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Cycling near misses: A review of the current methods, challenges and the potential 

of an AI-embedded system 

Abstract - Whether for commuting or leisure, cycling is a growing transport mode in many 

countries. However, cycling is still perceived by many as a dangerous activity. Because the mode 

share of cycling tends to be low, serious incidents related to cycling are rare. Nevertheless, the fear 

of getting hit or falling while cycling hinders its expansion as a transport mode and it has been 

shown that focusing on killed and seriously injured casualties alone only touches the tip of the 

iceberg. Compared with reported incidents, there are many more incidents in which the person on 

the bike was destabilised or needed to take action to avoid a crash; so-called near misses. Because 

of their frequency, data related to near misses can provide much more information about the risk 

factors associated with cycling. The quality and coverage of this information depends on the 

method of data collection; from survey data to video data, and processing; from manual to 

automated. There remains a gap in our understanding of how best to identify and predict near 

misses and draw statistically significant conclusions, which may lead to better intervention 

measures and the creation of a safer environment for people on bikes. In this paper, we review the 

literature on cycling near misses, focusing on the data collection methods adopted, the scope and 

the risk factors identified. In doing so, we demonstrate that, while many near misses are a result of 

a combination of different factors that may or may not be transport-related, the current approach of 

tackling these factors may not be adequate for understanding the interconnections between all risk 

factors. To address this limitation, we highlight the potential of extracting data using a unified 

input (images/videos) relying on computer vision methods to automatically extract the wide 

spectrum of near miss risk factors, in addition to detecting the types of events associated with near 

misses. 

Keywords - Cycling near miss, non-collision incidents, risk factors, machine vision, artificial 

intelligence  

1. Introduction 

Cycling has increased in popularity in Europe and elsewhere globally (Marco Dozza et al., 2017). 

Whether cycling for leisure or commuting, its benefits in terms of public health and the reduction of 



   3 

environmental pollution have influenced planners and policy-makers to invest in cycling infrastructure 

(de Hartog et al., 2010; Juhra et al., 2012; Pucher et al., 2010; Steinbach et al., 2011). Globally, various 

policies, programmes and physical and non-physical interventions have taken place to promote cycling 

(Pucher et al., 2010; Savan et al., 2017). In the UK, Transport for London (TfL), for instance, has 

invested in many cycling infrastructure projects such as cycling superhighways, quiet ways, mini-

Hollands and cycle hire schemes aimed at promoting a safer environment for people on bikes (TfL, 

2018).  

Even though the health benefit of cycling exceeds its risk (de Hartog et al., 2010), the risk for people 

on bikes remains high: “Compared with car occupants and with regard to time spent traveling, cyclists 

were 8 times more likely to be injured, 12 to be hospitalized, 16 to be seriously injured, and 3 to be 

killed” (Blaizot et al., 2013, p. 43). The experience of near misses can also add to the perception that 

cycling is dangerous. People on bikes in the UK are likely to face at least one near miss for every six 

miles of a commute as estimated by (Aldred & Crosweller, 2015). The fear of getting hit or falling 

whilst cycling hinders the wider adoption of cycling as a transport mode (Aldred, 2016; De Rome et al., 

2014; Winters & Branion-Calles, 2017). In the UK, a survey of 244 cyclists and non-cyclists revealed 

that the perceived lack of safety is one of the main reasons given for not cycling (Gatersleben & 

Haddad, 2010). Furthermore, Sanders (2015) explained that individuals’ concern regarding the risk of 

cycling and experience of near misses were the main barriers to cycling. In fact, near misses were often 

associated with several worries related to cycling in traffic, such inattentive drivers, drivers passing too 

close, being doored, drivers driving too fast, aggressive drivers, or being cut off by a turning driver 

(Sanders, 2015).  

While road casualties are a burden to individuals and society, tracking and recording collisions that 

involve cyclists remains a challenge. While a number of studies have focused on analysing collisions 

and fatal incidents (Beck et al., 2016a; Bíl et al., 2010; de Geus et al., 2012; De Rome et al., 2014; 
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DiGioia et al., 2017; Imprialou & Quddus, 2017; Juhra et al., 2012; Loo & Tsui, 2010; Orsi et al., 2014; 

Pai, 2011; Shinar et al., 2018; Teschke et al., 2014), they only cover part of the picture. In 2018 in Great 

Britain, according to police reported casualty data, 17,451 cyclists were either seriously or slightly 

injured and 99 cyclists were killed (Department for Transport, 2019). However, this data may exclude 

many cases that involved injured cyclists because cyclist casualties are only reported by the police if this 

injury includes a crash with a moving vehicle (Winters & Branion-Calles, 2017).  

 In general, it is challenging to quantitatively analyse the risk of cycling due to the low number of 

recorded incidents (Aldred, 2018; De Rome et al., 2014), or the impact of the reporting bias in road 

crash data, in which the less severe the crash, the higher the probability of under-reporting it (Abay, 

2015). On the other hand, although many incidents may not result in a hospital visit or being reported to 

the police, people on bikes still report frequent situations where they need to take direct action to avoid a 

collision or feel destabilised. Cycling crashes are initiated by ‘near miss situations that are not avoided’ 

and therefore result in a crash. By using this analogy, if data on these near misses can be recorded then 

they can provide a rich source of information with which to study cyclists’ crash risk and identify the 

factors that are most associated with them.  

In this paper, we review the literature on cycling near misses and demonstrate that, while many near 

misses are a result of a combination of different factors that may not be transport-related, the current 

approaches to tackling these factors may not be adequate to fully understand the genesis of a near miss. 

