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Abstract

A (possibly directed) graph is k-linked if for any two disjoint sets of vertices {x1, . . . , xk} and
{y1, . . . , yk} there are vertex disjoint paths P1, . . . , Pk such that Pi goes from xi to yi. A theorem
of Bollobás and Thomason says that every 22k-connected (undirected) graph is k-linked. It is
desirable to obtain analogues for directed graphs as well. Although Thomassen showed that the
Bollobás-Thomason Theorem does not hold for general directed graphs, he proved an analogue of
the theorem for tournaments—there is a function f(k) such that every strongly f(k)-connected
tournament is k-linked. The bound on f(k) was reduced to O(k log k) by Kühn, Lapinskas, Osthus,
and Patel, who also conjectured that a linear bound should hold. We prove this conjecture, by
showing that every strongly 452k-connected tournament is k-linked.
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1. Introduction

A graph is connected if there is a path between any two vertices. A graph is k-connected if it
remains connected after the removal of any set of (k−1)-vertices. This could be seen as a notion of
how robust the graph is. For example, if the graph represents a communication network, then the
connectedness measures how many nodes need to fail before communication becomes impossible.

Similar notions make sense for directed graphs, except in that context we usually want a
directed path between every pair of vertices. If this holds, we say that the directed graph is
strongly connected. A directed graph is strongly k-connected if it remains strongly connected after
the removal of any set of (k − 1)-vertices. In this paper, when dealing with connectedness of
directed graphs we will always mean strong connectedness.

Connectedness is a fundamental notion in graph theory, and there are countless theorems which
involve it. Perhaps the most important of these is Menger’s Theorem, which provides an alternative
characterization of k-connectedness. Menger’s Theorem says that a graph is k-connected if, and
only if, there are k internally vertex-disjoint paths between any pair of vertices. Menger’s Theorem
has the following simple corollary:

Corollary 1.1. If G is k-connected then for any two disjoint sets of vertices {x1, . . . , xk} and
{y1, . . . , yk} there are vertex-disjoint paths P1, . . . , Pk such that Pi goes from xi to yσ(i) for some
permutation σ of [k].

This corollary is proved by constructing a new graph H from G by adding two vertices x and
y such that x is joined to {x1, . . . , xk} and y is joined to {y1, . . . , yk}. It is easy to see that H
is k-connected, and so, by Menger’s Theorem, has k vertex-disjoint x – y paths. Removing the
vertices x and y produces the required paths P1, . . . , Pk. It is not hard to see that the converse of
Corollary 1.1 holds for graphs on at least 2k vertices as well.

Notice that in Corollary 1.1, we had no control over where the path Pi starting at xi ends
up—it could end at any of the vertices y1, . . . , yk. In practice we might want to have control over
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this. This leads to the notion of k-linkedness. A graph is k-linked if for any two disjoint sets of
vertices {x1, . . . , xk} and {y1, . . . , yk} there are vertex disjoint paths P1, . . . , Pk such that Pi goes
from xi to yi.

Linkedness is a stronger notion than connectedness. A natural question is whether a k-
connected graph must also be `-linked for some ` (which may be smaller than k). Larman and
Mani [8], and Jung [4] were the first to show that this is indeed the case—they showed that there
is a function f(k) such that every f(k)-connected graph is k-linked. This result uses a theorem
of Mader [9] about the existence of large topological complete minors in graphs with many edges.
The first bounds on f(k) were exponential in k, but Bollobás and Thomason showed that a linear
bound on the connectedness suffices [3].

Theorem 1.2 (Bollobás and Thomason). Every 22k-connected graph is k-linked.

