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Abstract

Suppose that we have a set S of n real numbers which have nonnegative sum. How
few subsets of S of order k can have nonnegative sum? Manickam, Miklés, and Singhi
conjectured that for n > 4k the answer is (Zj) This conjecture is known to hold when n
is large compared to k. The best known bounds are due to Alon, Huang, and Sudakov who
proved the conjecture when n > 33k2. In this paper we improve this bound by showing
that there is a constant C' such that the conjecture holds when n > C'k. This establishes

the conjecture in a range which is a constant factor away from the conjectured bound.

Keywords: Extremal combinatorics; hypergraphs; additive combinatorics; Katona’s cycle
method.

1. Introduction

Suppose that we have a set of real numbers {z1,...,x,} satisfying 7 +--- + x, > 0.
How few subsets A C {z1,...,x,} satisfying > _,a >0 can {xy,...,2,} have?

By choosing x1 =n—1 and 9 = - -- = x,, = —1 we see that the answer to this question
can be at most 271, In fact, this example has the minimal number of nonnegative sets. In-
deed, for any set A C {z1,...,x,} either A or {z1,...,x,}\ A must have nonnegative sum,
so there are always at least 2"~ nonnegative subsets in any set of numbers {xy,...,7,}
with nonnegative sum.

A more difficult problem arises if we count only subsets of fixed order. By again
considering the example when xry =n — 1 and 29 = --- = z,, = —1 we see that there are
sets of n numbers with nonnegative sums which have only (Zj) nonnegative k-sums (sums
of k distinct numbers). Manickam, Miklds, and Singhi conjectured that for n > 4k this
assignment gives the least possible number of nonnegative k-sums.

Conjecture 1.1 (Manickam, Miklds, Singhi, [I7, [18]). Suppose that n > 4k, and we
have n real numbers x1,...,x, such that x1 + ---+ x, > 0. Then, at least (Zj) subsets
ACA{xy,...,x,} of order k satisfy Y, .,a >0

Conjecture appeared in [I8] where it was phrased in terms of calculating invariants
of an association scheme known as the Johnson Scheme. In [17], Conjecture[L.1]was phrased
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in the combinatorial form in which it is stated above. In this paper we will speak only
about the combinatorial version—we refer the reader to [I8] 3] for more details about the
association scheme version.

A motivation for the bound “n > 4k” is that for £ > 3 and n = 3k + 1 there exists
an assignment of values to x1,...,x3r;1 which results in less than (Zj) nonnegative k-
sums. Indeed, letting 1 = 9 = v3 =2 — 3k and x4 = - -+ = 3,41 = 3 gives an assigment
satisfying x1+- - -+x3r1 = 0 but having (3]‘}; 2) nonnegative k-sums, which is less than (k?fl)
for k > 3 for this particular pair of n and k. Notice that these examples exist only when
n = 3k+1 . Thus it is possible that the bound “n > 4k” could be slightly strengthened in
Conjecture [I.1} For example for k£ = 3, Chowdhury proved that Conjecture holds with
the improved bound of n > 11, and that this bound is best possible [6].

Despite the apparent simplicity of the statement of Conjecture|1.1], it has been open for
over two decades. Many partial results have been proven. The conjecture has been proven
for £ < 3 by Manickam [16] and independently by Chiaselotti and Marino [9]. It has been
proven whenever n = 0 (mod k) by Manickam and Singhi [18].

In addition, several results have been proved establishing the conjecture when n is
large compared to k. Manickam and Mikl6s [I7] showed that the conjecture holds when
n > (k —1)(k* + k?) + k holds. Tyomkyn [2I] improved this bound to n > k(4elogk)* ~
ekloglogk  Recently Alon, Huang, and Sudakov [2] showed that the conjecture holds when
n > 33k%. Subsequently Frankl [§] gave an alternative proof of the conjecture in a range
of the form n > 3k%/2, and Chowdhury, Sarkis, and Shahriari [7] gave a proof of the
conjecture in the range of the form n > 8k2.

The aim of this paper is to improve these bounds by showing that the conjecture holds
in a range when n is linear with respect to k.

Theorem 1.2. Suppose that n > 10%k, and we have n real numbers x1, ..., x, such that
1+ +x, > 0. At least (Zj) subsets A C {x1,...,x,} of order k satisfy >, ., a >0

It should be noted, that after we announced this paper, a full proof of Conjecture 1.1
was announced by Blinovsky in [4].

The method we use to prove Theorem in this paper is inspired by an averaging
argument which Katona used in his proof of the Erdés-Ko-Rado Theorem in [12]. This
method is often referred to as “Katona’s cycle method” [13]. Before we can say how the
method is useful for approaching Conjecture [I.1} we will need a few definitions.

Suppose that we have a hypergraph H together with an assignment of real numbers to
the vertices of H given by f : V(H) — R. We can extend f to the power set of V(H) by
letting f(A) = >, c4 f(v) for every A C V(H). We say that an edge e € E(H) is negative
if f(e) <0, and e is nonnegative otherwise. We let e (#) be the number of nonnegative
edges of H. Recall that the degree d(v) of a vertex v in a hypergraph #H is the number
of edges containing v. A hypergraph H is d-regular if every vertex has degree d. The
minimum degree of a hypergraph H is 0(H) = minyey(s) d(v). The k-uniform complete
hypergraph on n vertices is denoted by ICff).

The following observation is key to our proof of Theorem



Lemma 1.3. Let ‘H be a d-regular k-uniform hypergraph on n wvertices. Suppose that

for every f: V(H) — R satisfying 3, oy f(x) = 0 we have ¢;(H) > d. Then for
every f V(ngLk)) — R satisfying Zmevm(m) f(z) > 0 we have e+(IC£Lk)) > (7]) (and so

Conjecture holds for this particular pair of n and k).

Lemma (1.3 is proved by an averaging technique very similar to Katona’s proof of the
Erd8s-Ko-Rado Theorem (see Section [2)).

Lemma shows that instead of proving the conjecture about the complete graph lC%k),
it may be possible to find regular hypergraphs H which satisfy the condition in Lemma 1.3
and hence deduce the conjecture. In most classic applications of Katona’s cycle method,
the hypergraph H is taken to be a tight cycle (the set of all intervals of length £ in Z,
for some n). The novelty of our application of the Lemma in this paper is that our
hypergraphs H will not be a tight cycles. This turns out to be crucial for producing the
improved bound on the conjecture that we have in Theorem [1.2]

Lemma [1.3| motivates us to make the following definition.

Definition 1.4. A k-uniform hypergraph H has the MMS-property if for every f :
V(H) = R satisfying > ,cvpy [(2) = 0 we have e (H) > 0(H).

