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Abstract As autonomous ships become the future trend

for maritime transportation, it is of importance to develop

intelligent autonomous navigation systems to ensure the

navigation safety of ships. Among the three core compo-

nents (sensing, planning and control modules) of the sys-

tem, an accurate detection of target ships’ navigation

information is critical. Within a typical maritime environ-

ment, the existence of sensor noises as well as the influ-

ences generated by varying environment conditions largely

limit the reliability of using a single sensor for environment

awareness. It is therefore vital to use multiple sensors

together with a multi-sensor data fusion technology to

improve the detection performance. In this paper, a fuzzy

logic-based multi-sensor data fusion algorithm for moving

target ships detection has been proposed and designed

using both AIS and radar information. A two-stage fuzzy

logic association method has been particularly developed

and integrated with Kalman filtering to achieve a compu-

tationally efficient performance. The effectiveness of the

proposed algorithm has been tested and validated in sim-

ulations where multiple target ships are transiting with

complex movements.

Keywords Fuzzy multi-sensor data fusion � Unmanned

surface vehicles (USVs) � Maritime navigation � Automatic

Identification System (AIS)

1 Introduction

In order to increase the degree of autonomy and better

ensure navigation safety, unmanned surface vehicle

(USVs) should not only be able to acquire their own

accurate and reliable navigational data, but to also perceive

the surrounding environment to avoid collision risks.

Normally, static obstacles, such as small islands and

coastlines, can be determined from commercial nautical

charts with sufficient accuracy. Detecting dynamic obsta-

cles, such as moving target ships (TS), is a more dynamic

challenge. Automatic Identification System (AIS) can

provide reasonably accurate navigational data of TSs, and a

simple AIS receiver can be powered at similar low-voltage

levels that are also adequate for the navigation sensor

system of an autonomous USV.

However, the application of AIS may become compro-

mised while the USV is operating at sea encountering with

multiple targets. Tracking all the surrounding targets to

analyse the collision risks is essential to ensure its safety.

Although, an increasing number of vessels are installing

AIS devices, only large ships over 300 gross tonnage are

required to instal transponders. Small vessels are normally

equipped with AIS receivers, so that they would only be

aware of other target ship’s information instead of sending

their own information at the same time. In addition, AIS is

broadcast on VHF radio waves that travel in straight lines.

When a USV encounters a complex environment sur-

rounded by multiple target ships, especially in harbour,

AIS data are prone to be lost due to the electromagnetic

influence. The location of AIS transceivers or the types of

the AIS transceivers and weather conditions could also

affect the quality of the AIS signal. As a consequence,

relying solely on AIS to detect targets is unlikely to prove

satisfactory for autonomous USV navigation.
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Marine radar has been regarded as a prime solution to

perceive the surrounding environment in maritime vessel

navigation for many decades. It measures the relative dis-

tance and bearing by calculating the transmission time of

the echo of an electromagnetic wave pulse. This feature of

a marine radar could enable the USV to detect all the

targets surrounding the USV within radar detection range,

which is typically 48 nautical miles, but associated with a

large degree of uncertainty. The target detection can be

difficult while using either the AIS or the marine radar

alone in harsh environments with an unknown number of

targets that varies with time. To improve system reliability,

both sensors are employed as complementary devices to

perceive the surrounding dynamic environment. A fusion

algorithm is therefore required to merge the measurements

from the two different sources.

Multitarget tracking presents two main challenges: state

estimation and data association. For the former, it has been

well regarded that Interactive Multiple Model (IMM) [1] is

a highly effective method for estimating manoeuvring

target. IMM is a suboptimal recursive filter and its ability

to adaptively switch between different kinematic models

using Markovian coefficient appeals to many practical

tracking scenarios. More recently, Variable Structure

Multiple Model (VSMM) was introduced in [2] as an

evolution of the IMM. Development of the VSMM origi-

nated from IMM’s degrading performance with increasing

number of models. Provided a set of possible models,

VSMM is able to select admissible models suitable for

current event. Such adaptable system offers better com-

putational expense compared to IMM only when large

bank of models is required. In terms of accuracy, VSMM at

this point indicates no significant superiority to IMM.

[3–6].

Data association problem corresponds to correctly

identifying multiple measurements to its target. Poor match

between a measurement and its target will in turn lead to

poor estimation. Nearest neighbour (NN) was initially

proposed to tackle this problem as demonstrated in [7, 8],

but was soon replaced with more robust methodologies

especially in highly cluttered environments. Widely

recognised probabilistic approaches include Multiple

Hypothesis Tracking (MHT) and Joint Probabilistic Data

Association (JPDA) where various probable association

hypotheses are considered instead of direct individual

assignment [9–11]. By spending more computational

effort, these algorithms perform reliably even when

observations are likely to agree onto more than one target.

Many combinations of state estimation and data asso-

ciation algorithms have been put forth to yield robust

multitarget tracking. IMM-JPDA, introduced by Y. Bar-

Shalom et al. in [12], has been broadly accepted due to the

blending of IMM’s renowned performance and JPDA’s

dependable association in cluttered environments; e.g. see

[13–17] for further work in IMM-JPDA. Monte Carlo

methods, also known as particle filters, is another technique

gaining attention in multitarget tracking [3, 4, 18–20]. But

despite their proven results, algorithms mentioned are

computationally demanding and impose unaffordable

compromise in pragmatic applications.

Relevant studies on maritime situational awareness by

Braca et al. [21, 22] proposes using UKF-JPDA to sense

surrounding objects and successfully presented satisfactory

multitarget tracking in cluttered environments. This mar-

itime-oriented work was then extended further in [23] and

[24, 25], where radar-based IMM-JPDA and VSMM-JPDA

are employed in multitarget scenario, respectively, a sub-

stantial improvement in the state estimation aspect. How-

ever, data association aspect here still indicates room for

improvements in terms of reducing computational expense

by using alternative techniques. Additionally, JPDA-based

tracking tends to merge tracks together when separation

between objects are close [9]. Simultaneously overlapping

target estimation is unwelcome as it would represent

unrealistic behaviour of an operating surface vehicles in

close proximity. Another related work was also done by

Liu et al. [26] in using IMM with AIS for ship tracking.

