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Abstract  

 

Background: Homologous recombination repair deficiency (HRD) is a frequent feature of high-

grade serous ovarian, fallopian tube and peritoneal carcinoma (HGSC) and is associated with 

sensitivity to PARP inhibitor (PARPi) therapy. HRD testing provides an opportunity to optimise 

PARPi use in HGSC but methodologies are diverse and clinical application remains 

controversial.  

Methods: To define best practice for HRD testing in HGSC the ESMO Translational Research 

and Precision Medicine Working Group launched a collaborative project that incorporated a 

systematic review-approach. The main aims were to (1) define the term “HRD test”; (2) provide 

an overview of the biological rationale and the level of evidence supporting currently available 

HRD tests; (3) provide recommendations on the clinical utility of HRD tests in clinical 

management of HGSC.  

Results: A broad range of repair genes, genomic scars, mutational signatures and functional 

assays are associated with a history of HRD. Currently, the clinical validity of HRD tests in 

ovarian cancer are best assessed, not in terms of biological HRD status per se, but in terms 

of PARPi benefit. Clinical trials evidence supports the use of BRCA mutation testing and two 

commercially available assays that also incorporate genomic instability for identifying 

subgroups of HGSCs that derive different magnitudes of benefit from PARPi therapy, albeit 

with some variation by clinical scenario. These tests can be used to inform treatment selection 

and scheduling but their use is limited by a failure to consistently identify a subgroup of patients 

who derive no benefit from PARPis in most studies. Existing tests lack negative predictive 

value inadequately address the complex and dynamic nature of the HRD phenotype.  

Conclusions: Currently available HRD tests are useful for predicting likely magnitude of benefit 

from PARPis but better biomarkers are urgently needed to better identify current homologous 

recombination proficiency status and stratify HGSC management.  

 

Key Words: homologous recombination deficiency (HRD), poly-ADP ribose inhibitors (PARPi), 

BRCA, genomic scar assays  
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Introduction  

 

Every year almost 250,000 women world-wide are diagnosed with high grade serous 

carcinoma of the ovary, fallopian tube or peritoneum (HGSC). Following standard treatment 

approaches of cytoreductive surgery and platinum and taxane based chemotherapy the 

average 5 year survival rate is approximately 30% [1]. Around half of HGSCs exhibit defects 

within the homologous recombination DNA repair pathway and are therefore reliant on more 

error prone means of DNA repair such as non-homologous end joining [2, 3]. HGSC with 

homologous recombination repair deficiency (HRD) exhibit a distinct clinical phenotype 

including a superior response to platinum salt chemotherapies and sensitivity to poly-ADP 

ribose inhibitors (PARPi) [4, 5]. The introduction of PARPis has transformed the management 

of HGSC in both relapsed and first-line treatment settings [6-13]. Developing methods to 

reliably determine the HRD status of a HGSC is of critical importance to optimise clinical 

benefit from these drugs.  

 

The best characterised cause of HRD in HGSC are germline or somatic mutations in the 

BRCA1 and BRCA2 genes (BRCA) that encode the breast cancer type 1 and type 2 

susceptibility proteins and are detected in 12-15% and 5-7% of cases, respectively [2, 14]. 

However there is now clear evidence that HRD can arise through germline and somatic 

mutations or methylation of a wider set of homologous recombination repair (HRR) related 

genes, or other as yet undefined mechanisms [3]. Furthermore, a range of mechanisms such 

as reversion mutations in the BRCA genes can reinstate homologous recombination 

proficiency (HRP) revealing that HRD status is both a complex and dynamic phenotype [15, 

16]. A wide range of assays, referred to as ‘HRD tests’, have been developed to try to better 

define which cancers, beyond BRCA mutant, are most likely to have HRD. These HRD tests 

fall into three main categories: (i) HRR pathway related genes that identify specific causes of 

HRD, (ii) Genomic “scars” or mutational signatures that measure the patterns of somatic 

mutations that accumulate in HRD cancers irrespective of the underlying defect (iii) Functional 

assays that have the potential to provide a real time read out of HRD or HRP (Figure 1).  

 

The European Society for Medical Oncology (ESMO) Translational Research and Precision 

Medicine Working Group identified that there is currently uncertainty within the oncology 

community surrounding the different methods for HRD testing in HGSC. To address this, a 

collaborative project was launched with a number of clinicians and scientists with expertise in 

the fields of PARPi clinical trials, cancer genomics and DNA repair. The group defined three 

main aims for the project: (1) Define the term “HRD test” and recommend how an HRD test’s 
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clinical validity is currently best assessed in the context of HGSC (2) Provide an overview of 

the biological rationale and the level of evidence supporting currently available HRD tests, (3) 

Provide recommendations on the clinical utility of HRD tests in clinical management of HGSC.  

 

Materials and Methods  

The expert panel was comprised of oncologists, a geneticist, pathologist and basic scientists 

operating in Europe, USA and Australia (see Supplementary Methods). All panel members 

offered expertise in two or more areas relevant to the topic including but not limited to – ovarian 

cancer management, DNA repair, cancer genomics, mutational signatures, cancer evolution, 

functional genomics, clinical trials, biomarker development and PARPi development and 

biology. To formally capture a balanced representation of experts’ opinions on current HRD 

test usage, challenges and future opportunities we employed a questionnaire-based approach 

that supplemented regular discussions. 

 

A systematic review-based approach, adhering to the PRISMA statement pre-set up protocol, 

was used as the starting point for identifying studies that combined HRD testing 

methodologies with PARPi or platinum chemotherapies (Supplementary Table 1 and 

Supplementary Methods for details) [17].  A total of 343 relevant records were screened and 

68 records were retained for critical evidence appraisal (Supplementary Table 2). For each 

HRD biomarker test shortlisted studies were categorised by panel members using the Level 

of Evidence (LOE) approach and for genomics-based tests using the Evaluation of Genomic 

Applications in Practice and Prevention (EGAPP) ranking where appropriate evidence was 

available (Supplementary Table 3) [18, 19]. The EGAPP approach aims to determine whether 

there is direct evidence that using the test leads to clinically meaningful improvement in 

outcomes or is useful in medical or personal decision-making [18, 19]. To this end, the agreed 

definition for assessing clinical validity of an HRD test is ‘accuracy of prediction of PARP 

inhibitor benefit’ (see Supplementary Methods for further details). 

