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SUMMARY
Many individuals with seemingly normal hearing abilities struggle to understand speech in noisy back-
grounds. To understand why this might be the case, we investigated the neural representation of speech
in the auditory midbrain of gerbils with ‘‘hidden hearing loss’’ through noise exposure that increased hearing
thresholds only temporarily. In noise-exposed animals, we observed significantly increased neural re-
sponses to speech stimuli, with a more pronounced increase at moderate than at high sound intensities.
Noise exposure reduced discriminability of neural responses to speech in background noise at high sound
intensities, with impairment most severe for tokens with relatively greater spectral energy in the noise-expo-
sure frequency range (2–4 kHz). At moderate sound intensities, discriminability was surprisingly improved,
which was unrelated to spectral content. A model combining damage to high-threshold auditory nerve fibers
with increased response gain of central auditory neurons reproduced these effects, demonstrating that a
specific combination of peripheral damage and central compensation could explain listening difficulties
despite normal hearing thresholds.
INTRODUCTION

Understanding speech is one of the most important roles of the

human auditory system. In quiet environments, this task is rela-

tively straightforward, even for individuals whose peripheral

auditory system is severely impaired, such as users of cochlear

implants [1]. This picture changes dramatically, however, once

background noise is introduced; normal-hearing listeners can

follow a conversation even when the speech is quieter than the

background noise, but hearing-impaired listeners usually require

speech to be considerably louder than the background noise in

order to comprehend it [2–4].

Problems understanding speech in noise have long been

associatedwith obvious signs of hearing loss, i.e., elevated hear-

ing thresholds in quiet. However, it is increasingly recognized

that individuals whose hearing thresholds are normal can

also show unexpected difficulty understanding speech in noise

[5–7]. Recent findings suggest that some of these difficulties

might arise from exposure to loud sounds [8], which in animal

studies has been shown to cause permanent damage to synap-

tic contacts between auditory-nerve fibers (ANFs) and the

sensory hair cells of the cochlea [9, 10]. This ‘‘cochlear synapt-

opathy’’ precedes the more commonly considered form of

sensorineural deafness associated with damage to, or loss of,

the hair cells themselves [11] and leads to a form of hidden hear-

ing loss (HHL)—hidden because it is undetected by conventional
Current Biology 30, 1–12, De
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tests such as audiometry, which measures the quietest sounds

that can be heard. Post-mortem studies of temporal bones

have demonstrated direct evidence for age-related synaptop-

athy in the human cochlea [11]. However, although cochlear syn-

aptopathy is suggested to account for unexplained difficulties

processing speech in background noise, to date, no direct evi-

dence of such a deficit has been forthcoming in human listeners

[8, 12–16], for whom noise exposure is largely uncontrolled and

only anecdotally reported. Further, investigations of controlled

noise exposure on neural responses in experimental animal

models have not assessed processing of complex sounds

such as speech, being confined largely to relatively simple

acoustic signals such as tones (although see [17]).

Here, we demonstrate, in gerbils exposed to a single,

controlled noise insult—2 h of octave-band (2–4 kHz) Gaussian

white noise presented at 105 dB SPL—evidence of impaired

neural coding of speech sounds in background noise in the

absence of an increase in neural thresholds to tones. Specif-

ically, 1 month following noise insult, neurons in the auditory

midbrain (inferior colliculus [IC]) of exposed gerbils were

impaired in their ability to discriminate different vowel-conso-

nant-vowels (VCVs; e.g., AMA, ATA, ASA, etc.) in background

noise, compared to animals undergoing a sham exposure. This

impairment was evident for VCVs presented at high (75 dB

SPL) sound levels and was greatest for VCVs dominated by

spectral energy within and above the frequency range of the
cember 7, 2020 ª 2020 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Noise-InducedHiddenHearing Loss and Inferior Colliculus