Although it complements UKF-JPDA’s limitation in state

estimation by using multiple model system, the work was

focused on single-target tracking using AIS.

This paper proposes a master fusion algorithm using

radar and AIS in multitarget tracking for USV purposes.

Radar tracking system within the master fusion consists of

a linear Kalman filter (KF) and IMM to represent different

manoeuvring modes. Predictions made is then paired with

received measurements by a two-stage fuzzy logic associ-

ation method. Dissimilar to work in [27], proposed fuzzy

system is designed to completely disregard JPDA to dra-

matically enhance processing speed. Regular updates from

AIS allows occasional adjustments to radar-based estima-

tion while also keeping targets unequipped with AIS to be

tracked. The highlights of this paper can be summarised as:

1. By using a Chi square based multi-factor manoeuvre

detector, a new interacting multi-model Kalman filter

(IMMKF) has been designed. This can greatly deal

with the task of efficiently tracking target ships that

have complex motion models, which will facilitate a

real-time autonomous navigation capability;

2. With the help of the new two-stage fuzzy logic data

association method, an accurate data correlation pro-

cess can be achieved, which enables a rapid multi-

sensor data fusion functionality;

3. By employing the proposed IMMKF as the underlying

filtering method, the developed multi-sensor data

fusion algorithm can provide a reliable tracking
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performance of multiple target ships in maritime

environments.

4. The proposed multi-sensor data fusion algorithm

enables ships to be equipped with multiple sensors,

which improves the robustness of the navigation

systems especially when some sensors encounter

malfunctions.

The organisation of the rest paper is as follows. Sec-

tion 2 describes the detection and prediction of moving

target using constant velocity model, which is the funda-

mental for multi-model-based manoeuvring detection and

prediction that has been introduced in Sect. 3. Section 4

specifically explains the proposed multi-sensor data fusion

algorithm and Sect. 5 provides the simulation results.

Section 6 concludes the paper and provides future work.

2 Moving Target Detection and Prediction Using
Constant Velocity Model

Prior to the consideration of a complex maritime environ-

ment, this section focuses on detecting and predicting the

navigational data of a single target ship that is equipped

with an AIS transponder to broadcast its own navigational

data, i.e. position, speed over ground (SOG) and course

over ground (COG). In general, a vessel over the sea is not

designed for both rapid and precise manoeuvring and its

operation is associated with constant velocity and course

unless manoeuvring is required to eliminate collision risks

or correct drifted trajectory. The speed or course changing

is often slow to maintain the vessel steady. Therefore, a

constant velocity (CV) model can be used to describe the

state of the target [28]. The state vector is defined to

include essential navigational data to assess the collision

risk between the target and USV:

xT ¼ pTx pTy vTx vTy u
� �T

; ð1Þ

where pTx and pTy represent the target’s positions, vTx and

vTy are the target’s SOG in the x and y directions, and u is

the COG of the target ship. The system state equation

based on a constant velocity model is denoted as below:

xT kð Þ ¼

1 0 T 0 0

0 1 0 T 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2

66664

3

77775
xT k � 1ð Þ þ wT k � 1ð Þ: ð2Þ

The observations are provided by the dynamic t6 AIS

messages, which give the absolute positions, SOG and

COG of the detected target. Therefore, the system mea-

surement model can be defined as:

zA kð Þ ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2

66664

3

77775
xT kð Þ þ mT kð Þ: ð3Þ

The Kalman filter (Eqs. 4 to 9) is then applied to reduce

AIS signal noise and provide predicted navigational data

during long AIS data-transmitting intervals. As shown in

Fig. 1, the algorithm first takes the prior states including

target’s position, SOG and COG to make predictions of the

navigational data for the next time step using Eqs. 4 and 5.

It then calls the system to check whether there is an

updated AIS message. If so, the system will enter the

estimation stage using the updated data to correct the

predicted target’s navigational data by Eqs. 6 to 8. Other-

wise, the system will output the predicted navigational data

and use it as the next state to enter the next prediction–

estimation process.

The predicted state of the target’s navigational data is

computed by Eq. 4 using the constant velocity model and

the predicted error covariance P�
T is defined in Eq. 5,

where QT is the processing error covariance:

bx�T kð Þ ¼

1 0 T 0 0

0 1 0 T 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2

66664

3

77775
bxT k � 1ð Þ; ð4Þ

P�
T kð Þ ¼

1 0 T 0 0

0 1 0 T 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2

66664

3

77775
PT k � 1ð Þ

1 0 T 0 0

0 1 0 T 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2

66664

3

77775

T

þQT :

ð5Þ

The Kalman filter gain KT to correct the prior target’s

navigational data by reducing the mean square error is

computed by Eqs. 6 and 7:

Fig. 1 AIS data pre-process prediction and estimation
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KT kð Þ ¼ P�
T kð Þ

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2

66664

3

77775

T

ST kð Þ�1; ð6Þ

ST kð Þ ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2

66664

3

77775
P�
T kð Þ

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2

66664

3

77775

T

þRT :

ð7Þ

As demonstrated in Fig. 1, if there is an updated AIS

message with the observation zA kð Þ, the system state bxT kð Þ
can be computed by applying the calculated Kalman filter

gain KT to the prior target’s navigational data as shown in

Eqs. 8 and 9. If there is no updated AIS message, the

predicted system state bx�T kð Þ will be treated as the current

state of the target to assess the collision risk:

bxT kð Þ ¼ bx�T kð Þ

þ KT kð Þ zA kð Þ �

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2

66664

3

77775
bx�T kð Þ

2

66664

3

77775
;

ð8Þ

PT kð Þ ¼ I � KT kð Þ

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2

66664

3

77775

0

BBBB@

1

CCCCA
P�
T kð Þ: ð9Þ

3 Multi-model-BasedManoeuvringTargetDetection
and Prediction

In a maritime environment, although a vessel conducts the

mission to adhere to a straight-line trajectory at a constant

speed, the influences caused by water currents and winds

would alter its trajectory. The vessel normally makes

manoeuvres to correct its course to its destination or the

next waypoint. Thus, the system state equations, based on a

constant velocity model are inaccurate and would generate

inaccurate predictions when the target is manoeuvring.

