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Abstract

A well known generalisation of Dirac’s theorem states that if a graph G on n ≥ 4k vertices has minimum

degree at least n/2 then G contains a 2-factor consisting of exactly k cycles. This is easily seen to

be tight in terms of the bound on the minimum degree. However, if one assumes in addition that

G is Hamiltonian it has been conjectured that the bound on the minimum degree may be relaxed.

This was indeed shown to be true by Sárközy. In subsequent papers, the minimum degree bound has

been improved, most recently to (2/5 + ε)n by DeBiasio, Ferrara, and Morris. On the other hand no

lower bounds close to this are known, and all papers on this topic ask whether the minimum degree

needs to be linear. We answer this question, by showing that the required minimum degree for large

Hamiltonian graphs to have a 2-factor consisting of a fixed number of cycles is sublinear in n.

1 Introduction

A celebrated theorem by Dirac [3] asserts the existence of a Hamilton cycle whenever the minimum

degree of a graph G, denoted δ(G), is at least n
2 . Moreover, this is best possible as can be seen from

the complete bipartite graph Kbn−1
2
c,dn+1

2
e. Dirac’s theorem is one of the most influential results in the

study of Hamiltonicity of graphs and has seen generalisations in many directions over the years (for some

examples consider surveys [6, 8, 11] and references therein). In this paper we discuss one such direction

by considering what conditions ensure that we can find various 2-factors in G. Here, a 2-factor is a

spanning 2-regular subgraph of G or equivalently, a union of vertex-disjoint cycles that contains every

vertex of G and hence, 2-factors can be seen as a natural generalisation of Hamilton cycles. Brandt,

Chen, Faudree, Gould and Lesniak [1] proved that for a large enough graph the same degree condition as

in Dirac’s theorem, δ(G) ≥ n/2, allows one to find a 2-factor with exactly k cycles.

Theorem 1.1. If k ≥ 1 is an integer and G is a graph of order n ≥ 4k such that δ(G) ≥ n
2 , then G has

a 2-factor consisting of exactly k cycles.

Once again, this theorem gives the best possible bound on the minimum degree, using the same example

as for the tightness of Dirac’s theorem above. This indicates that perhaps if we restrict our attention to

Hamiltonian graphs, thereby excluding this example, a smaller minimum degree might be enough. That

this is in fact the case was conjectured by Faudree, Gould, Jacobson, Lesniak and Saito [5].

Conjecture 1.2. For any k ∈ N there are constants ck < 1/2, nk and ak such that any Hamiltonian

graph G of order n ≥ nk with δ(G) ≥ ckn+ ak contains a 2-factor consisting of k cycles.

Faudree et al. prove their conjecture for k = 2 with c2 = 5/12.
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The conjecture was shown to be true for all k by Sárközy [10] with ck = 1/2− ε for an uncomputed small

value of ε > 0. Györi and Li [7] announced that they can show that ck = 5/11 + ε suffices. The best

known bound was due to DeBiasio, Ferrara and Morris [2] who show that ck = 2
5 + ε suffices.

On the other hand no constructions of very high degree Hamiltonian graphs without 2-factors of k cycles

are known. Faudree et al. [5] say “we do not know whether a linear bound of minimum degree in

Conjecture 1.2 is appropriate”. Sarközy [10] says “the obtained bound on the minimum degree is probably

far from best possible; in fact, the “right” bound might not even be linear”. DeBiasio et al. [2] say “one

vexing aspect of Conjecture 1.2 and the related work described here is that it is possible that a sublinear,

or even constant, minimum degree would suffice to ensure a Hamiltonian graph has a 2-factor of the

desired type”. In particular, in [2, 5, 10] they all ask the question of whether the minimum degree needs

to be linear in order to guarantee a 2-factor consisting of k cycles. We answer this question by showing

that the minimum degree required to find 2-factors consisting of k cycles in Hamiltonian graphs is indeed

sublinear in n.

Theorem 1.3. For every k ∈ N and ε > 0, there exists N = N(k, ε) such that if G is a Hamiltonian

graph on n ≥ N vertices with δ(G) ≥ εn, then G has a 2-factor consisting of k cycles.

1.1 An overview of the proof

We now give an overview of the proof to help the reader navigate the rest of the paper.

In the next section we will show that any 2-edge-coloured graph G on n vertices with minimum degree

being linear in both colours contains a blow-up of a short colour-alternating cycle. This is an auxiliary

result which we need for our main proof. There, we also introduce ordered graphs and show a result

which, given an ordering of the vertices of G allows us to find a blow-up as above that is also consistent

with the ordering, meaning that given two parts of the blow-up, vertices of one part all come before the

other.

The main part of the proof appears in Section 3. The key idea is given a graph G with a Hamilton

cycle H = v1 . . . vnv1, to build an auxiliary 2-edge-coloured graph A whose vertex set is the set of edges

ei = vivi+1 of H and for any edge vivj ∈ G \ H we have a red edge between ei and ej and a blue edge

between ei−1 and ej−1 in A. The crucial property of A is that given any vertex disjoint union of colour-

alternating cycles S in A one can find a 2-factor F (S) in G, consisting of the edges of H which are not

vertices of S and the edges of G not in H which gave rise to the edges of S in A.

