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The human sense of smell is powerful. However, the way we use smell as interaction modality in HCI is
limited. We lack a common reference point to guide designers’ choices when using smell. Here, we map out
an olfactory design space to provide designers with such guidance. We identified four key design features: (i)
chemical, (ii) emotional, (iii) spatial, and (iv) temporal. Each feature defines a building block for smell-based
interaction design and is grounded in a review of the relevant scientific literature. We then demonstrate
the design opportunities in three application cases. Each application (i.e. one desktop, two virtual reality
implementations) highlights the design choices alongside the implementation and evaluation possibilities in
using smell. We conclude by discussing how identifying those design features facilitates a healthy growth of
this research domain and contributes to an intermediate-level knowledge space. Finally, we discuss further
challenges the HCI community needs to tackle.
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1 INTRODUCTION
Consider a future where your nose has become as important as your eyes in reading this sentence.
Our sense of smell can help perceive information when our visual system is busy (e.g. visual
overload) or unusable (e.g. in darkness). Similar to visual and also auditory stimuli [110], scents
exist spatially. The presence of a scent source (i.e. a scent stimulus) and its diffusion can be located
in space (i.e. scented air volume) even if out of sight [103]. Moreover, it has been shown that scents
can convey meaning and complement visual information processing [101] and decision making
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(e.g. enabling cognitive shortcuts [20]). Above all, our sense of smell has a unique and robust link to
emotions, and may make experiences more memorable [21, 109]. Despite the sense of smell being
very powerful, its use within HCI is still very limited.

Within HCI, the use of scent for interaction and experience design is increasingly recognised (e.g.
[68, 74, 97, 104]). Most efforts are however directed towards the development of novel scent-delivery
devices (e.g. [1, 29, 32]) and the design of one-off application examples, such as the integration of
scent-based interactions into virtual and augmented reality (e.g. [104] and [93]), gaming [90], and
multimedia applications [43, 45, 89]. The most common motivation for designing with smell is to
create more immersive experiences, mainly referring to concepts such as the sense of presence,
immersion, and realism [3, 50, 64, 105]. In addition, we see attempts to study the effect of scent
stimuli on emotions (e.g. to reduce stress [2, 127]) and behaviour (e.g. reduce distraction, help
multi-tasking [52, 58, 82]). All those efforts demonstrate the desire of the HCI community to extend
interaction design beyond the audio-visual domain. Moreover, it underlines the opportunities that
our sense of smell provides application designers. However, to move the use of smell beyond one-off
interaction examples, we need to establish a common reference point that enables designers to
make informed decisions about the use of smell as interaction modality.
Based on a detailed literature review, drawing upon advances on our understanding of the

olfactory system in psychology, neuroscience, sensory science, and biology, we identified four key
design features for smell: chemical, emotional, spatial, and temporal. Those four features define the
building blocks for the olfactory design space we introduce in this article. We then discuss how
to navigate this design space by following a Design Space Analysis approach [81] that highlights
Questions, Options, and Concerns (Q-O-C) as key anchor points. This rationale-based approach
helped us to formulate specific questions linked to designing with smell and consider options
based on specific concerns we highlight for three application cases. The application designs and
evaluations include one desktop implementation (i.e. messaging system in a work context) and two
virtual reality (VR) implementations (i.e. time management game in VR, localisation task in VR).

In summary, the main contributions of our work are threefold: First, we identify four key design
features (i.e. chemical, emotional, spatial, temporal) that help map out the olfactory design space
for HCI and thus provide designers with a common reference point when designing with smell.
Second, we demonstrate the relevance of those features in the design process that includes the
implementation and evaluation of three application cases (i.e. one desktop and two VR applications).
Finally, we discuss how our theoretical and empirical exploration of smell as novel interaction
modality enriches the audio-visual design space in HCI and adds new intermediate-level knowledge
(i.e. bridging theory with practice) to the design of future smell-based interactive systems. We
conclude by accounting for design trade-offs and the need for further research to move smell
beyond its infancy state of today.

2 OLFACTORY DESIGN SPACE
Despite the complexity of the sense of smell (i.e. detection of chemicals in our environment), it is
astonishing how well humans can react to and act on scent stimuli. We intuitively interact with the
environment and the molecules in the air, making decisions beyond pure hedonic discrimination
(i.e. pleasant/unpleasant scents). Scent can increase the saliency of an object and can facilitate its
recognition and categorization [20]. For example, smelling coffee causes the mental representation
of coffee to be activated. This can lead to a desire for coffee, or, with the implicit association between
coffee and breaks, motivate us to have a break. At the same time, information delivered by scents
can go beyond simple association and activate an instinctual behavioural reaction. For instance,
recognising danger in the scent of gas (i.e. the smell of ‘sulphur’) triggers our survival instinct [67]
and promotes actions to protect ourselves (e.g. open a window, leave the room).
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Fig. 1. Mapping out the Olfactory Design Space based on four key features (i.e. chemical, emotional, spatial,
temporal) extracted from a systematic literature review on smell as future interaction modality in HCI.

The olfactory system has an eminent importance in classifying scents into the food or non-food
category [7]. Apart from distinguishing edible sources, the availability of food (e.g. scent of freshly
baked bread in western cultures), also triggers the human survival instinct and attracts us towards
the source of the scent (e.g. salivation [7, 17, 73]). This instinctive behaviour does not necessary
mean that we are at the edge of starvation, but it is a biological behaviour, automatic reaction to
scents. It has been further shown that good and bad scents are associated with different reaction
times (e.g. unpleasant food scents are detected faster and more accurately than scents of other
categories, see [7]). Moreover, there is growing research into gaining a deeper understanding of
the organisation of neural circuitry that mediate scent aversion and attraction [79].

It is increasingly acknowledged, based on scientific studies from various disciplines (e.g. psychol-
ogy, neuroscience, sensory science, biology) that the sense of smell is more important in humans
than generally accepted [70, 85, 111]. That in turn suggests that the sense of smell has played a
large role in the evolution of human diet, habitat, and social behaviour. While the sense of smell
gained lots of attention and resulted in groundbreaking new insights in other disciplines (mentioned
above), within HCI we have only just started to explore its possibilities. In this article we promote
a stronger emphasis on the sense of smell for interaction and experience design. To support that
aim and explore this emerging design space, we first need to establish the necessary foundations
to guide our design decisions. Hence, in the following sections, we present an overview on four
key features of the sense of smell. We describe each feature and its relevance for HCI from a
user-centred perspective. In other words, we explain the human sensory and perceptual capabilities
underlying the four features: Chemical, Emotional, Spatial, Temporal (see Fig. 1). The four features
are described individually, but it is worth noting that they are interlinked with each other, which is
further illustrated in the design and evaluation of three application cases (see section 4).