Conjecture [1.1] is equivalent to the statement that for n > 4k the complete hyper-
graph on n vertices has the MMS-property. Lemma [I.3] shows that in order to prove
Conjecture for particular n and k, it is sufficient to find one regular n-vertex k-uniform
hypergraph ‘H with the MMS-property. This hypergraph H may be much sparser than the
complete hypergraph—allowing for very different proof techniques.

Perhaps the first two candidates one chooses for hypergraphs that may have the MMS-
property are matchings and tight cycles. The matching M, j is defined as the k-uniform hy-
pergraph consisting of ¢tk vertices and ¢ vertex disjoint edges. Notice that M, is 1-regular.
The matching M, ;, always has the MMS-property—indeed we have that ) _ E(Mor) fle) =
Y oz Mo f(z) > 0, and so one of the edges of M, is nonnegative. This observation was
used in [I8] to prove Conjecture [1.1] whenever k divides n.

The tight cycle C,, , is defined as the hypergraph with vertex set Z,, and edges formed by
the intervals {¢ (mod n),i+1 (mod n),...,i+k (mod n)} fori € Z,. It turns out that the
tight cycles do not have the MMS-property when n # 0 (mod k). To see this for example
when k =3 and n =1 (mod k), let f(x) = 50, 50, 50, —101, 50, 50, —101, 50, 50, —101. ..
for v = 1,2,3,4,5,6,7,8,9,10,...—i.e. f(x) = —101 if x = 1 (mod 3) and = # 1, and
x = 50 otherwise. This hypergraph is 3-regular but the only nonnegative edge is {1, 2, 3},
so Cy, 3 doesn’t have the MMS-property when n = 1 (mod 3). Similar constructions work
for all n and k with n # 0 (mod k). Despite C,  not having the MMS-property, tight
cycles were still useful in [17] to prove Conjecture [L.1| when n > (k — 1)(k*F + k%) + k.

An interesting question, is “which hypergraphs have the MMS-property?” This ques-
tion has been studied by Huang and Sudakov, who found some large classes of hypergraphs
with the MMS-property [11].

The main result of this paper is showing that there exist k(k — 1)?-regular k-uniform
hypergraphs on n vertices which have the MMS-property, for all n > 104k,
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Theorem 1.5. Forn > 10%°k, there are k(k —1)*-reqular k-uniform hypergraphs on n ver-
tices, Hyr., with the property that for every f : V(Hnx) — R satisfying 3 ey, ) [ () =0
we have et (M, ) > k(k — 1)%

Combining Theorem and Lemma [[.3] immediately implies Theorem [1.2]

Throughout this paper, we will use notation from Additive Combinatorics for sumsets
A+B={a+b:aec Abec B} and translates A+ = {a + 2 : a € A}. For all standard
notation we refer to [5].

The structure of this paper is as follows. In Section [2] we prove Lemmall.3] In Section
we define the graphs H,, ; used in Theorem and prove some of their basic properties. In
Section [} we prove Theorem [I.5| with the weaker bound of n > 14k* in order to illustrate
the main ideas in the proof of Theorem [I.5| In Section [5] we prove Theorem [I.5 In
Section [0, we conclude by discussing the techniques used in this paper and whether they
could be used to prove Conjecture in general.

2. Proof of the averaging lemma

Here we prove Lemma [I.3]

-----

Consider a random permutation o of {1,...,n}, chosen uniformly out of all permutations
of {1,...,n}. We define a function f, : {1,...,n} = R given by f, : z — f(o(x)). Clearly

we have ” J
P(o(e) e H) = e(H) =

® G

Therefore we have

:R‘
~
~—

E(ef (H) = > Plo(e) e H) =" (K

eE/Cslk),
f(e)>0

However, by the assumption of the lemma, E(e; (H)) is at least d. This gives us
ete®y > (ML), O
"o T\k=-1

3. Construction of the hypergraphs H,, x

In this section we construct graphs H, ; which satisfy Theorem . We also prove
some basic properties which the graphs H,,  have.

Define the clockwise interval between a and b € Z,, to be [a,b] = {a,a+1,...,b}. The
graph H, ; has vertex set Z,. We define k-edges e(v, 1, j) as follows:



e(v,i,j) =[v,o+i—1Uv+i+jo+j+k—1]

The edges of H,,;, are given by e(v,1,j) for v € Z,, and i,5 € {1,...,k — 1}. In other
words H,, ;, consists of all the double intervals of order %k, where the distance between the
two intervals is at most k — 1.

Notice that the graph H,,; is indeed k(k — 1)? regular.

In order to deal with the graphs H,,j it will be convenient to assign a particular set
E(v) of O(k?) edges to each vertex v. First, for each vertex v in H,,; and 4,5 € [1,k — 1],
we will define a set of edges, E(v,4,7). Then E(v) will be a union of the sets E(v,1, 7).

The definition of the sets E(v,1,j) is quite tedious. However the sets E(v,i,j) are
constructed to satisfy only a few properties. One property that we will need is that for
fixed, v, i, j certain intervals can be formed as disjoint unions of edges in E(v,1,7j). See
Figures [T] — [ for illustrations of the precise configurations that we will use. Another
property that we will need is that any edge e € H,, ;; is contained in at most C of the sets
E(v,1,j) for some absolute constant C;. See Lemmas (3.1 and [3.2| for precise statements of
these two properties.

Over the next four pages we define the sets E(v,1, 7).
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Figure 1: The edges in F(v,i,7) when we have i + j > k and ¢ > j.

Ift+ 75>k and > 7, then we let

E(v,i,j) ={e(v,i,j),e(v+k+j,i,i+j— k),
e(v+k+i+7j,i+7—k,2k—2i),e(v+1i,j,k—1),
ev+k+i+25,k—14,2k—i—7j),e(v+i,7,2k—1i—7),
e(v+3k—j,i,7),e(v+3k—j+i,7k—1),
e(v+ii+j—k2k—2i),e(v+i+jk—1i2k—i—7j),
e(v+2k,i,j),e(v+2k+1i,j,k—1)}.
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Figure 2: The edges in F(v,i,7) when we have i + j > k and j > i.

Ifi4 7>k and j > 1, then we let

E(v,i,j) ={e(v,i,j5),e(v+k+j,j,i+75—k),
e(v+k+2j5,i+75—k2k—27),e(v+i,j5,k—1),
e(v+k+i+25,k—752k—1i—7j),
e(v+1,7,2k —i—j),e(v+ 3k —j,i,j),
e(v+3k—j+i,j,k—1)e(v,j,i+j—k),
e(v+yg,i+7—k,2k—2j),e(v+i+jk—72k—i—7j),
e(v+2k,i,j5),e(v+2k+i,7,k—1)}.
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Figure 3: The edges in F(v,1,j) when we have i + j < k and i is even.