Here, we explore the potential of extracting data of different disciplines using a unified input 

(images/videos) that relies on computer vision methods to automatically extract the wide spectrum of 

risk factors that may cause potential risk for people on bikes. 

This review aims to provide a resource for planners, policy-makers and researchers by 1) defining near 

misses, their types and their risk factors, 2) reviewing the main methodologies of recording and 

analysing near misses, and their applicability and limitations, 3)  showing a summary of the variation of 
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near misses and their limitations in understanding the stated issue, 4) introducing a new potential 

framework understanding near misses through machine vision, in which models can be utilised to 

extract risk factors and infer near misses, 5) paving the way for developing AI-related automated 

systems that could be used to tackle crash risk by focusing on near misses, in which we highlight the key 

enabling technologies and research directions.  

The remainder of this review is structured as follows: In section 2, the methodology of the review is 

described. In section 3, cycling near misses are defined, highlighting the different types. The risk factors 

and the studies that cover them are reviewed in section 4. Section 5 summarises gaps in our 

understanding. Section 6 introduces machine vision as an approach for understanding near misses and 

lastly, section 7 concludes and summarises the research.  

2. Review methodology 

We adopted a systematic review approach using PRISMA guidelines (PRISMA, 2015). Figure one 

shows the flow of the information through the different stages of the systematic review.  

First, all manuscripts related to cycling near misses were gathered to-date. These manuscripts 

included peer-reviewed journal articles, governmental and non-governmental reports, and conference 

proceedings. They covered the different aspects of cycling near misses, methods used, and the risk 

factors identified. These manuscripts can be accessed  from four search engines (Scopus, Google 

Scholar,  and Web of Science) via a combination of ‘cycling’ or ‘road ‘with keywords in a Boolean 

expression such as : Cycling AND near AND miss*, cycling AND perceived AND risk*, perceived  

AND traffic and risk*, cycling AND near AND collision*, road AND conflict*, cycling AND risk and 

risk*.  The total results for the specified combined terms are 556, 435, and 389 for google scholar, Web 

of Science, and Scopus respectively. After removing duplicates, the sample size reduced to 531. Second, 

records were first screened by title and abstracts which reduced the records to 325. The second phase of 

screening included reviewing each manuscript,  which reduced the number to 189 manuscripts that focus 
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on the various types of conflicts between different road-users, including near misses. At this phase, 

manuscripts were filtered to exclude studies that involved collisions without addressing near misses 

were excluded, except where they were required to draw a baseline or lesson learned that could be 

beneficial for near miss studies (i.e. Beck et al., 2016b; Cho et al., 2009; Orsi et al., 2014). Studies that 

involved safety policies that address cycling without addressing near misses are excluded. Last, we 

reduced studies to 19 manuscripts that focus only on cycling near misses which we focused on analysing 

them in details (See Figure 1). 

 

Figure 1: Flow chart for the screened records used for the systematic review 



   7 

3. What is a cycling near miss? 

3.1 Definition 

There are different conceptions and terms that pinpoint the subject of a ‘narrowly avoided collision’. 

It can be defined as: ‘perceived crash risk’ (Chaurand & Delhomme, 2013; Strauss et al., 2013), 

‘perceived traffic risk’ (Sanders, 2015), ‘near collision’ (Johnson et al., 2010), or simply ‘near miss’ 

(Aldred, 2016; Poulos et al., 2012). While a ‘cycling near miss’ is a subjective term that may differ 

based on individuals’ experiences and their perceptions of risk, in most cases it is defined as a situation 

in which a person on a bike was required to act to avoid a crash, such as braking, speeding, swerving or 

stopping.  In some cases, the definition may be extended to include those events that caused the person 

on the bike to feel unstable or unsafe, such as a close pass or tailgating.  

3.2 Types of cycling near miss 

Different studies have categorised near misses in different ways. For instance, some studies focus on 

the conflicts between people on bikes and drivers (Beck et al., 2019), or people on bikes and pedestrians 

(Paschalidis et al., 2016), in which different types of risky situations are categorised. Another approach 

is to categorise near misses depending on the type of conflict; either a moving object or stationary 

(Nelson et al., 2015). The most comprehensive categorisation to date was introduced by Aldred & 

Goodman (2018), based on an empirical study that included 2586 diaries from a sample of 396 

participants over two years (2014-2015). This study summarised the types of cycling near misses were 

summarised in eight groups. These groups are: 1) a close pass, 2) a near left or right hook, 3) someone 

pulling in or out, 4) a near-dooring, 5) swerve around an obstruction, 6) pedestrian steps out, 7) someone 

approaching head-on, or 8) tailgating. Their study found that close pass near misses were the most 

frequent incident type.  
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In figure 2, we aim to visualise the different types of cycling near misses addressed in the literature 

to better understand the road-users or objects involved and their potential impact on people on bikes. In 

doing so, we aim to highlight the areas that need to be covered for any future method to be 

comprehensive when addressing cycling near miss. 

4. Methods and materials used for understanding near misses 

Studies have focused on different factors related to cycling near misses and have also used different 

data collection techniques and methods. These methods can be divided into three types of observational 

studies: 1) Observational studies relying on self-reported questionnaires, 2) Analysis of video of cyclist 

behaviour at specific sites, i.e. at an intersection, and 3) analysis of video from cameras used on their 

bike, the so-called naturalistic study. 

