alone may              
not sufficient for ALS therapy ​[129]​[130]​[131]​[132]​. Targeting activation of astrocytes has           
been tested as a possible treatment in ALS. Anti-oxidative agent bromocriptine (BRC),            
cannabigerol quinone derivate VCE-003.2, or cyclic nitroxides (e.g. tempol), have reduced           
astrocyte activation, lowered the level of inflammatory factors (TNF-α and IL-1β) and            
improved motor function in transgenic mice ​[133]​[134]​[135]​. Glucagon-like peptide-1         
receptor (GLP1R) agonists, such as NLY01, have also been suggested as potential            
neuroprotective agents to inhibit the formation of deleterious reactive astrocytes through           
blocking the microglial activation ​[136]​. Another experimental drug, RNS60, has been shown            
to have anti-inflammatory and neuroprotective properties through inducing a protective state           
in astrocytes and microglia. RNS60 is currently in a phase II clinical trial (NCT03456882)              
[137]​[138]​. 
 
Cellular implantation is an alternative potential therapeutic consideration (Figure 3).          
Harnessing astrocytes as cellular material currently seems tractable as this bypasses the            
challenge of neuronal implantation (i.e. reconstructing highly complex connections over long           
distances between motor neurons and their distal muscle targets). Multiple clinical trials of             
cell transplantation have used neural progenitor cells to generate astrocytes and           
interneurons, which can release growth factors and/or reduce inflammation to protect           
surrounding motor neurons ​[139–142]​. Another study utilised human neural progenitor cells           
that had been genetically engineered ​ex vivo to produce glial cell line-derived neurotrophic             
factor (GDNF), a protein that promotes the survival of neurons and has proved beneficial in               
ALS rat models ​[143,144]​. Transplantation of the GDNF-secreting cells into the spinal cord             
of ALS patients is now in phase I/IIa clinical trials (NCT02943850). Another FDA-approved             
cell transplantation trial using highly purified glial-restricted progenitors is also planned ​[145]​.            
Notably, grafting human iPSCs-derived neural progenitor cells leads to astrocyte          
differentiation and improvement in the lifespan of rodents ​[146,147]​, indicating that human            
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iPSC-derived progenitors are a worthy source of cellular material for transplantation in ALS             
therapy. Cumulatively, astrocytes represent an underexplored therapeutic opportunity in ALS          
but different phases of disease may necessitate distinct therapeutic approaches.  
 
Concordant with the perspective that neuroinflammation is relevant to ALS, microglia are the             
immune-competent sentinels of the CNS and are activated in ALS especially around the site              
of MN degeneration ​[148–151] (Figure 3). Increased microglial pathology is associated with            
the severity of degeneration of upper MNs in the motor cortex and with disease progression               
[149,152]​. Studies using transgenic mouse models showed that the number of activated            
microglia increases during the ALS disease progression with phenotypic transformation from           
M2 anti-inflammatory to M1 pro-inflammatory microglial states ​[153–155]​. At the          
presymptomatic stage, microglia exhibit an anti-inflammatory profile with overexpression of          
IL-10 and attenuated TLR2 responses ​[156]​. During disease onset, ​the M2 markers Ym1             
and CD206 are upregulated in microglia. In later phases, microglia exhibit enhanced ROS             
production and secretion of inflammatory cytokines such as TNF-​α, IL-1, and IL-6, which             
coincide with a decrease in neurotrophic / anti-inflammatory factors such as IGF-1, IL-4, and              
IL-10, and the expression of high levels of NOX2, together considered an M1 phenotype              
[157]​[158]​. ​Isolated early disease stage M2 microglia enhance MN survival in co-culture,            
whereas end-stage M1 microglia are neurotoxic ​[154]​. ​Activated microglia also induce A1            
reactive astrocytes through secreting cytokines and other factors, including IL-1α, TNF and            
C1q ​[123]​. Microglia derived from ​SOD1 transgenic mice exhibit an upregulation of            
neurotoxic factors, consistent with the recognized non cell-autonomous effect of microglia in            
ALS pathogenesis ​[153,159]​. Ablating mutant ​SOD1 in microglia efficiently maintained tissue           
homeostasis and prolonged the survival in the same mouse model ​[160]​. Transplantation of             
wide-type donor-derived bone marrow to replenish microglia in ​SOD1​G93A​/ PU.1​−/− mice, a            
model unable to generate lymphoid and myeloid cells (e.g. CNS microglia), both slowed MN              
loss and disease progression ​[161]​. In a sporadic ALS-like mouse model expressing            
hTDP43∆NLS, ​reactive microgliosis was associated with pathological TDP-43 clearance and          
motor recovery ​[162]​. These data suggest that microglia have temporally-regulated dynamic           
roles in ALS disease progression.  
 