 

Final consensus statements were generated in agreement by all panel members in light of the 

evidence review. The final degree of consensus was obtained by the mean percentage of 

agree responses to each statement from the 16 expert panel members (values range from 

0%: total disagreement to 100%: total agreement), was judged as inconsistent if <60%, low in 

the range 60-69%, moderate in the range 70-79%, strong from 80-89% and very strong if 

>90%. The manuscript and consensus statements were reviewed by the wider ESMO 

Translational Research and Precision Medicine Working Group and the Gynaecological 

Malignancy Working Groups.  

 



 6 
 

 

Results  

Pathological considerations 

Concordance between histopathological and molecular features is essential in cancer, 

particularly when assessing somatic alterations in tissues. The recommendations in this article 

relate to HGSCs of the ovary, fallopian tube and the peritoneum that share morphological and 

molecular features. Pathological diagnosis is straightforward in most cases but can be more 

challenging in the subgroup with solid, pseudo-endometrioid or transitional (SET) features, 

that like other HGSCs frequently exhibit HRD [20, 21]. These tumours were historically 

classified as endometrioid or transitional cell carcinomas, which explains the occurrence of 

HRD in some older series of endometrioid carcinomas or mixed endometrioid-serous 

carcinomas [22, 23]. The two most recent WHO classifications (2014 and 2020) [24, 25] clearly 

state that these tumours are variants of HGSC, and provide information for distinguishing 

between HGSC and high grade endometrioid carcinomas. A panel of antibodies (including 

WT-1, TP53, and oestrogen and progesterone receptor) is helpful for confirming diagnosis 

[26]. 

 

The pathologist is responsible for controlling the pre-analytical conditions of tumour tissue 

samples and is therefore critical to the success of the range of HRD tests discussed below. 

Inappropriate tissue handling (delayed fixation and over-fixation) may modify the quality of the 

sample, impacting on molecular test results. For molecular tissue based HRD tests, 

representative tumour area selection and assessment of the percentage of malignant cells, 

necrosis and inflammatory component is of fundamental importance. Typically, a minimum of 

30% tumour component is recommended to guarantee the detection of a variant through 

molecular techniques. For some cancers with HRD this can be difficult to achieve due to 

abundant inflammatory cell infiltrates [27, 28]. 

 

Consensus Recommendation 

Pathological evaluation of the tumour tissue specimens used for assessment of somatic 

molecular alterations is essential. It is recommended that a pathologist with experience in 

gynaecological pathology should be member of the team, and responsible for confirming 

diagnosis, assessing sample adequacy, selection of tumour area, and quantification of tumour 

cells, inflammatory cells and necrosis. An integrated pathology-molecular report is highly 

recommended. 

(Level of agreement = 100%; total agreement) 
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Defining the HRD test 

While the ideal method for detecting HRD would measure HRR capacity directly, HRD 

functional-tests are some way off routine clinical use. The HRD tests that are used in the clinic 

or have been tested within published randomised clinical trials to date, measure a genotype 

(gene mutation/methylation or genomic scar) that correlates with an HRD phenotype and 

deficient HRR but not HRR itself. The majority of HRD tests currently under investigation are 

being developed to identify patients who benefit from PARPi and therefore will only indirectly 

identify cancers with HRD (Figure 2A). As discussed below, currently an HRD test result is 

most likely to have clinical utility in the context of PARPi treatment stratification and therefore 

PARPi benefit is the preferred outcome against which HRD test performance should be 

measured (Figure 2B). This underlies the decision to focus this recommendation article on the 

methods of HRD testing to guide PARPi therapy rather than their ability to detect HRD per se. 

It is important, however to recognize that this may limit the future utility of these tests, 

particularly when considering other inhibitors of key targets involved in the DNA repair. 

 
 

Glossary of Terms [EMBEDDED BOX] 

Homologous Recombination Repair (HRR). A form of DNA recombination often used to repair 

DNA Double Strand Breaks (DSBs). HRR predominantly acts in S and G2 phases of the cell 

cycle and is a conservative process, restoring the original DNA sequence at the site of 

damage. During HRR, part of the DNA sequence around the DSB is removed (resection), 

revealing regions of single stranded DNA (ssDNA). The DNA recombinase RAD51 binds 

ssDNA and invades the DNA sequence on a homologous sister chromatid, using this as a 

template for the synthesis of new DNA at the DSB site. Crucial proteins involved in mediating 

HRR include those encoded by BRCA1, BRCA2, RAD51, RAD51C, RAD51D and PALB2. 

 

Homologous Recombination Deficiency (HRD). A defect in DNA repair by hampered HRR. In 

cancers this is often caused by loss of function mutations in BRCA1, BRCA2, RAD51C, 

RAD51D or PALB2, promoter hypermethylation of the BRCA1 gene promoter (leading to 

reduced expression of BRCA1) or a series of as yet to be-defined causes. HRD can be defined 

in multiple ways, for example, by the use of experimental assays that measure the 

conservative vs. non-conservative repair of DSBs, mutational signatures that are the result of 

HRD or the inability of cells to relocalise the DNA recombinase RAD51 to sites of DNA 

damage. HRD is also characterised by the cellular sensitivity to PARP inhibitors, 

topoisomerase inhibitors or platinum salts although other causes of sensitivity to these agents 

also exist, including defects in Nucleotide Excision Repair (NER) which cause platinum salt 

sensitivity. The term HRD is often used interchangeably with the term “BRCAness”, although 
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this latter term describes a broader concept that describes cancers that share molecular, 

histological, clinical and phenotypic features of germline BRCA mutant cancers (gBRCAm 

phenocopies), including, but not exclusive to, HRD, sensitivity to PARP inhibitors, 

topoisomerase inhibitors and platinum salts. 