 

Figure 2: Types of cycling near miss and their potential impact 

Source: Created by the authors based on the literature review  
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4.1 Self-report studies  

Self-report studies are the dominant design for most cycling near miss studies. The core element that 

that identifies a self-report study, in the scope of this research, is how data is gathered, not what types of 

data are gathered. In an observational study, data are gathered and statistically analysed to show 

associations and draw conclusions. There are three main ways in which data are collected for an self-

reporting study: 1) using a self-reporting mechanism based on a questionnaire survey for a group of 

participants (Aldred & Crosweller, 2015; Chaurand & Delhomme, 2013; Fuller et al., 2013; Lawson et 

al., 2013; Paschalidis et al., 2016), or 2) using a self-reporting mechanism based on crowdsourcing 

platforms where data can be uploaded (Nelson et al., 2015; Poulos et al., 2012). Data gathered based on 

crowdsourcing have led to significant progress in mapping cycling ridership and safety measures 

(Jestico et al., 2016; Nelson et al., 2015). However, while observational studies can offer insights about 

the behaviour of people on bikes over a longer period, the data gathered is limited by potential biases 

such as over or under-representation of certain cyclist groups or the types of risk factors, in addition to 

limitation and biases due to manual labelling and processing based on the collectors’ interpretations 

(Dozza & Werneke, 2014).  

4.2  Video analysis at specific sites   

In a site observational study, video streams for a given context are used that highlight certain safety 

issues. A focus group of cyclists or non-cyclists participate and observe these video streams to evaluate 

behaviours. Rather than focussing on near miss events, these studies ask participants to evaluate the 

level of risk or presence of hazards in the video stream. Vansteenkiste et al. (2016) used site observation 

to develop a hazard perception test for children, finding that children’s reactions to, and interpretations 

of, hazards are less developed than adults. Lehtonen et al., (2016) asked frequent and infrequent riders to 

watch video clips and rate risk through a caution estimate, finding that more frequent riders identified a 

higher number of caution estimate rises. This indicates that awareness of risk increases with rider 
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experience. Such studies are important because they enable understanding of the differences in exposure 

to risk between certain groups of riders. 

While site observations using cameras may overcome the limitation of interpretation found in self-

report studies, the amount of data processing, specifically image processing, limits the scalability of this 

type of method. Additionally, multiple cameras are required at different positions to capture the entire 

environment and observe the dynamics of cycling behaviour and the interactions among the different 

agents (Dozza & Werneke, 2014). However, this approach can potentially enable the analysis of near 

misses at scale by leveraging the supply of CCTV cameras routinely installed on road networks, 

particularly in cities. Zangenehpour et al., (2016) used cameras to collect overview footage of 

intersections and analyse variations in vehicle-bicycle interactions in the presence/absence of cycle 

tracks. This work was facilitated by automated tracking of road-users using a computer vision approach, 

which could be applied to CCTV feeds (Zangenehpour et al., 2015).  

4.3 Naturalistic study 

The naturalistic approach is often perceived as one of the most reliable methods for understanding 

road-user behaviours and analysing risk factors (Marco Dozza, Bianchi Piccinini, et al., 2016; Marco 

Dozza & Werneke, 2014; K. Schleinitz et al., 2017). In this method, a group of participants ride 

instrumented bikes while carrying out their routine activities. Cameras and sensors are fitted to the bike 

or rider that collect data related to riding behaviour, the surrounding environment and the interactions 

with other road-users.  The types of data gathered vary depending on the purpose of the research and the 

installed equipment and sensors. The first example of a naturalistic study was in Melbourne, Australia, 

where riders were given helmet-mounted cameras (Johnson et al., 2010). This camera position was 

chosen because it gave the rider’s perspective and enabled their behaviour to be analysed (e.g. shoulder 

checks). While this approach enables risk factors to be analysed through manual analysis of the video 

data, quantitative features such as rider speed, geolocation and acceleration/deceleration cannot be 
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extracted. More recent studies have used instrumented bikes containing at least a video camera and a 

GPS device (Gustafsson & Archer, 2013). More sophisticated setups can contain units for inertial 

measurement, a signal button to record critical incidents and near misses, brake force sensors (Dozza & 

Werneke, 2014), or even LiDAR sensors for measuring the range of nearby objects such as passing 

vehicles (Beck et al., 2019). Naturalistic approaches have also been used to study differences in 

behaviour between pedal bike and e-bike users, which is an emerging area of concern for policymakers 

(K. Schleinitz et al., 2017). 

 The main advantage of the naturalistic approach is that detailed information is collected about the 

behaviours and actions of agents involved in an event, as well as the instantaneous features of the 

environment. By definition, the naturalistic approach also collects data in which no event occurred, 

which can be used as counterfactual events in a case-control framework. However, processing data 

collected in naturalistic studies is labour intensive and automated methods are required if such data are 

to be collected at scale.   

5.  Factors related to near misses and their impacts  

Different methods have different advantages and limitations when it comes to including and 

analysing the wide range of risk factors. In general, cycling near misses are transport-related, however, 

their risk factors may or may not be transport-related (Aldred, 2016; Beck et al., 2016a; De Rome et al., 

2014; Vanparijs et al., 2015). This creates challenges for methods currently used on the literature – 

either in extracting these factors or analysing them - to assess in a single study. Based on the literature, 

we categorise these factors into aspects related to visibility, physical conditions of the built environment, 

interaction among different agents (e.g. people or animals), and behavioural and psychological factors 

related to the cyclist.  
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Figure 3 shows the interaction of these four categories that could lead to a near miss. Most of the 

factors belong to behavioural, physical, or visibility related factors. In many cases, near misses occur as 

a result of a combination of several independent factors represented by the ‘interaction’ section of the 

diagram. 

