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Abstract
We search for transient variations of the fine structure constant using data from a European
network of fiber-linked optical atomic clocks. By searching for coherent variations in the recorded
clock frequency comparisons across the network, we significantly improve the constraints on
transient variations of the fine structure constant. For example, we constrain the variation to
|δα/α| < 5 × 10−17 for transients of duration 103 s. This analysis also presents a possibility to
search for dark matter, the mysterious substance hypothesised to explain galaxy dynamics and
other astrophysical phenomena that is thought to dominate the matter density of the universe. At
the current sensitivity level, we find no evidence for dark matter in the form of topological defects
(or, more generally, any macroscopic objects), and we thus place constraints on certain potential
couplings between the dark matter and standard model particles, substantially improving upon the
existing constraints, particularly for large (�104 km) objects.

The nature of dark matter is one of the most important outstanding problems in physics today. Despite
composing the majority of the matter in the universe, evidence for dark matter particles in direct detection
experiments remains elusive [1]. So far, much of the focus has been on weakly-interacting massive particles
with masses equivalent to � GeV; the lack of evidence for their existence, however, is contributing to an
increase in interest for more varied candidate models [2].

One possibility is that dark matter is composed of ultralight boson fields (masses � 1eV). Such fields
may form classical oscillating fields that can be coherent on certain time scales [3, 4]. If the fields have
specific self-interactions, they may also form stable macroscopic objects such as topological defects [5, 6]. If
the fields have non-gravitational interactions with standard model fields, encounters between such objects
and precision measurement devices may induce observable transient signatures in recorded data as Earth
moves through the galactic dark matter halo [7].
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Here, we consider topological defect dark matter objects that have quadratic scalar interactions with
standard model particles. Such interactions lead to the effective rescaling of certain fundamental constants,
which can shift atomic energy levels and transition frequencies (see, e.g., the recent review in reference [8]).
Searches for transient frequency variations can then be performed by monitoring atomic clocks, which
work by referencing the frequency of an external oscillator (e.g., a laser) to that of an atomic
transition.

We note that ultralight dark matter can also cause long-term drifts [9–13] and local oscillations [14–19]
of fundamental constants. Dark matter with other couplings can also be sought with atomic clocks [20] and
networks of other precision measurement devices, such as magnetometers [21, 22]; such searches are
complementary to those considered in this work. While we specifically consider quadratic couplings, the
analysis applies equally for linear couplings (for the correspondence see, e.g., reference [17]), though these
are more tightly constrained [23].

With only a single measurement device, it is impossible to distinguish a transient frequency variation
caused by a variation in fundamental constants from one caused by terrestrial sources. With a distributed
network, however, the time-delays between signals appearing across network nodes must be consistent with
the passing of a galactic-speed transient. On the time-scales considered in this work (> 60 s), this will
manifest as a simultaneous signal visible in all data streams. In addition, having a network with multiple
different clock types helps to discriminate against false positives. Different clock types will respond
differently to effective changes in fundamental constants, with the relative sensitivities being a prediction of
the theory [24].

In this work, we use data from a European network of fiber-linked optical atomic clocks to search for
evidence of transient variations in clock frequencies. Our analysis has allowed us to substantially improve
constraints on transient variations of the fine structure constant, α, particularly for time scales above
∼ 102 s, where the long-term stability of the atomic clock comparisons in this network offers the largest
advantage over existing experiments. For example, at ∼ 103 s, we constrain the transient variation to
|δα/α| < 5 × 10−17. We consider only the variation of α since we employ optical clocks, which are only
sensitive to this parameter [24].

This analysis can be interpreted in terms of a search for dark matter in the form of topological defects,
and we find no evidence for such objects at the current sensitivity level. Assuming the defects make up the
majority of the dark matter in the galaxy, we then place constraints on their possible couplings with
standard model fields. Our results substantially improve upon the existing limits, particularly for large
defects (�104 km).

1. Transient variations of constants

Transient effects, in general, are associated with two distinct time scales. Firstly, there is the duration of each
transient effect, which we denote as τ int. Secondly, there is the average time between consecutive transients,
which we denote as T . Due to better statistics, a more precise measurement (or a more stringent constraint)
can be made for effects with longer transient durations. However, this requires good long-term
measurement stability (i.e., no drifts) in order to track the signal over time. This is one benefit of laboratory
clock–clock comparisons, which have excellent long-term frequency stability. Constraints for the time
between transients are limited by the observation time.