Therefore, multiple models have been integrated into the

system to describe the target’s motions more veraciously to

provide more accurate detection and prediction results.

3.1 Interacting Multi-model (IMM)-Based Target

Detection

Interacting multi-model (IMM) filtering has been widely

used in manoeuvring target detection. According to the

International Maritime Organization (IMO), 2002, vessels

maintain as steady as possible while operating over the sea.

Turning at constant angular velocity is a common

manoeuvre of vessels. Therefore, a coordinate turn (CT)

model is normally used to model the target’s manoeuvre.

The transition matrix of a CT model is expressed in

Eq. (10) and the system dynamic equations are demon-

strated in Eq. (11):

ACT ¼

1 0
sinxT
x

� 1 � cosxTð Þ
x

0 1
1 � cosxT

x
sinxT
x

0 0 cosxT � sinxT
0 0 sinxT cosxT

2

666664

3

777775
; ð10Þ

f x kð Þð Þ ¼

px k � 1ð Þ þ sin x k � 1ð ÞTð Þ
x k � 1ð Þ � vx k � 1ð Þ � 1 � cos x k � 1ð ÞTð Þð Þ

x k � 1ð Þ � vy k � 1ð Þ

py k � 1ð Þ þ 1 � cosx k � 1ð ÞTð Þ
x k � 1ð Þ � vx k � 1ð Þ þ sin x k � 1ð ÞTð Þ

x k � 1ð Þ � vy k � 1ð Þ
cos x k � 1ð ÞTð Þ � vx k � 1ð Þ � sin x k � 1ð ÞTð Þ � vy k � 1ð Þ
sin x k � 1ð ÞTð Þ � vx k � 1ð Þ þ cos x k � 1ð ÞTð Þ � vy k � 1ð Þ
h k � 1ð Þ þ x k � 1ð ÞT :

8
>>>>>>>><

>>>>>>>>:

ð11Þ

The state of the target ship can be predicted if the

angular velocity is known. However, AIS cannot provide

the measurement of the target’s angular velocity. There-

fore, the angular velocity should be considered as a

parameter rather than a variable to generate multiple

models and an interacting multiple model estimator has

been integrated to the KF-based target detection and pre-

diction algorithm to model the target’s manoeuvres. The

system state equation of the CT model can be then defined

in Eq. 12:

xT kð Þ ¼

1 0
sinxT
x

� 1 � cosxTð Þ
x

0

0 1
1 � cosxT

x
sinxT
x

0

0 0 cosxT � sinxT 0

0 0 sinxT cosxT 0

0 0 0 0 1

2

6666666664

3

7777777775

xT k � 1ð Þ

þ

0

0

0

0

xT

2

6666664

3

7777775

þ wT k � 1ð Þ:

ð12Þ

The interacting multiple model Kalman filter (IMMKF)

has been proposed to calculate the possibilities of each of

the predefined models and generate the fused navigational

data accordingly. First, a set of fixed values of the angular

velocities (x1;x2;x3; . . .;xjÞ are defined to generate

different coordinate turn models CT1;CT2;CT3; . . .CTj as

M using Eq. 12:
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M ¼ CT1 x1ð Þ;CT2 x2ð Þ;CT3 x3ð Þ; . . .CTj xjð Þf g: ð13Þ

The model at each time step k can be expressed as:

mj kð Þ, M kð Þ ¼ mj

� �
: ð14Þ

Then the predicted probability l�j of each model at time

step k can be computed as in Eq. 15:

l�j kð Þ,P mj kð Þjz k � 1ð Þ
� �

¼
X

i

pijli k � 1ð Þ: ð15Þ

The probabilities are then used to generate each model’s

mean bx0j and the spread of the means Xj and calculate and

covariance P0j of each model by Eqs. 16 to 19:

lijj,P mi k � 1ð Þjmj kð Þ; z k � 1ð Þ
� �

¼ pijli k � 1ð Þ
l�j

; ð16Þ

bx0j k � 1ð Þ,E x k � 1ð Þjmj kð Þ; z k � 1ð Þ
� �

¼
X

i

bxi k � 1ð Þlijj; ð17Þ

Xj,

X

i

bxi k�1ð Þ�bx0j k�1ð Þ
� �

bxi k�1ð Þ�bx0j k�1ð Þ
� �T

lijj;

ð18Þ

P0j k � 1ð Þ ¼
X

i

Pi k � 1ð Þlijj þ Xj: ð19Þ

The predicted mean of system state bx�j and covariance

P�
j are computed using Eqs. 20 and 21:

bx�j kð Þ ¼ ACTj k � 1ð Þbx0j k � 1ð Þ; ð20Þ

P�
j kð Þ ¼ Aj k � 1ð ÞP0j k � 1ð ÞAj k � 1ð Þ

0
þQj k � 1ð Þ: ð21Þ

The measurement residual of each model is calculated

as Eq. 22 and gives the covariance of the residual in

Eq. 23:

mj kð Þ ¼ z kð Þ � Hjbx�i kð Þ; ð22Þ

Sj kð Þ ¼ HjP
�
j kð ÞH 0

j þ Rj: ð23Þ

The Kalman filter gain can then be computed and the

estimated state vectors bxj and error covariance Pj of each

model are obtained from Eqs. 24 to 28:

Kj kð Þ ¼ P�
j kð ÞH 0

jSj kð Þ�1; ð24Þ

bxj kð Þ ¼ bx�j kð Þ þ Kj kð Þmj kð Þ; ð25Þ

Pj kð Þ ¼ P�
j kð Þ � Kj kð ÞSj kð ÞKj kð Þ

0
; ð26Þ

Lj ¼ N mj; 0; Sj
� �

¼ 1
ffiffiffiffiffiffiffiffiffi
2pSj

p � exp � 1

2
mTj S

�1
j mj

� �
; ð27Þ

lj ¼
l�j LjP
i l

�
i Li

: ð28Þ

The final estimation of the state vector and error

covariance can be computed by combining all the data

from each model based on its probability:

bx kð Þ,E x kð Þjz kð Þ½ � ¼
X

j

bxj kð Þlj; ð29Þ

P kð Þ,E x kð Þ � bx kð Þð Þ x kð Þ � bx kð Þð Þ
0
jz kð Þ

h i

¼
X

j

Pj kð Þlj þ X; ð30Þ

X,
X

i

bxi kð Þ � bx kð Þð Þ bxi kð Þ � bx kð Þð Þ
0
li: ð31Þ

This process is repeated in each integration of the Kal-

man filter-based target tracking algorithm and the most

probable model is determined to express the target’s

manoeuvre.

3.2 Chi Square-Based Multi-factor Manoeuvre

Detector

The computational cost of multiple models becomes high

with the increasing number of the models, which intro-

duces a degree of non-practicability to real-time systems.

Manoeuvres represent a change in the target motion pat-

tern, therefore detecting the manoeuvre of the target first

offers a solution to reduce such computational cost since

the multiple model-based data fusion algorithm will only

be employed when manoeuvring of the target is detected.

Chi square-based detectors are widely used in manoeuvring

target detection [29]. For an n-dimensional Gaussian dis-

tributed vector x�N bx;Pð Þ, its covariance is Chi square

distributed. Therefore, the proposed detector employs the

covariance of system residuals in the proposed IMMKF

target detection and prediction algorithm to compare with

the Chi square-defined thresholds (Eqs. 32 to 33). The

thresholds are listed in Table 1 (Lancaster, 1965), where a
is the probability and 1 � a is the level of confidence,

which is typically set at 95% or 99.5% by the system. The

detector identifies whether the target is making manoeuvres

by Eq. 34. This procedure will save a significant amount of

Table 1 Chi square distribution v2
n

Confidence (1 � a) 95% 99%

Probability level (a) 3.84 0.01

g2 dof ¼ 2ð Þ 5.99 9.21

g2 dof ¼ 3ð Þ 7.81 11.345

g2 dof ¼ 4ð Þ 9.49 13.277

g2 dof ¼ 5ð Þ 11.07 15.086
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the computational cost generated by the multiple model

filter:

e kð Þ ¼ z kð Þ �Hbx kð Þ; ð32Þ

dc kð Þ ¼ cov e kð Þð Þj j ¼ e0 kð ÞST kð Þ�1
e kð Þ; ð33Þ

dc kð Þ[ g ¼ v2
n að Þ: ð34Þ

Once the target is detected as manoeuvring, the above

interacting multiple model algorithm is applied to deter-

mine the system states.

4 Multi-sensor Data Fusion for Moving Target
Detection and Tracking

Most of the current studies on radar and AIS data fusion are

concerned with synchronising, associating and fusing the

different measurements from each. In this research, raw

radar and AIS measurements will not be associated and

fused directly. They will be associated with each detected

target track individually. The system states are then

updated by the proposed manoeuvring target detection and

prediction algorithm from the previous sections using the

associated sensor measurements, respectively, and the final

fusion algorithm generates the estimated target’s naviga-

tional data by fusing the updated estimations. The system

structure is demonstrated in Fig. 2.

4.1 Multi-sensor Data Association Algorithm

Generally, a complete marine radar system comes with an

automatic radar plotting aid (ARPA) to provide a visual

map for the mariner to identify the surrounding target

ships. Most of the NMEA 0183-supported radar systems

also generate NMEA0183 sentences to provide the infor-

mation of the detected targets, which can be extracted by

using the correct converter. In this research, the measure-

ments obtained from NMEA0183 sentences are used. The

main data obtained from a marine radar are the dynamic

information of the target, such as the relative distance and

bearing between radar platform and the target, as well as

target’s true speed and course.

After obtaining raw sensor data, a data association

algorithm is then required for the autonomous system to

determine the number of targets and allocate each sensor

measurement to the related target. In a real-time target

tracking system, the data collected from sensors should

have some similar physical characteristics to the related

targets. Therefore, the data can be associated according to

the designed rules that express their similarities. Figure 3

gives a simple approach of the data association using the

nearest neighbours. At each fusion time step, the green

circle denotes the predicted target generated by the

IMMKF algorithm and the orange star represents a sensor

measured target (AIS or radar). The sector formed within

the dashed line gives the thresholds of both the position and

bearing of the target. If both targets are inside the thresh-

old, the sensor measured target can be treated as related to

the predicted target.

However, such a simple approach is not efficient and

may generate error correlations when the number of targets

increases. In this study, a two-stage multi-factor fuzzy

integration decision-making algorithm has been proposed

to associate measurements from AIS and radar with

detected targets indirectly for real-time multiple target

Fig. 2 System structure of multitarget detection using AIS and radar

measurements Fig. 3 Target validation: measured target and predicted target

International Journal of Fuzzy Systems

123



tracking with the intention of reducing computational time.

As mentioned before, a marine radar can provide the rel-

ative range, relative bearing, course and speed of the target

while AIS provides absolute position in latitude/longitude,

course and speed. With the knowledge of the USV’s own

absolute position, the relative range and bearing can also be

calculated from AIS measurements. Therefore, the four

characters from radar and AIS measurements can be

compared with the detected targets to determine whether

the measurements are related to the same target. As shown

in Fig. 4, at the first stage, the differences in the relative

range and bearing to the USV between the sensor target

and system-predicted target are evaluated by the fuzzy

decision-making system to determine whether the target

detected by the sensor is in a similar location to that of the

system-predicted target. However, it is yet to make a

decision whether the two targets are related at this stage,

although the opposite fact that the sensor target is related to

a different target is obvious if the differences in the range

and bearing are large. The second stage to compare the

course and speed of the two targets will be enabled if the

system requires further evaluation to make a final decision.