If i 4+ 7 < k and 7 is even, then we let

E(v,i,j) ={e(v,i,7),e(v+k+j,k—i/2,i+ j),
e(v+2k+j—1i/2,i+7,1),e(v,i+j,i/2),
e(v+2k+i+25,i/2,k—i/2),e(v+i,j+i/2,k—i—j),
e(v+2k—jg,k—i/2,i+7j),e(v+3k—7—1/2,i+ j,i),
e(v+3k+i,i/2,k—i/2),e(v,k—i/2,i+j),
e(v+k—1i/2,i+j,i),e(v+k+i+j,i/2,k—1i—7),
e(v+i,j,k—i),e(v+2k,i,5),e(v+2k+1i,j,k—1)}.
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Figure 4: The edges in F(v,1,j) when we have i + j < k and i is odd.

If 147 < k and 7 is odd, then we let
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We define £~ (v, 1, j) to be the set of edges corresponding to edges in E(v, i, j), but going
anticlockwise (i.e. E~(v,4,7) = {{z1,..., 2} : {v—(x1—v),...,v— (v, —v)} € E(v,1,7)).
For each vertex v, we let

Ew) = |J E(ij)UE (v,ij).
1,5€[1,k—1]

Notice that from the definition of E(v,1,7), we certainly have E(v,i,7) < 15 for every
i,j € [1,k — 1], which implies that |F(v)] < 15(k — 1)2. Also, since e(v,i,5) € E(v) for
every 1,7 € [1,k — 1], we have that F(v) > (k — 1)2. Therefore, we have |E(v)| = O(k?).

There are only two features of the sets E(v,14,j) that will be needed in the proof of
Theorem . One is that E(v,1,7) contains special subsets of edges like the ones pictured
in Figures [T -4l This allows us to prove the following lemma.

Lemma 3.1. Suppose that i,j € [1,k — 1] and all the edges in E(v,i,j) are negative. The
following hold.

(i
(ii

) f(jv,0+ 2k —1]) < 0.
) f(
(iit) f([v,v + 4k —1]) < 0.
) S
) S

[v,v+ 3k —1]) <0.
(iv) f(v+i,o+i+j—1]) <0 = f(v,v+4k+j5—1]) <0.
(v

Proof. Figures [I] - [4 illustrates the constructions that are used in the proof of this lemma.

w+iv+i+i—1)>0 = f([v,o+5k—j—1]) <0.

(i) This follows from the fact that e(v,i,7),e(v + 1,75,k —i) € E(v,i,j) and e(v,4,j) U
e(v+i,5,k—1i)=[v,v+ 2k —1].

(ii)) For i+ 75 > k and ¢ > j, this follows from the fact that e(v,i,i + j — k), e(v + 14,7 +
J—k,2k —2i),e(v+i+j,k—i,2k—i—j) € E(v,i,7) and e(v,i,i+j — k) Ue(v+
ivi+j—k2k—2i)Ue(v+i+j,k—1i,2k—i—j)=[v,v+ 3k —1]. The other cases
are similar.

(iii) This follows from the fact that e(v, i, 7), e(v+1, j, k—1), e(v+2k, i, 7), e(v+2k+1, j, k—
i) € E(v,i,j) and e(v,1,j)Ue(v 41,75,k —i)Ue(v+2k,i,j) Ue(v+ 2k +1,j,k —i) =
[v,v+ 4k — 1].

(iv) For i+ j > k and ¢ > j, this follows from the fact that e(v,4,j),e(v+k+j,i,i+j —
k),e(v+k+i+ji+j—k2k—2i),e(v+k+i+2j,k—i,2k—i—j)€ E(v,i,j) and
e(v,i,j)Ue(v+k+j,i,i+j—k)Ue(v+k+i+ji+j—k2k—2i))Ue(v+k+i+
2j,k —i,2k —i—j)U[v+i,v+i+j—1] = [v,0+ 4k + j — 1]. The other cases are
similar.
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(v) For i +j > k and ¢ > j, this follows from the fact that e(v,i,7),e(v + 4,7,k —
i),e(v+i,j,2k—i—j),e(v+3k—7,4,7),e(v+3k—j+i,j,k—1i) € E(v,i,7) and also
e(v,1, j)Ue(v+i, j, k—i)Ue(v+i, J, 2k—i—j)Ue(v+3k—7, 1, j)Ue(v+3k—j+i, j, k—i) =
[v,v+5k—j—1]and e(v+1i,5,k—i)Ne(v+1i,5,2k—i—j)=[v+i,v+i+j—1].
The other cases are similar.

]

The other feature of the sets E(v, 1, j) that we need is that no edge is contained in too
many of the sets F(v,1,j). This is quantified in the following lemma. For the duration of
this paper, we fix the constant C; = 110.

Lemma 3.2. Let e be an edge in H, . The edge e is contained in at most Cy of the sets
E(v,i,7)UE™(v,i,7) forve V(Hni), and i,j € [1,k —1].

Proof. Notice that there are 55 edges mentioned in the definition of E(v,i,j). For t =
1,...,55,let F'*(v,1, ) be the singleton containing the ¢th edge in the definition of E (v, 1, j),
ie. Fl(v,i,7) = {e(v,i,5)}, F?(v,i,7) = {e(v + k+ j,4,i + 7 —k)},...,F(v,i,j) =
{e(v+ 2k + 1,7,k —1i)}. This definition is purely formal—for certain ¢ and j, it is possible
that an edge in F'(v,i, ) is not an edge of H, . (for example F3(v,14,j) contains the edge
e(v+k+i+j,i+ 75—k, 2k — 2i) which is not an edge of H,  if 2k — 2¢ > k). Similarly
it is possible for F'*(v, 1, j) to be empty for certain i and j—for example F?(v, 1, 7) should
contain e(v + k + i+ j, 5, k — i — j) which is not defined when i is even.

Clearly E(v,i,7) C U2, F'(v,i,j) holds. Also, it is straightforward to check that for
fixed ¢, the sets F"'(v,1,j) are all disjoint for v € V(H,.x), and i,j € [1,k — 1]. Indeed for
fixed ¢, if we have e(u,a,b) € F'(v,i,7), then it is always possible to work out v, i, and j
uniquely in terms of u, a, and b. These two facts, together with the Pigeonhole Principle
imply that the edge e can be contained in at most 55 of the sets E(v, 1, j) for v € V(H,x),
and 4,7 € [1, k]. The lemma follows, since C; > 2 - 55 = 110. O

A useful corollary of Lemma [3.2]is that an edge e can be contained in at most 110 of
the sets E(v) for v € V/(H,z)-
4. Hypergraphs of order O(k*) with the MMS-property

In this section we prove Theorem , with a weaker bound of n > 14k*. This proof has
many of the same ideas as the proof of Theorem [1.5 but is much shorter. We therefore
present it in order to illustrate the techniques that we will use in proving Theorem
and hopefully aid the reader to understand that theorem.