2.1 Chemical Features
Scents are mixtures of chemical compounds in the air that have an effect on
humans as a result of binding to olfactory receptors in the nose [13]. From
a chemical point of view, we can characterize scents by their physical and
chemical properties, including their molecular structure, functional groups,
molecular weights, diffusion constants, vibration spectrum and molecular
concentrations [6, 10, 12, 71]. These characteristics can be used to predict
binding and hence sensing of scents by the olfactory receptors in the nose.
Several models have been proposed to explain the chemical and physical

properties of scent (e.g. ‘lock and key models’ [11], vibration theories [72]), however with no final
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agreed approach to date. Within this article and with respect to the relevance of those chemical
features for HCI and design, we focus on the specific act of ‘smelling/sniffing’.
Our nose, the key organ for smelling, allows us to sense chemical molecules that exist in the

environment. These molecules are called odorants [131] — for simplicity we refer to them as scents.
Scents are a mixture of these volatile molecules [13, 131]. However, scent detection is only one
part of an olfactory experience. The olfactory system completes the scent decoding process (i.e.
sniffing action) by generating the appropriate internal representations in the brain, based on the
associations related to the scent. In other words, scent-associated representations are based on
a process of scent detection, decoding, and processing, which will ultimately define the users’
experience [67]. This process can either be based on a conscious perception of scent stimuli (e.g. I
know there is the scent of coffee) or happen sub-consciously (e.g. I feel the need for a break but
not consciously perceive the coffee scent). Even if we are not conscious of a scent in the air, it can
still have a profound influence on our behaviour [111] (e.g. body odors [42, 46]). Sub-conscious
stimulation is also referred to as under-threshold stimulation [117]. Prior research has investigated
the brain responses to sub-threshold stimulation and has shown that subjects presented with an
odor at sub-threshold concentrations show lesser activation in the insula than subjects for which
the odor – at the same concentration – is above detection threshold [55]. This leaves space for
further investigations into the underlying neural mechanism, but at the same time inspires new
design explorations (e.g. to influence a persons mood and cognitive performance, see [1]).
Overall, chemical sensing and processing are very complex processes and still hold a lot of

unanswered questions, scientists in different disciplines tackle (from genetics to psychology [70, 72]).
Here, we note the potential impact on design thinking in HCI moving beyond traditional modalities
and the semantically rich interaction opportunities around scent stimuli.

2.1.1 How to select scents? When thinking about using scents, the selection of the appropriate
scent stimuli is a critical first design decision to be taken. In contrast to other human senses (e.g.
primary colours, basic tastes), we cannot rely on "primary scents". The lack of knowledge about
the description and classification of scents for HCI has often resulted in arbitrary choices of scents,
with no underlying formalisation of the scent-experience relationship [97].

There have been attempts to classify scents based on their chemical properties. Dravnieks [36]
created the Atlas of Odor Character Profiles, a collection of 160 chemicals and mixtures that were
rated based on input from trained panelists. While this dataset provides a valuable starting point to
advance the research in the science of smell, it remains less accessible for design due to a lack of
subjective descriptors of the olfactory experience. Another attempt, comes from Koulakov et al. [75]
who analyzed and characterised mono-molecular scents into a set of 146 perceptual descriptors in
a multidimensional sensory space. The results of this analysis showed how these mono-molecular
scents can be classified into a two-dimensional space related to physio-chemical properties. It did
so without eliminating the complexity related to human olfactory receptors. The first dimension
represents the pleasantness or perceptual valence of the scents. The second dimension may be
interpreted as a crossmodal correlation between scents and sound representations (e.g. lemon is
high-pitch) [18]. This classification moves us closer to some of the recent explorations of scent
stimuli in the context of crossmodal associations [9]. Other approaches include scent classifications
via chemical receptors and neural structures, and also via cognitive association [15, 65, 91, 92, 106].

All these attempts are gradually advancing our language of smell from a chemical to a perceptual
lens but require additional efforts to also reach the experiential dimension, that is so relevant
in the context of HCI and interaction design [97]. It is worth noting, that we can see increased
efforts especially within the multimedia community to investigate the users perceived experiences
of olfaction-enhanced multimedia applications (e.g. [44] [89][88]). Those works help establish
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evaluation criteria and guidance on the integration of scent into applications and their effect on
users quality of experience (QoE). Those efforts further discussions towards the standardisation of
sensory effects (e.g. MPEG-V Sensory Information standards) [88].

Across all above described research efforts on classifying scents, the main aim is to guide a more
systematic selection of scents in order to ultimately guide the design of reliable novel interactions
and experiences. One of the biggest stumbling blocks, to date, is that there is a gap between
the chemical, perceptual, and experiential classification of scents for design. We lack subjective
descriptions of olfactory experiences that a designer could refer to, as they do when talking about
colours and sounds. Therefore, designers are currently best supported through descriptors that
capture the emotional "valence" and "arousal" dimensions [16] and the perceived intensity of a
stimulus [68, 69], which can be further mapped towards users’ experiences (see section 2.2 on
Emotional Features). Moreover, we can draw upon a rich and growing literature on crossmodal
correspondences [118] and apply those mappings between scents and shapes [48, 62], scents and
colours [22], and scents and touch [23] in the design of interactive applications (e.g. to convey
information [101]). While such correspondences have been shown to be valid across cultures, it
is however, important to carefully consider any cultural differences for the specific context and
interaction one is designing for (see Criteria, in the Q-O-C analysis framework).

2.1.2 How important is scent intensity? Closely linked to the choice of scents is also the perceived
scent intensity. Recent studies have shown that it is possible to predict, with high accuracy, odor
intensity and pleasantness from their chemical features [71]. Those predictions gain further mo-
mentum through advances in artificial intelligence (AI) (see [108, 121]), with the potential to benefit
smell-based design, especially when integrated with emerging olfactory toolkits that account for
scent intensity (e.g. [83]

The scent intensity can modify the user’s experience and impact the perceived hedonic properties
[14]. While some scents are known to have a different intensity (e.g. lavender is perceived much
more intense than the scent of rose [31]), their perceived intensity can be further influenced through
the chemical concentration (e.g. dilution and mixing of scents), the duration of the scent exposure
and adaptation [131], and the chemical sensitivity [37]. The latter can bemeasured through olfactory
self-assessment questionnaires [94] and standardized tests such as the Sniffin’ Sticks test [41, 56]. In
a recent effort to capture more perceptual data, including intensity ratings, odorant booklets were
created using a scratch-and-sniff approach [116]. This approach allows to reach a large sample
size (over 10.000 people in [116]). Such efforts are in line with recent work on the development of
a new olfactory test (i.e. SMELL-S and SMELL-R - see [54]) to facilitate smell testing in different
populations, without the need to adapt test stimuli to account for differences in familiarity with
the test odors [54]. Those advances in measurement approaches in neuroscience and neurogenetics
are very promising, and will in the long-term provide HCI with reliable frameworks to design
personalised interactions. However, for the time being, until those new approaches are further
validated and automated, a key measurement of scent intensity are self-assessment scales (e.g.
‘olfactory assessment test’ [94]). Moreover, prior work informs us about the differences in olfactory
sensitivity based on gender (e.g. females are more sensitive than males [34]), age (e.g. decrease with
increased age [35]), and cultural background (e.g. [33, 77]), which need to be taken into account for
smell-based application design and evaluation.