However, we can not control the number of cycles in F (S) (except knowing that F (S) has at most |S|
cycles), since it depends on the structure of S and also on how S is embedded within A. To circumvent

this issue we will find instead a large blow-up of S. Then within this blow-up we show how to find a

modification of S denoted S+ which has the property that F (S+) has precisely one cycle more than F (S).

Similarly, we find another modification S− such that the corresponding 2-factor F (S−) has precisely one

cycle less than F (S). Since the number of cycles in F (S) is bounded, if our blow-up of S is sufficiently

large we can perform these operations multiple times and therefore obtain a 2-factor with the target

number of cycles.

2 Preliminaries

Let us first fix some notation and conventions that we use throughout the paper. For a graph G = (V,E),

let δ(G) denote its minimum degree, ∆(G) its maximum degree and d(v) the degree of a vertex v ∈ V .

For us, a 2-edge-coloured graph is a triple G = (V,E1, E2) such that both G1 = (V,E1) and G2 = (V,E2)
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are simple graphs. We always think of E1 as the set of red edges and of E2 as the set of blue edges of G.

Accordingly, we define δ1(G) to be the minimum degree of red edges of G (that is δ(G1)), and analogously

∆1(G), δ2(G), etc. Note that with our definition the same two vertices may be connected by two edges

with different colours. In this case, we say that G has a double edge. A blow-up G(t) of a 2-edge coloured

graph G (with no two vertices joined by both a red and a blue edge) is constructed by replacing each

vertex v with a set of t independent vertices and adding a complete bipartite graph between any two

such sets corresponding to adjacent vertices in the colour of their edge. When working with digraphs we

always assume they are simple, so without loops and with at most one edge from any vertex to another

(but we allow edges in both directions between the same two vertices).

2.1 Colour-alternating cycles

In this subsection, our goal is to prove that any 2-edge-coloured graph, which is dense in both colours

contains a blow-up of a colour-alternating cycle. We begin with the following auxiliary lemma that will

only be used in the subsequent lemma where we will apply it to a suitable auxiliary digraph to give rise

to many colour-alternating cycles.

Lemma 2.1. Let k ≥ 2 be a positive integer. A directed graph on n vertices with minimum out-degree at

least n log(2k)
k−1 has at least n`

2k`+1 cycles of length ` for some fixed 2 ≤ ` ≤ k.

Proof. Let us sample k vertices v1, . . . , vk from V (G), independently, uniformly at random, with repeti-

tion. We denote by Xi the event that vertex vi has no out-neighbour in S := {v1, . . . , vk}. We know that

P(Xi) ≤
(

1− log(2k)
k−1

)k−1
≤ 1

2k . If no Xi occurs then the subgraph induced by S has minimum out-degree

at least 1 so contains a directed cycle. The probability of this occurring is at least:

P
(
X1 ∩ . . . ∩Xk

)
= 1− P(X1 ∪ . . . ∪Xk) ≥ 1− kP(Xi) ≥ 1/2,

where we used the union bound. This means that in at least nk/2 outcomes we can find a cycle of length

at most k within S. In particular, there is an ` ≤ k such that in at least nk

2k outcomes the cycle we find has

length exactly `. Note that the same cycle might have been counted multiple times, but at most k`nk−`

times. This implies that C` occurs at least n`

2k`+1 times.

Now, we use this lemma to conclude that there are many copies of some short colour-alternating cycle in

any 2-edge-coloured graph which has big minimum degree in both colours.

Lemma 2.2. For every γ ∈ (0, 1) there exist c = c(γ), L = L(γ) and K = K(γ) such that, if G is a

2-edge-coloured graph on n ≥ K vertices satisfying δ1(G), δ2(G) ≥ γn, then G contains at least cn` copies

of a colour-alternating cycle of some fixed length 4 ≤ ` ≤ L.

Proof. Let k = 8/γ2 log(8/γ2) so that γ2/4 ≥ log(2k)/(k − 1). We set L = 2k, K = 8k/γ2 and c =

(γ/2)2k/(4kk+1). We build a digraph D on the same vertex set as G by placing an edge from v to u if and

only if there are at least γ2n/2 vertices w such that vw is red and wu is blue.

Let us first show that every vertex of D has out-degree at least γ2n/4. There are at least γn red neighbours

of v and each has γn blue neighbours so there are at least γ2n2 red-blue paths of length 2 starting at v.

Let us assume that there are less than γ2n/2 vertices u such that there are at least γ2n/2 vertices w such

that vw is red and wu is blue. In this case there are less than γ2n/2 ·n+n ·γ2n/2 red-blue paths starting

at v which is a contradiction. Note that we allowed u = v in the above consideration so we deduce that

minimum out-degree in D is at least γ2n/2− 1 ≥ γ2n/4. The previous lemma implies that there is some

` ≤ k such that D contains at least n`/(2k`+1) copies of C`.
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For any such cycle by replacing each directed edge by a red-blue path of G between its endpoints, ensuring

we don’t reuse a vertex, we obtain at least (γ2n/2 − `)(γ2n/2 − ` − 1) · · · (γ2n/2 − 2` + 1) ≥ (γ/2)2`n`

colour-alternating C2`’s in G. Noticing that each such C2` may arise in at most 2 different ways from a

directed C` of D we deduce that there are at least n`/(2k`+1) · (γ/2)2`n`/2 ≥ c(γ)n2` colour-alternating

C2`’s in G.