The constant 22 has since been reduced to 10 by Thomas and Wollan [11].
Much of the above discussion holds true for directed graphs as well (when talking about strong

k-connectedness and directed paths). Menger’s Theorem remains true, as does Corollary 1.1. A
directed graph is k-linked if for two disjoint sets of vertices {x1, . . . , xk} and {y1, . . . , yk} there are
vertex disjoint directed paths P1, . . . , Pk such that Pi goes from xi to yi. Somewhat surprisingly
there is no function f(k) such that every strongly f(k)-connected directed graph is k-linked.
Indeed Thomassen constructed directed graphs of arbitrarily high connectedness which are not
even 2-linked [13]. Thus, there is a real difference between the directed and undirected cases. For
tournaments however the situation is better (A tournament is a directed graph which has exactly
one directed edge between any two vertices). There Thomassen showed that there is a constant C,
such that every Ck!-connected tournament is k-linked [12]. Kühn, Lapinskas, Osthus, and Patel
improved the bound on the connectivity to 104k log k.

Theorem 1.3 (Kühn, Lapinskas, Osthus, and Patel, [6]). All strongly 104k log k-connected tour-
naments are k-linked.

This theorem is proved using a beautiful construction utilizing the asymptotically optimal
sorting networks of Ajtai, Komlós, and Szemerédi [1]. The proof is based on building a small
sorting network inside the tournament, which is combined with the directed version of Corollary 1.1
in order to reorder the endpoints of the paths so that Pi goes from xi to yi. We refer to [6] for
details.

Since sorting networks on k inputs require size at least k log k, it is unlikely that this approach
can give a o(k log k) bound in Theorem 1.3. Nevertheless, Kühn, Lapinskas, Osthus, and Patel
conjectured that a linear bound should be possible.

Conjecture 1.4 (Kühn, Lapinskas, Osthus, and Patel, [6]). There is a constant C such that every
strongly Ck-connected tournament is k-linked.

There has also been some work for small k. Bang-Jensen showed that every 5-connected
tournament is 2-linked [2]. Here the value “5” is optimal.

The main result of this paper is a proof of Conjecture 1.4.

Theorem 1.5. Every strongly 452k-connected tournament is k-linked.

The above theorem is proved using the method of “linkage structures in tournaments” recently
introduced in [6] and [7]. Informally, a linkage structure L in a tournament T , is a small subset
of V (T ) with the property that for many pairs of vertices x, y outside L, there is a path from x
to y most of whose vertices are contained in L. Such structures can be found in highly connected
tournaments, and they have various applications such as finding Hamiltonian cycles [6, 10] or par-
titioning tournaments into highly connected subgraphs [5, 7]. Linkage structures were introduced
in the same paper where Conjecture 1.4 was made. However in the past they were constructed
using Theorem 1.3 to first show that a tournament is highly linked. In our paper the perspective
is different—the linkage structures are built using only connectedness, and then linkedness follows
as a corollary of the presence of the linkage structures.

In the next section we prove the above theorem. In Section 3, we make some concluding
remarks and pose and open problem.
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2. Proof of Theorem 1.5

A directed path P is a sequence of vertices v1, v2, . . . , vk in a directed graph such that vivi+1

is an edge for all i = 1, . . . , k − 1. The vertex v1 is called the start of P , and vk the end of P .
The length of P is the number of edges it has which is |P | − 1. The vertices v2, . . . , vk−1 are the
internal vertices of P . Two paths are said to be internally disjoint if their internal vertices are
distinct.

A tournament T is transitive if for any three vertices x, y, z ∈ V (T ), if xy and yz are both
edges, then xz is also an edge. It is easy to see that a tournament is transitive exactly when it
has an ordering (v1, v2, . . . , vk) of V (T ) such that the edges of T are {vivj : i < j}. We say that
v1 is the tail of T , and vk is the head of T .

The out-neighbourhood of a vertex v in a directed graph, denoted N+(v), is the set of vertices
u for which vu is an edge. Similarly, the in-neighbourhood, denoted N−(v), is the set of vertices
u for which uv is an edge. The out-degree of v is d+(v) = |N+(v)|, and the in-degree of v is
d−(v) = |N−(v)|. A useful fact is that every tournament, T , has a vertex of out-degree at least
(|T | − 1)/2, and a vertex of in-degree at least (|T | − 1)/2. To see this, observe that since T has(|T |

2

)
edges, its average in and out-degrees are both (|T | − 1)/2.

