
A
cc

ep
te

d
 A

rt
ic

le
 

This article has been accepted for publication and undergone full peer review but has not been 

through the copyediting, typesetting, pagination and proofreading process, which may lead to 

differences between this version and the Version of Record. Please cite this article as doi: 

10.1111/jace.16730 

This article is protected by copyright. All rights reserved. 

DR YAQIONG  WANG (Orcid ID : 0000-0001-8000-608X) 

Article type      : Rapid Communication 

Relaxor behaviour and photocatalytic properties of BaBi2Nb2O9 

Wenzhi Qi
1
, Yaqiong Wang

2
, Jiyue Wu

2
, Zimeng Hu

2
, Chenglong Jia

1
, Giuseppe Viola

2
, 

Hongtao Zhang
3
, Haixue Yan

2 

1 Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 

730000, P. R. China 

2 School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, 

London E1 4NS, United Kingdom 

 



A
cc

ep
te

d
 A

rt
ic

le
 

This article is protected by copyright. All rights reserved. 

3 Department of Materials, Loughborough University, Leicestershire, LE11 3TU, United Kingdom 

*Corresponding author 

Y. Wang’s email: yaqiong.wang@qmul.ac.uk 

Abstract 

Lead-free Aurivillius phase BaBi2Nb2O9 powders were prepared by solid-state reaction. 

Ferroelectric measurements on BaBi2Nb2O9 ceramics at room temperature provided 

supporting evidence for the existence of polar nanoregions and their reversible response to an 

external electric field, indicating relaxor behaviour. The photocatalytic degradation of 

rhodamine B reached 12 % after 3 h irradiation of BaBi2Nb2O9 powders under simulated solar 

light. Ag nanoparticles were photochemically deposited onto the surface of the BaBi2Nb2O9 

powders and found to act as electron traps, facilitating the separation of photoexcited charge 

carriers; thus, the photocatalytic performance was significantly improved. The present study is 

the first examination of the photochemical reactivity of a relaxor ferroelectric within the 

Aurivillius family with polar nanoregions. 
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1. Introduction 

The urgent demand for solving the problems of rapid consumption of limited fossil fuel 

reserves and worsening global environment has stimulated an upsurge in research on the 

development of photocatalysts. Photocatalysts can efficiently convert solar energy into 

hydrogen energy by splitting water molecules and decompose organic pollutants from 

industrial effluent through chemical redox reactions driven by photoexcited charge carriers in 

an excited semiconductor.
1, 2

 However, traditional semiconductor photocatalysts, such as TiO2, 

CdS and WO3, suffer from fast charge recombination, which greatly limits their wide 

application.
3, 4, 5

 Therefore, it is urgent to explore novel photocatalysts to solve the energy crisis 

and environmental pollution issues. Ferroelectric oxides with a perovskite structure, such as 

BaTiO3 and BiFeO3, have emerged as promising candidates for photocatalysts.
6, 7

 Their built-in 

internal electric fields can enhance the transport of photoinduced charge carriers and thus 

accelerate their separation.
8, 9

 Consequently, their photocatalytic activities can be improved. 

Moreover, when noble metals (such as Ag, Au, Pt, etc.) are deposited onto the surface of 

photocatalysts as a co-catalyst, their photocatalytic activity can be further enhanced.
6, 10

 Noble 
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metal nanoparticles can enhance light absorption due to a surface plasmon resonance (SPR) 

and extend the charge carrier lifetime by working as ‘electron traps’ and separating 

photoexcited electrons and holes; this separation leads to improved photocatalytic efficiency of 

co-catalyst/semiconductor photocatalysts.
10

 

Relaxor ferroelectrics (RFEs) are a special category of ferroelectric. Compared to normal 

ferroelectrics, they exhibit a broad, frequency-dependent anomaly at the temperature (Tm) of 

the dielectric peak and a small remnant polarisation.
11, 12

 RFEs have been proposed for various 

applications, such as energy storage capacitors, piezoelectric actuators, ultrasonic transducers, 

etc.
13, 14

 However, there are very few studies of their photocatalytic properties. Taïbi et al. 