In summary, apart from accounting for individual sensitivity differences, the scent intensity can
be determined through changing the chemical concentration of a scent, controlling and adjusting
the scent-delivery parameters of a delivery device (e.g. timing, duration of delivery). Moreover,
a designer can select a different scent with a similar association, but with a different intensity
to account for individual differences and preferences (e.g. both rose and vanilla are perceived as
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low intensity scents and both are associated with relaxing experiences, but vanilla has a stronger
intensity [4, 28]). For further references on scent intensity and dilution approaches, see [63, 100, 102].
The scent intensity can also be modified through both the temporal and spatial properties (e.g.
delivered from a greater distance, in pulses — see section 2.3), and can vary depending on the
selected scent as discussed in the previous section. Beyond the choice of scent and the importance
of scent intensity, there are further considerations relevant when designing with scent.

2.1.3 What can designers do with scent stimuli? Scents do not just exist in their chemical form
described above, but also come with a specific meaning/semantics. Such a semantic link is either
‘learnt’ through natural associations, for instance linked to the source of a scent (e.g. banana scent
is associated with a ‘banana’), or is a newly ‘trained’ association (e.g. specific perfume is associated
with my ‘husband’). This definition is based on literature in psychology and grounded in the basic
understanding of smell as chemical sense. For example, a banana smells like a banana because it
contains the same chemical components across countries and cultures [131]. The first time a person
is smelling a banana and someone defines it as a banana, a natural ’learnt’ association is established.
This is true for any other object/item found in nature with a scent. In contrast to those ’learnt’
associations, ’trained’ associations do not naturally occur in nature, but are based on training. This
is comparable to colours, lights, numbers, tastes, etc., that we can learn. We can even establish
arbitrary associations to convey meaning or specific information. For example, at some point in the
history of transportation, it was agreed that red is associated with stop, while green is associated
with go. Similarly, one can think of scent-associations in the same way, as we will illustrate in our
application case 2, where we trained participants to associate a specific scent with a particular
person. The human ability to recognise and recall naturally learnt and trained scent-associations
provides HCI with a rich design explorations [67].

Being able to design for those scent-associations enables cognitive shortcuts, which are closely
connected to the conscious and sub-conscious perception of scents [20]. This is particularly relevant
as humans have limited computational and cognitive abilities [113, 114]. Rather than scrutinising
all available information, users often induce information from contextual factors and/or their
emotions. This information is then used for cognitive shortcuts in order to simplify a decision
process. Kahneman [66] defined this process as ‘effortless intuition’. Hence, scent stimuli can
help users in making decisions under multi-tasking (e.g. prioritising actions) and dealing with
disruptions (e.g. phone calls, emails, social media feeds). In particular, trained scent associations can
help users to formulate better hypotheses about the potential outcome of actions, and consequently
make better decisions [52, 58, 70].
In summary, as highlighted by Shepherd [111], there is still lots to be understood about the

sense of smell, from its basic chemical/molecular structure to the perceptual effects, and underlying
neurological mechanism. But there has never been a better time to think of smell from a HCI
perspective, as we can build on the vast richness of knowledge emerging over the last decade. All
this newly gained insights further tie in with the relevance of smell in relation to human emotions.

2.2 Emotional Features
When the olfactory receptors in the nose are stimulated, they transmit im-
pulses to the brain. This neural pathway is directly connected to the limbic
system [21], the part of the brain that deals with emotions. That’s why reac-
tions to scents are rarely neutral — we usually like or dislike a scent. While
there can be cultural differences in the perceived valence (if it is perceived
pleasant or unpleasant), hence a scents hedonic effect, there are cross-cultural
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commonalities especially linked to trigeminal scents, that are generally ac-
cepted as bad and painful across cultures [40, 61]. We believe this is an

important addition to be considered based on scents chemical properties alongside the cultural
consideration of hedonic discrimination of scents.

The sense of smell is often defined as an emotional system [21]. The emotion-eliciting effect of
scents is typically linked to childhood memories (see [129, 130]), and is closely linked to specific
events, places, people, and activities [7, 73]. Obrist et al. [97] showed, for instance, that personally
memorable smell experiences are mainly linked to past events, people, locations, and specific times
in their life (e.g. wedding, grandmothers’ chocolate cookies). The emotional link to scent stimuli is
important for HCI as it suggests the relevance for recall and recognition. Indeed, past research has
shown that scent affects the recall of target objects with the same accuracy as verbal, visual, tactile
and auditory cues, but with a stronger connection to memories [51]. Thus, information recalled
through scents can go further back in time (e.g. childhood memories).

Scents can also be used to increase the salience of an object (i.e. make something stand out and
attract user’s attention) and thus facilitate recognition and categorisation of an object due to the
perceptual fluency [100, 115]. The salience can be increased through carefully selecting the scent
based on their emotional (hedonic) effect. For example, the field of sensory marketing makes use of
those hedonic effects in product design in order to reinforce the ties between users and products,
brands, and services [17, 86, 87, 109, 120]. Within HCI, designing for the emotional dimension
of scent gained attention in the context of gaming and multimedia experiences (e.g. [45, 89, 99]),
enhanced-art experiences [123] and for the creation of more immersive and realistic VR experiences
[104]. Those uses were however often based on researchers’ best guesses. Here below we highlight
some of the key questions (Criteria, in the Q-O-C analysis framework) to consider with regards to
the emotional effects of scents.

2.2.1 Which emotions are linked to which scents? Different scents can elicit different emotional
reactions that can be simplified with respect to their perceived valence (i.e. pleasant-unpleasant) and
arousal (i.e. calming-arousing). Emotional scent classification frameworks proposed in psychology
and neuroscience studied this emotional effect further, for example by linking the arousing and
relaxing effect with the neural system (e.g. [122, 127]), or by describing the effect of scents for
inducing happy or sad emotions (e.g. [26, 122]).

Most relevant for HCI is the work of Chrea et al. [16] who investigated the link between scents
and emotions, based on which they generated the ‘Geneva Emotion and Odor Scale (GEOS)’. GEOS
is a useful tool to measure users’ emotional reactions to scent stimuli in the form of a standardised
questionnaire. However, the scents are rated using semantic attributes representing an emotional
response (e.g. sensual, revitalized, dirty), which can induce linguistic and cultural biases [78]. Non-
verbal tools, such as the sensual evaluation tool (SEI) [59] could provide alternative approaches
to explore the user’s emotional reactions to sensory stimuli (e.g. as done for taste [95] or inspired
work on scent-shape associations [62]).