We will need the following lemma which says that in any tournament, we can find two large
sets such that there is a linkage between them.

Lemma 2.1. Let n and m be two integers with m ≤ n/11. Every tournament T on n vertices,
contains two disjoint sets of vertices {x1, . . . , xm} and {y1, . . . , ym} such that for any permutation
σ of [m], there are vertex-disjoint paths P1, . . . , Pm such that Pi goes from xi to yσ(i).

Proof. Let x1, . . . , xm be a set of m vertices in T of largest out-degrees i.e. any set such that
any vertex u outside it satisfies d+(u) ≤ d+(xi) for all i. Let y1, . . . , ym be a set of m vertices
in T of largest in-degrees. Since m ≤ n/11, we can choose {x1, . . . , xm} and {y1, . . . , ym} to be
disjoint. Indeed if I = {x1, . . . , xm} ∩ {y1, . . . , ym} is not empty then using the properties of the
xis and yis we have d+(z) = d(xi) for any xi ∈ I. Therefore for any vertices z1, . . . , zm−|I| not in
{x1, . . . , xm}∪{y1, . . . , ym}, the set {x1, . . . , xm}\I+z1+ · · ·+zm−|I| is a set of largest out-degree
vertices which is disjoint from {y1, . . . , ym}

Recall that every tournament T has a vertex of out-degree at least (|T | − 1)/2. This means
that d+(xi) ≥ (n − m)/2 for each i = 1, . . . ,m (since otherwise, there would be a vertex in
T \ {x1, . . . , xm} + xi of out-degree larger than xi, contradicting the choice of xi). Similarly, we
obtain d−(yi) ≥ (n−m)/2 for each i = 1, . . . ,m.

For each i and j ≤ m, let Xi,j = N+(xi)\
(
N−(yj)+yj

)
+xi, Yi,j = N−(yj)\

(
N+(xi)+xi

)
+yj ,

Ii,j = N+(xi) ∩N−(yj), and Mi,j a maximum matching of edges directed from Xi,j to Yi,j .
Notice that we have

|Xi,j \ V (Mi,j)| = |N+(xi) + xi − yi| − |Ii,j | − e(Mi,j) ≥
1

2
(n−m)− |Ii,j | − e(Mi,j).

Similarly, we obtain |Yi,j \ V (Mi,j)| ≥ 1
2 (n−m)− |Ii,j | − e(Mi,j).

Since M is maximal, all the edges between Xi,j \V (Mi,j) and Yi,j \V (Mi,j) go from Yi,j to Xi,j .
Therefore, if 1

2 (n−m)−|Ii,j |−e(Mi,j) ≥ m holds, then the lemma follows by choosing x′1, . . . , x
′
m

to be any m vertices in Yi,j \V (Mi,j), and y′1, . . . , y
′
m to be any m vertices in Xi,j \V (Mi,j). This

ensures that we can always choose length 1 paths P1, . . . , Pm as in the lemma.
Therefore, we can suppose that 1

2 (n−m)−|Ii,j |−e(Mi,j) < m. Combining this with m ≤ n/11
we obtain that |Ii,j |+ e(Mi,j) > 4m for every i and j.