Instead of inputting all the four characters of all sensor

measurements, the proposed algorithm uses a two-stage

structure that is able to reduce the computational cost

significantly, especially in an environment with a large

number of targets.

Assume there are i measurements obtained by a sensor,

denoted as SE ið Þ, and j system-predicted targets, denoted

as TS� jð Þ. The fuzzy set at the first stage is defined as the

respective differences between the two targets in the rela-

tive range dR and bearing dB to the USV:

d1 i; jð Þ ¼ dR
dB

	 

¼ RSE ið Þ � RTS jð Þj j

BSE ið Þ � BTS jð Þj j

	 

; ð35Þ

where RSE and BSE are the relative range and bearing

obtained from the sensor measurements SE ið Þ; RTS and

BTS, are from the system-predicted states TS� jð Þ. A

Gaussian membership function is employed to compute the

correlation grade of each input:

g1 i; jð Þ ¼ gR i; jð Þ
gB i; jð Þ

	 

¼ exp �sRd

2
R i; jð Þ=r2

R

� �

exp �sBd
2
B i; jð Þ=r2

B

� �
	 


; ð36Þ

where sR and sB are the predefined adjustment coefficients,

rR and rB are the related sensor measurement errors that

can be obtained from sensor specifications.

The integrated association grade G1 i; jð Þ can then be

computed by distributing the weight to each correlation

grade of each character:

G1 i; jð Þ ¼ wR wB½ � � gR i; jð Þ
gB i; jð Þ

	 

: ð37Þ

A threshold is then designed and the initial decision as

to whether the two targets SE ið Þ and TS� jð Þ are correlated

can be made by comparing the integrated association grade

G1 i; jð Þ to the designed threshold according to the follow-

ing rules:

• If G1 i; jð Þ� threshold, the two targets SE ið Þ and TS� jð Þ
are related in the similar position and the second stage

enables;

• If G1 i; jð Þ\threshold, the two targets SE ið Þ and TS� jð Þ
are different.

4.2 Multi-sensor Target Detection and Tracking

Algorithm

In order to detect multiple targets in a maritime environ-

ment, moving tracks that are associated to each target are

formed to determine each target’s real-time positions.

Unlike the AIS, the sampling time of a marine radar is

fixed. It is about 1.25 s to 2.5 s as the rotation rate of its

antenna is normally 24 or 48 rpm (round per minute). The

sampling time of the radar is used as the system’s sampling

time. The proposed target detection and prediction algo-

rithm based on the IMMKF with manoeuvre detector is

Fig. 4 Two-stage fuzzy multi-factor integration data association algorithm
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used to form the tracks of each target. Therefore, the state

vector of each target is defined as following:

TSm ¼ pxmpymvxmvymum

� �T
; ð38Þ

where m is the number of detected targets.

When the target is operating at a constant speed without

manoeuvring, its motion model is

TSm kð Þ ¼

1 0 T 0 0

0 1 0 T 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2

66664

3

77775
TSm k � 1ð Þ þ w k � 1ð Þ:

ð39Þ

When its manoeuvre is detected, the motion model of

the target based on the coordinate turn model is described

in Eq. 40:

TSm kð Þ ¼

1 0
sinxT
x

� 1 � cosxTð Þ
x

0

0 1
1 � cosxT

x
sinxT
x

0

0 0 cosxT � sinxT 0

0 0 sinxT cosxT 0

0 0 0 0 1

2

6666666664

3

7777777775

TSm k � 1ð Þþ

0

0

0

0

xT

2

6666664

3

7777775

þ w k � 1ð Þ:

ð40Þ

The radar measurements are in a polar frame and have to

be converted to a Cartesian frame. A debiased conversion

algorithm [30] has been employed to compensate for errors

that might occur during the conversion as below:

pRxm ¼ rm � coshm � lxm; ð41Þ
pRym ¼ rm � sinhm � lym; ð42Þ

lxm ¼ E bpxjrm; hm½ � ¼ rm � coshm � e�r2
hm


 �
� e�r2

hm
=2

h i
;

ð43Þ

lym ¼ E bpyjrm; hm
� �

¼ rm � sinhm � e�r2
hm


 �
� e�r2

hm
=2

h i
:

ð44Þ

where pRxm; pRym are the position coordinates of the target;

rm is the range from the m th target to the USV; hm is the

bearing of the target;lxm; lym are the estimated bias that

will be removed during conversion.

The measurements obtained by radar are converted to

the following:

zTSRm ¼ pRxmpRymvRxmvRymuRm

� �T
: ð45Þ

And, the measurements obtained by AIS are expressed

as Eq. 46:

zTSAm ¼ pAxmpAymvAxmvAymuRm

� �T
: ð46Þ

Unlike the single target detection, all the measurements

and predictions are associated from a known target, so that

they can be used to form a moving track of the target

directly. For a multiple targets problem, the proposed data

fusion algorithm at each time step should first determine

the number of the targets and their relationships to those

detected targets from the previous time step. The following

flowchart demonstrates the whole target tracks formation

and association and multi-sensor data fusion process. The

system first predicts the next state of each of the detected

targets that are associated with m tracks from last time step

k using system state models. The obtained radar measure-

ments are then investigated to determine how many targets

(j) are detected at this time step k þ 1. The predictions of

each detected target TS�
m k þ 1ð Þ are compared with the

radar measurements Rj k þ 1ð Þ using the proposed two-

stage fuzzy association decision-making algorithm to

associate the radar measurements with the known targets’

tracks. If m\j, then the radar detects a new target, a new

track is then formed that makes m ¼ j. The targets’ tracks

can then be updated by the proposed data fusion algorithm

to obtain radar estimations cTSRM k þ 1ð Þ. The system then

calls AIS measurements to check whether there is an

update. If not, the system will make a new prediction

TS�
Am k þ 1ð Þ based on the last AIS estimation that is also

used as the updated AIS data cTSAm k þ 1ð Þ. Otherwise, the

system will decode and convert new AIS measurements

Ai k þ 1ð Þ to associate them with known target tracks using

the two-stage fuzzy association decision-making algorithm.