Theorem 4.1. For n > 17k*, and every function f : V(H,x) — R which satisfies
D eV, | (@) 2 0 we have e (Har) > k(k —1)%.
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Proof. Suppose for the sake of contradiction that we have a function f : V(H,x) — R
satisfying 3 ey (3, ,) f(2) = 0 such that we have ef (Hnr) < k(k —1)%

The proof of the theorem rests on two claims. The first of these says that any sufficiently
small interval I in Z,, is contained in a negative interval of almost the same order as 1.

Claim 4.2. Let I be an interval in Z, such that |I| < n — 4k. Then there is an interval
J = [j1,J:] which satisfies the following:

(i) ] < 1] + 4k.
(i) I C J.
(iii) f(J) < 0.

Proof. Without loss of generality, we may assume that [ is the interval [2k,2km + (] for
some [ € [0,2k —1] and m < 2= — 1. First we will exhibit 2k(k — 1)? sets of vertex-disjoint
edges covering I.

Forve{0...2k—1}, 4,5 € {1,...,k — 1} we let

m+1
D(v,i,5) = | (e(v otk i, 5) Ue(v + 2tk + i, 5, k — z'))
t=0

Notice that an edge e(u, a,b) is contained only in the sets D(u (mod 2k),a,b) and D(u —
k+b (mod 2k), k—b,a). Therefore, since there are at less than k(k—1)? nonnegative edges
in M, j, there are some vy,ip and jy for which the set D(vy, i, jo) contains only negative
edges. Letting J = |JD(vo, i, jo) = [vo, vo + 2k(m + 1)] implies the claim. O

The second claim that we need shows that any sufficiently large interval which does
not contain nonnegative edges in H, 4 must be negative.

Claim 4.3. Let I = [i1, ] be an interval in Z,, which satisfies the following:
(i) |I| > 13k.
(ii) There are no nonnegative edges of H, . contained in I.

We have that f(I) <0

Proof. Let Ry = {v € I : f([0,v —1]) < 0} and R,, = {v € I : f([v,m]) < 0}. Let
Q ={iel,k—1]: f(1,i]) < 0} and QT = {k —i € [l,k—1]: f([1,4]) > 0}.

Since I contains only negative edges, parts (iv) and (v) of Lemma[3.1]imply that we have
that (Q~ U Q") + 4k C Ry. Part (iii) of Lemma 3.1 implies that 4k € Ry. Then, parts (i
and (ii) of Lemmalmply that (Q~ UQ*U{O})—HI{: C Ry foranyt € {6,7,. [ | - 1}
This implies that we have Ry N[u,u+k—1] > |Q~UQT U{0}| for any u € [61{: m—k—1].
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Notice that @~ U Q" contains at least one element from each of the sets {1,k —
1},..., { L%J , (%W } This implies that for every u € {6k,...,m —k — 1} we have

RoNuu+k—1] >0~ UQ* U0} > EJ +1>§.

Similarly we obtain |R,, N [u,u + k — 1]| > £ for every u € {k,...,m — 6k}. By choosing
u = 6k, we have that |RoN[6k, 7k —1]|,| R, N [6k, Tk —1]| > %, and hence there exists some
i € [6k, Tk—1] such that i € Ry, R,, hold. This gives us f([0,m]) = f([0,4])+ f([i+1,m]) <
0, proving the claim. [

We now prove the theorem. Suppose that every interval of order 17k in H,, ; contains
a nonnegative edge. Since there are at least 4 > k* such disjoint intervals in H, ,
we have at least k* nonnegative edges in H,, 1, contradicting our initial assumption that

e (Hnx) < k(k—1)%

Suppose that there is an interval I of order 17k in H, ; which contains only negative
edges. Applying Claim[d.2]to V(H,x \I) we obtain an interval J C I such that f(V(H,x)\
J) < 0 and |J| > 13k. Applying Claim to J we obtain that f(J) < 0. Therefore,
we have f(V(Hnr)) = f(J) + f(V(Hur) \ J) < 0 contradicting the assumption that
f(V(Hnx)) > 0 in the theorem O

It is not hard to see that Claim [4.3 would still be true if we allowed I to contain a
small number of nonnegative edges. The proof of Theorem is similar to the proof of
Theorem since it also consists of two main claims which are analogues of Claims
and [4.3] However the analogue of Claim is much stronger since it allows for O(k?)
nonnegative edges to be contained in /. This is the main improvement in the proof of
Theorem [4.1] which is needed to obtain the linear bound which we have in Theorem [LAl

5. Proof of Theorem [1.5
In this section we use ideas from Sections [3] and [4] in order to prove Theorem

Proof of Theorem[1.5. For convenience, we fix the following constants for the duration of
the proof.
Co=10%"% ¢ =107
C; =110 € = 10718
Cy = 106 €9 = 1076
Cg =28 €3 — 10_2
€4 = 0.1
€5 = 0.25

Let n > Cyk, and let H,, ;, be the hypergraph defined in Section . Recall that for any
vertex v € V(Hnx), we have |E(v)| = O(k?).

Definition 5.1. We say that a vertez v in H, . is bad if at least egk? of the edges in E(v)
are nonnegative and good otherwise.

13



Let Gy be the set of good vertices in H,, .
Suppose that we have a function f : V(H,x) — R such that we have e} (H,x) <
k(k —1)2. We will show that f(V(H,)) < 0 holds. The proof of the theorem consists of

the following two claims.

Claim 5.2. Let I be an interval in Z, such that |I| < n — 4Csk. There is an interval
J = [j1,Ji] which satisfies the following:

(i
(i) I C J.

|J| < |I] + 4Csk.

)
)

(iii) Both j; — 1 and j, + 1 are good.
)

flJ) <

Claim 5.3. Let I = [iy, ] be an interval in Z,, which satisfies the following:

(iv

(i) Csk < I < (C5 +4Co)k.
(ii) Both iy and i,, are good.

(iii) Fvery subinterval of I of order k, contains at most €1k bad vertices.

We have that f(I) <0

Once we have these two claims, the theorem follows easily:

First suppose that no intervals in Z, of order (C5 + 4C5)k satisfies condition (iii) of
Claim . This implies that there are at least ¢;Cok/(Cs + 4C3) bad vertices in H,, .
Then Claim together with the definition of “bad” implies that there are at least
€0€1Cok?/C1(C3+4C5) nonnegative edges in H,, x. However, since ege; Co/Ch(Cy+4Cy) > 1,
this contradicts our assumption that e; (Hnx) < k(k — 1)

Now, suppose that there is an interval I of order (C3 + 4C5)k which satisfies condi-
tion (iii) of Claim Notice that all subintervals of I will also satisfy condition (iii) of
Claim . Applying Claim to V(Hn,x) \ I gives an interval J C I which satisfies all the
conditions of Claim [5 E and also f(V(H,x)\J) <0. Applying Claim to J implies that
we also have f(J) <0. We have > 5 f(v) = f(V(Hnp) \ J) + f(J) <0, contradicting
our initial assumption and proving the "theorem.