converted BaTiO3 into an RFE by using various dopants, such as Bi, Y, Sc, Nb, etc.
15, 16

 Compared 

to undoped BaTiO3, the modified compositions exhibited larger dielectric constants and wider 

space charge regions, which resulted in an improved photocatalytic activity.
15, 16

 In addition to 

perovskite structures, photocatalytic activity was also reported for RFEs with a tetragonal 

tungsten bronze structure, such as strontium barium niobate (Sr0.6Ba0.4Nb2O6).
17

 It is 

technically important to explore novel RFE-based photocatalysts with various crystal 

structures to gain a better understanding for the design of materials with enhanced 

photocatalytic activity. 
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Aurivillius phase oxides have been attracting increasing interest as lead-free ferroelectric 

materials due to their superior polarisation fatigue resistance and high Curie points, which 

make them suitable for non-volatile memory and high-temperature piezoelectric applications.
18, 

19, 20
 Recent studies have demonstrated photocatalytic activity for Aurivillius ferroelectric 

oxides such as Bi2WO6,
21

 Bi3TiNbO9,
22

 SrBi2Ta2O9,
23

 Bi4Ti3O12,
24

 Bi5-xLaxTi3FeO15 (x = 1, 

2).
25

 However, to the best of our knowledge, there is no report for the photocatalytic properties 

of Aurivillius phase RFEs and the effect of noble metal deposition on their photocatalytic 

behaviour. 

BaBi2Nb2O9 (BBNO) is a typical Aurivillius phase oxide with RFE behaviour.
26, 27

 Previous 

studies of the crystal structure of BBNO based on synchrotron powder X-ray diffraction
28 

and 

neutron diffraction
29 

show that although the macroscopic symmetry of BBNO is tetragonal 

with the I4/mmm space group, a partial mixing of Ba and Bi cations occurs on their respective 

sites, causing local cation disorder. Structure refinement results indicate that 13.4–20 % of 

the Ba
2+

 cations are located in the (Bi2O2)
2+

 layers.
28,29

 Such an inhomogeneous distribution 

of cations and local charge imbalance suggests weak interaction between polarisation clusters 

across the perovskite-like layers and the formation of polar nanoregions (PNRs).
30

 

Kholkin et al. 
30

 obtained polarisation-electric field (P-E) loops for BBNO ceramics at three 

different temperatures (-180 °C, 0 °C, and 100 °C) with a maximum electric field amplitude 

(Emax) of 20 kV/cm and frequency of 1 Hz. They did not find any evidence for ferroelectric 
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domain switching in the hysteresis loops. In this paper, the crystal structure and ferroelectric 

properties of BBNO were re-investigated. The existence of PNRs in BBNO ceramics was 

experimentally confirmed. Subsequently, the photocatalytic behaviour of BBNO in the 

photodegradation of an organic dye, Rhodamine B (RhB), was investigated under simulated 

solar light. We can expect to achieve improved photocatalytic performance of BBNO by the 

deposition of Ag nanoparticles. Therefore, Ag nanoparticles were deposited onto the surface of 

BBNO powders (thereafter referred to as “BBNO-Ag”) and the photocatalytic activity of 

BBNO-Ag was evaluated. 

2. Experimental 

Conventional solid-state reaction was used to prepare BBNO. The starting materials included 

Nb2O5 (99.9 %), Bi2O3 (99.975 %), and BaCO3 (99 %). A stoichiometric mixture of the oxides 

was thoroughly milled and calcined at 950 °C for 4 h. To reduce the size of the agglomerates 

formed during calcination, the calcined BBNO powders were re-milled for 24 h. The as-milled 

BBNO powders were used for photocatalytic property measurements and for fabricating 

ceramics for electrical characterization. The pressed pellets were sintered at 1100 °C for 1 h. 

The density of the sintered BBNO ceramics was 96.9 %. Ag nanoparticles were deposited onto 

the surface of the as-milled BBNO powder by following a photoreduction method reported 

elsewhere.
6, 31

 In particular, 0.5 g of BBNO powder was placed into a Petri dish with 50 ml of 

0.01 M AgNO3 solution. The mixture was then stirred to make a homogeneous deposition, 
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followed by irradiation under a UV illumination source (UV Cube with a high-pressure Hg 

lamp, Honle) for 10 s. The as-obtained products were separated from the solution by 

centrifuging with a speed of 4000 rpm for 15 min. The BBNO-Ag powders were collected after 

being washed by DI water and dried at room temperature. 