The reason for formulating the above lemma is that we can deduce the existence of the blow-up of a

cycle from the existence of many copies of this cycle using the hypergraph version of the celebrated

Kővári-Sós-Turán theorem proved by Erdős in [4]:

Theorem 2.3. Let `, t ∈ N. There exists C = C(`, t) such that any `-graph on n vertices with at least

Cn`−1/t
`

edges contains K(`)(t), the complete `-partite hypergraph with parts of size t, as a subgraph.

We are now ready to find our desired blow-up.

Lemma 2.4. For every γ ∈ (0, 1) and t ∈ N, there exist positive integers L = L(γ) and K = K(γ, t) such

that, if G is a 2-edge-coloured graph on n ≥ K vertices satisfying δ1(G), δ2(G) ≥ γn, then G contains

C(t6L) where C is a colour-alternating cycle with |V (C)| ≤ L.

Proof. Let L = L(γ), c = c(γ),K ≥ K(γ) be parameters of Lemma 2.2 so that we can find cn` copies of

a colour-alternating cycle of length 4 ≤ ` ≤ L. Let C = C(L, t6L) ≥ C(`, t6L) be the parameter given by

Theorem 2.3. By assigning each vertex of V (G) into one of ` parts uniformly at random we can find a

partition of V (G) into V1, . . . , V` such that there are cn`/`` colour-alternating cycles v1 . . . v` with vi ∈ Vi.
We also know that at least half of these cycles always use edges of the same colour between all Vi, Vi+1.

We now build an `-graph H on the same vertex set as G whose edges correspond to sets of vertices of

such colour-alternating cycles. So we know H has at least c
2``
n` ≥ Cn`−1/(t`·6`L) many edges, by taking K

large enough, depending on t, L. So Theorem 2.3 implies that H contains K(`)(t6L) as a subgraph, which

corresponds to a desired C(t6L).

2.2 Ordered graphs

In our arguments it will not be enough to just find a blow-up of a colour-alternating cycle as in the

previous subsection; we will also care about the “order” in which the cycles are embedded. In this section

we give some notation about ordered graphs and a result which we will need later.

An ordered graph is a graph together with a total order of its vertex set. Here, whenever G is a graph

on an indexed vertex set V (G) = {v1, . . . , vn}, we assume that G is ordered by vi < vj ⇐⇒ i < j. An

ordered subgraph of an ordered graph G is a subgraph of G that is endowed with the order that is induced

by G and if not stated otherwise, we assume that subgraphs of G are always endowed with that order.

For us, two vertices u < v of an ordered graph G are called neighbouring, if the set of vertices between u

and v, that is {x ∈ V (G)|u ≤ x ≤ v}, is either just {u, v} or the whole vertex set V (G).

Given an ordered graph G we say a blow-up H = G(k) of G is ordered consistently if for any x, y ∈ V (H)

which belong to parts of the blow-up coming from vertices u, v ∈ G respectively we have x <H y iff

u <G v.

Lemma 2.5. Let t, L ∈ N, H be a graph on L vertices and H(t2L) ⊆ G for an ordered graph G. There

exists an ordering of H for which the consistently ordered H(t) is an ordered subgraph of G.

Proof. We prove the result by induction on L, where the L = 1 case is immediate. Let {V1, . . . , VL}
be the clusters of vertices of H(t2L), so |Vi| = t2L. Let w1, . . . , wp be the median vertices of the sets
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V1, . . . , Vp with respect to the ordering of H(t2L) induced by G and assume without loss of generality that

w1 is the smallest of them. We now throw away all vertices of V1 that are larger than w1 and all vertices

of Vi that are smaller than wi for i ≥ 2. This leaves us with L sets {W1, . . . ,WL} of size d|Vi|/2e = t2L−1

with the property that v1 ∈ W1, vi ∈ Wi =⇒ v1 <G w1 <G wi <G vi for all i ≥ 2. If v ∈ H corresponds

to V1 and we denote H ′ = H − v then W = {W2, . . . ,WL} spans H ′(t2L−1) ⊆ G \ V1. By the induction

hypothesis we can find a consistently ordered H ′(t) as an ordered subgraph of G \V1 which together with

any subset of size t of W1 gives the desired consistently ordered H(t) in G.

3 Proof of Theorem 1.3

3.1 Constructing an auxiliary graph

Throughout the whole section, let G be a Hamiltonian graph on n vertices. First of all, let us fix a

Hamilton cycle H of G and name the vertices of G such that H = v1v2 . . . vnv1. We assume that G

is ordered according to this labelling. Also, let us denote the edges of H by e1, e2, . . . , en such that

e1 = v1v2, . . . , en = vnv1. In all our following statements, we will identify vn+1 and v1, and more generally

vi and vj , as well as ei and ej , if i and j are congruent modulo n. Furthermore, since we can always

picture G as a large cycle with some edges inside it, we call all the edges that are not part of H, the inner

edges of G.