It remains to prove Claims 5.2 and [5.3]

Proof of Claim[5.3. Without loss of generality, we may assume that [ is the interval
[0,2km + [] for some I € [0,2k — 1] and m < g — 2C;. We partition [1,2k] into two
sets as follows.

Definition 5.4. Forr € [1,2k] we say that r is unblocked if for every t € [—Cy, m+ Cs],
there are some i,j € [1,k — 1] such that both of the edges e(2tk + r,i,7) and e(2tk + r +
i,7,k —1i) are negative. We say that r is blocked otherwise.

14



Notice that if r is unblocked, then for every t; € [—C5, 0] and ty € [m, m + Cy] we have
that f([2t1k + 7, 2t2k + 7 — 1]) < 0. Therefore the claim holds unless either 2t1k + r — 1
or 2tok + r is bad. Therefore, for each r which is unblocked, we can assume that all the
vertices in either {r — 1 — 2kCy,r — 1 — 2k(Cy — 1),...,r — 1} or {r + 2km,r + 2k(m +
1),...,7+2k(m+ Cy)} are bad.

To each r € [1,2k], we assign a set of nonnegative edges, P(r), as follows:

e If ris blocked, then there is some ¢, € [—Cy, m+Cs], such that for every i, j € [1,k—1]
one of the edges e(2t,k+r,1, j) or e(2t,k+r+i, j, k—i) is nonnegative. We let P(r) be
the set of these edges. Notice that this ensures that |P(r)| > (k—1)2. Also, note that
for fixed a,b,c the set P(r) can contain at most one edge of the form e(a + 2tk, b, ¢)
for any t € [—Cy,m + Cy).

e If r is unblocked we know that all the vertices in either {r —1—2kCy,r —1—2k(Cy —
1),...,r =1} or {r+2km,r +2k(m+1),...,r+2k(m+ Cy)} are bad. Let P(r) be
the set of nonnegative edges in E(r —1—2kCy)UE(r—1—2k(Cy—1))U---UE(r —
DUE(r+2km)UE(r+2k(m+1))U--- U E(r + 2k(m + Cy)). Since at least Cy
of these vertices are bad, Lemma together with the Pigeonhole Principle implies
that |P(r)] > 2k,

Notice that an edge e can be in at most 2 of the sets P(r) for r blocked. This is because
it can be in at most one such set as an edge of the form “e(tk +r,i,j)” and in at most one
such set and as an edge of the form “e(tk 4+ r + 1, j,k — i)”. Therefore we have:

U P

r blocked

=Y %(k—1)2 (5.1)

r blocked

Lemma [3.2implies that an edge e can be in at most C of the sets P(r) for r unblocked.
Therefore we have:
U ro

r unblocked

We claim that for any s € [1,2k], we have

|< U ]E(s+2tk)>m< U P(T))

te[-Ca2,m+C2 r blocked

Cae 2
> .
> Y 2% (5.2)

2
7 unblocked (1)

< 2|E(s)]. (5.3)

Indeed, otherwise the Pigeonhole Principle implies that for some r € [1,2k], t1, ta,
ty € [-Cq,m + Cs, and 4, j € [1,k — 1] we have three distinct edges e(r + 2t1k, 1, j), e(r +

2tok,1,7), and e(r + 2t3k, 4, j) which are are all contained in (Ute[—cg,m+02} E(s+ th)) N

U, blocked P(r)) . This means that there are some 71, 79, and r3 € [1, 2k] which are blocked,

such that e(r + 2t,k,4,j) € P(r;) holds for [ = 1, 2 and 3. Since each r; is blocked, all
the edges in P(r;) are of the form e(2t'k + r;,4',j') or e(2t'k +r + 4,5/, k — ¢') for some
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t' € [-Cy,m+Cs] and ', j € [1, k—1]. This, together with e(r + 2t,k, i, j) € P(r;), implies
that we have ry, 9,73 € {r,r —k+7}. This means that for some distinct [,I' € {1,2,3}, we
have 7, = ry, which means that both e(r + 2t,k, i, j) and e(r + 2ty k, i, j) are contained in
P(r;). However, this contradicts our definition of P(r;) for 7, blocked which allowed only
one edge of the form e(r + 2tk, 4, j) to be in P(r;) for fixed r, i and j. This shows that
holds for all s € [1,2k].

Recall that for all vertices s we have |E(s)| < C1k?. This, together with implies
that we have

< U P(s))ﬂ( U P(r))

<

< U E(s+2tk)>ﬂ( U P@«))‘

s unblocked, r blocked
te[—Ca,m+Co]

< D 20E(s)]

s unblocked

< 3 20k (5.4)

s unblocked

Putting (5.1)), (5.2), and (5.4]) together, we obtain:
U P U Po)|- ‘( U P(s)) N ( U P(r))'
s unblocked r blocked

r blocked r unblocked
1 2 0260 2 2
> ) =1+ > (Cl)2k: - ) 20k

6}_ (Hn,k) Z +

r blocked r unblocked s unblocked
1 1
- -1 2 1.2
> k=0T > gk
r blocked r unblocked
> k(k —1)% (5.5)

The second last inequality follows from %21502 —2C > % The last inequality follows from

the fact that “the number of blocked vertices” 4+ “the number of unblocked vertices” = 2k.
However (5.5 contradicts the assumption that there are less than k(k — 1)? nonnegative
edges in H,, ;, proving the claim. [

It remains to prove Claim [5.3

Proof of Claim[5.3. Without loss of generality, we can assume that I = [0,m] for some
m < (Cs +4Cy)k.

Recall that we are using notation from additive combinatorics for sumsets and trans-
lates. Except where otherwise stated, sumsets will lie in Z. For a set A C Z, define

A(mod k) ={be€ [0,k —1]: b= a(mod k) for some a € A}.
For each vertex v, we define a set of vertices R(v) contained in I.
R(v)={uev+1,m]: f([v,u—1]) <0 and u is good.}
R(v) has the following basic properties.
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Claim 5.5. The following hold.

(i)
(i)

(iii)

(iv)

If u>wv and u € R(v), we have R(u) C R(v).

Suppose that t > 2 and we have a set X C R(v) N [w,w + 2k — 1], for some vertex w.
There is a subset X' C X, such that we have | X'| > | X| —2e1kt and X'+ t'k C R(v)
for every t' € {2,...,t}.

Suppose that we have X C [0,2k — 1] such that X + tok C R(0) for some to. There
is a subset X' C X (mod k), such that X' + (to + 3)k C R(0) and |X'| > |X| — 6e1k.

Suppose that we have X C [w,w+k—1]NR(0) for some w. Then for any v > w+ 2k,
we have we have |R(0) N [v,v+k —1]| > |X| —2¢1(v —w + k).

