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Abstract

Aharoni and Berger conjectured that every bipartite graph which is the union of n match-
ings of size n + 1 contains a rainbow matching of size n. This conjecture is a generalization
of several old conjectures of Ryser, Brualdi, and Stein about transversals in Latin squares.
When the matchings are all edge-disjoint and perfect, an approximate version of this conjec-
ture follows from a theorem of Häggkvist and Johansson which implies the conjecture when
the matchings have size at least n+ o(n).

Here we’ll discuss a proof of this conjecture in the case when the matchings have size
n + o(n) and are all edge-disjoint (but not necessarily perfect). The proof involves studying
connectedness in coloured, directed graphs. The notion of connectedness that we introduce
is new, and perhaps of independent interest.

1 Introduction

A Latin square of order n is an n × n array filled with n different symbols, where no symbol
appears in the same row or column more than once. Latin squares arise in many branches of
mathematics such as algebra (where Latin squares are exactly the multiplication tables of quasi-
groups), experimental design (where some row-column designs come from Latin squares), and
coding theory (where some error-correcting codes are constructed from mutually orthogonal Latin
squares). They also occur in recreational mathematics—for example completed Sudoku puzzles
are Latin squares.

In this paper we will look for transversals in Latin squares—a transversal in a Latin square of
order n is a set of n entries such that no two entries are in the same row, same column, or have
the same symbol. One reason transversals in Latin squares are interesting is that a Latin square
has an orthogonal mate if, and only if, it has a decomposition into disjoint transversals. See [12]
for a survey about transversals in Latin squares. It is easy to see that not every Latin square has
a transversal (for example the unique 2 × 2 Latin square has no transversal), however perhaps
every Latin square contains a large partial transversal (a partial transversal of size m is a set of
m entries such that no two entries are in the same row, same column, or have the same symbol)?

There are some old and difficult conjectures which guarantee large partial transversals in Latin
squares. One is a conjecture of Ryser that every Latin square of odd order contains a transversal
[10]. Brualdi [4] and Stein [11] independently made the following conjecture.

Conjecture 1.1 (Brualdi and Stein, [4, 11]). Every Latin square contains a partial transversal of
size n− 1.

There have been many partial results about this conjecture. It is known that every Latin
square has a partial transversal of size n − o(n)—Woolbright [13] and independently Brower, de
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Vries, and Wieringa [3] proved that ever Latin square contains a partial transversal of size n−
√
n.

This has been improved by Hatami and Schor [7] to n−C log2 n. A remarkable result of Häggkvist
and Johansson shows that if we consider (1− ε)n× n Latin rectangles rather than Latin squares,
then it is possible to decompose all the entries into disjoint transversals (for m ≤ n a m×n Latin
rectangle is an m × n array of n symbols where no symbol appears in the same row or column
more than once. A transversal in a Latin rectangle is a set of m entries no two of which are in the
same row, column, or have the same symbol).

Theorem 1.2 (Häggkvist and Johansson, [6]). For every ε, there is an m0 = m0(ε) such that the
following holds. For every n ≥ (1 + ε)m ≥ m0, every m × n Latin rectangle can be decomposed
into disjoint transversals.

This theorem is proved by a probabilistic argument, using a “random greedy process” to
construct the transversals. The above theorem gives yet another proof that every sufficiently large
n × n Latin square has a partial transversal of size n − o(n)—indeed if we remove εn rows of a
Latin square we obtain a Latin rectangle to which Theorem 1.2 can be applied.

In this paper we will look at a strengthening of Conjecture 1.1. The strengthening we’ll look at
is a conjecture due to Aharoni and Berger which takes place in a more general setting than Latin
squares—namely coloured bipartite graphs. To see how the two settings are related, notice that
there is a one-to-one correspondence between n × n Latin squares and proper edge-colourings of
Kn,n with n colours—indeed to a Latin square S we associate the colouring of Kn,n with vertex set
{x1, . . . , xn, y1, . . . , yn} where for every i, j the edge between xi and yj receives colour Si,j . It is
easy to see that in this setting transversals in S correspond to perfect rainbow matchings in Kn,n

(a matching is rainbow if all its edges have different colours). Thus Conjecture 1.1 is equivalent to
the statement that “in any proper n-edge-colouring of Kn,n, there is a rainbow matching of size
n− 1”.

One could ask whether a large rainbow matching exists in more general bipartite graphs.
Aharoni and Berger posed the following conjecture, which generalises Conjecture 1.1.

Conjecture 1.3 (Aharoni and Berger, [1]). Let G be a bipartite graph consisting of n matchings,
each with at least n+ 1 edges. Then G contains a rainbow matching with n edges.

In the above conjecture we think of the n matchings forming G as having different colours,
and so “rainbow matching” means a matching containing one edge from each matching in G. It
is worth noting that the above conjecture does not require the matchings in G to be disjoint i.e.
it is about bipartite multigraphs rather than simple graphs. This above conjecture was posed in
a different form in [1] as a conjecture about matchings in tripartite hypergraphs (Conjecture 2.4
in [1]). It was first stated as a conjecture about rainbow matchings in [2].

The above conjecture has attracted a lot of attention recently, and there are many partial
results. One very natural approach to Conjecture 1.3 is to prove it when the matchings have size
much larger than n+1. When the matchings have size 2n then it is easy to see that the conclusion
of the conjecture is true (by greedily choosing disjoint edges one at a time). Aharoni, Charbit, and
Howard [2] proved that matchings of size 7n/4 are sufficient to guarantee a rainbow matching of
size n. Kotlar and Ziv [8] improved this to 5n/3. Clemens and Ehrenmüller [5] further improved
this to 3n/2 + o(n) which is currently the best known bound.