Our goal is to find a 2-factor with a fixed number of cycles in G. Note that, if G is dense, it is not hard

to find a large collection of vertex-disjoint cycles in G. The difficulty lies in the fact that we want this

collection to be spanning while still controlling the exact number of cycles. Naturally, we have to rely

on the Hamiltonian structure of G to give us such a spanning collection of cycles. Indeed, when building

these cycles we will try to use large parts of the Hamilton cycle H as a whole and connect them correctly

using some inner edges of G. It is convenient for our approach to construct an auxiliary graph A out of

G, that captures the information we need about the inner edges of G.

Definition 3.1. Given the setup above, we define the auxiliary graph A = A(G,H) as the following

ordered, 2-edge-coloured n-vertex graph:

1. Every vertex of A corresponds to exactly one edge of H, thus we have V (A) = {e1, . . . , en} and we

order the vertices of A according to this labelling;

2. two vertices ei = vivi+1 and ej = vjvj+1 of A are connected with a red edge if there is an inner edge

of G connecting vi+1 and vj+1;

3. similarly, the vertices ei and ej of A are connected with a blue edge if there is an inner edge of G

connecting vi and vj .

Throughout this section, let A = A(G,H) for our fixed G and H. Note that, by the above definition,

every edge ` ∈ E(A) corresponds to a unique inner edge e of G. In the following, we denote this edge by

e(`) ∈ E(G). To be precise, if ` = eiej , then e(`) := vi+1vj+1 if ` is a red edge and e(`) := vivj if ` is a

blue edge. Conversely, every inner edge of G corresponds to exactly one red edge and to one blue edge of

A. This leads to the following observation:

Observation 3.2. For i ∈ {1, . . . , n}, we have dA1 (ei) = dG(vi+1) − 2 and dA2 (ei) = dG(vi) − 2. In

particular, we have δ1(A) = δ2(A) = δ(G)− 2.
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v2

v3 v4

v5

v6

v7v8

v1

e2

e3

e4

e5

e6

e7

e8

e1

Figure 1: Let us call the left graph G and fix its Hamilton cycle H = v1 . . . v8v1.
Then the graph on the right is the auxiliary graph A(G,H).

In Figure 1 we give an example of a Hamiltonian graph and its corresponding auxiliary graph.

The motivation for defining A just as above is given by the fact that 2-regular (possibly non-spanning!)

subgraphs S ⊆ A satisfying some extra conditions naturally correspond to a 2-factor in G. Recall that

in our setting, two vertices ei and ej of A are neighbouring if |i − j| ≡ 1 (modulo n). Let us make the

following definition:

Definition 3.3. Given the same setup as above and a subgraph S ⊆ A that is a union of vertex-disjoint

colour-alternating cycles without neighbouring vertices (i.e. if ei ∈ V (S) then ei−1, ei+1 /∈ V (S)), we

define its corresponding subgraph F (S) ⊆ G as follows:

1. V (F (S)) := V (G);

2. the edges of F (S) are all the edges of H except for those that correspond to vertices of S. Addition-

ally, for every edge ` ∈ E(S), let the corresponding inner edge e(`) be an edge of F (S) too. That

is, E(F (S)) := ({e1, . . . , en} \ V (S)) ∪ {e(`) | ` ∈ E(S)}.

Lemma 3.4. If S ⊆ A is a union of vertex-disjoint colour-alternating cycles without neighbouring vertices,

then F (S) ⊆ G is a 2-factor.

In order to illustrate the above definitions, consider the Hamiltonian graph given in Figure 1 and the

subgraphs S1 and S2 of the corresponding auxiliary graph where S1 is just the cycle e2e4e6e8e2 and S2
is the union of the cycles e1e3e1 and e5e7e5. Their corresponding 2-factors F (S1) and F (S2) are shown

as dashed in Figure 2. Note that they use the same inner edges of G but still have different numbers of

cycles.

Proof of Lemma 3.4. Since F := F (S) consists of exactly n edges, it suffices to show that δ(F ) ≥ 2.

Let vj be an arbitrary vertex of F . We distinguish two cases: If both edges ej−1, ej /∈ V (S), then

ej−1, ej ∈ E(F ) and vj is incident to ej−1 and ej in F . Else, exactly one of the edges ej−1 and ej is a

vertex of S since S contains no neighbouring vertices. In this case we use the fact that every vertex ei of

S is incident to a red edge `i and to a blue edge `′i. Hence, by Definition 3.3, either ej−1 ∈ S and ej /∈ S
in which case vj is incident to ej and e(`j−1) in F or ej−1 /∈ S and ej ∈ S in which case vj is incident to

ej−1 and e(`′j) in F . In both cases these two edges are distinct as one of them is an inner edge of G and

the other one is not.
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v2

v3 v4

v5

v6

v7v8

v1

v2

v3 v4

v5

v6

v7v8

v1

F(S1) F(S2)

Figure 2: 2-factors F (S1) and F (S2) used in the illustration above.

We note that F (S) does not only depend on the structure of S but also on the order in which S is embedded

within A. However, it is immediate that if S is embedded in auxiliary graphs of two Hamiltonian graphs

(possibly with different number of vertices) in the same order then F (S) has the same number of cycles

in both cases.