Many studies focus on the impacts of one of the risk factors for a near miss while excluding other 

factors. Poulos et al. (2012) analysed near misses based on the type of cycling infrastructure, including 

pedestrian footpath, shared path, road with no bicycle lane, bicycle path, and road with a bicycle lane. 

Johnson et al. (2013) studied collision and near-collision characteristics based on people on bikes and 

open vehicle doors, highlighting how an open vehicle door could lead to frequent and serious injuries 

that could sometimes be fatal. Few studies, however, explore the holistic nature of the factors related to 

near misses. 

Table 1 summarises the 19 studies identified in the literature in terms of methods used, near miss 

type and risk factors covered, broken down by the categories shown in figure 3. The categories are 

further subdivided according to specific risk factors. The interaction risk factors are combined with the 

 

Figure 3: Types of factors related to cycling near misses 
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near miss type in column three. The extent to which each risk factor has been analysed in the literature 

by each method is discussed in sections 5.1 to 5.4, below.  

Table 1: Current near miss literature and covered scope and risk factors 
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(Paschalidis 

et al., 2016) 

Self-report 

studies 

Conflicts with 

cars and 

pedestrian – 8 

types 

- - - - - - - - - - - x - x x x x x - - - 

(Vansteenkis

te et al., 

2016) 

Video 

analysis at 

specific sites   

Visual 

awareness, 

environmental 

awareness, risk 

perception, and 

reaction time 

- - - - - - - - - x - - - x x - - - - - - 

(Gustafsson 

& Archer, 

2013) 

Naturalistic 

study  

All types of 

conflicts 

divided by 17 

types 

- - - - - x x x - x - x - x x x - x - - - 

(Nelson et 

al., 2015) 

Self-report 

studies 

Near miss with 

stationary or 

moving object 

or vehicle  

- - - - - x x x x x x - x - x x - - x - x 

(Branion-

Calles et al., 

2017) 

Self-report 

studies / 

comparative 

study 

Near miss with 

stationary or 

moving object 

or vehicle 

x x x - x x x x x x x x x x x x - x x - x 

(Katja Naturalistic Conflict with - - - - - x x x - x x x - - x - - - - - - 
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Schleinitz et 

al., 2015) 

study vehicles, 

cyclists and 

pedestrians 

(Aldred, 

2016) 

Self-report 

studies/ 

discussion 

Eight types of 

near misses 

- - - - - - - - - x x x x x x x - x - - - 

(Chaurand & 

Delhomme, 

2013) 

Meta-

analysis/ 

Comparative 

study 

Bike-car 

interaction at 

road 

intersections 

- - - - - - - - - - - - - x x x x x x - - 

(Johnson et 

al., 2013) 

Naturalistic 

study  

One type of 

near misses- 

door opening 

- - - - - - x x - - - x x - x x - x - - - 

(Lehtonen et 

al., 2016) 

Site 

observational 

study 

Risk perception 

of bicyclists in a 

city 

environment 

- - - - - - - - - - - x - - x x x x - - - 

(Poulos et 

al., 2012) 

Self-report 

studies 

Near misses- 

undefined types 

- - - - - - - - - x - x - - x x x x - - - 

(M Dozza et 

al., 2012) 

Naturalistic 

study 

Pilot study 

showing six 

unique risky 

events.  

- - - - - - - - - - - - - - - - - - - -  

(Marco 

Dozza & 

Werneke, 

2014) 

Naturalistic 

study 

Critical events - 

44 

- - - - - - x - - - x x - x x x  x - - - 

(Aldred & 

Crosweller, 

2015) 

Self-report 

studies 

Near miss types 

– 8 types 

- - - - - x x x - - - - -  x x - x - - - 

(Sanders, 

2015) 

Self-report 

studies 

exploration of 

perceptions of 

traffic risk 

between cyclists 

and drivers/ 

4types of near 

misses 

- - - - - - - - - x  x x - x x x x - - - 

(Johnson et 

al., 2010) 

Naturalistic 

study 

Collision/ near 

collision for on-

road cyclists 

- - - - - - - - x - - x - x x x  x x - - 
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5.1 Behavioural aspects  

Behavioural aspects play an important role in defining the various cycling styles that may influence 

the types and the frequency of near miss events. They can be subcategorised into three groups: 1) 

Individual characteristics, 2) trip characteristics, and 3) safety measures.   

All of the 19 reviewed studies cover individual characteristics to a greater or lesser extent.  

First, most of the cycling near miss studies focus on covering multiple factors related to socio-

demographic aspects of people on bikes. It is noticeable from table 1 that self-report studies generally 

collect more demographic data than site observational and naturalistic studies, which is due to their 

design. 

Safety measures related to individual behaviours are crucial for avoiding near misses. Johnson et al. 

(2014) studied the behaviours and perception of both drivers and people on bikes towards cycling safety. 

They found that drivers who also cycle are more likely to have a positive attitude towards cycling. They 

also highlighted the importance of rethinking driver education when overtaking people on bikes; 

considering head checks, buffer space, and adequate indications. Walker et al. (2014) found that the 

appearance of the person and the type of outfit they wore has an insignificant effect on the clearance 

distance drivers gave when overtaking people on bikes, contrary, police/video-recording jacket is the 

(Lawson et 

al., 2013) 

Self-report 

studies 

Perception of 

safety for 

cyclists 

- - - - - - - - - x x x x x x x x x x x 

 

- 

(Aldred & 

Goodman, 

2018) 

Self-report 

studies 

Near miss 

types- 8 

- - - - - - - - - - - - - - x x x - - - - 

(Fuller et al., 

2013) 

Self-report 

studies 

the impact of 

implementing a 

public bicycle 

share program 

on events of 

near misses 

- - - - - - - - - - - - - - x x x - x - - 
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only outfit that has a significant correlation with the passing proximities.  Nelson et al. (2015) found that 

the frequency of near misses was higher when cycling without bike lights than when using front and 

backlights.  