Notice that for all i and j, there are exactly |Ii,j |+ e(Mi,j) ≥ 4m+ 1 internally vertex disjoint
paths of length ≤ 3 between xi and yj . This allows us to construct vertex disjoint paths P1, . . . , Pm
each of length ≤ 3, such that Pi goes from xi to yσ(i) (where σ is an arbitrary permutation of [m]).
Indeed, assuming we have constructed the paths P1, . . . , Pk, then we have |V (P1) ∪ · · · ∪ V (Pk) ∪
{xk+2, . . . , xm} ∪ {yσ(k+2), . . . , yσ(m)| ≤ 4m, and so one of the 4m + 1 internally vertex disjoint
paths between xk+1 and yσ(k+1) must be disjoint from V (P1) ∪ · · · ∪ V (Pk) ∪ {xk+2, . . . , xm} ∪
{yσ(k+2), . . . , yσ(m)}. We let Pk+1 be this path, and then repeat this process until we have the
required m paths.
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A set of vertices S in-dominates another set B, if for every b ∈ B \S, there is some s ∈ S such
that bs is an edge. Notice that by this definition, a set in-dominates itself. An in-dominating set
in a tournament T is any set S which in-dominates V (T ). Notice that by repeatedly pulling out
vertices of largest in-degree and their in-neighbourhoods from T , we can find an in-dominating set
of order at most dlog2 |T |e. For our purposes we will study sets which are constructed by pulling
out some fixed number of vertices by this process.

Definition 2.2. We say that a sequence (v1, v2, . . . , vk) of vertices of a tournament T is a partial
greedy in-dominating set if v1 is a maximum in-degree vertex in T , and for each i, vi is a maximum
in-degree vertex in the subtournament of T on N+(v1) ∩N+(v2) ∩ · · · ∪N+(vi−1).

Partial greedy out-dominating sets are defined similarly, by letting vi be a maximum out-degree
vertex in N−(v1) ∩N−(v2) ∩ · · · ∩N−(vi−1) at each step.

Notice that every partial greedy in-dominating set is a transitive tournament with head vk and
tail v1.

For small k, partial greedy in-dominating sets do not necessarily dominate all the vertices in a
tournament. A crucial property of partial greedy in-dominating sets is that the vertices they don
not dominate have large out-degree. The following is a version of a lemma appearing in [6].

Lemma 2.3. Let (v1, v2, . . . , vk) be a partial greedy in-dominating set in a tournament T . Let E be
the set of vertices which are not in-dominated by A. Then every u ∈ E satisfies d+(u) ≥ 2k−1|E|.

Proof. The proof is by induction on k. The initial case is when k = 1. In this case we have
E = N+(v1) where v1 is a maximum in-degree vertex in T . For any u ∈ E, we must have
d−(u) ≤ d−(v1) = |T \ E − v1| = |T | − |E| − 1. Therefore we have d+(u) = |T \ N−(u) − u| =
|T | − d−(u)− 1 ≥ |E| as required.

Now suppose that the lemma holds for k = k0. Let (v1, . . . , vk0+1) be a partial greedy in-
dominating set in T , and let E0 = N+(v1) ∩ · · · ∩ N+(vk0). By induction we have d+(u) ≥
2k0−1|E0| for every u ∈ E0. By definition vk0+1 is a maximum in-degree vertex in E0. Let
E = E0 ∩ N+(vk0+1) be the set of vertices not in-dominated by (v1, . . . , vk0+1). Since vk0+1

is a maximum in-degree vertex in E0, we have |N−(vk0+1) ∩ E0| ≥ (|E0| − 1)/2 which implies
|E| = |E0| − |(N−(vk0+1) + vk0+1) ∩E0| ≤ |E0|/2. Combining this with the inductive hypothesis,
we obtain d+(u) ≥ 2k0−1|E0| ≥ 2k0 |E|, completing the proof.

We are now ready to prove the main result of this paper.

Proof of Theorem 1.5. Let T be a strongly 452k-connected tournament. Notice that this means
that all vertices in T have in-degree and out-degree at least 452k.

Let x1, . . . , xk and y1, . . . , yk be vertices in T as in the definition of k-linkedness. We will
construct vertex disjoint paths from xi to yi. Let T ′ = T \ {x1, . . . , xk, y1, . . . , yk}.