Since the observable of an atomic clock is its frequency, for a comparison of two clocks with frequencies
νA and νB, we define the ratio yAB ≡ νA/νB. The fractional variation in this ratio caused by a variation in α

occurring during the sampling period τ for a pair of clocks both located at position r at
time t is

δy

yAB
(r, t) =

1

τ

∫ t

t−τ

KAB
δα(r, t′)

α
dt′, (1)

where KAB quantifies the sensitivity of the frequency ratio yAB to the variation in α [25]. This factor depends
both on the atomic species and the transition considered.

The clock output, driven by the external oscillator, is referenced to the frequency of the probed atomic
transition for time-scales larger than the servo loop constant, τ servo. In writing equation (1), we have
assumed that the effective sampling interval is larger than the servo time: τ > τ servo. The experiment will
still have sensitivity to variations below this time-scale, and it is possible to extend the analysis by taking
into account the clock and laser responses below the servo time. Here, we focus only on the region where
τ int > τ servo, where optical clocks are the most efficient and the main advantage of the optical clock
comparisons is realised.
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Assuming the transient variation follows a Gaussian profile, i.e., δα(t) = δα0 exp(−(t − t0)2/τ 2
int),

equation (1) can be evaluated simply. The maximum δα-induced perturbation is

δy0

yAB
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

KAB
δα0

α

√
π τint

τ
for τint � τ

KAB
δα0

α
for τint � τ ,

(2)

where δα0 is the maximum amplitude of the transient variation δα(t), which occurs at time t0. The result
changes only slightly for other profiles; e.g., for a rectangular (top-hat) profile the

√
π factor is absent.

From this, one can constrain the possible values for δα0 by monitoring ratios of atomic clock
frequencies. In the simplest case, the maximum allowed value for δα0 for a given τ int is set by the maximum
observed δy0 at the same time scale. An experiment with much greater sensitivity can be performed using a
network of clocks, provided their instabilities are comparable, by searching for variations in the frequency
ratios that are coherent across the entire network, and are consistent with a transient variation of α (given
the known K coefficients).

2. Data and analysis

We analyse data from a European network of fiber-linked optical atomic clocks based on Sr, Hg, and Yb+

atoms, located in France, Germany, and the United Kingdom, see figure 1. The data was taken over a period
of just over 40 days during May–June 2017. The clocks’ operation are described in references [26–32]. The
same fiber links have been used previously for fundamental physics tests, e.g., in reference [33]. Due to the
use of fiber links to perform the comparisons, the measurement stability is limited only by the instability of
the clocks themselves, with negligible contributions from the fiber-based optical frequency transfer for the
timescales > 60 s considered here [26].

The base sampling interval of the data is 1 s. However, we average the data from each clock stream up to
the largest servo-time of the considered clocks, in order to be consistent with the assumption in
equation (1). The maximum servo times are those of the Yb+ clocks (τmax

servo ∼60 s), so the effective sampling
period is taken to be τ = 60 s. For averaging periods larger than this, the noise of all the clock pairs is
essentially white frequency noise, with frequency instability scaling as 1/

√
τ . At 102 s averaging, the

fractional frequency instability approaches 10−16 for the Sr/Yb+ comparison at PTB, and a few times 10−16

for the other local comparisons; more details are given in the appendix. The relevant K factors are 6.01,
−0.75, and 6.76, for the Sr/Yb+, Sr/Hg, and Hg/Yb+ comparisons, respectively [34, 35].

If the source of the variation in α is galactic, we can expect it to move relative to Earth with galactic
speeds, vg ∼ 300 km s−1 (set, e.g., by the motion of Earth through the galactic frame of rest). If we assume
that the relative velocity distribution for the transients is described by the standard halo model (as for dark
matter, see, e.g., reference [36]), more than 99% of the transients would move relative to Earth with
v�75 km s−1 [37]. In the condition that τ int � L/vg, where L is the distance between clocks, we can treat all
the clocks in the network as being co-located, in that they will be affected simultaneously. Since the longest
distance in 750 km as shown in figure 1, this condition is easily satisfied for the τ int�60 s time-scales
considered here.