2.2.2 What else can designers do with scent stimuli? In addition to building on crossmodal cor-
respondences, a series of studies have investigated those associations through the lens of their
emotional effect (pleasantness-unpleasantness). These studies have investigated how the emotional
reaction to a scent is modulated through the scent’s integration with, for instance, specific musical
notes, geometrical shapes, colours, or tactile stimuli (e.g. [18, 23, 25, 48]). Exploring crossmodal
factors designs will allow designers to consider scent through another sensory feature (e.g. high
pitch sounds coupled with a lemon scent will create an arousing experience) and thus explore novel
interactive experiences that go beyond arbitrary mappings and uses (i.e. ‘best guesses’) of scent
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in application designs (e.g. scent-visual associations for driving-relevant notifications [82], body
image perception influenced by scent-sound associations [9]).
As stated at the beginning, each of the four key factors are interrelated. Moreover, both the

chemical and emotional features, discussed so far, are further modulated by the spatial and temporal
features of scent stimuli, discussed below.

2.3 Spatial Features
Scent stimuli convey spatial information including place, orientation, and
movement in physical and virtual spaces. Similar to visual and auditory
stimuli [110], scents exist in space. The presence of a scent’s source (i.e. scent
stimulus) and its diffusion in space (i.e. scented air volume) can be located
even if the source is out of sight [103]. Sensorial cues in general are naturally
used to direct a person’s attention in space [107]. Scent - in particular its
emotional value - modulates spatial attention (e.g. being attracted towards
a source linked to a pleasant scent) [107]. The spatial information carried by

scent also works on conscious and sub-conscious levels. For example, a scent perceived consciously
or not may trigger us to change the path we walk (as a navigational feature), or bring our attention
to a specific source (e.g. motivate us to search for the source of a pleasant coffee or pizza scent)
[107]. Porter et al. [103] showed that humans can navigate a space by scent tracking. Recently,
Jacobs et al. [60] showed that humans can navigate a given space through scent by following an
olfactory grid, that is, a map constructed from chemical stimuli.

The ability of scent to enable spatial and attentional interactions could be beneficial in the design
of not only virtual but also real environments where other sensory information (e.g. auditory cues)
are obstructed [27, 76]. The latter could be particularly relevant in the design of sensory substitution
devices augmenting current navigation systems for people with visual impairments [47]). Sighted
people can also benefit from scent as an alternative navigation medium that allows them to keep
their eyes on the path and still hear their surrounding (e.g. honking car, other peoples’ voices).

2.4 Temporal Features
The temporal features concern the scent delivery (e.g. timing, duration, fre-
quency) and users’ habituation to scent stimuli [10]. When controlling tem-
poral features, we need to account for the effect of the spatial features (reach-
ability) and chemical features (perceivability) of the scent stimuli, together
with the capabilities of the scent-delivery device (see an overview of scent-
delivery devices in [88], comparison in [32]). Moreover, the habituation effect
(also referred to as scent adaptation) causes a decrease in the perception
of a scent or scent intensity over time [14, 39]. It is worth noting that the

magnitude of the habituation correlates with the scent’s concentration and the emotional reaction
to scent stimuli [19]. Scents can habituate differently depending on their perceived pleasantness or
unpleasantness [37].
Independently of the scent-delivery device used, repeated presentations of unpleasant scent

stimuli reduce the emotional saliency due to a habituation effect (i.e. reduces feeling of disgust)
[19]. A recent study demonstrated that habituation, in particular the decrease in neural activity due
to smell decoding, is not only related to repeated smelling of negative scents, but also to repeated
smelling of positive scents [37]. These findings are in line with a pioneering work by Cain and
Johnson in the late 70s [14] that suggested how repeated exposure can shift the pleasantness ratings
of scents towards neutrality (also referred to as affective habituation). In other words, frequent
repetition of a pleasant scent typically decreases perceived pleasantness; conversely, repetition of
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Fig. 2. Navigating the Olfactory Design Space based on the four key features applying the Design Space
Analsysis - short Q-O-C framework composed of Q-Questions, O-Options, and C-Criteria. We demonstrate
the use of the Q-O-C framework in the design, implementation, and evaluation of three application cases
including one desktop and two VR applications.

unpleasant scents decreases perceived unpleasantness [37]. These particular aspects highlight the
close interrelationship between the temporal and emotional features.
Apart from habituation, the user’s experience is impacted by the lingering of a scent stimulus.

Lingering is often referred to as the ‘liveness of the scents’ [37] in time (how long the scents stay
in a space). The lingering effect of a scent can lead again to scent habituation and potentially to
scent contamination (i.e. mixing of scents) when using multiple scents in an interaction scenario.
While some of the lingering effects are caused by the scent-delivery device (see [8] [32]), lingering
can also be accounted for and controlled through the scent’s intensity (e.g. dilution of the chemical
components, choice of different scents — see more in section 2.1 on Chemical Features). Most
notably, less intense scents are less residual (e.g. lavender will linger longer than rose) [19].
In summary, within this section we provided an overview on the four key features that help

define the design space for smell. The literature on this topic is continuously growing spanning
various disciplines, lately also focused on linguistic descriptions of smell (e.g. [57, 84]), which
provide additional input for the emotional features described in section 2.2. Next, we discuss how
we can navigate this emerging design space from an HCI perspective.

3 NAVIGATING THE DESIGN SPACE FOR SMELL
In the previous sections, we described the state-of-the art knowledge around the human sense
of smell and described four key features around scent stimuli (i.e. chemical, emotional, spatial,
and temporal). We now focus on the question of how to use these features in the actual design
of smell-based interaction. In other words, we will illustrate how to navigate this emerging smell
space for novel interaction design. In Fig. 2 we show an overview on the four features which are
considered in the design, implementation, and evaluation of three application cases (see section 4).
For each application case the design choices are reflected back against the Q-O-C framework which
is part of the Design Space Analysis approach [81]. All taken together, enables an illustration of
how theoretical knowledge about smell (i.e. the Features) is used in specific design instances.
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Depending on the specific design purpose of each application case, the Q-O-C framework empha-
sizes how designers can think about and navigate the smell design space and make informed design
decisions. The framework provides a network of questions a designer needs to ask (Q-Questions),
the possible solutions and alternatives to the questions (O-Options), and the underpinning reasons
for a final design decision (C-Criteria). Following this design thinking process will, in the long-
run, enable us as HCI community to move from single application cases to a rich ecosystem of
smell-based applications and the creation of novel interactions. Using the Q-O-C framework aims
to make design choices transparent, and thus allows other designers and researchers to reproduce
designs as well as vary design choices according to their own explorations. Within this process,
the four features are the key common building blocks.
Within the following sections we describe the design, implementation, and evaluation of three

application cases. Each application case is cast in terms of the Q-O-C design framework. For each
application case, we conducted a controlled experiment to investigate the specific effect of scent
on the user’s interaction, performance, and experience. It is worth keeping in mind that other
factors, such as individual differences or crossmodal interactions, need to be taken into account
when designing the specific application cases.

