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Abstract 

The use of acoustic emission as a low-cost, non-destructive, and operando diagnostic tool has 

been demonstrated for a range of electrochemical energy conversion and storage devices, 

including polymer electrolyte water electrolysers (PEMWEs) and fuel cells. In this work, an 

abrupt change in acoustic regime is observed during operation of a PEMWE as the current 

density is increased from 0.5 A cm-2 to 1.0 A cm-2. This regime change is marked by a sudden 

drop in the number of acoustic hits, while hit duration, amplitude, and energy increase 

significantly. It is found that the change in acoustic regime coincides with a significant 

extension of the stagnant bubble region in the flow channels of the PEMWE, observed with 

high-speed optical imaging. These results demonstrate that acoustic emission can be used 

effectively as an operando diagnostic tool to monitor bubble formation (two-phase flow 

conditions) in PEMWEs, facilitating rapid testing or prototyping, and contributing to 

operational safety.  
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1 Introduction 

PEMWEs represent one of the most promising approaches to the production of green  

hydrogen and large-scale energy grid stabilization. The technology is likely to replace the 

widely commercially used alkaline electrolysis due to advantages including lower voltage at 

equal current density, lower gas crossover, compact build, and the possibility of high-pressure 

operation [1]. While currently more expensive than the alternative alkaline technology, the 

capital cost of a typical PEMWE system is dropping [2] and plants rated up to 6 MW are in 

operation [3]. 

Water flooding has been shown to be a major mass transport limitation occurring in polymer 

electrolyte membrane fuel cells (PEMFCs) at high current densities, particularly at high 

humidity when water condenses at the cathode forming droplets which coalesce. This leads to 

water blocking the flow channels and occupying the gas diffusion layer, causing a consequent 

increase in pressure drop and decrease in performance [4 6]. Similarly to water accumulation 

in a PEMFC, which eventually leads to flooding, product gas can accumulate in polymer 

electrolyte membrane water electrolysers (PEMWEs) leading to bubbles blocking the flow 

channels. This occurs if the gas production from the catalyst sites exceeds the gas removal 

capacity of the flow channels, which is mainly determined by the cross-sectional area and the 

flow rate of water through the channels. The effects of bubble blockage on performance, 

pressure drop, and life-time of a PEMWE have not yet been investigated, but it is expected that 

prolonged bubble blockage results in local water starvation, causing a non-uniform current 

distribution over the active area and a decrease in performance [7]. 

Acoustic emission (AE) is a non-destructive, operando diagnostic tool traditionally used in 

civil engineering, e.g. for monitoring crack propagation in steel [8] or the stability of bridges 

[9]. It uses a piezoelectric sensor to detect mechanical perturbations emitted by an object and 

has been applied to a range of electrochemical energy storage devices. It has been used to 
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monitor particle fracture and morphological changes in battery electrodes during charge and 

discharge [10 12], has been found to be sensitive to Li-ion intercalation and formation of the 

solid electrolyte interphase [13,14] in Li ion batteries, and has also been applied to PEMFCs 

[15 17].  

Two-phase systems, such as the water-gas mixture in the flow channels of the PEMWE 

analysed in this work, are also readily analysed using acoustic emission. This includes the 

calculation of bubble size distribution [18], recognition of different flow patterns by analysing 

acoustic emission data with neural networks [19], and observing the formation and collapse of 

single bubbles [20]. Hence, acoustic emission is a valuable alternative diagnostic tool to other 

techniques for the investigation of two-phase dynamics [21 23]. 

In previous work, the authors demonstrated the ability of acoustic emission to detect changes 

in the number and size of bubbles passing through the flow channel of a PEMWE. This enabled 

the prediction of the change from bubbly to slug flow and showed that acoustic emission is a 

valuable operando tool for PEMWE diagnosis [24]. Here, we demonstrate that the acoustic 

emission signal changes dramatically when, rather than normal two-phase flow, stagnant 

bubbles are located within the vicinity of the acoustic emission sensor. This feature can be used 

to detect and locate bubble blockage  in PEMWEs, for operando 

monitoring or design optimization.  