 

HRD cancer. Cancers that exhibit HRD. HRD is enriched in cancers of the ovary, prostate, 

pancreas and breast, where defects in BRCA1, BRCA2, RAD51, RAD51C, RAD51D or PALB2 

are most prevalent. 

 

Homologous recombination proficiency (HRP). The scenario where cells/tumour cells are able 

to effectively repair DNA damage by HRR. Often associated with primary or acquired 

resistance to PARP inhibitors, topoisomerase inhibitors or platinum salts. 

 

Poly-ADP ribose inhibitors (PARPi).  PARPi are small molecule inhibitors of the PARP family 

of proteins, which play critical roles in DNA repair through multiple DDR pathways, with HRD 

cells showing a greater reliance on PARP activity to maintain cell survival. The finding that 

single-agent PARP inhibition selectively killed BRCA deficient cells was a key discovery in 

exploiting synthetic lethal approaches in oncology. PARP inhibitors trap PARP1 protein onto 

DNA at sites of single-strand DNA breaks. When this trapped PARP1 is encountered by the 

DNA replication machinery it leads to stalling of the replication fork, collapse and the 

generation of a double strand break, which cannot be repaired in cells with HRD such as 

BRCA mutated cells.  

 

Methods for Detecting HRD in HGSC 

The systematic review confirmed that the currently available HRD testing methods fall into 

three main categories – HRR gene level tests, genomic scars and signatures and functional 

assays (Figure 1). The critical evidence review for individual tests is summarized in Table 1 

with a level of evidence (LOE) and EGAPP ranking provided for each test where relevant (see 

Supplementary Tables 4 – 10 for details for each test category). The main evidence supporting 

(or refuting) the clinical validity and clinical utility of these tests is derived from eight pivotal 

randomized controlled trials that are summarized in Table 2. A comparison of the hazard ratios 

within the intention to treat and the mainly exploratory HRD test driven subgroup analyses is 

presented in Figure 3. For additional comments from the expert panel on methods of HRD 

testing see supplementary methods.  

 

HRR Gene Level Tests 

Germline mutations in BRCA Genes  
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Germline (inherited) BRCA1 and BRCA2 (gBRCA) mutations are implicated in the 

development of 13–15% of HGSC [2, 14]. Functional BRCA1 and BRCA2 proteins are crucial 

to the repair of double-stranded DNA breaks by HRR [29]. Cancers that arise in individuals 

with a deleterious gBRCA mutation frequently harbour a somatic loss-of-function aberration in 

the corresponding wild-type BRCA allele and therefore have defective HRR. The development 

of PARP inhibitors as treatment for HGSC was prompted by observations that BRCA 

mutations greatly increased the in-vitro sensitivity of cancer cells to PARP inhibition [30, 31].  

 

Across the main randomised clinical trials in both first-line and relapse maintenance settings, 

whether as monotherapy or as combination therapy, a common theme is observed – BRCA 

mutation status consistently identifies the subgroup of patients who derive the greatest benefit 

from PARPi treatment in platinum-sensitive disease (LOE 1, Table 1 and 2, Figure 3) [6-8, 10-

13, 32]. Despite some differences in trial design, patient characteristics and the treatment 

setting, the hazard ratio (HR) for PARPi maintenance therapy benefit in patients with a BRCA 

mutation is remarkably similar between all the above trials suggesting a robustness of the 

biomarker as a positive predictor of response (Figure 3).  However, the negative predictive 

value (NPV) of BRCA mutation status is universally poor in the setting of platinum sensitive 

relapsed HGSC, with BRCA wild-type (BRCAwt) subgroups also deriving a significant, 

although numerically smaller benefit form PARPi (Table 2, Figure 3) [7, 10, 12]. Similarly, in 

the first line setting PARPi treatment benefit extended to patients without BRCA mutations, 

which probably reflects the fact that platinum sensitivity is itself a powerful biomarker of HRD 

(Figure 2A) [6, 8, 13].  

 

Somatic BRCA mutations 

An additional 5-7% of HGSC harbour somatic BRCA (sBRCA) mutations that have arisen 

during cancer development or progression [2]. Whilst many studies utilised tumour BRCA 

(tBRCA) status (incorporating both gBRCA and sBRCA) as a biomarker to determine PARPi 

benefit [7, 13, 32], data on sBRCA mutations alone is more limited. Retrospective analysis 

from Study 19 identified sBRCA mutation in 10% of patients [33]. There was bi-allelic 

inactivation in >80% of cases and mutations were predominantly clonal, suggesting that 

sBRCA mutations arise early in tumourigenesis. The clinical outcomes for patients with 

sBRCA mutations were similar to those with gBRCA mutations in terms of PFS (HR = 0.23 vs 

0.17, respectively). Within the NOVA trial, 47 (of 553) patients harboured a sBRCA mutation 

and derived a similar benefit from niraparib compared to placebo (PFS increase 11 to 20.9 

months, HR 0.27) as the gBRCA population (PFS 5.5. to 21.0 months, HR 0.27) [10]. Similarly, 

for rucaparib, data are available for monotherapy treatment in patients with platinum-sensitive 

advanced disease; for 19 patients with sBRCA mutation the response rate was 74% which 
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was similar to those with gBRCA mutations (85%) and PFS was also similar [34]. Finally, 

within the VELIA first line study, a similar benefit was observed for gBRCA (HR 0.5, 0.30-0.82) 

and sBRCA (HR 0.35, 0.14-0.87) with veliparib versus placebo treatment [6].  