4 APPLICATION CASES FOR NOVEL INTERACTIONS BASED ON SMELL
In this section we present each of the three application cases with respect to the Q-O-C design
framework, the specific test case implementation, the study design, set-up, and results.
Each of the three application cases was conducted in different moments across a six-months

period. The participants’ recruitment was based on a snowball sampling approach and the usage
of the university’ Sona recruitment system. Participants were asked if they took part in any
previous experiment involving scent stimuli in the last year. Less than 15% of the overall sample
had previously participated in studies involving smell. The probability of the same participant
being involved in the same study across time is low and, in any case, irrelevant for the aims in each
of the three application cases, as they are very distinct in the specific tasks. All the information
about participants are stored anonymously with reference numbers using a participant’s identity
number according to the obtained ethics approval.

Across all three application cases, we used a custom-built scent-delivery device (see Fig. 3) that
was adjusted for the different settings (see more details in each of the application case descriptions).
The scent-delivery device is electrically controlled and composed of 6 electromechanical valves
(Solenoids) that regulate the air passage (on-off) from a tank of compressed air. The clean pressurised
air splits into individual channels, each passing through an electric valve and arriving to one of
the small glass bottles (six in this set-up) that contain the scent stimuli (i.e. natural essential oils,
off-shelf products from Holland & Barrett Retail Limited). The air supply pressure for the device
can be set to a constant supply value between 0.5 and 3 Bar through an air regulator.
The output of scented air reaches the participant either through a 3D-printed merging nozzle

(output diameter 1.5mm, in application case 2) and through a single tube (output diameter 2mm,
in application cases 1 and 3). The output can be positioned at an adjustable distance from the
participants’ nose (e.g. positioned on a table for a Desktop application or mounted on a tripod in a
VR set-up). A detailed description of the device can be found in [29].

Ethics approval for all three application case studies was obtained from the University’s Ethics
Committee. Each participant provided written consent to participate in the experiments. None of
the participants reported any olfactory dysfunctions and had normal or corrected to normal vision.
Details for each individual study design and procedure are provided in the following sections.
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Fig. 3. Visualisation of the scent-delivery device used across all three application cases. (1) air-tank, (2)
air-filters, (3) electric valves, (4) Arduino board, (5) PC, (6) glass bottles with the scents, (7) one-way valves,
and (8) 3D printed output nozzle. More details on the technical details of the device can be found in [29].

4.1 Application Case 1
For our first application case, we developed a time management game (Birthday Box Factory - BBF).
BBF is based on the existing Cooking Fever game, in which players complete food orders as quickly
as possible. However, in our implementation we replaced food with gift items (see Fig. 4) in order
to avoid any confusion with food smells. We chose to implement this game in VR to maximise the
user’s immersion in the task. The user was exposed to different stress levels (low and high).

Using smell in this interaction scenario aimed to modulate the stress induced through the game
exploiting mainly its calming effect of scents (linked to the Emotional Features of smell). Moreover,
from the chemical features described in the previous sections (see section 2.1.3, "What can I do
with scent stimuli?"), we know that scent can help in the decision-making process when engaging
in multiple actions. In summary, the aim of this design case was to test the effect of smell on the
user’s performance under stress.

4.1.1 Q-O-C design analysis. One of the first questions a designer needs to ask is which scent to use,
depending on their design aim. Based on our analysis of the olfactory design space we know that
scents can have different effects on the central neural system. In simple terms, scents can be either
arousing or relaxing (see Section 2.2, Emotional Features). For this specific application case we
wanted a relaxing scent that reduces the stress of the user and helps improve the user’s performance.
Rose, rosemary, and lavender are suggested in the literature as being relaxing [122, 127], and hence
provide the designer with different options to consider in the implementation of a smell-based
application.

We selected lavender due to its relaxing effect but also to ensure the perceivability of the scent in
our VR implementation. Lavender is recognized to have a higher scent intensity compared to rose
for instance [31]. In our research we build on this work. We further selected the air pressure (i.e.
1 Bar) of the scent-delivery device (Fig. 3) and the scent quantity (i.e. 2.5g of 100% pure lavender
essential oils) with respect to the participants’ distance from the delivery point (i.e. 1 meter), based
on the previously established perceived intensity of lavender using the same scent delivery device
[31]. The scent stimuli were delivered in pulses (i.e. duration of 5s, repeated 3 times with an interval
of 10s between deliveries) in order to avoid habituation due to multiple exposures throughout the
interaction.
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Fig. 4. Left : The items, box, and an example of BBF game order to complete. Right : The BBF’s virtual space.
The player was standing in the centre of a 1×1m space with a 360°view of the gameplay items for each tray.

4.1.2 Study design. The study followed a within-subjects design with two scent conditions (i.e.
lavender scent and no-scent), two levels of stress (i.e. low and high), and two repetitions. In total
each participant played eight rounds of the BBF game with two rounds of the game without any
time restrictions and without any scent, for a total duration of approximately 40min. The low-stress
condition required ten orders to be completed in 2min, while the high-stress required 18 orders in
2min. The order of the conditions of induced-stress and scent were randomised across participants.

We measured the player’s interaction performance through their accuracy in completing orders
under a high-stress condition. Accuracy was measured with respect to the amount of irrelevant
actions performed in relation to the ideal procedure in completing an order. Each order has a
definable number of required actions and critical steps, which describes the optimal solution. For
example, the user has to prepare three stars and one red balloon. If the user wrongly takes the blue
balloon or the red ball then these actions are considered irrelevant actions. Thus, the number of
irrelevant actions is the measure for accuracy. The low-stress condition was used as a control to
test the effectiveness of the stress manipulation.

The scent-delivery output was mounted on a tripod at a height of 1.5m. The scent was delivered
(5s, repeated 3 times with 10s of interval) when the first order instruction appeared (relevant for the
Temporal Features, see details about the scent-delivery device in Fig. 3). The scent was perceived
after 7s of receiving the order instruction. The main hypothesis was that the addition of a scent
(lavender) based on its pre-defined emotional effect, would increase the player’s performance (i.e.
accuracy) in a stressful situation in the game.

4.1.3 Study results. Fourteen participants volunteered for this study (Maдe = 26, SD= 4.36, 4
female). A repeated measures ANOVA showed a main effect of stress level on participants’ accuracy
(data normally distributed [112]), F(1, 25)= 15.72, p< 0.01, η2 = 0.70, Mlow−str ess = 1.80, SD= 1.4,
Mhiдh−str ess = 3.98, SD= 1.9, but no main effect of scent (p> 0.05), and an interaction between scent
and stress level on participants’ accuracy (F(1, 25)= 5.67, p< 0.05, η2 = 0.65). Pairwise comparisons,
Bonferroni adjusted, showed that the lavender scent significantly reduced the number of irrelevant
errors compared to the no-scent condition in the high-level induced-stress condition (p< 0.05) (see
Fig. 5).
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Fig. 5. The mean scores of participants’ irrelevant actions in the game under high-level stress. Error bars,
s.e.m., ∗ p < .05.