The crystal structure of the as-milled BBNO powders was identified using X-ray diffraction 

(XRD, Panalytical Xpert Pro diffractometer) with Cu-K radiation. The morphology of the 

as-milled BBNO powders was observed using a scanning electron microscope (SEM, FEI 

Inspect F). The composition and chemical states of BBNO-Ag were studied by X-ray 

photoelectron spectroscopy (XPS, Thermo Scientific™ Nexsa™) with an Al Kα X-ray source. 

The signal due to C1s from adventitious carbon with a binding energy of 284.8 eV was used to 

calibrate all the binding energies. Laser diffraction (Zetasizer Nano, Malvern Instruments Ltd, 

UK) was used to measure the particle size distribution of the as-milled BBNO powders. The 

ferroelectric P-E (polarisation - electric field) and I-E (current - electric field) loops were 

measured at 25 °C and 200 °C with triangular electric field waveforms of various amplitudes 

and a frequency of 10 Hz using a ferroelectric hysteresis measurement tester (NPL, UK). The 

optical absorption spectra for BBNO and BBNO-Ag powders were obtained using a UV-Vis 

spectrophotometer (PerkinElmer LAMBDA 950). The photocatalytic activity of BBNO and 

BBNO-Ag powders was investigated via the degradation of a Rhodamine B (RhB, 99.99 %) 

dye solution. In particular, 0.15 g of catalyst powder was mixed with 50 ml of 10 ppm dye 
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solution in a glass Petri dish. The mixture was kept in the dark under constant stirring for 30 

min before being placed under a solar simulator (Newport, class ABB). The irradiation 

intensity was kept at 1 sun (100 mW/cm
2
), which was calibrated using a silicon reference solar 

cell (Newport, Model: 91150V). Photocatalytic decolourisation of RhB using UV blocking and 

visible light blocking filters was also conducted. Samples with a volume of 2 ml were collected 

from the solutions at a fixed interval of 30 min and centrifuged at 10,000 rpm for 15 min to 

remove the photocatalyst powders. 

3. Results and discussion 

A typical XRD pattern of the as-milled BBNO powders is shown in Fig. 1. The powders 

showed a single phase within the sensitivity of the XRD equipment. All diffraction peaks can 

be well indexed by the non-polar tetragonal structure with the I4/mmm space group (JCPDS no 

40-355).
32

 As shown in Fig. 2, the particle size distribution of the as-milled BBNO powders is 

characterized by three peaks at approximately 0.25, 0.95 and 5.5 µm, with 0.95 µm being the 

dominant particle size. The inset of Fig. 2 shows a typical SEM image of the as-milled BBNO 

powders, which indicates an irregular morphology with a broad particle size distribution, 

ranging from 0.2 μm to 5.6 μm. 

The temperature dependence of the dielectric constant and loss for BBNO ceramics at different 
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frequencies reported in our previous study evidenced typical relaxor ferroelectric behaviour.
27

 

By using dielectric constant data at 1 MHz, the Burns temperature (TB) was determined to be 

628 K (355 °C). TB is the temperature below which PNRs start to form within the paraelectric 

matrix due to an inhomogeneous distribution of cations and local charge imbalance.
28, 29, 30

 In 

addition, the frequency dependence of Tm in BBNO ceramics obeys the Vogel-Fulcher law.
33

 

The value of the freezing temperature Tf obtained from the fitting was 100 K (-173 °C).
27

 The 

details for the determination of the TB and Tf values are provided in the supplementary 

information. In the temperature range between Tf and TB, dipolar fluctuations occur within 

PNRs. Meanwhile, below Tf, there is not enough thermal energy so that all dipolar motion 

freezes out.
32

 