 

Non-BRCA HRR gene mutations  

Germline or homozygous somatic mutations in other members of the Fanconi anaemia family, 

such as RAD51C, RAD51D, and BRIP1 increase susceptibility to HGSC [35-37] and pre-

clinical studies have established that deficiencies in these genes and possibly other HRR-

associated genes, such as ATM, CHEK1, CHEK2 and CDK12 also confer sensitivity to DNA 

repair inhibition [5, 35, 38, 39]. The Cancer Genome Atlas (TCGA) identified mutations related 

to the HRR pathway in approximately 30% of HGSC [2]. Clinical studies have demonstrated 

that somatic mutations in non-BRCA HRR genes confer a PFS and OS advantage, similar to 

that seen with BRCA mutations in patients treated with platinum chemotherapy, when 

compared to patients who have neither a BRCA nor HRR mutation [4]. Due to the relative 

rarity of these mutations, data regarding the influence of non-BRCA HRR gene mutations on 

PARPi response is anecdotal.  

 

In a retrospective analysis from Study 19, tumour tissue testing identified that 21 HGSCs 

without BRCA mutations had mutations in other genes implicated in DNA repair including 

BRIP1 (BRCA1 interacting protein C-terminal helicase 1) that co-operates with BRCA1 to 

perform DNA repair. Other DNA repair genes altered in more than one patient included 

CDK12, RAD54L and RAD51B [40].  The cohort of HGSC that lacked a BRCA mutation but 

carried a mutation in other HRR genes derived a similar benefit to those with a BRCA mutation 

(HR 0.21 and HR 0.18 respectively), and this was of a greater magnitude to that observed in 

the cohort that lacked mutations in either BRCA or the wider set of HRR genes (HR 0.71) [40]. 

Caution is required in interpreting the data from this retrospective analysis, as the numbers of 

patients with defects in any one gene (other than BRCA1 or BRCA2) are small and a similarly 

sized study could generate a different set of recurrently altered HRR genes. Within the ARIEL2 

(NCT01891344) rucaparib monotherapy study, exploratory analysis was performed on 12 

patients with pre-treatment and post-progression biopsies [41]. Two patients had a mutation 

in a non-BRCA HRR gene (RAD51C and RAD51D) with both patients deriving clinical benefit 

to rucaparib treatment. Interestingly, both post-progression biopsy samples contained 

reversion mutations that were predicted to restore the respective gene functions, which was 

confirmed in vitro.   

 

Mutation variants of unknown significance (VUS) are particularly problematic for wider gene 

panel tests where the functional and clinical consequences of most individual genomic loci are 
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not well characterised and individual mutations are not highly recurrent [42]. Indeed, BRCA 

mutation tests can have VUS rates of up to 5% in some laboratories despite the fact that these 

are incredibly well characterised genes [43].  

 

HR Gene Promoter Methylation  

Although the impact of deleterious BRCA gene mutations on PARPi and platinum responses 

in HGSC is established, the clinical relevance of HRR gene promoter methylation is more 

difficult to interpret [44-48]. There is biological evidence that BRCA1 and RAD51C gene 

promoter methylation can result in HRD. Promoter methylation results in reduced expression 

of these key HRR genes, and in cancers it is generally mutually exclusive with BRCA mutation 

[2, 46, 49-51] and positively associated with BRCA-associated genomic signatures [50, 52]. 

However, clinical studies that included screening for HRR gene methylation, provide 

conflicting evidence, and its accuracy and reliability as a biomarker for predicting PARPi (or 

platinum) responses in HGSC patients cannot currently be established [2, 34, 46, 48, 53, 54].  

 

There is now evidence to suggest that existing studies were confounded by technical factors 

associated with the measurement of tumour DNA methylation [46-48]. It was only recently 

discovered, using a cohort HGSC patient derived xenograft models, that the zygosity of 

BRCA1 methylation is a key determining factor for PARPi response [55]. Kondrashova et al, 

demonstrated that all copies of BRCA1 must be methylated for PARPi response, and that 

losing methylation of a single BRCA1 copy was sufficient to restore HRR DNA repair and 

cause platinum/PARPi resistance [55]. This finding was validated using BRCA1 samples from 

the ARIEL2 Part 1 trial, where “homozygous” BRCA1 methylation was carefully assigned 

using highly quantitative methylation-specific droplet digital PCR (to measure BRCA1 

methylation), as well as sample/tumour purity and BRCA1 copy-number estimates [55]. 

Although the same principles of methylation zygosity may apply to RAD51C methylated cases, 

this remains to be confirmed. Thus, in future, great caution should be taken in assigning 

methylation status to these HRR genes, with quantitative methylation assays, sample purity 

and gene copy number all being critical for accurate HRD assessment and predicting 

platinum/PARPi responses.  

 

Consensus Statements on HRR Gene Tests 

 BRCA1/2 mutation tests (germline [LOE I], tumour (incorporating germline and 

somatic) [LOE I] and somatic [LOE I/II]) exhibit good clinical validity by consistently 

identifying the subgroup of ovarian cancer patients who derive the greatest magnitude 

of benefit from PARPi therapy.  

(Level of agreement = 100%; total agreement) 
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 There is currently an insufficient quantity of evidence to determine the clinical validity 

of individual or panels of non-BRCA1/2 HRR genes for predicting a PARPi response 

and further prospectively collected data is required (LOE II).  

(Level of agreement = 100%; total agreement) 

 There is currently insufficient evidence to determine the clinical validity of BRCA1 or 

RAD51C promoter methylation to predict PARPi benefit, partly due to concerns 

regarding the analytic validity of previous studies.   