A potential therapeutic approach would be to maintain anti-inflammatory and neuroprotective           
functions of microglia (Figure 3). Nuclear factor-kappa β (NF-κβ) protein is upregulated in             
mouse models and ALS patients, which may play an important role in the regulation of               
microglial inflammation. Selective inhibition of NF-κβ signaling in microglia rather than           
astrocytes rescued MN loss ​in vitro and delayed disease progression ​in vivo by preventing              
pro-inflammatory conversion of microglia, while the constitutive activation of NF-κβ in           
wild-type microglia induced gliosis and MN death ​[163]​. Insulin-like growth factor           
(IGF1)-mediated suppression of NF-κB activation is a novel therapeutic avenue, as           
intrathecal injection of ​scAAV9-hIGF-1 in ​SOD1 transgenic mice at presymptomatic and           
symptomatic stages inhibited the inflammatory response and prolonged the lifespan of mice            
[164]​. Histamine plays a role in regulating the release of pro-inflammatory factors (e.g.             
TNFα, IL-6) from activated microglia partially through histamine H1 and H4 receptors and             
NF-κB signaling pathway ​[165]​. Clemastine (also known as meclastin), an histamine H1            
antagonist, can reduce microgliosis, modify microglial inflammatory parameters (e.g.         
downregulation of NOX2), and enhance MN survival ​[166]​. Cromolyn sodium treatment           
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increased MN survival and decreased the denervation of neuromuscular junctions in ​SOD1            
transgenic mice through inducing a shift in microglial activation states from pro-inflammatory            
to anti-inflammatory ​[167]​. In the same mouse model where inflammatory ​cytokine IL-1 was             
upregulated with the acquisition of a pro-inflammatory phenotype, treatment with IL-1           
receptor antagonist attenuated inflammatory pathology and extended survival ​[168]​. A recent           
study reported immunotherapy targeting poly-GA dipeptide repeat proteins in a ​C9ORF72           
mouse model vaccinated by ovalbumin-(GA)​10 can inhibit the activation of microglia and            
improve motor function ​[169]​. Colony stimulating factor 1 receptor (CSF1R) and the ligand             
(CSF1) regulate the proliferation and activation of microglia in ​SOD1 transgenic mice and             
treatment with a selective CSF1R inhibitor GW2580 rescued MN death, slowed down            
disease progression and extended survival ​[170]​. Masitinib, a selective oral tyrosine kinase            
inhibitor, which can prevent CSF1-induced microgliosis, cell migration, and the inflammatory           
response ​[171]​, is in a phase III trial (NCT03127267). Treatment of ​SOD1 ​transgenic mice              
with tempol can also reduce the level of microglial reactivity and, as alluded to above, the                
expression of pro-inflammatory cytokines (IL-1β and TNF-α) at the initial stage of symptoms             
and delay disease onset ​[135]​. Ibudilast, which can attenuate inflammation in the CNS by              
preventing the production of pro-inflammatory factors from microglia ​[172]​[173]​, is now being            
evaluated in two trials (NCT02714036, NCT02238626). 
 