After associating the AIS measurements, the AIS predic-

tion of each target TS�
Am k þ 1ð Þ is equal to the system-

predicted states TS�
m k þ 1ð Þ and updated by the associated

AIS measurements to generate AIS estimations

cTSAM k þ 1ð Þ.
After obtaining the system estimates cTSRm k þ 1ð Þ and

cTSAm k þ 1ð Þ by applying the radar and AIS measurements,

respectively, these two estimations, rather than raw AIS

and radar measurements, are then fused to obtain the

master fusion results. The radar and AIS estimations

belong to Gaussian distributions. Therefore, the two dis-

tributions for each target track m can be fused by:
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P xjcTSAm; cTSRm


 �
/ P TSð ÞL TS;cTSAm


 �
L TS;cTSRm


 �

¼ 1 � exp
1

2

TS � cTSAm

rA

 !2

�exp
1

2

TS � cTSRm

rR

 !2

;

ð47Þ

cTSFm k þ 1ð Þ ¼ arg max
x

P xjcTSAm;cTSRm


 �
¼

arg min
TS

� logP xjcTSAm;cTSRm


 �
¼

arg min
x

1

2

TS � cTSAm

rA

 !2

þ 1

2

TS � cTSRm

rR

 !2
8
<

:

9
=

;
;

ð48Þ

where cTSFm expresses the fused data, rA and rR are the

error covariance obtained from the estimation process with

AIS and radar updates, respectively. The flowchart of the

multi-sensor target detection and tracking algorithm is

shown in Fig. 5.

An improved weight distribution fusion algorithm has

been proposed to deal with practical AIS sensor signal loss.

It defines the relationship between the absence time of the

AIS signal and the weights assigned to the AIS estimations.

During the absence of AIS messages, the weight of AIS

estimations reduces. A two-phase linear relationship is

designed to describe the ratio of the weighting change and

absence time as shown in Fig. 6. t1 represents the safe time

margin. If the duration of the loss of AIS signal is less than

t1, the change of the weight of AIS estimation is relatively

small. The weight then drops rapidly to zero at t2 since the

AIS estimations are no longer reliable without AIS updated

messages.

5 Simulation Results and Discussions

This section provides simulation results for validating the

proposed algorithms. Two different sets of simulations

have been designed to evaluate:

1. The performance of the proposed interacting multi-

model (IMM)-based manoeuvring target detection and

prediction algorithm using AIS data. Comparison with

conventional KF has been undertaken to show that the

proposed new filtering algorithm has a better capacity

in dealing with complex movements of target ships;

2. The performance of the IMM-based multi-sensor data

fusion algorithm in dealing with multitarget tracking

mission. Specifically, the algorithm’s capability in

handling sensor failure scenario (AIS signal is assumed

to be lost during certain time period) has been tested to

demonstrate that a fault-tolerance functionality can be

achieved.

5.1 Simulations of the AIS-Aided Target Detection

and Prediction Algorithm

In this section, AIS measurements are simulated to deter-

mine a single dynamic target’s navigational data as well as

to make predictions during the long AIS data-transmitting

intervals. The target ship is treated as a single point without

considering its actual size. Portsmouth Harbour (Fig. 7a) is

used to simulate a practical environment for the target. It

has first been converted into a binary map (Fig. 7b), which

has the dimension of 800 pixels * 800 pixels representing a

1.2 km * 1.2 km area (1 pixels = 1.5 m). The simulated

Fig. 5 Flowchart of the multi-sensor target detection and tracking

algorithm
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target is assumed to be operating at constant and initially

adheres to a straight-line trajectory. Additionally a current

vector with the speed of 0.3 m/s at 155� is simulated that

has the effects of pushing the target towards the southeast.

The trajectory of the target is therefore altered and the

target has a constant angular velocity of 3�/s when

manoeuvring to correct its course, which is presented in

Fig. 7b. The initial speed of the target is 7 knots on a

course of 160�, while the updating intervals of the AIS

measurements are 10 s under normal condition and 2 s

when manoeuvring. The tracking start point is (450 m,

1200 m) and the end tracking point is (850 m, 64 m). The

sampling time between each time step is 2 s. The target

starts to manoeuvre after time step k ¼ 140. Eight angular

velocities from - 4�/s to 4�/s that cover most frequently

used angular velocities of a vessel are chosen to generate 8

models.

Figure 8 shows the simulation results of the conven-

tional KF-based AIS-aided target detection and prediction

algorithm using the CV model. When the detected target is

following its trajectory, 4 possible positions (red dots) are

predicted by the proposed algorithm during each AIS data

update interval and all the predictions are along the sim-

ulated trajectory (black line), which proves that the algo-

rithm is able to provide effective estimated positions

without AIS measurement updates during the time period.

From the enlarged inset in Fig. 8, it is evident that the

proposed algorithm performs creditably at improving AIS

data accuracy since the estimated positions (green circles)

are closer to the actual trajectory when the target is oper-

ating on a straight-line trajectory.