We use a maximum-likelihood method similar to the approach developed in reference [38] to search for
transient frequency variations across the network. The details of the method are given in the appendix. In
short, we define a likelihood function that quantifies how consistent the data covering a given time window
is with a possible transient variation in α. We considered only time periods when at least two independent
clock pairs (four clocks) were actively taking data, so that each clock appears only once in the combined
data streams. This eliminates cross-correlations between clock pairs, which would complicate the analysis.

We also define a detection threshold for the likelihood, above which there can be no false-positives with
99% confidence. Here, a false-positive is defined as any time the likelihood surpasses the threshold due to
purely random noise processes. Any time the likelihood is greater than the threshold can be investigated as a
potential event. No such instances were found using the considered data set, allowing us to place constraints
on the α variation.

For each time window throughout the total observation time, we calculate the best-fit value for δα0

(denoted δαbf
0 ) that maximises the likelihood for each relevant value of the possible interaction duration

τ int. The method also provides an estimate of the uncertainty, Δα0, in this best-fit value. Constraints can be
placed by finding the largest best-fit δαbf

0 that appears throughout the span of the data as a function of τ int,
taking the uncertainty into account for the confidence level: |δα0| < |δαbf

0 |max +Δα0; see the appendix for
more details.
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Figure 1. European fiber-linked optical clock network. The relevant lengths are the linear distances between laboratories, not the
length of the actual optical fiber links. The links use forward/backward light reflections to actively cancel signal variations coming
from within the link [26]. Therefore, the effect of variation of constants on the links themselves will not affect the results on
time-scales longer than that of the round trip time. The typical light reflection time is 10−3 s, much shorter than the ∼ 102 to 104

s transients studied here.

Figure 2. Constraints on the transient variation of the fine-structure constant α as a function of the transient duration, τ int. The
secondary horizontal axis shows the corresponding length scale, d = vgτ int. The shaded curves show the regions of the parameter
space that are excluded by various experiments (1σ confidence). Each curve is valid only below the presented maximum value for
T , the average time between consecutive transients. The new results of this work are shown in blue. Existing constraints from
optical clock/cavity comparisons are shown in green (Wcisło et al [39, 40]). Limits also exist from microwave clocks of the GPS
constellation (not shown); though they are substantially less stringent (δα/α � 10−12 for τ int ∼ 30 s) they are valid up to
T � 16 yr � 105 h [37].

To interpret the analysis in terms of the time between transients, T , we assume there was (at most) one
event during the observation time Tobs with magnitude δαbf

0 , and rule out the possibility of more frequent
events with larger magnitudes. In the analysis, we only use sections of the data that are continuous for
periods at least equal to τ int with no gaps. Therefore, when performing the analysis for larger τ int, we are
restricted to using less of the data, which reduces the effective observation time. This reduces the applicable
maximum T for the largest values of τ int that can be fitted explicitly. The sensitive region can then be
extended beyond this maximum directly probed value to larger τ int according to equation (2), so long as
τ int is small compared to both T and the total observation time. These two conditions ensure that the
sought signals would be well-separated transients (otherwise they may manifest as roughly constant
additions to the clock frequencies, which would not be observable). Due to the observation time, we do not
extend the constraints beyond τ int = 10h � 4 × 104 s; this is described in more detail in the appendix. For
the confidence level, we have assumed that the appearance of the transients follows a Poisson distribution.
We thus place constraints only in the region with average time between transients T < fPTobs, where fP is
the Poisson statistics factor (fP = 0.87 for a 1σ confidence level).

We first place constraints on transient variations of the fine structure constant, without direct reference
to the possible source of the variation. The results are shown as a function of τ int in figure 2. Previous
constraints come from optical clock to cavity frequency comparisons [39, 40]. There are also
complementary constraints from the microwave atomic clocks of the GPS constellation, which apply to a
combination of variation in the fine structure constant and the fermion masses [37].

Our analysis has substantially tightened the constraints on possible transient variations of the fine
structure constant, α. The new constraints are particularly strong for time scales above ∼ 102 s, where the
long-term stability of the atomic clock comparisons in this network offers the largest advantage over

4
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existing experiments. As discussed in the following section, these results also have important implications
for the search for dark matter.