5.2 Physical conditions 

Fifteen of the 19 studies referred to physical conditions. While there are different factors related to 

the built environment that influence the choice of cycling routes from a behavioural perspective (Broach 

et al., 2012), these are also factors that cause potential risk for encountering collisions or a near miss 

(Cho et al., 2009). As Aldred notes: ”The vast majority of near misses were judged potentially 

preventable by changes to road user behaviour and/or the cycling environment’’ (Aldred, 2016, p. 78). 

Therefore, physical conditions play an important role in either experiencing a near miss or avoiding one. 

Based on the literature review, we have subcategorised these into four groups: 1) Infrastructure, 2) 

surface conditions, 3) location and 4) surrounding context.  

In terms of infrastructure, Parkin and Meyers (2010) found that in the presence of a cycle lane, 

drivers may drive within their marked lane with less consideration of ensuring a comfortable passing 

distance for people on bikes in the adjacent cycle lane. This has been confirmed in a recent study by 

Beck et al. (2019) on close pass events.  

Several studies include factors related to surface conditions, such as wet, dry, well-maintained, or 

deteriorated surfaces (Aldred, 2016; Branion-Calles et al., 2017; Gustafsson & Archer, 2013; Nelson et 

al., 2015; Katja Schleinitz et al., 2015). Dozza et al. (2012) found that some near misses occurred when 

the condition was icy. Nelson et al. (2015) found that the near misses mostly took place on dry surfaces  

(64.6% of the total near misses) with no parking on the road (60.1% of the total near misses). However, 

these frequencies are based on the count of responses rather than the significance of the result, which 

may be due to the self-selection of either trip routes or time. The challenge remains in understanding 

how the individual factors combine with physical conditions to produce risk. 
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Different studies have focused on the location of cycling, highlighting a higher exposure to near 

misses at intersections (Branion-Calles et al., 2017). Strauss et al. (2013) analysed 650 intersections in 

Montreal in which cyclists were exposed to injury incidents. They found that more cyclists tended to 

suffer injuries at junctions but with a lower injury rate due to the non-linear correlation between injury 

occurrence and bicycle volume. They also highlighted that the frequency of cycling crashes is associated 

with the changes in the flows of both vehicles and bicycles based on injury data of people on bikes 

between 2003 and 2008 in Montreal, Canada. Additionally, crashes were more likely to happen at 

intersections that include a bus stop. The important role of the built environment was underscored, in 

which a change in conditions (i.e. presence of cycle lane, land use mix, presence of a school, etc.) is 

more likely to cause a direct impact on cyclist activity and safety. 

There is still an absence of near miss studies that directly investigate the impact of the surrounding 

context that may densify the flow of traffic for cyclists, pedestrians, and vehicles in a certain location in 

cities, which may cause potential risk exposure for the people on bikes. This has been outlined by 

Vanparijs et al. (2015) in their review of studies related to exposure measurement. They reviewed the 

different methods to measure cycling exposure to incidents, including time, distance, and trips as 

exposure units. They showed that the lack of exposure data hinders the ability to draw significant 

conclusions, noting that analyses that do use exposure measures often neglect minor incidents, meaning 

near miss events are more likely to be missing as well. This makes it difficult to understand safety levels 

between different types of infrastructure, and the age categories of people on bikes.  

5.3 Visibility-related conditions   

Visibility related conditions play a role in crashes and near misses (Lacherez et al., 2013), 

particularly, factors related to 1) the time of the day, 2) weather conditions, and 3) the level of 

illumination, including the existence of glare.  Of the reviewed studies, only two cover weather 

conditions, while nine cover lighting conditions or time of day. (Branion-Calles et al., 2017) use 
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secondary data sources to infer weather and lighting conditions, using time of sunrise/sunset and 

meteorological data at a single location in the two cities studied. This may fail to capture local variations 

in weather, street lighting and glare caused by the direction of travel. (M Dozza et al., 2012) highlights 

some factors related to six unique events but does not analyse risk factors.  

There are a limited number of studies that included factors related to weather conditions to address 

their impact on the occurrence of near miss events.  Branion-Calles et al. (2017) addressed weather 

conditions such as clear, cloudy, rain, and fog in analysing near misses. Based on descriptive analysis, 

they found that a higher frequency of near misses and crashes are reported when the weather is rainy, 

snowy or foggy compared with cloudy or clear conditions.   

While, the time of the day could be a significant risk factor in cycling crashes (Johnson et al., 2013), 

many studies neglect the issue of time completely (Aldred, 2016; Aldred & Goodman, 2018; Chaurand 

& Delhomme, 2013; Fuller et al., 2013; Lawson et al., 2013; Lehtonen et al., 2016; Paschalidis et al., 

2016; Poulos et al., 2012; Sanders, 2015; Vansteenkiste et al., 2016). Other studies use a binary 

classification of day and night, without considering more nuanced effects on the lighting conditions such 

as those caused by direct sunlight at dawn and dusk. For instance, Branion-Calles et al. (2017) studied 

near misses according to the time of either peak hours or off-peak hours. Gustafsson and Archer (2013) 

categorised time to ‘morning (06:30-9:30)’ and ‘afternoon (15:30-18:30)’, highlighting that more 

incidents and safety issues occur in the morning.   