Figure 9a demonstrates the same simulation results as

Fig. 8 with an enlarged inset detailing the end of the tra-

jectory, where the target is conducting manoeuvres. It can

be seen that the AIS data (blue squares) are updated more

frequently when the target is approaching the end of its

trajectory since it is correcting its course to get to its end

point. However, the estimated positions (green circles) of

the target are driven to an incorrect direction when the

target is manoeuvring. The simulation results confirm the

effectiveness of the constant velocity model-based con-

ventional KF target detection and prediction algorithm

when the target is not manoeuvring, but it is incapable of

estimating the correct course of the target during

manoeuvring although the AIS data updates more fre-

quently. Figure 8b demonstrates the simulation results of

the proposed IMMKF AIS-aided manoeuvring target

detection and prediction algorithm. The manoeuvring

Fig. 6 Relationship between the weight of AIS estimation and the

time without AIS update

Fig. 7 Simulation scenario 1: a testing environment in Portsmouth harbour with a constant current and the simulated straight trajectory of the

target; b the binary map and the altered true trajectory of the target
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target detection algorithm performs better at estimating the

positions and courses of the detected target. It can be seen

from the enlarged inset of Fig. 8b that the estimated

positions (green circles) adhere to the true trajectory (black

line) while the target is manoeuvring. Further numerical

evidence is demonstrated in Figs. 10, 11, 12, 13, and 14.

Figure 10 provides a comparison of the estimated tar-

get’s courses by conventional KF-based algorithm and the

proposed IMMKF AIS-aided manoeuvring target detection

and prediction algorithm. The actual course of the target is

denoted as the black line, the AIS-reported course is shown

as the blue line, the KF-estimated course is presented as the

green line and the IMMKF-estimated course is denoted as

the red line. This figure also supports the findings from

Figs. 8 and 9 since the green line and the red line are very

similar and closer to the black line than the blue line before

the target starts manoeuvring around step k ¼ 140., but the

green line starts to deviate from the other three lines from

that point while the red line is still close to the black line.

The probability of each model shown in Fig. 11

expresses how the proposed IMMKF-based algorithm

determines which model is the correct. Before time step

k ¼ 140 when the target is not manoeuvring, all the

Fig. 8 Simulation scenario 1: the simulation results of conventional

KF-based target detection and prediction algorithm

Fig. 9 Simulation scenario 1: the simulated AIS-measured positions and the predicted and the predicted and estimated position results using

standard KF and IMMKF algorithms

Fig. 10 Simulation scenario 1: ideal course, AIS-reported cour, KF-

and IMMKF-estimated courses
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probabilities of the 8 models (mu1, mu2, mu3, mu4, mu5,

mu6, mu7 and mu8) remains at 0. It can be seen that at the

beginning of the manoeuvring period, the probabilities of

mu3, mu4 and mu6 are peaked and return to 0 in a short

time. It is caused by the insufficient data obtained by the

manoeuvre detector algorithm at initial stage. After

extracting enough data, the proposed algorithm determines

the correct model mu7 that represents the angular velocity

of 3�/s and its probability becomes the largest and tends to

1 during the target’s manoeuvring, which is the same as the

target’s actual angular velocity. The results prove the

effectiveness of the designed manoeuvre detector.

The rooted mean square errors (RMSEs) of the target’s

positions, velocities and courses that are detailed in

Figs. 12, 13 and 14 further support the improvement made

by the proposed IMMKF AIS-aided manoeuvring target

detection and prediction algorithm. In each figure, the blue

line indicates the RMSE of the AIS raw measurements, the

Fig. 11 Simulation scenario 1: the probabilities of each manoeuvring model generated by the IMM filter

Fig. 12 Simulation scenario 1: RMSEs of the target’s positions

Fig. 13 Simulation scenario 1: RMSEs of the target’s velocities

Fig. 14 Simulation scenarios 1: RMSEs of the target’s courses
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green line denotes the RMSE of the conventional KF-based

estimations and the red line represents the RMSE of the

IMMKF-based estimations. Around time step k ¼ 140, the

target starts to manoeuvre and the RMSEs of the KF-esti-

mated positions, velocities and courses increase while the

RMSEs of the proposed IMMKF estimations remain lower

than those of both the KF estimations and AIS raw mea-

surements. This is clearly evident in all the aspects of the

targets navigational data, especially the course in Fig. 14.

The RMSE of KF-estimated courses steadily increases and

eventually exceeds the error of the raw AIS measurement.

The comparisons of RMSEs provide numerical evidence

that estimation of the target’s positions in the x and y

directions are improved by 4 m and 3 m, respectively, and

the RMSE of the courses are reduced by approximately

50% by the IMMKF algorithm. All the evidence indicates

the proposed IMMKF with manoeuvre detector target

detection and prediction algorithm based on AIS data is

effective for both detecting the target and predicting its

positions and courses when the target is manoeuvring.

5.2 Simulation of the Multi-sensor Target Detection

and Tracking Algorithm

The dynamic multiple target detection system is imple-

mented by simulating four targets around the USV. Three

of them are operating with both AIS and in marine radar

detection range and one of them can only by detected by

radar. The specific parameters of the simulated targets are

listed in Table 2.

Assuming the targets 1 to 3 are equipped with AIS

transponders and the USV can collect their AIS dynamic

information at reporting interval tA ¼ 10s. Target 2 is set to

be disabled for k ¼ 100s to 120s and the AIS signal of

target 3 is lost during

k ¼ 300s to 450s. The sampling time of the USV’s

radar is 2 s, which is also used as the system’s sampling

time and the whole observation time is 900 time steps.

During the observation, all the targets are operating at

constant speed and constant angular velocity when

required, modelled as both CV model and CT model. The

RMS error vectors for the AIS signals are 0.01 nautical

miles in position, 0.007 knots in speed and 0.5 degree in

course and for radar are 0.08 nautical miles in relative

range, 1.2 degree in relative bearing, 0.03 knots in speed

and 1.0 degree in course. The parameters of the improved

weight distribution fusion algorithm are defined as w1 ¼
0:6; t1 ¼ 60s and t2 ¼ 300s. Figure 15 shows the simu-

lated actual trajectories of the four target ships as magenta,

blue, green and yellow lines, respectively, and the

unmanned surface vessel (USV) as the black line.