Let D−1 be a partial greedy in-dominating set in T ′ on 2 vertices. Then, for all i = 2, . . . , 55k,
let D−i be a partial greedy in-dominating set on 2 vertices in T ′ \ (D−1 ∪ · · · ∪D

−
i−1).

Similarly, let D+
1 be a partial greedy out-dominating set on 2 vertices in T ′ \ (D−1 ∪· · ·∪D

−
55k).

Then, for all i = 2, . . . , 55k, let D+
i be a partial greedy out-dominating set on 2 vertices in

T ′ \ (D+
1 ∪ · · · ∪D

+
i−1 ∪D

−
1 ∪ · · · ∪D

−
55k).

Let X = D+
1 ∪ · · · ∪D

+
55k ∪D

−
1 ∪ · · · ∪D

−
55k ∪{x1, . . . , xk, y1, . . . , yk}. For each i, let E−i be the

set of vertices in T \X which are not in-dominated by D−i , and E+
i the set of vertices in T \X

which are not out-dominated by D+
i . By Lemma 2.3, we have d+(v) ≥ 2|E−i | for every v ∈ E−i ,

and also d−(v) ≥ 2|E+
i | for every v ∈ E+

i .
Let T− be the set of heads of D−1 , . . . , D

−
55k, and T+ the set of tails of D+

1 , . . . , D
+
55k. Apply

Lemma 2.1 to T− in order to find two subsets X− and Y − of order 5k of V (T−), such that for
any bijection f : X− → Y −, there is a set of 5k vertex-disjoint paths in T− with each path joining
x to f(x) for some x ∈ X−. Apply Lemma 2.1 to T+ in order to find two subsets X+ and Y + of
order 5k of V (T+), such that for any bijection f : X+ → Y +, there is a set of 5k vertex-disjoint
paths in T+ with each path joining x to f(x) for some x ∈ X+. Reorder (D−1 , . . . , D

−
55k) so that

X− is the set of heads of D−1 , . . . , D
−
5k. Reorder (D+

1 , . . . , D
+
55k) so that Y + is the set of tails
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of D+
1 , . . . , D

+
5k. Notice that since each partial greedy dominating set is on 2 vertices, we have

|X| ≤ 222k. By Menger’s Theorem, since T is 452k-connected, there is a set of vertex-disjoint
paths Q1, . . . , Q5k in (T \X) ∪ Y − ∪X+ such that each path Qi starts in Y − and ends in X+.

Recall that all out-degrees in T are at least 452k and |X| ≤ 222k. Therefore, for each
i = 1, . . . , k we can choose an out-neighbour x′i of xi which is not in X. Similarly for each
i we can choose an in-neighbour y′i of yi which is not in X. In addition we can ensure that
x′1, . . . , x

′
k, y
′
1, . . . , y

′
k are all distinct. Let X ′ = X ∪ {x′1, . . . , x′k, y′1, . . . , y′k}.

Notice that each vertex v ∈ E−i satisfies d+(v) ≥ 2|E−i | and d+(v) ≥ 452k ≥ 2|X ′| + 4k.
Averaging these, we get d+(v) ≥ |E−i |+ |X ′|+ 2k and so v has at least 2k out-neighbours outside
of E−i ∪X ′. Similarly each v ∈ E+

i has at least 2k in-neighbours outside of E+
i ∪X ′. Therefore,

for each i, we choose x′′i to be either equal to x′i if x′i 6∈ E
−
i or we choose x′′i to be an out-neighbour

of x′i in T \ (E−i ∪ X ′). Similarly, for each i, we choose y′′i to be either equal to y′i if y′i 6∈ E+
i

or we choose y′′i to be an in-neighbour of y′i in T \ (E+
i ∪ X ′). We can also choose the vertices

x′′1 , . . . , x
′′
k , y
′′
1 , . . . , y

′′
k so that they are all distinct (since when x′′ 6= x′ and y′′ 6= y′ are always at

least 2k choices for x′′i and y′′i respectively).
For each i = 1, . . . , k, let Q−i be a path from x′′i to the head of D−i whose internal vertices are

all in D−i . The facts that D−i is transitive and x′′i 6∈ E
−
i ensure that we can do this. Similarly, for

each i let Q+
i be a path from the tail of D+

i to y′′i whose internal vertices are all in D+
i .