Proof. (i) This part is immediate from the definition of R(v).

(i)

(iii)

First, we deal with the case when t = 2 or 3. The general case will follow by induction.

Suppose that we have x € X. Since z is good, Lemma [3.2] implies that there are at
most €yC1k?* pairs 4, j for which E(z,1,j) contains a nonnegative edge. Therefore,
since €gC7 < 1, there must be at least one pair ig, jo for which all the edges in
E(z,ig, jo) are negative. Combining this with parts (i) and (ii) of Lemma [3.1] implies
that we have

f([v,x 4+ 2k —1]), f([v,z + 3k —1]) < 0. (5.6)

If t =2 welet X' = X N (Gy — 2k). The identity |5.6[ implies that X’ + 2k C R(v).
By condition (iii) of Claim [5.3] we know that there are at most 2e;k bad vertices in
[w + 2k, w + 4k — 1], which implies that | X'| > | X| — 2¢ k.

Similarly, if ¢t = 3 we let X’ = X N (Gy — 2k) N (Gy — 3k). The identity [5.6| implies
that X'+ 2k, X'+ 3k C R(v). By condition (iii) of Claim[5.3} we know that there are
at most 3e;k bad vertices in [w+ 2k, w+ 5k — 1], which implies that | X'| > | X|—3€ k.

Suppose that the claim holds for t = tq for some ty > 3. We will show that it holds
for t =ty + 1. We know that there is a set X' C X + tok, such that we have | X'| >
| X |—€1ktg and X'+t'k C R(v) for t' = 2,... to. Applying the ¢t = 2 part of this claim
to X' + tok we obtain a set X” C X’ such that | X”| > | X'| — e1k > | X| — e1k(to + 1)
and also X” + (tg + 1)k C R(v). This proves the claim by induction.

Apply part (ii) to X + tok with ¢ = 3 to obtain a set X’ with |X'| > |X| — 3¢,k
and X' + tok + {2k,3k} C R(0). Let X” = X’ (mod k) to obtain a set satisfying
X" C X (mod k) and |X"| > |X (mod k)| — 3e;k. We have that X" + ¢ty + 3k =
(X'N[0,k—1]4+to+3k) U (X' N[k, 2k — 1] +to + 2k) C X' +to + {2k, 3k} C R(0).

Apply part (ii) to X with ¢ = L%J + 1 to obtain a set X’ with |X'| > |X| —

€1 (Lv;wj +1) k and X' + t'k C R(0) for any ¢ = 27“.7“@;% +1) k. For any

x € X', either x+ |22 | kor x+ (| %24 + 1) k is in [v,v 4k — 1] N Ry, which implies
that [R(0) N [v,v+k—1]| > |X'| > |X|—e (|Z2] +1) k> |X] - a(v—w+ k).
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]

To every vertex v € I and € > 0, we assign sets QT (v), Q. (v), Qc(v) C [1,k — 1] as
follows.

Q-w)={je[lLk—=1]:f(v+i,v+i+j—1]) <0

for at least ek numbers i € [1,k — 1]}
Qf(w)={k—jeLk—1: f(v+iv+i+j—1])>0

for at least ek numbers ¢ € [1,k — 1]}
Qc(v) = Qc (v) UQS (v) U{0}.

Q(v) has the following basic properties.
Claim 5.6. The following hold.

(i) For any r € [0,k], we have Qac(v) C Q(v —r) U Qc(v — 1 + k).
(i) Fore< i,z €(l,k—1], and v € I either x or k —x is in Qc(v).
(iii) For e < % and v € I, we have |Q.(v)| > $k.

Proof. 1f j € Q5. (v), then there are at least 2ek numbers i € [1, k—1] for which f([v+i,v+
i+ j—1]) < 0. For every r € [0, k] the Pigeonhole Principle implies that there must either
be at least ek numbers i € [1, k—1] for which f([v—r+i,v—r+i+j—1]) < 0 or at least ek
numbers ¢ € [1, k—1] for which f([v—r+k+i,v—r+k+i+j—1]) < 0. Therefore we have
Q5. (v) € Q- (v—r)UQ- (v—r+k). Similarly we obtain Q3. (v) C QF (v—r)UQF (v—r+k)
which implies part (i).

Part (ii) is immediate from the definition of Q.(v). Part (iii) follows from (ii). O

The following claim shows that for a good vertex v, there is a certain translate of Q. (v)
which will nearly be contained in R(v).

Claim 5.7. For any good vertex v satisfying 0 < v < m — bk, there is a Q' C Q,(v) such
that |Q'| > |Qe; (v)| — €2k and we have
Q' + 4k +v C R(v).

Proof. Let T' C [1,k—1] be the set of j € [1, k— 1] for which there are at least ek numbers
i € [1,k — 1] such that F(v,i,j) contains a nonnegative edge. We have at least |T'|esk
pairs i,j € [1,k — 1] for which E(v,i,7) contains a nonnegative edge. Since v is good,
Lemma implies that at most €9C1k? of the sets F(v,1, ) contain nonnegative edges for
i,j € [1,k — 1]. Therefore, we have |T|esk < ¢sC1k*. We define the set Q' as

Q' = ((Qu(\T) U (QL () \T)U{0}) N (G — k).
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First we prove Q' + 4k +v C R(v). Suppose that we have j € Q_(v) \ 7. From the
definition of T', there are at at more than k — 1 — esk numbers i € [1,k — 1] such that all
the edges in E(v,i,j) are negative. From the definition of @ (v), there are at least esk
numbers i € [1,k — 1] such that [v +¢,v + i+ j — 1] is negative. Therefore, there is some
i € [1,k — 1] such that all the edges in E(v,1,j) are negative and also [v +i,v 47+ j — 1]
is negative. Part (iv) of Lemma [3.1) implies that we have f(v,v +4k +j —1) < 0 and so
(Q () \ T + 4k +v) NGy € R(v). Similarly, using part (v) of Lemma , it is possible
to show that (QF(v) \ T'+ 4k 4+ v) N Gy C R(v). Finally, part (iii) of Lemma [3.1| implies
that we have ({0} + 4k +v) N Gy € R(v), and hence Q' + 4k + v C R(v).

Now we prove |Q'| > |Q, (v)| — €2k. Since |T'| < €,C1k/e5, we must have

6001

€5

|Qes (VT 2 [Qes (v)| — —k. (5.7)

Condition (iii) of Claim implies that
Q' 2 |Qe; (W) \ T — €1k (5.8)
Now, (5.7), and €3 > €9C /€5 + €1 imply |Q'| > |Qc, (v)| — €2k, proving the claim. [
Definition 5.8. For S C A x B we define
A+sB={a+b:(a,b) € S}

The following claim shows that for a certain large set S, a translate of Q. (0)+sQac (7k)
is contained in R(0).