In this application case we showed that a carefully considered scent-interaction design can
positively impact the user’s performance in a time management game. This application case has
a strong link to the emotional features of smell and the timing of the scent-delivery (Temporal
Features). The key lesson from a design choice perspective was the careful selection of the appro-
priate scent in relation to the low- versus high-level stress activities. With the right choice of scent
and appropriate delivery in the game, a positive impact on the user is achieved. What we didn’t
explore in this application case were any crossmodal effects, such as the combined effect of smell
and auditory or visual stimuli that could improve the users accuracy and interaction along the
game. Those are additional questions we will tackle in the following two application cases.

4.2 Application Case 2
In this second application case, we developed a smell-augmented version of the Slack messaging
system to explore the effect of smell on users performance and perceived level of distraction
(building on the basic Chemical and Emotional Features of smell).

Using smell in this interaction scenario aimed to modulate the distraction from a primary task
through smell. Participants were first trained to associate specific scents (i.e. lemon and lavender)
with a specific person in the messaging system (i.e. Slack team). After passing a scent-association
test with an 85% success rate, they were asked to perform a memory card game as a primary
task. The memory card game has been used in prior research [82, 124, 125] to compare different
notification modalities. A total of 24 cards were presented face-down to the participants on a
computer screen, with a maximum duration of 60s per game (see Fig. 6).

We designed a dedicated secondary task to notify the participant about a newmessage, measuring
their reaction time and ability to recognise the senders’ identify. We compared visual, olfactory,
and visual-olfactory Slack notifications in this application case. In summary, the aim of this design
case was to test the effect of trained scent-associations on users’ performance.

4.2.1 Q-O-C design analysis. While a designer needs to think about which scent to use (as in
application case 1) and account for its emotional effect, it is more important to build on the basic
effects and abilities of our sense of smell (see section 2.1, Chemical Features) in this application
case. We know that scents can convey information, naturally learnt and trained associations as
specifically discussed in section 2.1.3. Such scent-associated information can be helpful in facilitating
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Fig. 6. Study setup, user sitting in front of a screen (right) completing a memory card game (left). Scent-output
nozzle below the screen, red button to press when receiving any type of Slack notifications.

cognitive short-cuts and thus augment or change current interaction designs. For this specific
application case we wanted to investigate the added value of smell in a work environment where
users are often exposed to distractions (see more details in [82]). Next to smell, we also tested the
integration of smell with visual notifications to account for multimodal interactions.

We explored the possibility to train new scent-associations and for this we wanted to select two
scents that have the same perceivability in term of scent intensity (see section 2.1.2). To remove
confounding effects on the scent-associations driven by the scents’ hedonic/emotional values, we
used scents with the same valence dimension (i.e. both pleasant) but opposite arousing effects (i.e.
one arousing and one relaxing). The literature suggests that rose, rosemary, and lavender have a
relaxing effect while lemon, peppermint, and black pepper have an arousing effect [120, 127]. We
decided to use lavender and lemon, because both scents have similar intensity levels [31]. This
ensures the perceivability and reachability of the scent stimuli. The pressure value of the scent
delivery (we used the same device as in application case 1) and the scent quantity (a constant
pressure of 1 Bar, 5g of 100% pure lavender and lemon essential oils) were selected to match the
participants’ distance from the delivery point (45cm) (see the Section 2.3, Spatial Features), and the
perceived intensity for lavender and lemon established in prior work [4, 28].

4.2.2 Study design. The study followed a within-subjects design with 3 notification conditions
(visual, olfactory, and visual-olfactory notifications), 2 sender identities (John-lemon scent and
Cathy-lavender scent), and 2 repetitions. Each participant played a total of 12 memory card games,
and 2 initial games to familiarize themselves with the game (without notifications). When receiving
a notification, participants had to press a red button in front of them; this was used to measure
their reaction times. The participant’s accuracy in recognising the sender’s identity was measured
through a multiple-choice question at the end of each game. See Fig. 6 for an overview on the study
set-up. Each notification was presented randomly every 25-30s after the memory card game had
started. The visual notifications were presented for 5s, with 1s transitions on and off the screen,
with the same timing for the visual-olfactory notifications.

Following prior work [124–126], we evaluated the primary task performance as an index of
disruption level, using implicit measurements: the activity rate (card turns per second) and error
rate (superfluous views per click). A superfluous view occurs when a participant repeatedly views
a card without successfully matching it, suggesting that their mental mapping of card locations has
been mismatched due to disruption. We additionally measured the perceived disruption level using
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a self-report question ("How much did the notification disrupt you from your task?") answered on
a 7-point Likert scale (1= "Did not disrupt at all"; 7= "Disrupted very much"). The main hypothesis
was that scent notifications based on trained scent-associations would be as efficient in conveying
the senders’ identity as visual notifications. Before running the main study, we tested whether
both notification modalities were perceived at the same time to avoid any influence through
synchronisation issues.

4.2.3 Study results. Fifteen participants volunteered (MAдe= 28.5 years, SD= 7.00, 2 female). We ran
a repeated measures ANOVA to compare participants’ reaction times in detecting the notifications
(data normally-distributed [112]) in the three conditions (visual, olfactory, visual-olfactory). The
results showed no statistically significant differences (p> 0.5) in the participants’ reaction times
in perceiving the notifications (MV isual = 2.22s, SD= 0.83s;MOlf actory = 2.18, SD= 0.64,MV−O =
2.39, SD= 1.5). Olfactory notifications were perceived as quickly as the visual and visual-olfactory
combined notifications. To analyse the participant’s accuracy in recognising the sender of the
message, we used a Kruskal-Wallis H test (including Bonferroni corrected post-hoc tests). The results
showed an overall statistically significant difference in accuracy across all the three notification
modalities (χ 2(2)= 20.5, p< .01). Participants were most accurate in the combined visual-olfactory
modality (97%, SD= 4%) compared to olfactory (86%, SD= 10%, p< .05) and visual (84%,SD= 5%, p<
.05). There was no significant difference between visual and olfactory notifications.
In this application case we demonstrated that designing interactions based on trained scent-

associations leads to the same level of accuracy in identifying the notification’s sender-identity as
with the traditional visual notifications. Moreover, the user’s performance increased when both
modalities are presented synchronized in the application scenario. In contrast to the first application
case we also gained insights on crossmodal interactions and how the combination of smell and
visual stimuli can improve the users performance. A question that can be posed here is to what
extend this is a one-time positive effect or if the use of smell has any long-term positive effects
(i.e. do we remember the trained scent-associations beyond this one instance). Some initial and
promising insights towards the positive effect of smell, beyond one-time exposure, can be found in
[82], and are further explained in the opportunities linked to the chemical features (section 2.1).