Observation 3.5. Let A1 = A(G1, H1) and A2 = A(G2, H2). Let S1 and S2 be disjoint unions of colour-

alternating cycles without neighbouring vertices, which are isomorphic as coloured subgraphs of A1 and A2

whose corresponding vertices appear in the same order along H1 and H2. Then F (S1) and F (S2) consist

of the same number of cycles.

We remark that it is not always true that all 2-factors of G arise as F (S) for some S ⊆ A.

3.2 Controlling the number of cycles

It is not hard to see that the auxiliary graph A (of a graph with a big enough minimum degree) must con-

tain a colour-alternating cycle C, which corresponds to a 2-factor F (C) ⊆ G by Lemma 3.4 (disregarding,

for the moment, the issue of C containing neighbouring vertices). However, it is not at all obvious how

to generally determine the number of components of F (C). We begin by giving a rough upper bound.

Observation 3.6. If C ⊆ A is a non-empty colour-alternating cycle of length L without neighbouring

vertices, then the number of components of the corresponding 2-factor F (C) is at most L.

Proof. Note that the 2-factor F (C) contains exactly L inner edges and, since F (C) 6= H, each cycle of

F (C) must contain at least one inner edge (in fact, at least two in our setting).

However, in order to prove Theorem 1.3, we need to be able to show the existence of a 2-factor consisting

of exactly k cycles, for a fixed predetermined number k. This is where we are going to make use of

Lemmas 2.4 and 2.5 which allow us to find a consistently ordered blow-up of C. This will give us the

freedom to find slight modifications of C with different numbers of cycles in F (C).

3.2.1 Going up

In this subsection we give a modification of a union of colour-alternating cycles which will have precisely

one more cycle in its corresponding 2-factor.
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Definition 3.7. Let S be a disjoint union of colour-alternating cycles with V (S) = {s1, . . . , sm} and let

C be a cycle of S. We construct a 2-edge-coloured ordered graph U(S,C) as follows:

1. Start with a copy of S and for every si ∈ V (C), add a vertex si+1/2;

2. For every red or blue edge sisj ∈ E(C), add an edge si+1/2sj+1/2 of the same colour;

3. Order the resulting graph according to the order of the indices of its vertices.

Given a 2-edge-coloured ordered graph U , we say that U is a going-up version of S, if there exists a

component C of S such that U and U(S,C) are isomorphic 2-edge-coloured ordered graphs.

In other words U(S,C) consists of S with an additional copy of C ordered in such a way that the vertices of

the new copy of C immediately follow their corresponding vertices of the original copy of C. In particular,

U is also a disjoint union of colour-alternating cycles and is an ordered subgraph of a consistently ordered

S(2). Note if S contains no double edges, neither does U.

Figure 3 shows what a going-up version U of S looks like if S is just a colour-alternating C4. Figure 4

shows what the corresponding 2-factors look like (assuming S ⊆ U ⊆ A). Note that the dashed cycles of

F (U) have the same structure as the dashed cycles in F (S) but F (U) additionally has a new bold cycle.

We now show that a similar situation occurs in general.

s1

s2

s4

s3

s1

s3/2

s2

s5/2 s3

s7/2

s4

s9/2

S U

Figure 3: A colour-alternating cycle S and a going-up version of it U

s1

s2 s3

s4

s1

s2

s3

s4s3/2

s5/2

s7/2

s9/2

F(S) F(U)

Figure 4: 2-factors corresponding to U and S given in Figure 3.

Lemma 3.8 (Going up). Let S ⊆ A be a disjoint union of colour-alternating cycles without neighbouring

vertices and let U be an ordered subgraph of A without neighbouring vertices that is a going-up version of

S. Then, the 2-factor F (U) ⊆ G has exactly one component more than F (S).
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Proof of Lemma 3.8. For an edge e = vkvk+1 ∈ H we let v+(e) = vk+1 and v−(e) = vk. We denote the

vertices of S by s1, . . . , sm according to their order in A. Let C be a colour-alternating cycle sj1 . . . sjksj1
in S for which U = U(S,C). Let us denote the vertices of U by u1, . . . , um and uj1+1/2, . . . , ujk+1/2 as they

appear along H such that u1, . . . , um make a copy of S and uj1 , . . . , ujk correspond to C. The vertices

v+(uji) and v−(uji+1/2) are connected in F (U) by paths Pi ⊆ H for i ∈ {1, . . . , k}. Furthermore, since C

is a colour-alternating cycle either v+(uji)v
+(uji+1) ∈ E(G) for all odd i and v−(uji+1/2)v

−(uji+1+1/2) ∈
E(G) for all even i or vice versa in terms of parity. This means that taking all Pi and these edges we

obtain one cycle

Z := v+(uj1)v+(uj2)P2v
−(uj2+1/2)v

−(uj3+1/2)P3v
+(uj3) . . . Pkv

−(ujk+1/2)v
−(uj1+1/2)P1v

+(uj1) ∈ F (U),

if C starts with a red edge (which is exactly the bold cycle in the example shown in Figure 4) or

Z := v−(uj1+1/2)v
−(uj2+1/2)P2v

+(uj2)v+(uj3)P3v
−(uj3+1/2) . . . Pkv

+(ujk)v+(uj1)P1v
−(uj1+1/2) ∈ F (U),

if C starts with a blue edge.