Claim 5.9. There is a set S C Q.. (0) X Qac. (Tk) such that |S] > |Qc. (0) X Qo (Tk)| — €2k*
and we have
(Qes (0) +5 Qoey (TK)) + 13k C R(0).

Proof. For every good vertex v € I, Claim |5.7|combined with part (ii) of Claim [5.5|implies
that there is a set @, C Q. (v) such that we have @, + v + {6k, 7Tk} C R(v) and also

’Qv' 2 ’Q%(U)‘ - (761 + 62)k- (59)
Now, part (i) of Claim implies that we have
U R(v) C R(0). (5.10)

veR(0)N[6k,8k—1]

Combining @, + v + {6k, 7Tk} C R(v) with (5.10]) implies that we have

U (@ +v+{6kTk}) C R(0). (5.11)

ve(Qo+{6k,7k})
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We let

S ={(a,b) € Qc;(0) X Q2 (Tk) : @ € Qp and b € Quipx U Qa7 }-
The identity (5.11]) implies that we have

Qe (0) +5 Qo (Th) + 13k = {a+b: a € Qp and
b€ (Qator U Qarrr) N Qo (Tk) } + 13K
Cla+b:aeQoand b€ Quipor UQuiri} + 13k

:< U Qa+a+7k>u< U Qa+a+6k:)

a€Qo+6k a€Qo+Tk

c  J  (Quta+{6k 7k}

a€(Qo+{6k,7k})
C R(0).

Now we prove |S| > |Q.,(0) x Qa, (Tk)| — €2k?. Notice that for each a € [0, k — 1], part

(i) of Claim [5.6| implies
Qo (Tk) C Q.. (a + 6k) U Q., (a + Tk) for all a € Q.,(0). (5.12)
The identity (5.12]) combined with (5.9)) and @, C Q.. (v) implies that for all a € [1, k—1]

we have

|(Qa+6k U Qa—i—?k) N Q265 (7k)| 2 |<Q€5 (CL + Gk) U Qe5 ((l + 7k)) N Q2€5(7k>|
— (1461 -+ ZEQ)IC

= |Q2€5(7k)| — (1461 + 262)]{3.

This gives us

191 =3 1(Qator U Qurri) N Qaes (v)]

a€Qo

> 3 (1Ques(TR)] — (1€ + 262 )k)

a€Qo
> (1Qu (0)] — (Ter + )k ) (1026, (Th)] — (1461 + 262)k)
> |Qe; (0) X Qae, (Th)| — (2161 + 3e2)k?
> |Qes (0) X Quey (Th)| — €557

The second last inequality follows from |Qc,(0)|, |Qac, (7k)| < k. The last inequality follows
from e% > 21e; + 3eq. O

Claim [5.9]is combined with the following.
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Claim 5.10. Suppose that A and B C Zy, and satisfy that for any © € Zy, , either x or
—x € A and either v or —x € B. Let S C A X B be a set satisfying |S| > |A x B| — e2k*.
We have

1
‘A +s B’ Z (5 +€4) k.
When £ is prime, Claim follows from a theorem due to Lev [15]E|, which itself is

closely related to a theorem due to Pollard [19]. In order to prove Claim [5.10} we will need
some results from additive combinatorics. We define

(A+ B); ={x € Zy : x = a + b for at least i distinct pairs (a,b) € A x B}.
Notice that we have (A+ B);41 € (A+ B);.
The proof of Claim [5.10] will use the following theorem due to Grynkiewicz.

Theorem 5.11 (Grynkiewicz, [10]). Let A and B C Zy, and t < k. We have one of the
following.

(i) The following holds.

t
> 1A+ B)i| > t|A| +t|B| — 2> + 1. (5.13)

i=1

(ii) There are sets A C A and B' C B such that |A\ A'| + |B\ B'| <t —1 and we have
A"+ B' = (A+ B),.

We define the stabiliser of a set X € Zj, to be Stab(X) ={y € Zy : y + X = X}. We
use the following theorem due to Kneser.

Theorem 5.12 (Kneser, [14]). Let A and B C Zy and H the stabiliser of A+ B in Zj.
We have
|A+B| > |A+ H|+|B+ H|— |H]|. (5.14)

Sumsets in Claim [5.10, Theorem and Theorem [5.12] are all in Zj.
Proof of Claim [5.10. Notice that since z or —z € A, B, we must have |A],|B| > 1k . Our
initial goal will be to show that we have

1
(A4 B)egr| > (5 +e+ 63) k. (5.15)

Apply Theorem to A and B with t = 2e3k. We split into two cases, depending on
which part of Theorem holds.

A special case of Theorem 1 in [15] is that if A, B are subsets of Z,, and R C A x B with |A| + |B| <
p+ /|R| and /|R| < |A],|B| then we have |A +axp\r B| > |A| +|B| — 24/|R| — 1. This can be used to
prove Claim 5.10: for prime k (by setting S = A x B\ R).
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1 uppose that . olds. Ince we are working over Zj; 1n this claim, we have
i) S hat (5.13) hold Si king Z,. in this clai h
|(A+ B);| < k. Combining this with (5.13)) implies

2e3k esk—1

S [(A+B)| = 263k<|Al+ |B] —453k) +1- Y [(A+B)|
=1

i—esk —
> ek (20A] +2/B] — (1+ 8es)k).
This, together with (A + B);11 C (A + B); implies that we have
|(A+ B)egi| > 2|A| +2|B| — (14 8e3)k.
The identity (5.15) follows since we have |A[,|B| > 3k and 1 — 8¢5 > 1/2 + ¢4 + €.

(ii) Suppose that we have two sets A" and B’ as in part (ii) of Theorem Apply
Theorem [5.12] to the sets A’ and B'.
Note that |[A\ A'| +|B\ B'| <t — 1 together with (5.14) and |A|, |B| > 3k implies
that we have

(A4 Begk| = [(A + B)acsi

= |4+ B

> |A" + Stab(A' + B')| + | B’ + Stab(A' 4+ B')| — | Stab(A" + B')|
(5.16)

> |A| + |B| — | Stab(A" + B')| — 2e3k

> (1 — 2e3)k — | Stab(A" + B')|. (5.17)

If | Stab(A’ 4+ B')| < sk, then (5.15)) follows (5.17) combined with 1 — 2e; —1/3 >
1/2 + €4 + €.

Otherwise, Lagrange’s Theorem implies that Stab(A’+ B’) is either all of Z, or that k
is even and Stab(A’ + B’) is the set of even elements of Z;. If Stab(A’ 4+ B') = Z
holds, then we have A’ + Stab(A’+ B') = B’ 4 Stab(A’ + B') = Zj. Substituting this
into implies that we have |(A + B).x| = k and so holds.