(Level of agreement = 100%; total agreement) 

 

Genomic Signatures and Scars  

Cancers and cell lines with BRCA mutations exhibit genomic instability, manifesting in 

abnormal copy number profiles and thousands of somatic mutations genome-wide, that 

include both single base substitutions (SBS) and structural variants (SVs) that are 

characterized by a preponderance of short deletions (1 bp-100kbp), short tandem duplications 

(up to 10kbp) (Figure 1). Measuring some or all of these genomic features provide ways of 

identifying cancers with a history of HRD, irrespective of the underlying aetiology.  

 

Copy Number Based ‘Scar’ Assays  

Most HRD genomic assays in current use were developed using SNP-based microarray 

technologies and measure somatic copy number variation (CNV). In 2012 three studies 

reported SNP based CNV assays that predicted BRCA status through the quantification of 

large scale transitions (LST) [56], loss of heterozygosity (LOH) [57] or allelic imbalance 

extending to the telomere [58] (NtAi) (Figure 1). Subsequent studies suggested that combining 

the information derived from two or more of these assays further enhanced the ability to 

distinguish between HRR competent and deficient cancers [59]. The most common genomic 

scar assays reported to date are two commercially available tests that combine tumour BRCA 

mutation testing with a genomic instability score derived from the unweighted sum of TAI, LST 

and LOH (MyChoice HRD test , Myriad Genetics) or with an assessment of fraction of genomic 

sub-chromosomal LOH [60] (FoundationFocus CDxBRCA, Foundation Medicine) [61]. The 

Myriad genomic instability score (GIS) uses a dichotomous threshold, determined within a 

training cohort of 497 breast and 461 ovarian cancers, including 268 BRCA mutant or promoter 

methylated tumours to classify cancers as GIS-high or GIS-low [60]. The LOH test uses an 

NGS sequencing assay to determine the percentage of genomic LOH. A pre-defined cut-off 

of 14% or more defines LOH-high, based on the TGCA data [2]. As discussed below, both 

GIS and LOH tests were developed with predefined thresholds but these were not adopted in 

all studies. The biomarker potential of LOH-high versus LOH-low and the MyChoice assay 
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have been investigated in high quality (LOE I) prospective clinical trials of PARPis in the first-

line and/or relapse settings (Table 1 and 2) [6-8, 10, 12, 13, 34].  

 

Only the monotherapy ARIEL2 trial was designed to evaluate genomic scarring within the 

BRCAwt population. All of the maintenance studies in both the primary and recurrent setting 

completed to date which have included genomic instability as molecular assay used a nested 

approach for the primary outcomes in which the HRD population included BRCA mutated 

HGSC (Table 2). Therefore, evaluating the utility of LOH or GIS to predict benefit from PARPi 

in the BRCAwt populations were preplanned secondary analyses that were not adequately 

powered to allow definitive analyses in any of the large randomized controlled trials. The 

strongest evidence for LOH status as a marker of PARPi response is derived from the ARIEL 

studies of rucaparib. The ARIEL2 (part 1) phase II monotherapy study classified patients into 

3 predefined subgroups according to HRD status: BRCA mutant; BRCAwt/LOH-high and HRP 

(BRCAwt/LOH-low) [34]. Amongst patients with BRCAwt cancers, PFS was superior in the 

LOH-high compared with the LOH-low subgroup (0·62, 0·42-0·90, p=0·011). Because ARIEL2 

is a monotherapy study without a control arm, it is possible that LOH status functioned as a 

prognostic not predictive marker.  In the phase III ARIEL3 study of rucaparib versus placebo 

as maintenance therapy in relapsed disease, the primary endpoint of PFS was further 

explored within prespecified HRD categories including BRCAwt/LOH-high and BRCAwt with 

LOH-low (HRP), but these analyses were limited by lack of LOH status as a stratification factor 

and inadequate power for such secondary comparisons. The threshold for determining LOH 

status (16%) also differed to that determined in the original studies (14%) [34]. Treatment 

benefit (PFS) was greatest in BRCA mutant (HR 0.23, 0.16-0.39), followed by HRD-positive 

(BRCA mutant or LOH-high; HR 0.32, 0.24-0.42), BRCAwt/LOH-high (HR 0.44, 0.29-0.66) 

and finally the HRP (BRCAwt and LOH-low) cohort (HR 0.58, 0.4-0.8) [7] (Figure 3).  

 

The NOVA study of niraparib versus placebo included two parallel cohorts – gBRCA mutant 

and BRCAwt. A hierarchical analysis was performed within the BRCAwt group for the GIS-

high and then all gBRCAwt subgroups. GIS was not a stratification factor [10]. Findings echoed 

those of ARIEL3, including an intermediate benefit in the BRCAwt/GIS high and failure to 

identify an HRP group who do not benefit (Table 2). A retrospective analysis of Study 19, 

combined with GIS testing further confirmed that GIS did moderately separate the BRCAwt 

population into higher and lower benefit groups but does not adequately define an HRP group 

who derive no benefit from a PARPi [40]. In the relapse platinum sensitive setting the LOH-

score and GIS-score therefore demonstrate good clinical validity in their ability to define a 

BRCAwt subgroup who derive a greater benefit from PARPi. However, the clinical utility of 

these tests, at least in the platinum sensitive setting, as discussed in the next section, is limited 
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by the fact that neither test can consistently identify a BRCAwt subgroup that derives no 

benefit from PARPi (Table 1, Figure 2A). There have been no side-by-side comparisons of 

these tests within clinical trials to draw a direct comparison of performance. 