2 Experimental 

2.1 PEMWE Cell 
The electrolyser used in this work (Figure 1) had a 9 cm2 active area and consisted of 

transparent Perspex end-plates, parallel titanium flow-fields, a titanium sinter liquid-gas 

diffusion layer (LGDL) on the anode side, a Toray H-060 carbon paper as the gas diffusion 

layer (GDL) on the cathode side, and a catalyst coated membrane (CCM), which was based on 

Hence, acoustic emission is a valuable alternative diagnostic tool to other 

phase dynamics phase dynamics [21 23].
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Nafion 115 with 0.6 mg cm-2 platinum on the cathode and 3.0 mg cm-2 iridium/ruthenium oxide 

on the anode (ITM Power, UK). The flow-field consisted of nine parallel channels, with a 

length of 3 cm and a land and channel width of 1.76 mm. The electrolyser was run at ambient 

pressure with a deionised water inflow temperature of  and a water inflow rate of 10 ml 

min-1 at the anode and cathode. Electrochemical testing was performed between 0.0 and 2.0 A 

cm-2 using a potentiostat (Gamry Reference 3000 Galvanostat/Potentiostat with a Gamry 30k 

Booster; Gamry Instruments, USA). 

2.2 Acoustic Emission 

Acoustic emission was measured with a cylindrical piezoelectric sensor (S9208, Mistras NDT, 

UK), with a diameter and height of 25 mm. The sensor was placed in the centre of the flow-

field on the anode side; data acquisition lasted 1 min during galvanostatic operation of the 

PEMWE. Due to the nature of sound transmission, no clear area can be defined within which 

acoustic data is collected. Whether a mechanical perturbation is detected by the sensor is 

contingent on the location and intensity of the perturbation, with the intensity necessary for 

detection increasing with the distance between acoustic source and sensor. Therefore, detection 

of stagnant bubbles is increasingly likely as they are located closer to the sensor (bubbles 

grow  from the top end of the channel towards the centre). Data were processed using the 

software AEWin (Physical Acoustics, USA). The sensor produces a continuous voltage/time 

signal, with strong mechanical perturbations producing high voltage values. After filtering and 

pre-amplification by 26 dB, acoustic hits exceeding a noise threshold of 37 dB were extracted 

from the continuous signal. An acoustic hit is defined as an acoustic event initiated by the 

acoustic emission signal exceeding the noise threshold and ending when the signal falls back 

below that threshold (Figure 2). Strong acoustic activity is marked by a high number of separate 

acoustic hits (events). The number of hits per unit time (hit rate H), the maximum of each 

waveform averaged over all hits (average hit amplitude A), the averaged time from exceeding 

piezoelectric sensor (S9208, Mistras NDT
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the threshold until falling back below it (average hit duration D) and the average hit energy E 

were recorded. The hit energy was determined by integrating the area under the waveform with 

respect to time. Further details on acoustic emission data analysis can be found in previous 

work [24]. 

2.3 High-Speed Imaging 
To visualize the movement of bubbles and the effect of increasing current density on the rate 

of removal of bubbles in the flow channels, high-speed imaging was employed. A Photron 

FASTCAM SA1 high-speed camera with a Tokina MACRO 100 F2.8 D lens was used to image 

the full flow- 1024 pixel resolution, 2000 frames per second, 5.46 

s acquisition). The transparent end-plates allowed for direct optical access to the flow-field 

[25,26]. 

3 Results and Discussion 

The bubble evolution as a function of the current density has been captured with high-speed 

imaging experiments, which are shown as a function of increasing current density (Figure 3). 

As the cross-sectional area of the flow channels is finite and as all bubbles have to leave the 

flow-field through the manifold at the top end of the flow channels, the ability of the PEMWE 

cell to remove product gas is limited. This leads to bubbles blocking the top end of the flow 

channels at high current densities. For a given flow rate, the length of channel that contains 

stagnant bubbles at the top end of the flow channel increases significantly with current density. 