3. Topological defect dark matter

While our analysis is model-agnostic, and the constraints on the variation of the fine structure constant
presented in figure 2 apply whatever the source of the variation may be, it is pertinent to interpret our
results in terms of relevant cosmological models. To this end, we now introduce one specific model, which
has been considered widely in the literature [7, 37–44], that may cause the frequency variations in
equation (1). Consider a scalar field, φ, that has quadratic interactions with standard model particles of the
form

Lint = ± φ2

Λ2
α

1

4μ0
FμνFμν , (3)

where Fμν is the electromagnetic Faraday tensor, and Λα is the effective energy scale (inverse of the coupling
strength). Such an interaction will lead to the effective rescaling of the fine structure constant, with

δα(r, t)

α
= ±φ2(r, t)

Λ2
α

, (4)

see, e.g., reference [9]. If the field φ has sufficient self interactions, it may form stable macroscopic objects
such as topological defects [5, 6]. The observable variation in α will occur only when the topological defect
overlaps with the clock [7].

The spatial extent of topological defects is set by the Compton wavelength of the field, d = �/(mφc),
where mφ is the field mass. The energy density inside the defects is ρinside = φ2

0/(�cd2), with φ0 being the
maximum value of the field amplitude [7]. In these models, the field amplitude goes to zero outside the
defect. Assuming that topological defects make up all dark matter, we can link the energy density inside
each defect to the average time between events (i.e. encounters between a defect and a given point in space):

T =
ρinside

ρDM

d

vg
=

φ2
0

�cρDMvgd
, (5)

where ρDM = (0.3 ± 0.1)GeV cm−3 [45] is the galactic dark matter energy density in our solar system [46].
Combining this with the expression for ρinside leads to an expression for the field amplitude in terms of the
observables and model parameters: φ2

0 = �c ρDMvg T d. We take d and T as the free parameters of the
model, since they are the direct observables (φ0, mφ, and ρinside are uniquely determined by d, T , and ρDM).

Thereby, the constraints on δα (figure 2) lead directly to constraints on the effective energy scale Λα:

Λ2
α(T , d) >

�cρDMvgT d

|δα0(T , τint)|/α
. (6)

The results are presented in figure 3 as a function of d for a few values of T . The constraints reach the
Λα�1010 TeV level for d ∼ 107 km. Also shown are the existing constraints from atomic clock experiments
[37, 39, 40]. Other constraints coming from astrophysical observations [23, 47, 48] (not shown) are
significantly less stringent, and do not exceed the ∼ 10 TeV level.

The results presented in figure 3 employ the model-dependent relation between the defect size and field
mass, d ∼ 1/mφ. In the case of a different relation (e.g., in models other than topological defects), then the
slope of the constraints presented in figure 3 would change in the same simple linear way for all curves
presented there. In the general case with no explicit relation between d and mφ, the model would simply
have an extra degree of freedom.

The results from the GPS microwave atomic clocks [37] (shaded orange in the figures) constrain a
combination of interaction parameters, including those stemming from a coupling to fermion masses as
well as the coupling to F2

μν as in equation (3). Therefore, in including those results on the same plot, we are
implicitly assuming that the Fμν coupling (leading to effective variation in α) was the dominant coupling
for the GPS experiment.

Since we consider long interaction times (i.e. large dark matter objects d � L), all clocks in the network
experience essentially the same value of the φ field. Therefore the results presented here apply for
topological defects of any geometry (i.e. monopoles, strings, or domain walls). This is in contrast to the
results of references [37, 40], which explicitly assume a domain wall geometry (the results of reference [39]
also apply for general geometries). Note also that for such objects to leave transient signatures, they need to

5
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Figure 3. Excluded region (1σ confidence) for the effective energy scale Λα for topological defect dark matter as a function of
the defect size, d, for time between events T = 0.9 h (left), T = 12 h (middle), and T = 45 h (right). The new results from this
work are shown in blue, and the existing constraints are shown in green (analysis of optical clock/cavity comparisons in Wcisło
et al (2016) [39] and (2018) [40]) and orange (analysis of the GPS atomic clock data [37]). These presented T values correspond
to the maximum applicable for references [39, 40], and this work, respectively. The GPS constraints from reference [37] extend to
T ∼ 105 h (they also apply to a combination of interaction parameters, as explained in the text).

be well separated (τint � T ). This is equivalent to demanding ρinside � ρDM. For example, with d ∼ 104 km,
equation (5) implies that it only makes sense to search for transients with T �0.1 h. We also do not extend
the limits beyond ∼ 107 km (corresponding to τ int ∼ 10h) for the reasons discussed in the previous section.