 

GIS is the only genomic scar assay that has been tested to date in first-line randomized 

controlled trials. The PRIMA study compared niraparib to placebo and stratified treatment 

according to HRD-status (combined tBRCA status and GIS score) in patients with documented 

platinum responsive disease after primary treatment [8]. Like ARIEL3 and NOVA, analyses of 

GIS within the BRCAwt population was a preplanned exploratory analysis in PRIMA.  Possibly 

reflecting the stringent platinum responsiveness inclusion criteria (including at least 90% 

reduction in serum CA125), the results were similar to those seen in the relapse setting with 

benefit observed in all BRCAwt HGSC irrespective of GIS, although the magnitude of benefit 

was higher in the GIS high compared to GIS low subgroup (HR 0.5, 0.31-0.83 versus HR 0.68, 

0.49-0.94) (Table 2, Figure 3). Unfortunately the VELIA study of veliparib versus placebo, was 

not designed or powered to detect a difference within the BRCAwt population so we do not 

know how to interpret the fact that the GIS high subgroup (defined in this study as a score 

>=33) appears to derive almost identical benefit to the overall BRCAwt cohort (HR = 0.81, 0.6-

1.09 and HR = 0.8, 0.64-1.0 respectively), which could also reflect the lack of selection for 

platinum sensitivity or the utilization of PARPi in combination with chemotherapy before 

maintenance [6].  The PAOLA-1 study investigated the benefit of adding olaparib to 

bevacizumab maintenance therapy [13]. Amongst BRCAwt HGSC, PARPi benefit was 

restricted to those with a high GIS (HR 0.43, 0.28-0.66 versus HR 0.92, 0.72-1.17 with low 

GIS) indicating that in some patient populations the GIS has the potential to identify a HRP 

population who do not derive benefit from PARPi, when given in combination with 

bevacizumab.  

 

Mutational Signatures 

Whole genome sequencing of a typical cancer will reveal thousands of somatic mutations. 

The pattern of mutations reflects historical endogenous and exogenous mutational processes 

that have operated in the cell. Each mutational process may contain components of DNA 

damage, repair and replication and can generate a characteristic mutational signature that 

can be detected using computational methodologies [62, 63]. In HGSC, mutational signatures 

have been shown to correlate with clinical features such as survival and platinum response 

[63-67]. 

 

The most commonly cited approach for detecting point mutational signatures was developed 

by Alexandrov et al. [62].  Every SBS in the genome is first assigned to one of 96 possibilities 
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determined by the base change (C>A, C>G, C>T, T>A, T>C, T>G) and the immediate 5’ and 

3’ base.  Mutational signatures are then extracted using a non-negative Matrix Factorization 

(NMF) method. Applying this approach to over 2,600 cancers has identified a total of 49distinct 

SBS mutational signatures to date [68]. SBS Signature 3 is associated with BRCA mutation 

and BRCA1 promoter methylation in breast, ovarian, pancreatic and stomach cancers. It has 

been proposed as a biomarker for HRD [69]. However, in isolation SBS signature 3 is unlikely 

to provide a sufficiently robust clinical biomarker for guiding PARPi therapy in HGSC. Firstly, 

it probably lacks specificity (the vast majority of HGSCs have some contribution from 

Signature 3). Secondly, ascertaining appropriate thresholds will be difficult as the relatively 

indistinct nature of the signature makes it particularly sensitive to a reduction in the number of 

mutations that occurs in low tumour cellularity or when swamped by other competing 

mutational signatures [70].  

 

As HRD causes different types of genomic alterations, an assay that utilizes as much genome-

wide information as possible is likely to offer greater specificity and sensitivity. A BRCA 

deficiency detector termed HRDetect [70] was developed using whole genome sequence data 

from BRCA mutant and wild-type (control) breast cancer samples. The algorithm uses 

information from all four mutation classes and measures 6 genomic features that are assigned 

different weightings as specified in brackets: 1) Indels – microhomology mediated deletions 

(2.398); 2) SBSs – Signature 3 (1.611) and Signature 8 (0.091); 3) SVs – rearrangement 

signature 3 (mainly short (<10kb) tandem duplications) (1.153) and rearrangement signature 

5 (deletions of <100kb)(0.847); 4) CNV – the HRD-score (as used in Myriad MyChoice HRD) 

(0.667). Using a probabilistic cut-off of 70%, HRDetect predicted BRCA deficiency with a 

sensitivity of 98.7% in 560 breast cancers (including the training cohort), 86% in a validation 

breast cancer cohort (n=80) and approaching 100% in ovarian cancer (n=73) and pancreatic 

cancer (n=96) validation cohorts. Cases with monoallelic BRCA loss had low HRDetect 

scores. The HRDetect assay significantly outperformed existing genomic scar measures such 

as the GIS that had a sensitivity of 60% [60]. In breast cancer there is some evidence that the 

HRDetect score can predict clinical outcome and response to platinum therapy (AUC 0.89, 

p=0.006) but its ability to predict PARPi benefit in HGSC has not yet been established [71, 

72].  

 

There is strong preclinical evidence that mutation-based assays that use information from 

multiple mutation types could outperform existing scar assays. A major limitation, however, is 

the reliance on fresh frozen material while most trial samples are formalin fixed paraffin 

embedded (FFPE). While FFPE related artefacts can be managed with relative ease in 

targeted sequencing experiments, in whole-genome data, although some solutions have been 
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developed, these artefacts remain challenging [73]. A second limitation of all genomic scar or 

signature assays is that they by definition reflect the historical existence of HRD and do not 

provide information about current HRP status that can be reinstated through different 

mechanisms.  

 

Consensus statement on the use of Genomic Scar Tests of HRD 

 HRD tests that incorporate scores of allelic imbalance (GIS or LOH) identify a subgroup 

of BRCA wild-type, platinum sensitive cancers that derive a greater magnitude of 

benefit from PARPi therapy in some settings (LOE I).  

(Level of agreement = 100%; total agreement) 

There is currently insufficient evidence to ascertain the clinical validity of whole 

genome sequencing-based mutational signatures for predicting PARPi benefit 

(Level of agreement = 100%; total agreement) 

Pre-clinical evidence suggests that whole genome sequencing based mutational 

signature tests may compare favourably to existing genomic scar assays in terms of 

identifying cancers with HRD – their clinical validity in terms of PARPi benefit should 

be ascertained in archived clinical trial specimens and/or prospective clinical trial 

specimens.  