Suppose that Stab(A’ 4 B’) consists of all the even elements of Z. Since for every z,
either x or —z € A, there are at least ik even elements in A, and at least %Lk
odd elements in A. Therefore, since |A’| > |A| — 2e3k, A” must contain an even
element and an odd element. This implies that A’ + Stab(A’ + B’) = Zj. Similarly
B’ + Stab(A’ + B') = Zy. Thus implies that we have [(A + B),x| = k and so

(5.15) holds.

Now, we use (5.15) to deduce the claim. Let T = (A + B)e \ (A +s B). We have
|A +s B| + |T| > |(A 4+ B)ekl|- Notice that from the definition of (A + B)e,x we have
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esk|T| +|S| < |A x BJ. This, combined with (5.15) and |S| > |A x B| — €2k? implies that

we have

|A+s Bl = |[(A+ B)ek| — [T
1
> |(A+ Boi| = —(14 % B| ~|5])
€3
> |(A+ B)eg| — €3k

1
> (5—1-64) k. ]

Claims [5.9] and cannot be directly combined since sumsets in Claim [5.9 are in Z
whereas sumsets in Claim [5.10| are in Z;. However, Claim gives us a set S such that
S| > |Qe; (0) X Qe (Tk)| — €3k* and we have (Qc; (0) +5 Qae; (7Tk)) + 13k € R(0). Part (iii)
of Claim [5.5] implies that there is a subset Q' C (Q(0) +5 Qac, (7k)) (mod k) such that
Q' + 16k C R(0) and we have

Q| > |(Qes (0) +5 Qaes (TK)) (mod k)| — 3erk. (5.18)
By Claim and part (i) of Claim [5.6] we have
(Qus(0) 5 Q7)) (mod )] = (5 40 ) . (5.19)

Combining (5.18)) and (5.19)) implies that |R(0) N [16k, 17k — 1]| > (1/2 + €4 — 3) €1 k.
Applying part (iv) of Claim [5.5| with X = R(0) N [16k, 17k — 1] implies that for any w € I
with w > 18k, we have

IR(0) N [w,w+k —1]] > (% te—a (% +4) )k
Combining this with m < (4Cy + C3)k gives
[R(0) A [m — 17k, m — 16k — 1]] > (% b (40 + Cy+ 4)) o (5.20)
We can define R~ (v) = {u € I NGy : f([u+ 1,v]) < 0}. By symmetry, we obtain
(R~ (m) N [m — 17k, m — 16k — 1]| > G beso 361) k. (5.21)
Now, (5.20), (5.21)), and €4 > € (4C> + C3 + 4) imply that we have
[R(m) O [m — 17k, m — 16k — 1]| > %k
R (m) O\ m — 17k, m — 16k 1)) > k.

Therefore, there is some v € [m — 17k, m — 16k — 1] such that v € R(0) andv—1 € R~ (m).

By definition of R(0) and R(m) we obtain f(I) < 0. O
As mentioned before, Claims [5.2] and [5.3] imply the theorem. O
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6. Remarks

In this section we discuss some further directions one might take with our approach to
Conjecture 1.1}

e The constant 10%® in Theorem can certainly be improved by being more careful
in the proof.

One natural modification which would substantially improve the bound is to consider
repeated sumsets in the proof of Lemma [5.3, By this we mean applying versions of
Lemmas 5.9 and repeatedly in order to obtain better estimates on the number
of elemets in the set R(0). Although such a modification would give a substantial
improvement to our bounds, the resulting bound in Theorem (1.2 would still be far
from the conjectured bound of 4. Therefore we felt that it was better to present the
simpler proof of Lemma [5.3| although it gives a worse bound.

The main question is whether a better choice of hypergraphs H,, ;, can lead to a proof
to Conjecture [I.I} It is not clear what kind of hypergraphs one should look for.
Although in the above theorem, the hypergraphs H, ; are quite sparse, this does not
seem to be crucial in the proof.

e The constant “10%” cannot be reduced to “4” in Theorem [L.5| without changing the
graphs H,, .. Indeed for large £, the graphs Hs(;—1),» do not have the MMS-property.
To see this, consider the following function f : V(G) — R.

fi)=k—=2ifi=0 (mod k—1),
F@) =—1ifi#0 (modk—1).

It is easy to see that we have > i (4 f(z) = 0. For two vertices ¢ and j let

. The number of edges of Hs(,—1), containing ¢ and j  if i # j
p(3) =1, i

The graph Hs(—1) has five nonnegative vertices 0,k —1,2(k —1),3(k —1),4(k —1).
An edge e € Hs—1),, is nonnegative if and only if e contains at least two of these
vertices. Therefore the number of nonnegative edges in Hs—1)x is at most

1 o
4,j€{0,k—1,2(k—1),
3(k—1),4(k—1)}

Notice that an edge e(—v,1,7) contains both 0 and k£ — 1 if and only if we have

i>v+1, (6.2)
J =z,
itj>v+k—1.
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It’s easy to check that the number of triples (v, , j) which satisfy (6.2) — (6.4)) is less
than ¢k* + o(k?®), which implies that p(0,k — 1) = ¢k + o(k?).

The only edges Hs(;—1),r Which contain 0 and 2(k — 1) are of the form e(0,7,k — 1)
for some ¢, so we have that p(0,2(k — 1)) = k — 1. Therefore, there are less than
2k + o(k?) nonnegative edges in Hs(,_1), which is smaller than k(k — 1)* for large
enough k.

The above argument shows that the constant “10¢” in Theorem cannot be re-
duced to less than 5. This shows that Conjecture [1.1] cannot be proved by the
argument we used in this paper without changing the graphs H, ; to some other
construction.

e It would be interesting to apply the methods introduced in this paper to problems
other than Conjecture [I.I} One of the key ideas we used in our proof was averaging
over graphs other than tight cycles. A similar idea was used by Frankl and Katona
[13] to give an alternative proof of the t-intersecting version of the Erdés-Ko-Rado
Theorem for certain values of £ and ¢. In this application, Frankl and Katona aver-
aged over Steiner systems rather than tight cycles.

There are some problems related to Conjecture to which our methods may be
applicable. One is a conjecture due to Samuels about the probability that X; +---+
X, < 1 where X7, ..., X, are random variables with specified means (see [I], 20] for
more details). In the past similar methods have been used for attacking Samuel’s
Conjecture and Conjecture [L.1], so perhaps the method we introduced in this paper
could be used to prove some new cases of Samuel’s Conjecture.

e We conclude with the following general problem.

Problem 6.1. Which hypergraphs have the MMS-property?

This problem is probably quite hard, since a solution to it would mean a general-
ization of Conjecture 1.1, This problem has been studied by Huang and Sudakov in
[T1]. They showed that all sufficiently large hypergraphs with equal codegrees have
the MMS-property (a hypergraph has equal codegrees if any pair of distinct vertices
is contained in the same number of edges).
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