Recordings

(A) ABR thresholds of two example animals before (gray), at 1 day (magenta), and

at 30 days (blue) after exposure to octave-band noise (2–4 kHz) at 105 dB SPL.
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damaging noise. In contrast, discrimination of VCVs presented at

a moderate sound level (60 dB SPL) was, surprisingly, better in

exposed than in control animals. A simple phenomenological

model of cochlear synaptopathy and enhanced central gain

could reproduce this pattern of improved discrimination perfor-

mance at moderate levels and decreased performance at high

sound intensities, linking the effects of peripheral pathology

and central plasticity. These results show that noise exposure

designed to elicit HHL causes a selective deficit in neural encod-

ing at high sound intensities in the frequency range affected by

the noise exposure, which could explain listening difficulties in

background noise despite normal hearing thresholds.
RESULTS

Response Thresholds of Midbrain Neurons to Acoustic
Stimulation Are Not Impaired by Noise Exposure
Causing Temporary Shifts in Hearing Thresholds
We first assessed the impact of noise exposure on basic re-

sponses properties of midbrain neurons recorded from anaes-

thetized gerbils. Neural responses were recorded from the IC

to a range of sounds (including pure tones and speech stimuli

with and without background noise) from 4 animals exposed to

2 h of 105 dB SPL octave-band (2–4 kHz) noise 4 weeks prior

to recording and from 4 control animals subjected to a sham

noise exposure. After spike sorting, we identified 291 putative

single units (i.e., individual neurons) from the noise-exposed an-

imals and 233 putative single units from control animals. For

some units, isolation was lost before all stimulus conditions

were presented, and these recordings were excluded from

further analysis, leaving a total of 154 putative single units from

control animals, and 246 putative single units from exposed an-

imals. To ensure a valid comparison between neural coding of

speech sounds in control and exposed animals, neural popula-

tions werematched according to their characteristic frequencies

(CFs), by selecting 154 putative single units from the exposed

group with the closest CFs to each of the putative single units

in the control group (where more than one candidate existed, se-

lection was made at random). The distribution of CFs (Figure 1C)

was not significantly different between the control and exposed

animals for either the original (p = 0.498, Fisher’s exact test) or

selected (p = 1.000, Fisher’s exact test) neural populations.

Mean thresholds for CF tones in quiet were, surprisingly, slightly

but significantly lower in the exposed group (28.1 dB SPL versus

31.0 dBSPL for theCF-based selection;W= 13987, p = 0.00617,

Wilcoxon rank-sum test; Figure 1B). Subsequent analyses are

based upon these CF-matched populations.

To assess the consequences of noise exposure designed to

elicit HHL on speech-in-noise processing, we used a set of 11
(B and C) Distribution of response thresholds (B) and characteristic fre-

quencies (C) of IC putative single units from noise-exposed (red) and control

animals (black). Solid bars illustrate the subset of matched putative single units

selected for further analyses. There were no significant differences in thresh-

olds and CFs between recordings from control and exposed animals.

(D and E) Average responses of IC putative single units to speech stimuli

presented at 60 (D) and 75 dB SPL (E) in different levels of background noise to

create SNRs from �12 to 12 dB, and without noise (SNR N). Error bars are ±

SEM.



ll
OPEN ACCESS

Please cite this article in press as: Monaghan et al., Hidden Hearing Loss Impacts the Neural Representation of Speech in Background Noise, Current
Biology (2020), https://doi.org/10.1016/j.cub.2020.09.046

Article
vowel-consonant-vowel (VCV) tokens, presented at 60 and 75

dB SPL, in quiet and in the presence of a continuous background

of speech-shaped noise presented at 5 different signal-to-noise

ratios (SNRs; �12, �6, 0, +6, +12 dB). Analysis of the average

firing rates across all VCVs showed that supra-threshold firing

rates were significantly higher for VCVs presented at 75 dB

SPL compared to 60 dB SPL for control (Friedman test; c2(1) =

11.6, p = 0.000657) but not exposed animals (Friedman test;

c2(1) = 0.234, p = 0.628). Moreover, average firing rates were

significantly higher in exposed compared to control animals at

both sound levels (60 dB SPL: c2(1) = 99.8, p < 1e-16; 75 dB

SPL: c2(1) = 15.1, p = 0.000101, Kruskal-Wallis test), but it should

be noted that the difference between exposed and control was

much more pronounced at 60 (difference in mean spike rate

4.21 sp/s, difference in median spike rate 3.67 sp/s) than at 75

dB SPL (difference in mean spike rate 0.58 sp/s, difference in

median spike rate 1.02 sp/s). The combination of normal

response thresholds with a pronounced elevation of firing rates

at moderate sound levels is consistent with HHL, i.e., noise

exposure damaging the integrity of a specific sub-population

of ANFs—the high-threshold fibers—in conjunction with an in-

crease in overall neural response gain [17–20].