(Level of agreement = 100%; total agreement) 

 

Functional Assays   

Functional assays have the potential to provide a dynamic readout of actual, extant, HRR 

status. The most commonly-used experimental system to estimate HRR has been to estimate 

the amount of nuclear RAD51, a downstream HR protein (a DNA recombinase) that enables 

high-fidelity double strand DNA repair by facilitating DNA strand invasion into the sister 

chromatid, a process supported by the BRCA1/PALB2/BRCA2 complex. Reduced DNA 

damaged-induced nuclear RAD51 foci has been associated with BRCA1 or BRCA2 gene 

defects as well as PARPi responses, both in ovarian and breast cancer laboratory models and 

in small cohorts of patient samples, including ex vivo cultures derived from ascites or from 

solid HGSC [74, 75]. Further evidence exists in breast cancer where low RAD51 foci (induced 

by DNA-damaging chemotherapy) are associated with patient treatment responses to 

neoadjuvant chemotherapy or to PARPi [76-78]. Two limitations of measuring reduced RAD51 

as a surrogate of HRD are; (i) the RAD51 assay will not identify defects in HR downstream of 

RAD51 loading onto DNA; and (ii) when used experimentally, the RAD51 signal is normally 

elicited by exogenous DNA damage, limiting the clinical applicability of the approach. 

However, the ability to estimate nuclear RAD51 levels in the absence of exogenous damage 

as an estimate of HRD has now been demonstrated in treatment naive, archival FFPE tumour 
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specimens, suggesting that clinical application of this assay might be possible [79]. 

Retrospective analyses of larger clinical cohorts are also needed to demonstrate the clinical 

validity of the RAD51 assay. Prospective trials selecting patients according to their RAD51 

score are also awaited.  

 

Consensus statement on the use of Functional Assays of HRD  

 There is currently insufficient evidence to ascertain the clinical validity of functional 

assays in predicting response to PARPi therapies, but these pre-clinical assays 

provide promise for ascertaining real time estimates of HRD and their development 

should be a priority. The potential for using functional assays alongside HRR gene 

tests and genomic tests should be investigated.  

(Level of agreement = 100%; total agreement) 

 

Clinical Utility of Available HRD Tests 

PARPis are licensed by European Medicines Agency (EMA) and/or the US Food and Drug 

Agency (FDA) for use in three clinical settings in the management of HGSCs: 1) as first-line 

maintenance therapy for platinum sensitive, advanced stage cancers 2) as second-line 

maintenance therapy in platinum sensitive, relapsed disease irrespective of BRCA mutation 

or other HRD test defined status and 3) as monotherapy treatment in BRCA mutant 

(olaparib/rucaparib) or HRD test positive (niraparib) HGSC beyond 2 prior lines of therapy. 

There is some variation in specific license details as summarised in Table 3. Notably, EMA 

but not FDA regulations limit PARPi use to high-grade cancers while FDA approvals depend 

on the use of FDA approved companion diagnostics for HRD status testing including for BRCA 

mutations.  Clinical trials evidence has informed recent approvals by the FDA for first line 

maintenance therapy, with EMA approvals awaited (Table 3). Based on the PRIMA trial data, 

in April 2020 the FDA approved the use of niraparib for all-comers based on positive data in 

the intention to treat populations [80].  Following PAOLA-1 trial data the FDA extended 

approval for olaparib beyond BRCA mutation to those with BRCAwt/GIS-positive HGSC but 

only when given in combination with bevacizumab [81]. The Myriad myChoice assay was 

concurrently approved as a companion diagnostic for olaparib in this setting [81]. 

 

 

Maintenance Therapy in Platinum Sensitive Relapse 

In the platinum sensitive relapsed setting initial approvals for PARPi maintenance were limited 

to olaparib for use in ovarian cancers with BRCA mutations [82, 83]. Subsequent data 

identified benefit in all subgroups and supported an extended scope for PARP inhibitor use. 

This is reflected in approvals by the FDA and EMA for niraparib, rucaparib and olaparib as 
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maintenance therapy for all patients with platinum-sensitive relapsed ovarian cancer, 

irrespective of BRCA or HRD status [82-86].  However, despite regulatory approval for ‘all 

comers’, as discussed in relation to individual tests above, there is an incremental reduction 

in benefit observed from the BRCA mutant to HRD to HRP populations as defined by 

GIS/LOH-score assays in maintenance monotherapy. The clinical utility of HRD tests (BRCA 

mutation and genomic ‘HRD’ scars) in these settings therefore results from the magnitude of 

PARPi benefit. The expert panel commented that in the relapsed setting this can be helpful 

for deciding whether to initiate chemotherapy and bevacizumab or chemotherapy alone with 

the intention of using a PARPi if there is a partial or complete response. Furthermore, it 

identifies the group of patients predicted to derive the least benefit from PARPi maintenance 

and where clinical trials may be more appropriate.  

 

Maintenance Therapy After Response to First Line Chemotherapy 

The use of olaparib maintenance following first-line chemotherapy in patients with advanced 

BRCA mutated HGSC significantly improves PFS [11]. Within the recent studies exploring the 

role of first line PARPi maintenance in all comers, BRCAwt but HRD positive (i.e., high GIS 

on Myriad MyChoice HRD) cancers constituted 20-30% of HGSC. In two of these trials, 

preplanned, but exploratory analyses of this subgroup demonstrated a clinically meaningful 

increase in median PFS (of greater than 10 months in each study) from first line PARP 

inhibition, although the magnitude of benefit was less than that observed for patients with  

BRCA mutant HGSC [6, 8, 13] (Table 2).  

 

The non-HRD (GIS low and BRCAwt) subgroup constituted up to 50% of all HGSC in these 

trials [6, 8, 13]. A more difficult question to answer is whether existing HRD tests can 

consistently identify a group of patients who do not derive sufficient benefit to justify PARPi 

therapy in this setting. No trial was powered to determine whether the HRP population by itself 

derived benefit from maintenance PARPi in either the recurrent or primary setting but all 

showed benefit across the intention to treat populations.   