The impact of the lighting conditions -including glare- on near miss events remains under-

investigated. Branion-Calles et al. (2017) mentioned lighting conditions as risk factors represented in 

two classes of day or night-time only.  Dozza et al. (2012) mentioned the effect of glare on the quality of 

the video streams, without studying its impact on the frequencies of near misses. Even though Nelson et 

al. (2015) had looked at glare based on self-reporting data, this data only provides a subjective account 
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of the incident and glare may have been present but not mentioned. Therefore the data may not represent 

a reliable source of information to study the impact of glare.  

5.4 Interaction between road-users 

While near misses can involve a single individual riding a bike, they are often the result of 

interactions between the rider and other road-users, such as people in cars, people driving or other 

people on bikes. During a journey, a bike rider will have many safe interactions with other road-users, 

which makes it difficult to define those situations that lead to elevated risk. Therefore, quantitative 

studies in this area have tended to focus on a single type of interaction. A notable example is (Beck et 

al., 2019), who focussed on passing distance. Their study used a distance sensor attached to a bicycle to 

measure the range of passing vehicles. Using a passing distance of 1 metre at <= 60km/h (1.5m at >= 

60km/h) informed by Australian legislation, they identified that 1 in 17 passing events was a close pass. 

As mentioned in section 5.2, they found that the presence of a bike lane was associated with closer 

passing distance. This type of study is important in identifying a particular type of risky behaviour, but 

the use of a 1 metre passing distance is somewhat arbitrary. For example, in the UK, Operation Close 

Pass uses 1.5 metres as a safe passing distance; if this figure was used in (Beck et al., 2019) it would 

change the interpretation of results. In general, there is no good evidence on what is safe under what 

circumstances, and as the authors, note: “It is important to understand how cyclists’ subjective 

experiences align with quantified passing distances” (Beck et al., 2019, p. 259).  

Some studies focused on a specific type of interaction that may result in a near miss if the safety 

measures are not considered properly. For instance, Dozza et al. (2016) provided an in-depth analysis of 

how drivers overtake bicycles during passing events. They found that manoeuvres, especially on rural 

roads, are often more critical since they happen at higher speeds (approx. 70km/h) with less time to 

avoid collisions (less than 2s) if critical or unforeseen events took place.  
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5.5 Combined factors  

The various permutations of factors described above indicate the complexity of understanding how 

risk factors interact to cause near misses. Figure 4 shows a dendrogram of the different factors that may 

be involved. Factors highlighted in black are those identified from the reviewed studies, while those in 

blue are additional factors that could be considered. The number of potential factors illustrates that, 

theoretically, even if one of the individual factors is not statistically significant from a linear perspective, 

it may influence the occurrence of a near miss from a nonlinear perspective. Consequently, due to the 

potential of the existence of nonlinearity in near-miss research, the types of methods used to conduct 

near miss research may vary depending on which factors are addressed and how the data are collected.  
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5.6 Summary 

Table 2 summarises the risk factors covered in the 19 studies, broken down by method, where 

the number in each cell is the count of studies of that type that refer to that risk factor. In general, the 

built environment and cyclist characteristics are covered by more studies because they are static or 

slowly changing variables. It should be noted that, while the same factors are covered by many studies, 

 

Figure 4: Risk factors related to cycling near misses 

Source: Created by the authors based on the literature review 
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the form and quality of the data can be very different. For example, a self-report study may include a 

question on presence/absence of cycle lane, while a naturalistic study using video will allow 

interpretation of the type of cycle lane, the road condition and the surrounding context, albeit usually 

with expert interpretation.  

Dynamic variables such as lighting and weather conditions are more difficult to capture using 

each of the methods, but for different reasons. In self-reporting studies, they require recall and may be 

subjective, which means that are usually incorporated in simple terms such as day/night time or rain/no 

rain. Naturalistic studies and site video analysis can capture more nuanced factors but they require 

labelling of video data, which is usually manual and time-consuming. 

Table 2: summary of near miss studies 
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Self-reporting (10) 1 1 1 0 1 3 3 3 2 6 4 6 5 4 10 10 6 7 4 1 2 

 Site VideoAnalysis 

(2) 0 0 0 0 0 0 0 0 0 1 0 1 0 1 2 1 1 1 

N

A 

N

A 

N

A 

 Naturalistic (5) 1 0 1 0 0 2 5 4 2 2 3 5 1 3 6 4 0 4 1 0 0 

 Total 2 1 2 0 1 5 8 7 4 9 7 12 6 8 18 15 7 12 5 1 2 

  

A combination of naturalistic studies with self-reporting has the potential to capture the broadest 

range of information, while site video analysis is severely limited in its ability to capture demographic 

factors. It is also important to note that, while self-reporting captures the characteristics of the rider, it 

cannot easily capture the characteristics of the other road-users involved. In the next section, a detailed 

discussion of the limitations of current methods and gaps in the literature is presented. 
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6. Gaps in the literature  

There are methodological challenges for collecting and analysing road safety data and its risk factors 

(Schlögl & Stütz, 2017).  There are several limitations in the existing methods used to understand near 

misses. These limitations are:  1) How to eliminate factors due to manual labelling of data, 2) The 

current lack of functionality of sensors, 3) small data samples, 4) limited scope of studies, 5) The 

absence of a unified method for understanding near miss, which leads to 6) lack of understanding of the 

impact of the risk factors. 