The Neural Representation of Speech in Background
Noise Is Impaired inNoise-Exposed AnimalswithNormal
Hearing Thresholds
To determine whether exposure to loud sounds designed to elicit

HHL might underlie problems understanding speech in chal-

lenging listening conditions, we assessed the impact of back-

ground noise on the neural representation of VCVs in our record-

ings from both noise- and sham-exposed animals. Dot-raster

representations of the responses of representative units to 32 re-

peats of all 11 VCVs in the absence of masking noise (‘‘clean

speech’’; Figure 2) and for one of the SNR conditions (+6 dB

SNR; Figure 2) indicate that, as background noise was intro-

duced, the neural representation of the VCVswas degraded, evi-

denced by the reduced structure to the response. This degrada-

tion was apparent for VCVs presented at both 60 dB SPL and 75

dB SPL.

To assess the extent to which the neural representation of

VCVs is degraded by background noise, we constructed neuro-

grams—representations of the response of the entire neural

population visualized in the form of peri-stimulus time histo-

grams (PSTHs) arranged according to each neuron’s CF (i.e.,

from low to high CFs recorded along the tonotopic axis of the

IC). Neurograms for the VCV AGA presented in quiet (clean

speech; Figure 3, top row) confirm that the major features of

the sound envelopes are clearly represented in average neural

responses. At both sound intensities, the neurograms clearly

show a diminished response during the brief pause before the

onset of the plosive G in AGA. From visual inspection, increasing

levels of masking noise (i.e., decreasing SNR, shown for +12, +6,

0, and�6 dB in rows 2–5 of Figure 3), clearly degraded the neural

representation of VCVs such that, by�6 dB, the neural response

was dominated by the continuous masking noise.

To determine whether prior exposure to noise designed to

elicit HHL altered the extent to which neural firing patterns can

be used to distinguish different VCVs, we assessed the similarity

between pairs of neurograms constructed from the responses to
individual VCVs. We hypothesized that neurograms generated in

response to different VCVs would be less discriminable from

each other in noise-exposed, compared to control, animals.

We tested this hypothesis using a PSTH-based classifier with a

template-matching procedure based on Euclidean distance

metrics (Equations 1 and 2 in STARMethods). Briefly, the classi-

fier uses a set of templates, one for each VCV, based on the

average response of each neuron to the VCV presented in quiet

(clean-speech PSTH templates, Figure 4A), and then compares

each neurogram obtained from a single trial in background noise

to all possible templates. The template closest to the single-trial

neurogram in terms of Euclidean distance [21, 22] is then chosen

as the classification result (Figure 4A). Responses were as-

sessed over the duration of the entire VCV stimulus, including

the response to background noise, from 0 to 1 s in bins of 1-

ms duration—a bin size at which responses of gerbil midbrain

neurons to human speech sounds appear maximally informative

[23]. The outcome of the template-matching process was

summed across all VCVs for each combination of SPL and

SNR (as well as in quiet) to generate percentage-correct re-

sponses for the 32 trials, where each trial consisted of 11

VCVs presented at a single SPL and SNR (Figure 4). In control

animals, neural discrimination of VCVs was higher (better) at 75

dBSPL than at 60 dBSPL and systematically fell with decreasing

SNR (Figures 4B and 4C). In contrast, discrimination perfor-

mance in the noise-exposed group was worse at 75 dB SPL

than at 60 dB SPL (Figures 4D and 4E). However, surprisingly,

discrimination performance at 60 dB SPL was better in the

noise-exposed than in the control group at 60 dB SPL (Figure 4F)

but worse at 75 dB SPL (Figure 4G). Note that classification per-

formance for clean speech (speech in quiet) was unaffected by

sound level or noise exposure (and was always 100%; Figures

4B–4D). Confusion matrices for the VCV classifications based

on neural responses are shown in the supplemental material,

Figure S1.