4.3 Application Case 3
In this third application case, we created a VR interaction scenario (i.e. Find the Source - FS) that
particularly focuses on the users’ ability to locate the source of a spatial cue as quickly as possible.
Users were presented with olfactory, auditory, and audio-olfactory cues. The main design purpose
was to explore the spatial features of smell in a VR scenario. We began from the basic chemical
features (see the section 2.1.3, "What can I do with scent stimuli?") to investigate the use of scent to
convey spatial information in a virtual environment and to orient users’ attention. We explored the
fact that humans are good in localising a scent source (see section 2.3, Spatial Features).
We chose to implement FS in VR in order to hide the delivery point and to disorient the player

by changing the position of various visual landmarks, which is difficult to do in a real environment
[60]. Users stood in the centre of a circular space (see Fig. 8, 3m diameter), where they waited
for the cue presentation (auditory, olfactory, and audio-olfactory). The audio stimulus was a 3s
Chirp generated using the software Audacity (frequency 450-600Hz, sine wave form, amplitude 0.8,
logarithmic interpolation). This sound was chosen because it is a dynamic sound (a parallelism
with the scent’s diffusion effect). To synchronise the olfactory and auditory cues, the scent stimuli
were delivered for 3s, 1s after each FS trial started, and the auditory stimuli presented 6s after this,
when the scent was in the optimally perceivable area. In summary, the aim was to test the effect of
olfactory and novel multimodal cues on users’ performance to find a source in a virtual space.
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4.3.1 Q-O-C design analysis. As in the previous user studies, a designer needs to start with the
question of how to select the appropriate scent. In this third application case, we wanted to select a
scent with positive valence and high arousal. As before, we had different scent options for scents
with these characteristics [122, 127]. Following this prior works, we selected peppermint as a
pleasant and high intensity scent to ensure perceivability. We used 2.5g of 100% pure peppermint
essential oil.
To accurately design the position of the delivery point in the VR environment (relevant for

the Spatial Features), determine the timing (relevant for the Temporal Features, section 2.4), and
pressure needed for the scent delivery, we performed several iterations of airflow simulations (see
Fig. 7). Using the same scent-delivery device as in the previous two application cases, we simulated
the scent delivery from different output heights, different duration, and with different pressure
settings and determined the optimal delivery parameters as follows: a delivery of 5s using a constant
pressure of 2.5 Bar, positioned 1.5m above the floor and with an output radius of 2mm. Using these
scent-delivery parameters in Autodesk CFD, we determined that the scented air travels 1.5m after
6s. This volume is defined as the space in which the concentration of scented air is above 0.1%. We
verified that this was perceivable by doing a pre-study (5 participants, Maдe= 32.5 years, SD= 2.5, 2
females) and recording reaction times (M= 6s, SD= 1.5). At the start of each trial, participants faced
a white dot positioned 2m away from the centre, at a height of 1.72m. They had to select, as quickly
as possible, the button corresponding to the source of the cue, once the cue was perceived. Between
trials, participants returned to the centre of the circle and followed some orientation arrows to face
in the direction of the next trial’s white disc (see Fig. 8). The VR environment rotated, unnoticed by
the participants, and thus changed the participants’ reference points.

Fig. 7. A 3D simulation of airflow outputs images taken in three different times (A 2s, B 4s, and C 6s) with the
relative travel distances (A 38 cm, B 79cm, C 145cm). The delivery had a duration of 5s, with a delivery output
of 2mm, a diffusion speed of 0.35l/s of scented-air, calculated using a diffusion coefficient of 0.01cm2/s .

4.3.2 Study design. The study followed a within-subjects design, with three sensory cues (auditory,
olfactory, and audio-olfactory) and eight delivery positions (2 in each circle quadrant). Twenty-four
trials were presented. For each trial, the physical delivery points were selected randomly and the
virtual room rotated to align it with the desired delivery angle. In terms of resolution, the buttons
are spaced 15 degrees apart for a total of 24 buttons positioned 360 degrees around the user. The
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Fig. 8. Left : Outline of the VR environment where the buttons are the red circles, positioned with an angle of
15°between each other, while the blue squares represent the physical delivery output. Right : Top down view
of the VR game environment.

total trials done were 24- 8 for each different cue conditions. The participants were presented with
2 initial trials to familiarize themselves with the task.
The main hypothesis was that olfactory cues would direct the user’s attention in VR, just like

auditory cues can do when the scent delivery (e.g. timing, output location) is accurately designed.
We determined the accuracy with which users could locate the three source modalities (i.e. auditory,
olfactory, audio-olfactory). We measured accuracy in terms of degrees in locating the source of the
cues (i.e. select the desired button in the virtual environment), comparing the performance across
various presentation angles around the user (e.g. front and back, see Fig. 8).

4.3.3 Study results. Twelve participants volunteered for this study (Maдe= 30.5 years, SD= 4.00,
4 female). All participants were familiar with VR (on a 7-point Likert scale, M= 5.55, SD= 2.55).
The analysis of the recorded direction of the participants’ heads allowed us to distinguish between
front and back position (i.e. front position when the cue is presented within 180°centred on the
head direction of the participants, and back position when outside 180°) (see Fig. 8, top left). To
compare the accuracy in locating the correct cue’s source between the cue modalities (i.e. auditory,
olfactory, and audio-olfactory) in the two users’ positions (i.e. front or back) we ran a repeated
measures ANOVA (data normally-distributed [112]).
We found an interaction effect between the cue modality and user’s position on the accuracy

in locating the source (F(2, 12)= 18.60, p< 0.01, η2 = 0.75). Post-hoc tests, Bonferroni corrected,
showed that in the front position, the accuracy in locating the cue source was comparable between
the cue modalities. However, in the back position, the accuracy was statistically different, between
auditory and olfactory cues (p< 0.01), and between olfactory and audio-olfactory (p< 0.01) (see Fig.
9). These results provide information about users’ performance in localizing auditory and olfactory
cues. It is worth noting with respect to the performance of the modalities (especially Fig. 9 middle),
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Fig. 9. Mean accuracy of participants in locating the source of the ambient cues in VR for the 3 conditions
(back and front), s.e.m: 1. Auditory cue; 2. Olfactory cue; 3. Auditory and olfactory cues combined.

that the 45°range represents the mean accuracy when selecting the closest button to a olfactory or
audio source (that is anywhere within the front 180°of the user’s head orientation (see 8) bottom
left for distribution of delivery locations). The 5.6°value refers to the calculated standard deviation
(deviation from the mean) of that accuracy. In terms of resolution, the buttons are spaced 15°apart
for a total of 24 buttons positioned 360°around the user (see 8). The total trials done were 24- 8 for
each different cue conditions.
This application case demonstrated the importance of carefully choosing the scent-delivery

parameters when exploiting the spatial features of smell. The design choices and options considered
in this application case are important for designers to consider in order to ensure perceivability of
an olfactory cue. Moreover, as in application case two, we also compared crossmodal interactions to
demonstrate the possibilities around smell. As a result, we can see that participants achieve similar
accuracy in locating the sources of olfactory, and audio-olfactory cues when presented frontally.
This kind of insights opens up new design possibilities, exploiting olfactory stimuli to drive and
capture user’s attention in a VR environment, as part of new story-telling narrative. In a common
VR experience, users are overstimulated by audio-visual information and considering the smell
performance, in function of the scent-delivery parameters and locations, represents a new medium
of information, which do not interfere with the other modalities.