6.1 Elimination of factors due to manual labelling 

One of the crucial drawbacks in current studies is that the analysis of data gathered has been 

dependent on manual labelling, which is highly time-consuming and may also introduce some bias in 

how data sets are labelled, limiting the transferability of findings to a different context.  

6.2 Limitations of sensor data 

The current sensors used have not been developed to measure the range of possible factors that 

might influence near misses. In particular, current approaches mean that it is difficult to compare sensor 

data from one location to another, especially where the environmental context can be very different (e.g. 

urban vs rural, hot vs cold climate, etc.). 

6.3 Limitation of data sample size 

Current studies have involved small data sets making it difficult to draw statistically significant 

conclusions, which again limits the ability to draw conclusions relevant across a range of contexts. Even 

though the naturalistic approach shows progress in collecting rich data on the context and factors related 

to near misses, the current approach of labelling data manually reduces its potential for large scale 

implementation without automated data processing.  
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6.4 Limitation of the study scope 

Most studies focus either on certain types of near misses, i.e. passing events, with a wide range of 

risk factors (Beck et al., 2019), or on a range of near-miss types with a limited number of analysed risk 

factors (Aldred, 2016; Aldred & Crosweller, 2015).  

6.5 The absence of a unified framework for understanding near misses 

Previous studies of cycling near misses have lacked a method for understanding near misses 

regardless of the context, the types of near misses, or the related risk factors associated with these 

incidents. Overcoming this limitation may lead to a deeper understanding of near misses and for drawing 

transferable guidelines.  

6.6 Limitation in understanding the impact of the risk factors 

Understanding causality and effect of the given risk factors on near misses from a statistical model 

would require the variables to be random and controlled via unbiased variables that show a direct effect 

on both risk factors and near misses. Given the limitation in extracting a wide range of risk factors with 

a large sample size as aforementioned, we cannot currently quantify and assess the impact of risk factors 

in an unbiased and systematic way.  

7. Computer vision for recognising near misses and their risk factors 

Cycling near misses can be viewed in the wider context of the place and time in which they occur. 

Our knowledge about near misses and their related risk factors could be built through video streams that 

may provide a very effective approach to identifying patterns related to their occurrence. In general, the 

success of machine intelligence and computer vision in pattern recognition in the last decade, (LeCun et 

al., 2015) has added a new dimension towards understanding cities generally. Machine vision has the 

potential to understand cycling near misses by extracting safety-related features from still or multi-frame 

images in complex daily life scenes. However, we argue that near miss studies should not focus solely 
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on extracting known risk factors. All the different layers of cities (the built environment, human 

interaction, transportation and traffic, the natural environment and infrastructure) can have potential 

impacts on the experience of a rider and should not be discounted (Ibrahim et al., 2020).  Using the 

different algorithms of computer vision, coupled with deep learning, we can extract and analyse these 

features to develop automated systems that can be applied to multiple tasks, functioning at different 

scales. This will help draw significant conclusions and assist the process of policy-making. 

To develop an autonomous and multi-tasking system to detect near miss scenes, their types, and the 

associated risk factors, seven steps need to be considered: 1) Sensing and classifying the physical 

environment, 2) detecting objects and obstacles, 3) inferring distance and detecting safety measures, 4) 

recognising motion, 5) recognising actions and inferring behaviours, 6) Inferring individual 

characteristics. Such a system would make use of a range of computer vision techniques, such as image 

classification, segmentation (classifying an image at a pixel level), object detection, action recognition, 

scene awareness and understanding the underlying gist of a scene. By embedding these technologies 

within sensors, this approach would move beyond naturalistic studies towards automatic quantification 

and analysis of risk, and 7) Integrating all algorithms, which could allow inferring causation and effect 

of the different risk factors. 

Figure 5 shows how deep learning and computer vision algorithms can be integrated to identify: 1) 

The risk factors, 2) near miss scenes, 3) types of near misses, and 4) the impact of the different risk 

factors on the different types of near misses. We discuss each of the components in turn in the following 

subsections. 
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7.1 Sensing and classifying the physical environment 

Convolutional Neural Network (CNN) models make it possible to tackle risk factors related to 

cycling near misses, particularly those related to the physical environment and the visual conditions. For 

instance, models such as AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), 

GoogLeNet (Szegedy et al., 2015), ResNet (K. He et al., 2015) and DenseNet (Huang et al., 2017) have 

been successful in recognising thousands of objects in large databases, such as ImageNet, with high 

accuracy and precision.  

Using these methods, different models have been developed, often in other research domains, 

that can be used to extract risk factors related to cycling near misses. Most recently, models that are 

 

Figure 5: Conceptual framework for an AI-embedded system to understand cycling near miss 
 



   27 

capable of detecting weather conditions and time of the day (Ibrahim et al., 2019b) and understanding 

the overall deterioration of the environment have been developed (Ibrahim et al., 2019a). Given 

sufficient training data, bespoke models can be built to detect the different dynamics of the physical 

environment.  

7.2 Detecting objects and obstacles 

Detecting road-users or objects, such as a car door, is indispensable for understanding the risk 

factors related to cycling near misses and for classifying the different types of near misses as previously 

discussed (Section 3.2). Localisation is the process of identifying multiple objects in a single frame and 

is also applicable to video streams. These models use a single deep model in an end-to-end fashion to 

localise different objects with a given confidence. Similar to classification, different models of different 

convolutional structures have been developed to segment and localise objects in a single frame of an 

image such as You Only Look Once (YOLO) (Redmon & Farhadi, 2017, 2018), and MultiBox 

Detectors (SSD) (Liu et al., 2016).  