Let us now consider the graph G′ that is obtained from G by deleting Z (including all edges incident to

vertices of Z) and adding the edges Sji = v−(uji)v
+(uji+1/2) for i ∈ {1, . . . , k}. Let H ′ be the Hamilton

cycle of G′ made of H and Sj ’s ordered according to the order of G. We claim that sending the vertices

si to Si if si ∈ C and to ui otherwise for i ∈ {1, . . . ,m} gives an order-preserving isomorphism from S to

its image S′ ⊆ A(G′, H ′). Indeed, if si, sj /∈ C, then the fact that uiuj is a red or a blue edge whenever

sisj is a red or a blue edge just follows from Definition 3.7. Furthermore, if sjisji+1 is a red edge for

i ∈ {1, . . . , k}, then v+(sji+1/2) is adjacent to v+(sji+1+1/2), which means that SiSi+1 is a red edge. This

works analogously for blue edges of C, which shows the claim. Hence, by Observation 3.5, the 2-factor

F (S′) in G′ has the same number of components as F (S) in G. However, since F (S′) is by definition just

F (U) \ Z, this completes the proof.

3.2.2 Going down

We now turn to the remaining case when we want to find a 2-factor with less components than one that

we already found.

Definition 3.9. Let S ⊆ A be a disjoint union of colour-alternating cycles without neighbouring vertices.

We say that a vertex ek ∈ V (A) separates components of F (S) if the vertices vk and vk+1 lie in different

connected components of F (S).

Observation 3.10. If F (S) has more than one connected component, then at least one vertex of S

separates components.

Proof. Since F (S) is not connected there must exist vertices vk, vk+1 of H belonging to different com-

ponents of F (S). Let ek = vkvk+1 so ek /∈ E(F (S)). Since the only edges of H (that is vertices of A) that

are not in E(F (S)) are vertices of S, ek is the desired separating vertex.

We are now ready to construct a going-down version of S giving rise to a 2-factor with one less cycle.

Definition 3.11. Let S be a disjoint union of colour-alternating cycles with V (S) = {s1, . . . , sm}. For

any sk ∈ V (S) we construct the 2-edge-coloured ordered graph D = D(S, sk) as follows:

1. Start with a copy of S and for every vertex si in the cycle C ⊆ S that contains sk, add the vertices

si+1/3 and si+2/3 to D;

9



2. if i, j 6= k and if sisj is a red or a blue edge of S, then add the edges si+1/3sj+1/3 and si+2/3sj+2/3

of the same colour to D;

3. if sisk is the blue edge of S incident to sk, then delete it and add the blue edges sisk+1/3, si+1/3sk+2/3

and si+2/3sk to D;

4. if sisk is the red edge of S incident to sk, then add the red edges si+1/3sk+2/3 and si+2/3sk+1/3 to

D;

5. order the resulting graph according to the order of the indices of its vertices.

Let S ⊆ A be a disjoint union of colour alternating cycles without neighbouring vertices, so that F (S)

exists. We say that a 2-edge-coloured ordered graph D is a going-down version of S if there exists a

vertex sk that separates components of F (S) such that D and D(S, sk) are isomorphic 2-edge-coloured

ordered graphs.

In other words D = D(S, sk) consists of a copy of S with added two copies of the cycle containing sk where

the edges incident to sk and its copies are rewired in a certain way. It is easy to see that every vertex

of D is still incident to exactly one edge of each colour so is still a disjoint union of colour-alternating

cycles. Note also that D is an ordered subgraph of consistently ordered S(3). If S contained no double

edges neither does D.

Figure 5 shows a going-down version D = D(S, s1) for S on {s1, . . . , s4} being again a colour-alternating

C4. Note that F (D), shown in Figure 6, contains two paths, marked as dotted and bold, that connect

the two dashed parts of F (D) that resemble the two disjoint cycles of F (S), into a single cycle. We will

show that this occurs in general.

s1

s2

s4

s3

s1

s4/3

s5/3

s2

s7/3

s8/3 s3

s10/3

s11/3

s4

s13/3

s14/3

S D(S, s1)

Figure 5: A colour-alternating cycle S and a going-down version of it D(S, s1).

Lemma 3.12 (Going down). Let S ⊆ A be a disjoint union of colour-alternating cycles without neigh-

bouring vertices and let D be an ordered subgraph of A without neighbouring vertices that is a going-down

version of S. Then the 2-factor F (D) ⊆ G consists of one cycle less than F (S).

Proof. For an edge e = vkvk+1 ∈ H we let v+(e) = vk+1 and v−(e) = vk. We denote the vertices of S

by s1, . . . , sm where D = D(S, s1) and s1 separates components of F (S). We denote the vertices of D by

d1, . . . , dm and d4/3, d5/3, dj1+1/3, dj1+2/3, . . . , djk+2/3 as they appear along H such that d1, . . . , dm make

a copy of S in which d1 corresponds to s1 and d1, dj1 , . . . , djk to the cycle C = s1sj1 . . . sjks1 of S.

The vertices v+(dji) and v−(dji+1/3) as well as the vertices v+(dji+1/3) and v−(dji+2/3) in F (D) are

connected by paths Pi ⊆ H and Qi ⊆ H respectively for all i ∈ {1, . . . , k}.
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s1

s2 s3

s4

F(S)

s1

s2

s3

s4

F(D)

s4/3

s5/3

s7/3

s8/3

s10/3

s11/3

s13/3

s14/3

Figure 6: 2-factors corresponding to U and D(S, s1) given in Figure 5.