An approximate version of Conjecture 1.3 can be obtained from Theorem 1.2. It is easy to
see that Theorem 1.2 is equivalent to the following “let G be a bipartite graph consisting of n
edge-disjoint perfect matchings, each with at least n + o(n) edges. Then G can be decomposed
into disjoint rainbow matchings of size n” (to see that this is equivalent to Theorem 1.2, associate
an m-edge-coloured bipartite graph with vertex set {x1, . . . , xn, y1, . . . , yn} with any m× n Latin
rectangle by placing a colour k edge between xi and yj whenever (k, i) has symbol j in the
rectangle).

The result that we’ll discuss is an approximate version of Conjecture 1.3 in the case when the
matchings in G are disjoint, but not necessarily perfect.
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Theorem 1.4. For all ε0 > 0, there exists an N0 = N0(ε0) such that the following holds. Let
G be a bipartite graph consisting on n ≥ N0 edge-disjoint matchings, each with at least (1 + ε0)n
edges. Then G contains a rainbow matching with n edges.

Unlike the proof of Theorem 1.2 which can be used to give a randomised process to find a
rainbow matching, the proof of Theorem 1.4 is algorithmic i.e. the matching in Theorem 1.4 can
be found in polynomial time.

The proof of Theorem 1.4 will appear in [9]. For the remainder of this extended abstract we
will sketch some of the ideas which go into the proof. At a very high level the proof of Theorem 1.4
consists of associating an auxiliary directed graph D to the graph G, such that directed paths in
D give some kind of information about rainbow matchings in G. Then we apply results about
connectedness in directed graphs in order to prove the theorem. In Section 1.1 we sketch how the
directed graph D is constructed. In Section 1.2 we state the result about directed which is used
in the proof of Theorem 1.4.

1.1 From bipartite graphs to directed graphs

Let G be a graph consisting of n disjoint matchings each of size (1 + ε0)n as in the statement of
Theorem 1.4. Let X and Y be the two parts of the bipartition of G. Let M be a rainbow matching
in G. Let X0 = X \ V (M) be the subset of X consisting of vertices not touched by M . Let c∗ be
a colour missing from M .

We construct an edge-labelled directed graph D as follows. The vertex set of D will be the
set of colours in G. Every edge of D is labelled by a vertex x ∈ X0. For two colours u, v ∈ V (D)
we set uv to be an edge of D labelled by x ∈ X0 whenever there is a colour u edge from x to the
colour v edge of M in G.

Why might this graph be useful? It turns out that if there is a vertex of small out-degree in
D which is close to c∗ then we can find a larger rainbow matching in G.

Lemma 1.5. Let P = (c∗, p1, p2, . . . , pk) be a directed rainbow path from c∗ to some pk ∈ V (D).
If we have d+(v) < ε0n− |P |, then there is a rainbow matching of size |M |+ 1 in G.

Proof. Let e1, e2, . . . , ek be the edges of G corresponding to the edges c∗p1, p1p2, . . . , pk−1pk of D.
For i = 1, . . . , k, let mi be the colour pi edge of M . From the definition of D, we have that ei and
mi intersect in Y , and that ei+1 and mi have the same colour. Notice that for distinct i and j, the
edges ei and ej are disjoint (since P is rainbow) as are mi and mj (since P is a path). Therefore
M ′ = M −m1−· · ·−mk + e1 + · · ·+ ek is a rainbow matching of size |M | in G, missing colour pk.

Notice that since there are (1 + ε0)n colour pk edges in G, there must be at least ε0n colour
pk edges touching X0. Each of these gives rise to an edge leaving pk unless it goes through Y0.
Therefore if d+(v) < ε0n − |P |, then there are at least |P | + 1 colour pk edges between X0 and
Y0. One of these must be disjoint from e1, . . . , ek and so can be added to M ′ to give a matching
of size |M |+ 1.

Therefore rainbow paths in D can give useful information about rainbow matchings in G. In
the full proof of Theorem 1.4 we use more complicated directed graphs than the one constructed
above. We also use a result about coloured directed graphs which we discuss in the next section.

1.2 Rainbow connectedness

The key idea in the proof of Theorem 1.4 seems to be a new notion of connectedness of coloured
graphs.

Definition 1.6. An edge-coloured graph G is said to be strongly rainbow k-connected if for any
set of at most k colours S and any pair of vertices u and v, there is a rainbow u to v path whose
edges have no colours from S.
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The above definition differs from usual notions of connectedness, since generally the avoided
set S is a set of edges rather than colours. In some ways Definition 1.6 is perhaps too strong. In
particular, there doesn’t seem to be a natural analogue of Menger’s Theorem for strongly rainbow
k-edge-connected graphs. Nevertheless, strongly rainbow k-connected graphs turn out to be very
useful for studying rainbow matchings in bipartite graphs. The following lemma is a key part
of the proof of Theorem 1.4. It shows that every properly coloured directed graph D with big
out-degree has a large, highly connected subset.

Lemma 1.7. For all ε > 0 and k ∈ N, there is an N = N(ε, k) such that the following holds.
Let D be a properly edge-coloured directed graph on at least N vertices. Then there is a strongly

rainbow k-connected subset A ⊆ V (D) satisfying

|A| ≥ δ+(D)− ε|D|.

Here “strongly rainbow k-connected subset” means a set of vertices A ⊆ V (D) such that for
any set of at most k colours S and any pair of vertices u and v, there is a rainbow u to v path
in D whose edges have no colours from S. This is different from just saying that D[A] is strongly
rainbow k-connected because the paths connecting u and v are allowed to leave A. The above
lemma is proved in [9].
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