 

The expert panel commented that translating these data into clinical practice is somewhat 

challenging due to fundamental differences in study design and patient inclusion. The PAOLA-

1 study randomised patients between olaparib with bevacizumab or bevacizumab with 

placebo maintenance therapy (Table 2). Academic research on PAOLA-1 samples should 

help to unpick which patients benefit from PARPi plus bevacizumab but unfortunately it did 

not include a PARPi only maintenance arm, so this question will remain unanswered. The 

expert panel advises that caution is required when evaluating these biomarkers as none of 

these trials were prospectively designed to evaluate the HRD test in all subgroups, including 
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the HRP population.  Indeed, PAOLA-1 was stratified for BRCA mutant versus BRCAwt, while 

BRCAwt /HRD positive, was an exploratory analysis. PRIMA was stratified for HRD positive 

versus HRD negative and unknown HRD status combined. In all three studies, HRP cohort 

was an exploratory end-point. The Myriad MyChoice assay was the only one used in these 

studies. 

 

Monotherapy Treatment with PARPi 

There are limited opportunities to use a PARPi as a single-agent treatment in both Europe 

and the USA and each indication requires either a BRCA mutation or HRD positive cancer 

(Myriad MyChoice) (Table 3) [82, 83, 85-87]. Recent data from the SOLO3 trial suggest that 

for PARPi naïve gBRCA patients with platinum resistant or partially sensitive ovarian cancer, 

olaparib is superior to nonplatinum chemotherapy with higher response rate and PFS [88]. 

However, as PARPi maintenance therapy is now routinely available for all patients with 

platinum sensitive relapsed disease and for all BRCA mutant patients in the first line setting 

the opportunities for monotherapy use are increasingly limited.  

 

Consensus Recommendations on the Clinical Utility of HRD tests 

 In the first line maintenance setting, germline and somatic BRCA1/2 mutation testing 

is routinely recommended to identify HGSC patients who should receive a PARPi.   

(Level of agreement = 100%; total agreement) 

 In the the first line maintenance setting, it is reasonable to use a validated scar based 

HRD test to establish the magnitude of benefit conferred by PARPi use in BRCA1/2 

wild-type HGSC. (Level of agreement = 100%; total agreement) 

 In the first line maintenance setting, it is reasonable to use a validated scar based HRD 

test to identify the subgroup of BRCA1/2 wild-type patients who are least likely to 

benefit from PARPi therapy.  

(Level of agreement = 100%; total agreement) 

 In the platinum sensitive relapse maintenance setting, it is reasonable to 

use BRCA1/2 mutation testing and validated scar based HRD tests to predict the likely 

magnitude of PARPi benefit for consideration of risks and benefits of maintenance 

therapy.  

(Level of agreement = 100%; total agreement) 

 

Future Perspectives: Developing the optimal HRD Biomarker  
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Cancer’s capacity to continuously evolve and change is a common challenge in the era of 

precision medicine. The HRD assays currently available in clinical practice do not provide a 

dynamic readout – genomic assays, by definition, provide information on mutations acquired 

in the past and do not necessarily provide information on the current HRD status. Specifically, 

genomic scars represent a historical record of HRD and will not reflect restoration of HRR as 

resistance to platinum or PARPi develops. The restoration of HRP and/or PARPi resistance 

may develop through diverse mechanisms and there are few assays that seek to identify 

these. However, we recognize that improvement in assessing HRD is required. The rate of 

inconclusive tests in PAOLA-1 (18%) and the observation that some patients with HGSC 

without detectable HRD may still benefit from bevacizumab and PARPi (e.g. highly platinum-

sensitive) have prompted an ongoing European Network for Gynaecological Oncological Trial 

(ENGOT) initiative to evaluate several HRD tests, including RAD51 foci, on PAOLA-1 tumour 

samples. The expert panel members advised that better HRD biomarkers are needed and 

new HRD tests should address the problem of cancer evolution, provide a real-time read out 

of HRP/HRD and should ideally generate data in a format that permits on-going research (for 

example, whole genome sequence data rather than targeted data from a limited number of 

genes). The behaviour of new biomarkers may differ depending on the patient population (i.e. 

with HGSC that is platinum sensitive versus unknown) and the treatment schema (i.e, 

monotherapy versus combined with other therapies). Thus, the context of the trial will be 

important in developing and testing new biomarkers of PARPi benefit.   

 

We predict that the development of composite biomarkers will improve treatment stratification 

and these should be a priority for translational research. Indeed, the likely impact of platinum 

sensitivity (itself a strong biomarker of HRD) on the heterogeneity of HRD-related outcomes 

in the clinical trials discussed above indicates that we need to develop systematic ways to 

integrate this clinical information with HRD test results. Real-time composite markers may 

include a combination of a platinum sensitivity, genomic scar/ mutational signature test and a 

functional assay to provide both robust historical evidence of HRD and to estimate current 

HRR capacity. Alternatively, (or within this strategy) comprehensive genomic assays, based 

on high quality whole-genome sequencing data, could be developed to provide simultaneous 

read outs of HRR gene mutations, mutational signatures and reversion mutations. 

Furthermore, if combined with multi-sampling strategies, these assays have the potential to 

trace changes in subclone structure over a disease course. We should develop robust 

computational methods, locked down for clinical use, allowing academic centres to generate 

their own data for clinical decision making now, permitting future research and allowing local 

updating in response to advances in knowledge.  

 



 21 
 

Consensus Recommendation 

 An optimised HRD biomarker needs to be developed to address the problem of cancer 

evolution, provide a real-time read out of HRP and should ideally generate data in a 

format that permits on-going research.   (Level of agreement = 100%; total agreement) 
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