Fig. 3 illustrates P-E and I-E loops for BBNO ceramics measured at 10 Hz at two different 

temperatures (200 °C and 25 °C). The hysteresis loops obtained at 200 °C close to Tm (241 °C 

at 1 MHz)
27

 indicate lossy dielectric behaviour [Fig. 3(a)]. No current peaks associated with 

ferroelectric domain switching or field-induced rotation and/or growth for PNRs were detected, 

even though Emax was as high as 89 kV/cm. In contrast, in the I-E loops generated at 25 °C with 

Emax ranging from 20 to 80 kV/cm, as shown in Fig. 3(b), discernible current humps (or broad 

peaks) can be observed. To more clearly visualize the details for these current humps, the I-E 

loops in both the first and second quadrants in Fig. 3(b) were replotted, as shown in Fig. 3(c). 

Fig. 3(c) unambiguously demonstrates that with increasing Emax, the current humps broaden 
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and shift along the two green dotted arrows. We believe that the current humps observed in the 

I-E loops in Fig. 3(b) and 3(c) provide experimental support for the existence of PNRs in 

BBNO ceramics. It is well known that RFEs do not exhibit cooperative long-range ferroelectric 

order.
33

 As previously discussed, in BBNO ceramics, PNRs are formed within the non-polar 

paraelectric phase with a tetragonal I4/mmm structure below TB (355 °C). PNRs are highly 

mobile between Tf (- 173 °C) and TB (355 °C) due to the thermal energy. When the BBNO 

ceramics were tested at 200 °C, which is close to Tm, the strong thermal motion of PNRs 

disrupted the alignment of their polarisation along the electric field direction. Thus, no current 

peaks are present in the I-E loops [Fig. 3(a)]. As the temperature is decreased to 25 °C, 

reversible electric field-induced rotations and growth of PNRs may occur under an applied 

electric field. PNRs can be oriented along the electric field direction and enlarged during 

electrical loading, giving rise to the current peaks in the 1st and 3rd quadrants of the I-E loops. 

However, this metastable electric field-induced polar state returns to its initial state during 

unloading, determining the presence of the current peaks in the 2nd and 4th quadrants of the 

I-E loops. Analogous observations of current humps in I-E loops were previously reported for 

other RFEs including both Aurivillius
34

 and perovskite structures.
35, 36, 37, 38 

Kholkin et al. did 

not find any field-induced switching event in the P-E loops of BBNO ceramics generated at 

three different temperatures (-180 °C, 0 °C, and 100
 
°C) with an electric field amplitude of Emax 

= 20 kV/cm,
30

 which is probably due to the much lower Emax ( 20 kV/cm) compared to that 

used in our work (80 - 89 kV/cm). As a result, this is the first time that supporting evidence is 
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reported for the existence of PNRs within BBNO ceramics and their dynamic response to an 

external electric field. 

Both SEM (Fig. S2) and XPS (Fig. S3) results indicate successful deposition of Ag 

nanoparticles onto the surface of the BBNO powders. UV-Vis absorption spectra for the 

BBNO and BBNO-Ag powders are shown in Fig. 4(a). The BBNO powders show a main 

absorption in the UV light range. The incorporation of Ag nanoparticles increased the light 

absorption of the photocatalysts in the visible region due to SPR.
10

 Fig. 4(b) shows the derived 

Tauc plot for the BBNO powders. The optical band gap (Eg) of the BBNO powders can be 

calculated by the Tauc equation:
39

 

 (ahv)
n
 =A(hv-Eg)                          (1) 

where a is the measured absorption coefficient, h is the Planck’s constant, v is the frequency of 

light, A is a proportional constant, and Eg is the bandgap. n is 0.5 and 2 for indirect band gap 

and direct band gap materials, respectively. Eg can be obtained from the tangent line in a plot of 

(ahv)
2
 against photon energy. Based on a fitting using equation (1), the band gap of BBNO is 

estimated to be direct with a value of 3.2 eV. 

The photodegradation of RhB under different irradiation conditions was used to evaluate the 

photocatalytic properties of both BBNO and BBNO-Ag powders, as shown in Fig. 4(c). The 



A
cc

ep
te

d
 A

rt
ic

le
 

This article is protected by copyright. All rights reserved. 

data show that 12 % of RhB degraded after BBNO powders were irradiated by full light for 3 h. 