  Relying on this type of algorithm, extracting pedestrian and transport modes from complex urban 

settings and mapping them has been achieved (Ibrahim et al., 2019a), which can be used to recognise the 

different agents. This is the first step in understanding the interaction of people on bikes with other road-

users.  

7.3 Inferring distance and detecting safety measures  

Understanding what is a safe or unsafe distance when passing or overtaking a bicycle is crucial 

for detecting near miss scenes and identifying their types. CNN based computer vision techniques can be 

trained to infer the distance of objects from the camera just by looking at a still image or a video stream. 

For instance, Cao, Wu, & Shen (2017) trained deep CNN models to estimate the depth in a single image 
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by labelling the different depths on the image. Also, He, Wang, & Hu (2018) trained a deep CNN model 

to estimate the depth of a monocular image. In the context of near misses, CNN algorithms can be 

trained with images labelled using Light Detection and Ranging (LiDAR), or ultrasonic range sensors. 

By utilising the depth estimation algorithms, a standard buffer distance can be measured and detected 

from cycling video streams, which would contribute to understanding the different types of near misses.  

Furthermore, it is foreseeable that once trained, these algorithms will no longer require the range 

sensors and can be applied to video streams collected in isolation. This opens up near miss study to the 

vast amounts of data that are routinely collected by riders who use action cameras.  

7.4 Recognising motion 

Understanding the overall motions of the different objects in the scene is another key role in 

understanding scenes of near misses and identifying their types. Various computer vision models rely on 

estimating the change in motion for a sequential frame of images, or so-called optical flow (Alvarez et 

al., 2007; Andrade et al., 2006; Ayvaci et al., 2012; Baker et al., 2011; Butler et al., 2012; Enkelmann, 

n.d.; Mallot et al., 1991; Sun et al., 2010).  

Estimating optical flow from cycling video streams would enable the differentiation of the 

moving objects from the stationary part of the scene, in addition to understanding obstacles and 

occlusion. Thus, it would allow a better understanding of such instant actions as near misses.  

7.5 Recognising actions and inferring behaviours 

Moving from tracking the motion of objects in a complex scene towards classifying multiple 

actions while tracking, deep models also have shown continuous progress (Bilen et al., 2016; Wang et 

al., 2015; Zhang et al., 2016). In fact, deep computer vision models have been successful in 

understanding human behaviours based on the poses of human skeletons and how they interact with 
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other objects in a complex environment (El-Nouby & Taylor, 2018; Saha et al., 2016; Soomro & Shah, 

2017; Weinzaepfel et al., 2016).  By utilising action-recognition models to detect the overall motion, the 

unsafe riding scenes and near misses can be automatically detected and categorised.  

7.6 Inferring individual characteristics 

Computer vision coupled with deep learning shows good potential for extracting information 

related to individual characteristics (as mentioned in Section 5.1). However, this topic remains the most 

significant bottleneck in achieving the system outlined in figure 5.  While it is feasible to collect 

personal characteristics of people using an AI-embedded device, inferring the characteristics of those 

they come into contact with is more of a challenge and is a common issue for all near-miss study 

methodologies. Various deep models have shown good potential in extracting information in this regard, 

such as recognising gender (Levi & Hassncer, 2015; Narang & Bourlai, 2016), age (Levi & Hassncer, 

2015), facial emotions (Minaee & Abdolrashidi, 2019), and ethnicity (Narang & Bourlai, 2016). 

Building on these models could be beneficial for understanding the various characteristics of people on 

bikes and other road-users that would help to understand the impacts of near misses, along with their 

different types and the other risk factors.  

7.7 Integrating all algorithms together 

By putting all algorithms together, a rich data set can be generated that includes information related 

to risk factors and the frequency and type of near misses. This would respond to the current knowledge 

gap in the applied methods used for studying cycling near misses. Moreover, better regression models 

can be used to understand the causality and the impact of the various risk factors toward the different 

types of near misses, in which drawing conclusions could be more effective for both people on bikes and 

policy-makers.  
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8. Conclusion 

Although serious incidents related to cycling leading to major injuries are rare, it has been shown 

that focusing on them only touches the tip of the iceberg (Jones et al., 1999), and near miss data can 

provide much more information about potential problems and how to avoid a risky situation that may 

lead to serious incidents.  

Different studies focus on analysing the perceived risk related to the various types of near misses and 

particular progress has been achieved related to understanding the most frequent type of near miss - 

close pass - where people on bikes are passed in unsafe or uncomfortable manoeuvres by other road-

users. There are various challenges related to the current methods used to collect, analyse, and produce 

evidence that could assist policy-making towards minimising risky situations. In this article, we 

reviewed the different studies, highlighting the methods and scope to underline the knowledge gap in 

which further work is needed.  

While the approach of the naturalistic study seems to be promising in understanding instant and 

risky situations such as near misses, the current methods related to collecting and analysing video 

streams remain a challenge for drawing significant conclusions. In this article, we propose a framework 

for how machine intelligence, relying specifically on the domain of computer vision, may overcome the 

current limitations and the move towards a unified method of understanding near misses regardless of 

the limitation of labelled data or the configurations of the context.  

Our conceptual framework explains how different deep models can be trained and utilised to reach 

an AI-embedded system that automates the detection of near miss scenes, analyses their types, their risk 

factors, and draws significant conclusions based on the causality of risk factors, behaviours of people on 

bikes, and their mutual interaction with other road-users.   
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