4. Conclusion

By using data from a European network of fiber-linked optical atomic clocks to search for evidence of
transient frequency variations, we have substantially improved the constraints on transient variations of the
fine structure constant. With the same analysis we also search for evidence of topological defect dark matter.
At the current sensitivity level, no such evidence was found during the analysed time windows. Within the
assumptions of our model, we have therefore placed constraints on the possible interactions of such defects
with standard model particles, improving upon existing constraints by many orders of magnitude.

We note that it may also be possible to substantially improve the constraints in the region where the
event rate is high, T � Tobs, even if the signal magnitude is well below the noise, by exploiting statistical
signatures [49]. For example, in the absence of transients, the distribution of extracted best-fit δα0 values
would be expected to be roughly Gaussian. However, if a large number of transients were present in the
data, non-Gaussianities, such as a skewness, would be expected in the distribution. Further, due to the
orbital motion of Earth around the sun in the galactic frame, a ∼10% annual modulation in this skewness
would also be present if it had a dark matter origin [49]. Also, by extending the analysis to lower effective
sampling periods, we would have sensitivity to direct measurements of the transient speed and incident
direction [38], which could be further used to exclude perturbations that cannot be caused by dark matter,
and thereby improve the sensitivity of the search in that region. These avenues will become particularly
important as more data and newer experimental techniques become available [42, 50–54].
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Appendix A. Data and analysis method

Before the analysis, we average the data into 60 s bins. This is done to set the effective sampling period to be
greater than the largest servo loop time (τ = 60 s), as assumed in equation (1) of the main text. We only
average over continuous sections of the data, ensuring we do not inadvertently assume any potential signal
remains consistent across gaps in the data. Another effect of this averaging is that above the servo times the
data noise can be very well modelled as white frequency noise; see figure A.1. An illustrative sub-set of the
data is shown in figure A.2.

Also, we restrict our analysis to include only independent clock pairs, so that each clock appears only
once in the combined data streams. The effect of this is to remove any cross correlations between the
different clock data streams. For each separate time window and τ int value, we choose which clocks to
include in order of their effective sensitivity: KAB/σ

2
yAB

, considering only those pairs with continuous data
over the given time window. Here, σyAB is the Allan deviation for the yAB frequency ratio, evaluated at the
60 s effective sampling interval.

We note that, due to the limited frequency width of the atomic transitions, large steps in the
cavity–atom frequency difference that last for a sufficiently long period will lead to a loss of lock. After the
source of any such events are identified, the corresponding data are removed. Shorter jumps may not lead to
the loss of lock, and would then be indistinguishable from the regular clock noise. Such cases are of not
much consequence for our analysis, since we confine our search to longer time periods �60 s. In practice,
all such events are rare, and their contribution to the downtime of the clocks is negligible. At the same time,
some very large data outliers are also removed, and are not included in the employed data set. We note,
however, that such large frequency variations cannot be due to the interaction of dark matter with the clock
atoms, since such large events would perturb the atomic transition by so much that the laser would lose
lock to the atoms, and thus they would not appear in the clock comparisons.

To perform the analysis, we employ a version of the method developed and tested in references [38, 43].
Let di

j denote the time series data from the ith clock pair at sample-point j, and ϕi
j = ϕi

j(θ) denote the test
signal for a given set of model parameters, θ (e.g., speed, incident direction, coupling strength). Assuming
multi-variate Gaussian likelihoods [55], the posterior probability that time window Dt (centred around
time t) is consistent with the presence of a (single) transient signal ϕ is

p(Dt |ϕ, θ) = C p(θ) exp

(
−1

2
[d − ϕ]TH[d − ϕ]

)
, (A.1)

where H is the inverse of the covariance matrix Eik
jl ≡ 〈di

jd
k
l 〉, p(θ) is the prior probability for the model

parameters, and C is a normalisation constant. In general, the posterior is to be integrated (marginalised)
over the model parameters to form the marginal likelihood (evidence). The signal ϕ can then be calculated
according to equation (1) of the main text for each of the Ncp clock pairs in the network, with the time of
arrival of the transient (the time the clock experiences the largest δα magnitude) determined by the
position of each clock and the incident relative velocity of the source of the α-variation.