However, BBNO-Ag powders showed a significantly enhanced photocatalytic activity, with 

nearly 100 % RhB degradation achieved within the same duration. The good photocatalytic 

activity of BBNO-Ag powders can be attributed to the following reasons: (1) Ag nanoparticles 

can act as electron traps to enhance the separation of electrons and holes, and, therefore, 

increase the photocatalytic activity of BBNO-Ag;
6, 10

 (2) The enhanced visible light absorption 

of BBNO-Ag due to the SPR effect from Ag nanoparticles possibly enables improvement of 

the photocatalytic reaction rates by transferring the absorbed energy to BBNO. 

To study the effect of increased visible light absorption on the photocatalytic activity of 

BBNO-Ag powders, photocatalytic decolourisation of RhB using UV blocking and visible 

light blocking filters was conducted. When BBNO-Ag powders were placed under UV 

blocking irradiation, no degradation of RhB was observed. Meanwhile, a complete RhB 

degradation was achieved under visible light blocking irradiation within the same duration, 

showing tiny differences in the profile under full light irradiation. The present results clearly 

indicate that the enhanced RhB degradation rate obtained by the incorporation of Ag 

nanoparticles on the BBNO powder surface is not caused by photoexcited charge carriers 

generated from visible light absorption due to SPR. Instead, the enhanced RhB degradation rate 

can be mainly attributed to the increased charge separation at the photocatalyst surface. A 

schematic diagram of the proposed charge transfer process in BBNO-Ag is shown in Fig. S4.
40
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The Fermi energy level of noble metals (like Ag) is usually lower than the lowest energy 

level of the conduction band of semiconductors (like BBNO in this paper). The photoexcited 

electrons in the conduction band of BBNO will move to the Ag nanoparticles, which act as 

electron traps and catalytic sites for reduction reactions.
10, 40 

 

4. Conclusions 

In summary, for the first time, our study relates the photocatalytic activity in a relaxor 

ferroelectric within the Aurivillius family to the presence of PNRs. BBNO powders with an 

average size of 0.95 µm were prepared via conventional solid-state reaction. The as-milled 

BBNO powders showed a non-polar tetragonal structure with the I4/mmm space group. The 

freezing temperature Tf and the Burns temperature TB for BBNO were identified at -173 °C and 

355 °C, respectively. The observation of slim P-E loops and discernible current humps/peaks in 

the I-E loops for the BBNO ceramics at 25 °C support the existence of PNRs and their dynamic 

response under an electric field. UV-Vis light spectroscopy suggested that the direct band gap 

of BBNO is 3.2 eV. The photocatalytic degradation of rhodamine B reached 12 % after BBNO 

powders were irradiated under solar simulated light for 3 h. The deposition of Ag nanoparticles 

onto the surface of BBNO is beneficial to the separation of photoexcited charge carriers at the 

photocatalyst surface. Therefore, a significantly enhanced photocatalytic degradation of up to 

100 % was achieved after BBNO-Ag powders were irradiated under the same conditions and 
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for the same duration. All results indicate that combining a relaxor ferroelectric BBNO with 

plasmonic metal nanoparticles, such as Ag, is a promising strategy to fabricate 

high-performance photocatalysts. 
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Figure captions 

Fig. 1 XRD pattern of the as-milled BBNO powders 

Fig. 2 Particle size distribution of the as-milled BBNO powders. Inset: a typical SEM micrograph of the 

as-milled BBNO powders. 

Fig. 3 P-E and I-E loops for BBNO ceramics measured at 10 Hz at different temperatures: (a) 200 °C; 

and (b) 25 °C. The I-E loops in both the first and second quadrants in Fig. (b) are replotted and shown in 

(c). The current peak positions shifted with increasing Emax along the two dotted green arrows. 

Fig. 4 (a) UV-Vis absorption spectrum of BBNO and BBNO-Ag powders, where the dashed line 

represents the division between the UV and visible light regions; (b) the derived Tauc plot for BBNO, 

where the dashed line traces the linear part; (c) Degradation profiles for RhB with BBNO and 

BBNO-Ag under full light (100 mW/cm2), visible-light blocking and UV light blocking. 
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