Here, a stagnant bubble is defined as a bubble which does not change its location, and 

particularly a bubble at the top end of the channel not entering the combining manifold, but 

remaining at the top end of the flow channel. The location of the largest stagnant bubble in 

each image in Figure 3 is marked in red. The amount of oxygen produced at the anode increases 

as a function of  hence, a growth in the length of stagnant 

bubbles is expected with increasing current density. At a current density of 0.3 A cm-2 (Figure 

plates allowed for direct optical access to the flowplates allowed for direct optical access to the flow
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3 (a)) the top end of each channel is almost free of stagnant bubbles, while a clear growth of 

these bubbles can be observed at 0.6 A cm-2 (Figure 3 (b)). At 1.0 A cm-2 (Figure 3 (c)), bubble 

blockage covers more than a quarter of the channel length. 

The acoustic emission parameters are strongly influenced by the current density (Figure 4). As 

illustrated above, current density leads to bubble blockage at the top end of the flow channels; 

hence, Figure 4 can be interpreted as the correlation between the acoustic emission signal and 

the formation of stagnant bubbles. The acoustic hit rate drops from 80.0 s-1 to the limit of 

detection for the acoustic emission system used in this work (1.0 s-1) between 0.5 A cm-2 and 

1.0 A cm-2 (Figure 4 (a)). The limit of detection is an artefact of the data acquisition, which 

cuts off any hit longer than 1.0 s, which means that from 1.0 A cm-2 onwards the AE signal 

continuously exceeds the noise threshold, with no individual acoustic hits discernible. This 

significant decrease of acoustic hits highlights a dramatic change of two-phase flow within the 

flow channels. The relationship between the number of acoustic hits and the number of bubbles 

passing through the flow channels has been established in previous work [24], which found 

that the number of acoustic hits scales directly with the number of bubbles passing through the 

flow channels. Hence, a drop in the number of acoustic hits indicates a decrease in the number 

of bubbles generated and passing through the flow channels, which is likely due to the blocking 

of the flow channel by a stagnant bubble. This stagnant bubble stops smaller bubbles from 

traveling upwards through the flow channels; instead the bubbles coalesce into the stagnant 

bubble. Hence, the drop in the number of acoustic hits between 0.5 A cm-2 and 1.0 A cm-2 is 

likely caused by the extension of stagnant bubbles into the sensor area. 

Further, the average hit amplitude (Figure 4 (b)) increases steeply by around 50 % between 0.5 

A cm-2 and 1.0 A cm-2, the same range within which the hit rate drops. The average hit duration 

increases from less than 0.1 ms to the cut off value of 1.0 s mentioned above (Figure 4 (c)). For 

current densities above 1.0 A cm-2, a constant signal is detected, indicating permanent contact 

The limit of detection is an artefact of the data acquisition, which 

cuts off any hit longer than 1.0 s, which means that from 1.0 A cmcuts off any hit longer than 1.0 s, which means that from 1.0 A cm-2 onwards the AE signal onwards the AE signal 

continuously exceeds the noise threshold, with no individual acoustic hits discernible.continuously exceeds the noise threshold, with no individual acoustic hits discernible.

significant decreasesignificant decrease of acoustic hits of acoustic hits highlightshighlights a a dramatic change of twodramatic change of two

flow channelsflow channels. T. The relationship between the he relationship between the number of acoustic hits and the number of bubbles 

passing thropassing through the flow channelsugh the flow channels



between a bubble and the end-plate. Finally, an increase in hit duration and amplitude causes 

an increase in acoustic energy (Figure 4 (d)). All these changes occur in a step-like manner 

between 0.5 A cm-2 and 1.0 A cm-2. 

The decreasing number of hits, while hit amplitude and contact time between bubble and end-

plate increase, all suggest that the signal change is caused by the extension of the stagnant 

bubble region towards the sensor location in the current density range between 0.5 A cm-2 and 

1.0 A cm-2 (Figure 4). This is supported by the extension of the stagnant bubble region (Figure 

3) observed via high-speed imaging, a major part of which occurs between 0.6 A cm-2 and 1.0 

A cm-2.   