If C begins by a red edge then

P := v+(d1)v
+(dj1)P1v

−(dj1+1/3)v
−(dj2+1/3)P2v

+(dj2) . . . Pkv
−(djk+1/3)v

−(d5/3) ∈ F (D),

where v+(d1)v
+(dj1) ∈ F (D) by Definition 3.11 part 4; v−(djk+1/3)v

−(d5/3) ∈ F (D) by part 3 and edges

between paths Pi are in F (D) by part 2 in the same way as in the going up case. Similarly,

Q := v+(d5/3)v
+(dj1+1/3)Q1v

−(dj1+2/3)v
−(dj2+2/3)Q2v

+(dj2+1/3) . . . Qkv
−(djk+2/3)v

−(d1) ∈ F (D)

On the other hand if C begins by a blue edge then we have

P := v−(d5/3)v
−(dj1+1/3)P1v

+(dj1)v+(dj2)P2 . . . Pkv
+(djk)v+(d1) ∈ F (D),

Q := v−(d1)v
−(dj1+2/3)Q1v

+(dj1+1/3)v
+(dj2+1/3)Q2 . . . Qkv

+(djk+1/3)v
+(d5/3) ∈ F (D)

So in either case the path P ⊆ F (D) contains P1, . . . , Pk and has endpoints v+(d1), v
−(d5/3) while

Q ⊆ F (D) contains Q1, . . . , Qk and has endpoints v+(d5/3), v
−(d1). For example in Figure 6, the paths

P and Q correspond to the dotted and the bold path respectively.

Our goal now is to show that P and Q connect two “originally distinct” components that are “inherited”

from F (S). Consider the graph G′ that is obtained from G by deleting all the vertices of paths Pi
and Qi (equivalently all inner vertices of P and Q) and adding the edges Sji = v−(dji)v

+(dji+2/3) for

i ∈ {1, . . . , k}. Let H ′ be the Hamilton cycle of G′ made of H and Sj ’s ordered according to the order

of G. First, we claim that the map that sends s1 to d4/3 and si to Si if si is part of C \ {s1} and to di
otherwise for i ∈ {2, . . . ,m} is an order-preserving isomorphism from S onto its image S′ ⊆ A(G′, H ′).

Indeed, by Definition 3.11 parts 3 and 4 for i = 1, k if s1sji is red then d4/3dji+2/3 is a red edge of A so

v+(d4/3)v
+(dji+2/3) ∈ F (D) implying that d4/3Sji is red in A′. If s1sji is blue then d4/3dji is a blue edge

of A so v−(d4/3)v
−(dji) ∈ F (D) implying that d4/3Sji is blue in A′. For i 6= k edge SjiSji+1 is of the same

colour as sjisji+1 by Definition 3.11 part 2 and for si, sj /∈ C we know didj has the same colour by part

1. Therefore, by Observation 3.5, F (S′) has the same number of components as F (S). Since s1 separates

components in S we know that d4/3 separates components in F (S′). This means in particular that d1
and d5/3 lie in two different cycles C1 and C2 of F (S′). Now, observe that we obtain F (D) from F (S′)

by deleting d1 and d5/3 and adding the paths P and Q. However, since P connects v+(d1) and v−(d5/3)
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and Q connects v+(d5/3) and v−(d1), this process joins C1 and C2 into one big cycle and hence, F (D)

has exactly one component less than F (S).

3.3 Completing the proof

We are now ready to put all the ingredients together in order to complete our proof of Theorem 1.3 in

the way that has already been outlined throughout the previous section.

Proof of Theorem 1.3. Let k be a positive integer and ε a positive real number. Let L = L(ε/2),K =

K(ε/2, 2k) be the parameters coming from Lemma 2.4. Let N ≥ max(4/ε,K).

Now, suppose that G is a Hamiltonian graph on n ≥ N vertices with minimum degree δ(G) ≥ εn. Let

us fix a Hamilton cycle H ⊆ G, name the vertices of G such that H = v1v2 . . . vnv1 and assume that

G is ordered according to this labelling. Let A = A(G,H) be the ordered, 2-edge-coloured auxiliary

graph corresponding to G and H according to Definition 3.1. We know by Observation 3.2 that δν(A) ≥
δν(G)− 2 ≥ ε

2n.

Lemma 2.4 shows that there is a C(2k6L) ⊆ A where C is a colour-alternating cycle of length at most L

without double-edges. Lemma 2.5 allows us to find a consistently ordered C(2k3L) as an ordered subgraph

of A. By removing every second vertex of C(2k3L) in A we obtain a consistently ordered C′ = C(2k−13L)

that is an ordered subgraph of A without neighbouring vertices. For C ⊆ C′ by Lemma 3.4 we obtain a

2-factor F (C) ⊆ G. Let ` be the number of cycles of F (C). By Observation 3.6, we know that 1 ≤ ` ≤ L.