There is accumulating evidence that oligodendrocytes also contribute to ALS pathogenesis           
(Figure 3). Degeneration of oligodendrocytes has been demonstrated in ALS mice before            
disease onset and observed in ALS patients, resulting in progressive demyelination in the             
motor cortex and spinal cord ​[174]​[175]​. Genetic deletion of mutant ​SOD1 from            
oligodendrocytes substantially delayed the disease onset and extended the survival of mice            
[174]​. Oligodendrocytes support axons of MNs partially through the transport of lactate,            
however the lactate transporter MCT1 in oligodendrocytes is reduced in ALS and associates             
with axon damage and neuron loss in mouse models and patients ​[176]​. In a zebrafish               
model, selectively expressing mutant ​SOD1 in mature oligodendrocytes induced disruption          
of myelin sheath and downregulation of MCT1, which resulted in MN degeneration ​[177]​. In              
a human co-culture system, oligodendrocytes derived from familial and sporadic ALS           
patients iPSCs induce MN hyperexcitability and death, while early downregulation of the            
misfolded SOD1 in progenitor cells resulted in MN rescue in all ALS cases (except samples               
carrying ​C9ORF72 repeat expansions) ​[178]​. A genome-wide association analyses with          
more than ten thousands ALS patients identified myelin-associated oligodendrocyte basic          
protein (MOBP) as a new ALS-related risk locus, the mutation of which may disturb the               
intercellular communication between oligodendrocytes and MNs ​[179]​. Taken together, glia          
represent attractive cellular targets in ALS and a better understanding of regionally encoded             
functional heterogeneity ​[180]​, glial-glial crosstalk and their interplay with ageing will be            
important to highlight further therapeutic opportunities. 
 
Conclusion 
  
Approximately 200 clinical trials examining drugs with varied mechanisms of action have            
been conducted across > 50 clinical research centres. However, no therapy to halt or              
reverse disease progression has been identified. Indeed in the UK only 1 approved therapy              
of modest efficacy (Riluzole) is licenced. Reasons underlying this failure in translation may             
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include over reliance on animal studies and/or non-human or non-neuronal models and            
possibly issues with trial design. Furthermore, in preclinical studies, the delivery of            
treatments has often been commenced prior to disease onset / establishment, which biases             
efficacy towards largely non clinically representative outcomes. Recognizing the phenotypic          
variability of ALS patients, treatment approaches would likely benefit from being tailored            
towards specific rates of disease progression. Against this background, accurately          
understanding cellular and molecular pathophysiology in human experimental models,         
validation of key phenotypes using orthogonal models and the establishment of universal            
biomarkers will be essential for guiding drug trials. These biomarkers will ideally indicate not              
only the presence of disease, but also the rate of progression and inform on pathogenetic               
subtypes of ALS to help target the correct therapeutic approaches to the correct patient              
cohorts. 
 
Expert opinion 
 
An integrated approach to modeling is crucial to yield high confidence findings of             
translational value by reducing inherent biases of each particular model system. Human            
iPSCs can be predictably manipulated into becoming any human cell type without the need              
for artificial overexpression or knock down ​[181–184]​, whilst faithfully recapitulating human           
cell type-specific properties of ALS ​[119,185–187]​. A recent important example here is            
aberrant splicing of the microtubule-associated stathmin-2 (​STMN2​) transcript caused by          
TDP-43 depletion in human neurons ​[16,17]​. Although hiPSC-derivatives essentially         
represent a fetal maturational state ​[188]​, strategies are now emerging to induce ageing or              
preserve ageing from the donor cell (reviewed in ​[189]​). It follows that primary discovery in               
hiPSCs and secondary validation in mouse transgenic models and human post-mortem           
tissue is a particularly powerful combination to identify promising candidates for further            
mechanistic / therapeutic evaluation (Figure 4). Such ‘cross-modal’ validation will yield           
candidates that may then be rigorously evaluated for their utility as therapeutic targets in              
relevant cell types. This approach can also be strengthened by moving beyond just motor              
neurons; indeed potential candidates should be shown to be at least neutral - but ideally also                
to exert a positive effect - in astrocytes, microglia and oligodendrocytes. It is worth then               
evaluating the drug in co-culture paradigms that can undergo stepwise increases in            
sophistication once cell autonomous effects are confidently established. Initial discovery          
science in hiPSCs also allows elucidation of the primacy of molecular pathogenic events in              
clinically relevant target cell types. This can be followed by only necessary ​in vivo testing.               
Such an integrated approach arguably helps to ensure relevance to human target cell types,              
whilst also reducing animal experimentation. Beyond evaluating the effect of one potential            
drug on multiple cell types (therapeutic and toxicity assays ​[185]​), we feel it is also crucial to                 
consider a poly-therapeutic approach where distinct salient mechanisms can be targeted in            
specific cell types by simultaneously employing different therapies.  
 