4 Conclusion 

Acoustic emission has been demonstrated as a useful technique for operando diagnosis of 

bubble blockage in PEMWEs. High-speed imaging of an optically-transparent PEMWE cell 

was used to visualize the bubble movement in the flow channels. The length of the part of the 

flow channel containing stagnant bubbles was found to increase with current density, 

eventually reaching the location of the acoustic emission sensor. With increasing flow channel 

blockage, a dramatic change in acoustic activity was observed. The acoustic hit rate dropped 

from 80.0 s-1 to 1.0 s-1, average hit amplitude increased from 32 dB to 50 dB, average hit 

duration from 0.1 ms to 1.0 s, and average hit energy from 0.004 aJ to 3400 aJ. These changes 

occurred abruptly between 0.5 A cm-2 and 1.0 A cm-2, which coincides with a significant 

extension of the stagnant bubble region in the flow channels. This leads us to conclude that the 

change in acoustic activity is caused by the flow regime in the channels changing from two-

phase flow to stagnant bubbles. The accumulation of gas in the flow channels occurs when gas 

production exceeds the capacity of the system for gas removal, which can affect the water 

distribution in the PEMWE. Insufficient water supply at the anode causes a voltage increase 

[7], hence lowers PEMWE efficiency and reduces hydrogen production at equal voltage. It is 

has been demonstrated as demonstrated as a useful technique for useful technique for operandooperando
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expected that acoustic emission can be used to detect local bubble blockage and insufficient 

water supply in specific areas of a PEMWE. 

The use of this operando diagnostic tool has successfully been applied to a PEMWE, but could 

be extended to other applications. The accumulation of gas within a system or plant can cause 

inefficiencies or pose a hazard in many areas of chemical production and transport. Moreover, 

it has been shown that the change of two-phase flow regime influences the pressure drop 

[27,28]. Hence, the technique presented in this work could be deployed to screen various flow-

field configurations or monitor safe limits of operation, replacing less cost-effective or 

accessible diagnostic tools such as neutron or X-ray imaging [29 31].  

Captions 

Fig. 1: Assembly of a PEMWE with the AE sensor, two end-plates, two flow-fields, the liquid-

gas diffusion layer (LGDL), the catalyst coated membrane (CCM), and the gas diffusion layer 

(GDL) on the anode side.  

Fig. 2: Typical structure of an acoustic hit as voltage profile as a function of time. The acoustic 

hit is initiated when the signal exceeds the noise threshold and ends when the signal falls back 

below the threshold. The hit amplitude is the intensity of the most prominent peak within the 

hit, and its energy is the integrated area of the hit (adapted from [32]). 

Fig. 3: Exemplary results from high-speed imaging of the anode flow field of the PEMWE at 

(a) 0.3 A cm-2, (b) 0.6 A cm-2, and (c) 1.0 A cm-2 at a water inflow rate of 10 ml min-1. The 

largest stagnant bubble at the top end of the flow channels is marked in red for each current 

density. 

Fig. 4: Acoustic emission parameters as a function of current density for a water inflow rate of 

10 ml min-1. Acoustic hit rate (a), average hit amplitude (b), average hit duration (c), and 

average hit energy (d) are shown.   

: Assembly of a PEMWE with the AE sen: Assembly of a PEMWE with the AE sensor, two endsor, two end-plates, two flowplates, two flow-fields, the liquid

gas diffusion layer (LGDL), the catalyst coated membrane (CCM), and the gas diffusion layer gas diffusion layer (LGDL), the catalyst coated membrane (CCM), and the gas diffusion layer 

(GDL) on the anode side. (GDL) on the anode side. 

Fig. 2: Typical structure of an acoustic hit as voltage profile as a function of time. Fig. 2: Typical structure of an acoustic hit as voltage profile as a function of time. 
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