The posterior for the case that no signal is present in the data (i.e., the data is just noise) is given by
equation (A.1) with ϕ = 0. Note that this does not depend on model parameters, so the marginalisation is
trivial. The odds ratio is then given:

O =

∫
dθ p(θ) exp

(
dHϕ − 1

2
ϕHϕ

)
. (A.2)

Here, we have used a short-hard notation (x is d or ϕ):

xHϕ ≡
Ncp∑
ik

Dt∑
jl

xi
jH

ik
jl ϕ

k
l . (A.3)

As noted above, due to the averaging procedure and the inclusion only of independent clock pairs, the
data contains essentially no correlations. In light of this simplification, equation (A.3) can be expressed as

xHϕ =

Ncp∑
i

1

σi2

Dt∑
j

xi
jϕ

i
j, (A.4)

where σi is the standard deviation of the data from the ith clock pair (given by the Allan variance at the 60 s
effective sampling period).
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Figure A.1. Fractional instabilities for some clock frequency ratios determined by the Allan deviations. The solid line shows the
1/
√
τ white-noise trend. For averaging times τ larger than ∼ 60 s, the noise is well-modelled as white frequency noise.

Figure A.2. Subset of the clock frequency ratio data (averaged to 60 s) from the European fiber-linked optical clock network.
Each time-series is shifted by a constant offset for clarity.

In general, the test signal ϕ depends on the dark matter coupling strengths and the sensitivity of each
clock in the network (K factors), as well as the topological defect size, speed, and incident direction. Then,
to calculate the odds ratio, one would integrate over all these parameters taking the Bayesian priors into
account, as in reference [38]. In our case, however, we can make a simplification. For the considered
effective sampling period, τ = 60 s, all the clocks in the network can be considered to be co-located (see
discussion in the main text). Therefore, the signal does not depend on the incident direction, and depends
only linearly on the speed and coupling strength. In this case, the odds ratio is maximised simply by
maximising the argument of the exponential in equation (A.2).

We treat the transient duration τ int as a model parameter, and run the analysis separately for each
relevant value. Noting that the dark matter signal is linear in δα0 (the maximum transient variation in α),
we express the test signal as ϕi

j ≡ δα0 si
j. Then, the argument of the exponential in equation (A.2) becomes:

arg = δα0 dHs − 1

2
(δα0)2sHs. (A.5)

For a given set of parameters, this quantity, and thus the odds ratio (A.2), is maximised for the best-fit
value:

δαbf
0 = dHs/sHs. (A.6)

In the absence of a signal, dHs is Gaussian distributed with a mean of zero and a variance equal to sHs, so
the (1σ) uncertainty in the extracted best-fit is Δα0 = (sHs)−1/2.

The best-fit δα0 (A.6) is then calculated as a function of time (and τ int) over the span of the data. By this
we mean that we calculate the best-fit over a given time window, and then step this window along by the
smallest available increment, τ 0. The windows are assumed to be centred on the (possible) transient
incident time, and extend to cover at least a time period equal to τ int. We tested several values, and found
that exactly how large each window is makes essentially no difference to the results (since the signal
template s goes to zero quickly outside this region). For each τ int, the largest best-fit value found throughout
the entire observation time can be used to place constraints:

|δα0| < |δαbf
0 |max + nCL(sHs)−1/2, (A.7)

where nCL = 1 for 1σ confidence. We consider only time periods when at least two clock pairs (four clocks)
were actively taking data. For a given interaction duration, we only include data streams which have
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Figure A.3. The purple line shows the observed maximum best-fit value for δα0 as in equation (A.6) as a function of the
interaction time, τ int. The green line is the 1σ confidence bound used to place constraints (A.7). Note that the effective
observation time, Tobs, decreases with increasing τ int, since smaller fractions of the data are continuous over the longer time
periods, as discussed in the text.

continuous data (i.e., sampled every 1 s up to at least the considered τ int). This means that the effective
observation time, Tobs, decreases with increasing τ int. For 102 s, we have Tobs = 47 h, while for 103 s we have
Tobs = 15h. The best fit values, and the 1σ confidence bound, are shown in figure A.3.