Neurodegenerative disorders including ALS have long been considered as protein misfolding           
diseases characterised by the formation of (cytoplasmic > nuclear) protein aggregation.           
Defective RNA metabolism is rapidly becoming acknowledged as playing crucial roles in            
ALS. The molecular mechanisms by which these defects in cellular homeostasis conspire to             
cause motor neuron degeneration is a key issue to resolve. Therefore it is our view that the                 
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most promising therapeutic approaches will consider targeting both deregulated RNA          
metabolism and protein dyshomeostasis. Implicit within this goal is to resolve both the             
primacy and relative contributions of defective protein homeostasis and RNA metabolism           
within different cell types and at different phases of the disease. Noting that ALS is an                
asynchronous disease, therapeutic intervention at the time of diagnosis may indeed lead to             
significant prevention of neurological disability. However, in order for this promise to be             
realized, we first need robust identification of cellular and molecular therapeutic targets,            
taking account of the spatio-temporal heterogeneity of ALS pathogenesis within individual           
patients. 
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Figure 1​. ​Aberrant splicing alterations in ALS. Loss of nuclear RNA binding proteins             
(RBP), including splicing factors, may lead to perturbed pre-mRNA splicing such as aberrant             
intron retention. Aberrant intron-retaining transcripts are exported to the cytoplasm, which           
may lead to mislocalization of their bound / cognate RBPs (e.g. SFPQ and FUS) from the                
nucleus to the cytoplasm in ALS. It follows that ASOs targeting aberrant splicing events              
might influence RBP nucleocytoplasmic distribution, but more experiments are required to           



demonstrate that these two phenomena are causally related. Figure created with           
BioRender.com. 
 
  
 
 
 

 
Figure 2​. ​RNA binding proteins mislocalization and aggregation in ALS. Defective           
compartmentalization of RNA binding proteins (RBP) leads to cytosolic accumulation and           
nuclear depletion in ALS, including TDP-43, SFPQ and FUS. RBPs can undergo liquid-liquid             
phase separation, however some RBPs abnormally form distinct conformations of amyloid           
cross β sheets and aggregates, inducing native monomers to misfold in ALS.            
Aggregation-prone RBPs can spread from cell to cell in a prion-like fashion. Therapeutic             
approaches perturbing protein mislocalization and misfolding, promoting the clearance of          
abnormally oligomerized proteins, or preventing the intercellular spread of these proteins are            
promising therapeutic strategies in ALS. Figure created with BioRender.com. 
 
 
 
  
 
 



 
Figure 3​. ​Glial involvement in ALS. ​Glia exhibit cell autonomous and non-cell autonomous             
neurodegeneration in ALS. As the disease progresses, astrocytes and microglia likely           
transition from an initial neuroprotective state to a toxic pro-inflammatory state in ALS with              
fewer neurotrophic factors and more neurotoxic factors secretion, such as inflammatory           
cytokines (TNF, IL-1, etc.), ​prostaglandin D2 PGD2 ​[122]​[190]​. Reduced expression and           
activity of the astrocytic glutamate transporter EAAT2 influences motor neuron excitability.           
Oligodendrocytes fail to support axons of motor neurons through the disruption of lactate             
transport and normal myelination. Upon ageing, glia-​specific genes, but not neuron-specific           
genes, shift strikingly their regional expression patterns. ​A viable therapeutic approach might            
be to invoke the neuroprotective capacity of astrocytes or microglia. Similarly, cellular (glial)             
transplants may be a tractable therapy in ALS by promoting survival of juxtaposed motor              
neurons. Figure created with BioRender.com. 
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Figure 4. ​Integration of models for ALS therapeutic study. An integrated approach for             
the discovery of high confidence therapeutic candidates for ALS. Patient iPSC-derived           
region-specific neurons and glia for primary discovery with mouse transgenic models and            
human post-mortem tissue for secondary validation to identify promising candidates for           
further mechanistic and/or therapeutic evaluation. Insights gained from ​in vivo studies are            
then used to improve or modify ​in vitro model systems to better portray the disease and/or                
focus on different targets. Figure created with BioRender.com. 
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