Notice that at least k of the paths Q1, . . . , Q5k are disjoint from {x′1, . . . , x′k, y′1, . . . , y′k,
x′′1 , . . . , x

′′
k , y

′′
1 , . . . , y

′′
k}. Let Q′1, . . . , Q

′
k be some choice of such paths.

Since Q−i ends in X− and Q′i starts in Y −, Lemma 2.1 implies that we can choose disjoint
paths P−1 , . . . , P

−
k in T− such that P−i is from the end of Q−i to the start of Q′i. Similarly we can

choose disjoint paths P+
1 , . . . , P

+
k in T+ such that P+

i is from the end of Q′i to the start of Q+
i .

Now for each i we join xi to x′i to Q−i to P−i to Q′i to P+
i to Q+

i to y′i to yi in order to obtain
the required vertex-disjoint paths from the xis to the yis.

3. Concluding remarks

It would be interesting to reduce the constant 452 in Theorem 1.5. It is not hard to find minor
improvements to our proof in Section 2 which improve this constant by a little bit.

The optimal dependence of the connectedness on k in Theorem 1.5 may be difficult to deter-
mine. For k = 2, Bang-Jensen showed that every 5-connected tournament is 2-linked [2], and that
the value “5” here is best possible. It is not clear how to extend Bang-Jensen’s construction of
4-connected tournaments which are not 2-linked to higher k. However, for general k, it is easy to
construct tournaments which are roughly 2k-connected, but not k-linked.

Proposition 3.1. For all n ≥ 6k, there is a (2k−1)-connected tournament T on n vertices which
is not k-linked.

Proof. Let n = 2k− 2 + a+ b for some a, b ≥ 2k. The vertices of T consist of three disjoint sets S,
A, and B of with |S| = 2k− 2, |A| = a, and |B| = b. The edges between S, A, and B are directed
from S to A, from A to B, and from B to S i.e. the digraph between these sets is a blow up of a
cyclicly oriented triangle. The edges within S, A, and B are oriented arbitrarily.

To see that T is (2k − 1)-connected, notice that any subtournament of T containing a vertex
from each of S, A, and B is strongly connected. From this it is easy to see that the set S is the
unique minimum separating set in T .

To see that T is not k-linked consider two sets {x1, . . . , xk} and {y1, . . . , yk} with S =
{x1, . . . , xk−1, y1, . . . , xy−1}, xk ∈ B, and yk ∈ A. Now if there were disjoint paths P1, . . . , Pk
with Pi going from xi to yi, then we would have S ⊆ V (P1)∪ · · · ∪V (Pk−1). But then there could
not be a path Pk from xk to yk avoiding P1, . . . , Pk−1 since all the edges between A and B are
directed towards B.

While the construction above is certainly not optimal (at least for k = 2), the author believes
that it might be essentially correct for tournaments with no small degree vertices.
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Conjecture 3.2. For every k, there is a d = d(k) such that the following holds. Every strongly
2k-connected tournament with δ−(T ), δ+(T ) ≥ d is k-linked.

In the above conjecture δ−(T ) and δ+(T ) are the minimum in-degree and out-degree in T
respectively.

One motivation for the above conjecture is a related result of Thomas and Wollan [11] about
undirected graphs which says that every 2k-connected graph which is sufficiently dense is k-linked.
Specifically, they showed that every 2k-connected graph with at least 5kn edges is k-linked [11].
Thus Conjecture 3.2 could be seen as asking for an analogue of this result for tournaments but
with a minimum degree condition instead of an average degree condition.
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