5 DISCUSSION
With this article, we aimed to encourage design thinking and decision-making for smell-based
interactions taking into account four key features. Those building blocks can help reduce the
complexity of working with smell and also set the stage for reproducibility in olfactory interface
design. If designers follow the interaction principles beyond single design instances (i.e. application
cases), document their design choices along the four key features, it will become easier for others
to replicate the interaction and thus help grow this design space.
In this section, we will discuss the relevance of the four features we identified as key building

blocks for an emerging smell design space for HCI. We also reflect upon the relevance of those
features to create and contribute to the intermediate-level knowledge space [53], bridging practice
and theory around smell. Finally, we discuss remaining design trade-offs around smell and future
research directions to move this emerging design space out of its embryonic state.
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5.1 Relevance of the design features
The potential around smell for designing novel interactions in HCI was acknowledged over a decade
ago [67, 68, 74]. Since then, the field has mostly explored one-off applications (e.g. [5, 67, 68, 93, 104])
but also contributed to some theoretical discussions with example implementations (e.g. [101]). To
establish smell as design space for HCI, we identified four main features. The chemical, emotional,
temporal, and spatial features. Each of those features is based on a rich knowledge established
on the sense of smell, especially within experimental psychology, neuroscience, sensory science,
and biology. We highlighted relevant characteristics for each feature to allow designers and HCI
researchers in general to get a taste of the design potential around smell.
Each feature provides designers with a set of possible questions that will guide their design

choices, allow reflection on possible options, and define criteria that are relevant for their particular
design aim and intended interaction. The benefit of these features is their accessibility and openness.
On the one hand, we aimed to represent them in such a way that the complexity of the sense
of smell is reduced and thus hopefully encourages more researchers and practitioners to enter
and explore this emerging design space. On the other hand, we made the feature descriptions
evidence-based but open for future extensions, positioning the resulting design choices in-between
theory and specific design instances (i.e. three design application cases).
Taken together, each feature provides designers with an anchor through a set of questions and

possible options (solutions) for the specific design purpose. Having a clear purpose in mind also
helps to define the implementation and evaluation steps and determine the specific measures.
For example, in designing novel smell-based interactions, the conscious detection of scents is not
always necessary. In our application case 1, the conscious detection of the scent was not required
to have an effect on the users’ performance. Participants were simply asked to indicate if they
perceived a scent in the scent conditioning step, which was confirmed by all participants. In the
other two application examples (2 and 3), the detection of the scent was an explicit part of the
interaction we implemented and evaluated.

5.2 Contribution to intermediate-level knowledge
Compared to the other human senses, smell is still in an early development stage within HCI.
It will take much more effort to establish it, compared to the audio-visual senses. Nevertheless,
based on our work, we believe that we have the opportunity to bridge theory with practices by
contributing intermediate-level knowledge [53, 80]. Intermediate-level knowledge is a form of
knowledge that sits between theory and particular instances of design, encompassing such examples
as guidelines, patterns, strong concepts, and heuristics [53, 80]. The idea is to allow for abstraction
of key knowledge around a design challenge that can be applied to multiple application cases,
but that does not aspire to the generality of the theory. Through our theoretical and empirical
exploration of the olfactory design space, we are convinced that such new knowledge for the HCI
and wider design community is emerging.

While we propose our four design features as ‘guidelines’, ‘patterns’ or ‘strong concepts’, we are
aware that these features represent only an initial stepping stone between the theory and practice
of scent-based interaction design. We only started to scratch the surface of this emerging design
space and more application cases integrating scent as interaction modality are needed to establish
our features more solidly as the design features for smell in the intermediate-knowledge space.
However, what we achieved through this work – identifying four key features to guide design
– is a reduction of the complexity around the sense of smell and demonstration of its successful
integration in specific design application cases for smell.
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5.3 Design considerations and trade-offs
In the effort to extend the audio-visual design space, we also need to acknowledge limitations and
design trade-offs around smell.

First, scent-based experiences can be very subjective and can vary across individuals. Individual
idiosyncrasies are based on preferences, scent liking, and perceptual sensitivities [38, 45, 45, 89].
As designers those individual differences need to be considered and can be addressed through
allowing customisation (e.g. select your own scent from a pre-defined class of scents). For example,
Maggioni et al. [83] categorised scents into valence, arousal, and perceived intensity dimensions as
part of a smell design toolkit. Personalised design profiles can be created accounting for individual
differences and preferences. Moreover, scent-association training provides a promising additional
option, as applied in our application case study 2. Users are trained specific scent-association before
engaging in an actual interaction. Although this results in a learning effort to begin with, its benefits
can be seen over time [30, 82] and have been considered relevant in prior HCI implementations.
For instance, Bodnar encouraged the use of scent-association training to increase the effect of
scent-based interactions [5].

Second, smell is not yet a mainstream interaction modality. However, as scent-based interaction
and applications steadily emerge and will grow over time, people will get used to it and becomemore
comfortable and confident with it. Peoples’ noses become more sophisticated as all our other senses
get through use (e.g. graphic designers, musicians, chefs, perfumers). With the proliferation of smell-
based applications, it is also key to find the right approach to evaluate the users’ experience. Murray
and colleagues [88] provide an extensive overview on relevant considerations for olfaction-based
multimedia applications and provide a set of recommendations on how to conduct an evaluation
focused on the quality of experience of such applications.

Third, the olfactory system is not always fully functional and can be compromised temporarily
if someone has a cold or a hormonal fluctuation [24]. This can lead to limited olfactory capability,
reducing the possibility of using scent in an interaction scenario. Hence, it is important to design
for multi-modal/multisensory interactions where different sensory stimuli complement each other
[96, 98]. As shown in our application case studies 2 and 3, scent-integration with visual or auditory
stimuli leads to better performance in a given task.

Fourth and finally, scent reproducibility across devices and scent storage are practical challenges
that can only be overcome through standardising the delivery mechanisms, enhancing current
standards towards olfactory design (such as theMPEG-V Sensory Information standard). Conversion
of chemical elements into binary digits for computer data communication and storage, is still a
long way away. Spence and colleagues [119] provide a recent review on the possibilities and pitfalls
around the chemical senses, accounting for chemical and also digital stimulation of the sense of
smell. The potential substitution of chemicals for electrical stimulation of olfactory receptors in the
nose is still an open research challenge, despite first efforts [49, 128]. Those challenges hence still
limit the scalability of scent-based interactions.

6 CONCLUSION
Our nose provides a powerful sensory modality that we want to establish within the currently
eyes-ears-hands dominated HCI design space. We summarised existing knowledge on the sense
of smell to map out the olfactory design space composed of four key features: (i) chemical, (ii)
emotional, (iii) spatial, and (iv) temporal. We demonstrated the relevance of those features in three
application cases including VR and desktop implementations. The results from our three application
cases highlight the design choices and the benefits of scent-based interaction on users’ performance.
We discuss how our olfactory design space helps the HCI community to navigate through the
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complexity of the sense of smell and open up new design opportunities. This paper makes a first
necessary step towards a more coherent exploration of smell as an interaction modality.
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