Let us first assume that k > `. We find a sequence S0, S1, . . . , Sk−` defined as follows: let S0 = C; given

Si−1 let Ci−1 be an arbitrary cycle of Si−1 and let Si = U(Si−1, Ci−1). By construction, Si is again a

disjoint union of colour-alternating cycles, without double edges, and is an ordered subgraph of C(2i) ⊆ C′
(since by construction Si ⊆ Si−1(2)). Therefore, for all i ≤ k − ` there is an order-preserving embedding

of Si into A without neighbouring vertices. So, by Lemma 3.4 and Lemma 3.8 we deduce that F (Si) has

one more cycle than F (Si−1). In particular, the 2-factor F (Sk−`) ⊆ G consists of exactly k components.

Let us now assume that k < `. Here, we find a sequence S0, S1, . . . , S`−k of disjoint unions of colour-

alternating cycles that are ordered subgraphs of A without neighbouring vertices such that F (Si) consists

of `− i cycles. Let S0 = C, and assume we are given Si−1 for i ≤ `− k with F (Si−1) having `− i+ 1 ≥
k + 1 ≥ 2 cycles. This means that Si−1 has a vertex vi−1 that separates components of F (Si−1) by

Observation 3.10. We let Si = D(Si−1, vi−1), which is a disjoint union of colour-alternating cycles,

without double edges, and is an ordered subgraph of a consistently ordered C(3i) (since by construction

Si ⊆ Si−1(3)). Note that `− k ≤ L by Observation 3.6 and hence, C(3i) ⊆ C(3`−k) ⊆ C′ so we can find a

copy of Si into A without having neighbouring vertices. By Lemma 3.12, F (Si) has one less cycle than

F (Si−1), so exactly `− i cycles. In particular, F (S`−k) is a 2-factor in G with k cycles, which concludes

the proof.

4 Concluding remarks and open problems

In this paper we show that in a Hamiltonian graph the minimum degree condition needed to guarantee

any 2-factor with k-cycles is sublinear in the number of vertices. The best lower bound is still only a

constant. In the case of a 2-factor with two components, the best bounds are given by Faudree et al. [5]

who construct minimum degree 4 Hamiltonian graphs without a 2-factor with 2 components. In the case

of 2-factors with k components, no constructions have been given previously, but it is easy to see that a

minimum degree of at least k + 2 is necessary:
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Proposition 4.1. There are arbitrarily large Hamiltonian graphs with minimum degree k + 1 which do

not have a 2-factor with k components.

Proof. Let G consist of a cycle C of length n− k+ 1 and an independent set U of size k− 1 with all the

edges between C and U added. It’s easy to see that for n ≥ 2k, G is Hamiltonian and has minimum degree

k + 1. However G does not have a 2-factor with k components (e.g. because every cycle in a 2-factor of

G must use at least one vertex in U).

For fixed k, we do not know of any Hamiltonian graphs with non-constant minimum degree which do not

have a 2-factor with k components. This indicates that the necessary minimum degree in Conjecture 1.2

may in fact be much smaller, perhaps even a constant (depending on k). A step in this direction was

made by Pfender [9] who showed that in the k = 2 case, a Hamiltonian graph G with minimum degree of

7 contains a 2-factor with 2 cycles in a very special case when G is claw-free.

If one takes greater care with various parameters in Section 2 one can show that a minimum degree of
Cn

4
√

log logn/(log log logn)2
suffices for finding an ordered blow-up of a short cycle so in particular this minimum

degree is enough to find 2-factors consisting of a fixed number of cycles. We believe that it would be

messy but not too hard to improve this a little bit further, but to reduce the minimum degree condition

to n1−ε would require some new ideas. On the other hand we do believe that our approach of finding

alternating cycles in the auxiliary graph could still be useful in this case, but one needs to either find

a better way of finding ordered blow-ups of short cycles or obtain a better understanding of how the

number of cycles in F (S) depends on the order and structure of a disjoint union of colour-alternating

cycles S. Another possibility is to augment the auxiliary graph in order to include edges that connect the

front/back to the back/front vertex of two edges of the Hamilton cycle, which would allow us to obtain

a 1-to-1-correspondence between 2-factors of G and suitable structures in this new auxiliary graph.

Another way of saying that a graph is Hamiltonian is that it has a 2-factor consisting of a single cycle. A

possibly interesting further question which arises is whether knowing that G contains a 2-factor consisting

of ` cycles already allows the minimum degree condition needed for having a 2-factor with k > ` cycles

to be weakened.
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[4] Erdős, P. On extremal problems of graphs and generalized graphs. Israel J. Math. 2 (1964),

183–190.

[5] Faudree, R. J., Gould, R. J., Jacobson, M. S., Lesniak, L., and Saito, A. A note on

2-factors with two components. Discrete Math. 300, 1-3 (2005), 218–224.

[6] Gould, R. J. Updating the Hamiltonian problem—a survey. J. Graph Theory 15, 2 (1991), 121–157.

[7] Gyori, E., and Li, H. 2-factors in Hamiltonian graphs. In preparation.

[8] Li, H. Generalizations of Dirac’s theorem in Hamiltonian graph theory—a survey. Discrete Math.

313, 19 (2013), 2034–2053.

13



[9] Pfender, F. 2-factors in Hamiltonian graphs. Ars Combin. 72 (2004), 287–293.
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