Figure 15 demonstrates the master fusion results of the

multiple targets detection system, which are displayed in

Figs. 16, 17, 18, and 19. The actual positions, radar mea-

surements, possible AIS measurements and master fused

positions are presented for each target. It can be seen that

target 4 does not have AIS measurements and its fused

results are generated from radar-based estimations. The

trajectory results prove that the proposed multi-sensor

target detection and tracking algorithm can successfully

and efficiently associate each AIS and radar measurement

to the related target tracks using the two-stage fuzzy multi-

factor integration data association algorithm.

Figures 20, 21, 22, and 23 illustrate the RMSEs of the

positions and courses for each target. The blue solid line

represents the RMSEs of raw radar measurements, the blue

dashed line denotes the RMSEs of radar-based estimations,

the green solid line represents the RMSEs of raw AIS

measurements, the green dashed line denotes the RMSEs of

the AIS-based estimations and the red line demonstrates

the master fused results. In Fig. 20, the AIS is updated

every 10 s while the radar provides continuous measure-

ments at 2-s intervals. The master fusion results are much

closer to the AIS estimations rather than the radar esti-

mations due to the high accuracy of AIS estimations. Two

very small increases of the RMSEs of the fused course

occur while target 1 is manoeuvring. In Fig. 21, the

RMSEs of the master fusion results of all of target 2’s

navigational data are increased from time step k ¼ 100s

because of the absence of AIS measurements. The increase

is then eliminated after the AIS measurements are restored

after 20 s. A similar pattern occurs in Fig. 22, where target

3 is set to lose its AIS signal for 150 s. But the RMSEs of

the master fusion results are more highly augmented due to

the long absence duration of AIS signal. For target 4, the

proposed algorithm is still able to reduce the RMSEs of

raw radar measurements automatically without AIS inte-

gration. These results validate the performance of the

Table 2 Simulation scenario 2:

simulated unmanned surface

vessel (USV) and targets’ initial

position, speed and course

Vessels Initial position (nm) Speed (kn) Course (deg) AIS equipped? AIS signal lost

USV (0, 0) 10 0 Yes –

Target 1 (5, 13) 17 180 Yes –

Target 2 (-16, 7) 13 75 Yes k ¼ 100s to 120s

Target 3 (-12, 2) 11(9) 30 Yes k ¼ 300s to 450s

Target 4 (1, 25) 11 (5) 100 No –
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proposed multi-sensor target detection and tracking algo-

rithm. Although the RMSE of the master fusion results are

increased by a small amount when the targets are making

manoeuvres, the algorithm is able to compensate for such

increase before the error increases to a magnitude greater

than the error of raw radar measurements, which confirms

the effectiveness of the fusion algorithm.

6 Conclusions and Future Work

This paper was dedicated to developing intelligent and

reliable data fusion algorithms for both single and multiple

target detection, prediction and tracking. Instead of using

the constant velocity model alone, a manoeuvring target

detection and prediction algorithm based on IMM filtering

with different coordinate turn models has been developed

to estimate the navigational data of the target. Furthermore,

a multi-sensor data fusion algorithm for the AIS and

marine radar measurements has been proposed to imple-

ment a multiple target detection and tracking system. The

raw sensor measurements were pre-processed individually

using the developed manoeuvring target detection and

Fig. 15 Simulation scenario 2: simulated multiple targets environ-

ment surrounding a USV

Fig. 16 Simulation scenario 2: fused trajectories of target ship 1

Fig. 17 Simulation scenario 2: fused trajectories of target ship 2

Fig. 18 Simulation scenario 2: fused trajectories of target ship 3
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prediction algorithm and both outputs were then being

associated with related targets to make further fusions. The

multi-sensor data fusion algorithm increases system relia-

bility by using two different sensors as the complementary

devices. Simulations have been carried out to provide

numerical evidence that the proposed target detection,

prediction and tracking algorithms are effective in realising

their designed purpose.

The improved target ship detection capability achieved

in this paper can potentially enable a more reliable

autonomous navigation for unmanned ships together with

robust control algorithms. To accommodate the complex-

ities that occurred during the control processes, fuzzy

logic-based robust controllers (such as the ones proposed in

[31–33]) can improve the control performance and be

seamlessly integrated into autonomous navigation systems.

In addition, while navigating in ocean environments,

uncertainties generated by system modelling, ocean envi-

ronments and vessels’ autopilot also require a robust and

adaptive tracking control strategy. Methods developed not

only for surface vessels, but also for underwater vehicles

can be well adopted and integrated. Especially, as under-

water environment possesses more challenging constraints

than surface one, with appropriate modification a number

of most recent autonomous underwater vehicle (AUV)

fault-tolerant tracking control methods such as the distur-

bance-observer-based strategy [34], performance-function-

constrained [35] and data-driven adaptive tracking [36] can

Fig. 19 Simulation scenario 2: fused trajectories of target ship 4

Fig. 20 Simulation scenario 2: the RMSEs of target ship 1’s positions and courses
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Fig. 21 Simulation scenario 2: the RMSEs of target ship 2’s positions and courses

Fig. 22 Simulation scenario 2: the RMSEs of target ship 3’s positions and courses
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be implemented on surface vessels for enhanced control

performances.

Another important further research direction is towards

multi-sensor fusion using a wider spectrum of sensors

including vision systems and LiDAR. Although radar can

detect target ships over a wide range of areas with a rea-

sonable performance, the radar scatters may provide false

sizes of targets due to reflection or disturbance. Moreover,

the sampling rate and resolution of radar are relatively low

compared to other sensors, such as LiDAR and vision

sensors. Therefore, to enhance the awareness capabilities

of autonomous ships, especially for detecting high-speed or

small size obstacles, additional sensors are necessary to be

integrated into the sensing system on board with an

improved sensor-fusion algorithm that is capable of pro-

cessing heterogeneous data. Weather influences challenges

such as the fog, haze and sunlight should be especially

addressed when vision systems are implemented.
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