By finding the largest δα0 value that appears in the data, we are assuming there was (at most) one event
present in the data with magnitude δα0, and then ruling out the possibility of events with magnitudes larger
than this (at the stated confidence level). These constraints then apply to the parameter space region for
time between events T < fPTobs (where fP < 1 is the Poisson statistics factor). This is the most conservative
approach. It may be possible to set more stringent limits applicable for lower T values by finding the largest
values for δα0 that appear in the data at least n = f (n)

P Tobs/T times.
We search through each τ int specifically between a minimum and maximum value, which are set

respectively by the effective sampling period (60 s) and the longest stretch of continuous data in the current
data set (τmax ∼ 104 s). Assuming there is no true δα signal in the data, the observed maximum frequency
variations that last for duration τ int would be expected to scale as δy/y ∝ σ/

√
τint. Therefore, between the

maximum and minimum directly tested values, the constraints are expected to scale as
√
τint, which is seen

in the results.
A transient with τ int � τmax will leave a signal in the data that is approximately constant over the τmax

period equation (2) of main text]. Therefore, by performing a fit to δα0 in this case, we can search for
evidence of transients with very large τ int. However, in this case, the sensitivity does not increase with
increasing τ int as in the < τmax case, but instead stays constant, see equation (2) of the main text. We note
also, that this procedure does not extend the sensitivity indefinitely as τ int →∞. In order to measure a
transient frequency variation, one must know the ‘real’, or long-term average, frequency from which it
varies. It only makes sense to claim knowledge of the unperturbed ratio yAB if the total measurement time is
much greater than τ int. We therefore do not extend the constraints past τ int ∼ 4 × 104 s ∼ 10h, which is
about 50% of the total for the clock pair with the shortest measurement duration, and about 5% of that for
the longest. In reality, the constraints are typically bounded well before this value due to the condition that
the transients be well-separated, i.e., τint � T (which we take as τint < T /5).

To search for potential positive events, instead of maximising the best-fit value for δα0, we maximise the
likelihood itself. In our case, this is equivalent to maximising the argument in equation (A.5). Substituting
δαbf

0 (A.6) back into (A.5) gives the value that maximises the likelihood. For convenience, we take the
square root of this quantity, and define

R ≡ dHs√
2sHs

. (A.8)

Note that R has the form of a signal to noise ratio. In fact it is equivalent to the ratio δαbf
0 /Δα0 (up to a

constant factor). As before, for a given τ int, we find that maximum value of R that occurs throughout the
observation time.

To determine the significance of any potentially detected event, we define a threshold, Rthresh, above
which it is sufficiently unlikely that there is a false positive due to random noise processes. To determine the
threshold, we use a Monte-Carlo procedure, generating random white noise according to the known average
noise levels for each clock pair. The data is generated in such a way as to match the characteristics of the
networks, i.e., which clock pairs were running at which times, including emulating any gaps in the data
time-series. This simulated data is then run through the exact same search method described above, and we
record the maximum R values as a function of τ int. We repeat this process a large number of times (1000),
and determine the level at which there are no statistical false positives at the 99% confidence level (false
positive is defined here as any time |R| > Rthresh due to purely random noise processes). At the same time,
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Figure A.4. The purple line shows the maximum value for R calculated from the current data set as in equation (A.8) as a
function of the interaction time, τ int. The red line is the threshold, above which statistical false-positives do not occur at 99%
confidence, and the dashed orange line is the expected value for R in the absence of a signal. Both Rthresh and Rexpect are calculated
from simulations mimicking the current data set, assuming white frequency noise.

we also define the expected value, Rexpect, which is calculated as the mean of the maximum R value for each
τ int extracted from the same simulations assuming white frequency noise.

The existence of correlations in the data may contribute to a larger rate of false positives in the analysis
than would otherwise be assumed. At our current level of sensitivity, we did not observe any significant
correlations of this sort. If we had, we would have had to apply a more complex statistical method in order
to discern the possibility of random correlations from correlations induced by an external transient (such as
dark matter). One such method for this would be to extend our false positive analysis to also use
time-shifted real data. By this we mean that the time series for each clock pair be randomly shifted in time
with respect to each other, to a degree large enough such that any true transient-induced correlations (on
the considered time scales) would be removed. By repeating this process a large number of times, we would
gain information as to the prevalence of such random correlations. This may be necessary as more data
becomes available, and the precision increases.

The maximum extracted R values are shown as a function of τ int in figure A.4, along with the calculated
threshold, Rthresh. There are regions (around τ int ∼ 103 s) where the observed R value exceeds that expected
for white frequency noise in the absence of a signal, however the significance is low. Using the considered
data set, we find no occurrences where the likelihood exceeds the threshold at the current sensitivity level.
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