To determine which factors and variables significantly

impacted the neural representation of speech sounds following

exposure to damaging noise, we fitted a logistic regression

model for the probability of correct classification with level and

exposure as categorical explanatory variables, and SNR and

proportion of consonant energy over 2 kHz (hypothesizing that

neural discrimination will be most affected for speech sounds

with spectral energy at frequencies that are at risk of damage

from our noise exposure paradigm) as continuous explanatory

variables. All possible interaction terms (up to order 4) were

included in the model, and likelihood ratio tests were used to

determine the significance of each term in the model.

Significant main effects of exposure (c2(1) = 13.1, p =

0.000295), SNR (c2(1) = 4461.7, p < 1e�16) and high-frequency

content (c2(1) = 83.1, p < 1e�16) were observed, as well as sig-

nificant two-way interactions between exposure and level

(c2(1) = 504.8, p < 1e�16), exposure and SNR (c2(1) = 50.9,

p = 9.63e�13), exposure and frequency content (c2(1) = 168.3,

p < 1e�16), and level and frequency content (c2(1) = 209.1,

p < 1e�16). Significant three-way interactions occurred between

exposure, level, and frequency content (c2(1) = 9.9, p = 0.00168),

between exposure, SNR, and frequency content (c2(1) = 11.1,

p = 0.000870), and between level, SNR, and frequency content

(c2(1) = 162.2, p < 1e�16). Finally, the four-way interaction
Current Biology 30, 1–12, December 7, 2020 3



Figure 2. Responses of Individual IC Neurons
The frequency versus intensity response area of each example neuron is shown in the top row, and the four rows below show the neuron’s responses to the

different VCVs as spike raster plots, for VCVs presented at 60 and 75 dB SPL both without noise and with background noise at +6 dB SNR. Each dot in the raster

plots depicts the occurrence of an action potential, and all 32 repetitions are shown for each VCV.

(A) Two example units from control animals.

(B) Two example units from noise-exposed animals.
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between exposure, level, SNR, and frequency content was also

significant (c2(1) = 103.8, p < 1e�16). The interaction between

exposure and sound level was investigated by fitting a logistic

model (with the same explanatory variable as above, except

for sound level) separately for each sound level. The effect of

exposure was significantly positive at 60 dB SPL (c2(1) =

374.1, p < 1e�16, Bonferroni corrected) and significantly nega-

tive at 75 dB SPL (c2(1) = 166.2, p < 1e�16, Bonferroni cor-

rected). Note that, although these results were obtained for a

specific selection of 154 putative single units from the exposed

group, qualitatively similar results were obtained for other neuron

selections, including a selection to obtain matched response

thresholds, as well as for completely random selections, or no

selection (Figure S2). All of the findings were robust to the spe-

cific choice of selected subset, with similar levels of statistical

significance seen for all explanatory variables.

Our logistical regression analysis confirms that prior exposure

to loud sounds that spares hearing thresholds impairs the neural

representation of speech sounds presented at amoderately high

intensity (75 dB SPL). This impairment is dependent on the level

of background noise; neural discrimination of VCVs presented in

quiet was unaffected by exposure but was increasingly impaired

as the level of background noise increased compared to neural

discrimination in sham-exposed, control animals. In contrast,

exposure improved discrimination of speech in noise at moder-

ate (60 dB SPL) sound intensities compared to controls, consis-

tent with the hypothesis that reduced input following damage to

high-threshold ANFs leads to elevated gain in the central ner-

vous system [24] and that this might expand the ‘‘contrast’’ in

the neural representation of complex stimuli, so long as they

fall within the neural dynamic range.

Noise Exposure Impairs Discrimination of Speech
Sounds Most at Risk from Noise Damage
Our inclusion of the frequency content of VCVs as a variable in

the regression analysis is based on the hypothesis that neural

discrimination will be most impaired for speech sounds whose

spectral energy is dominated by frequencies falling within an

at-risk range—determined by the frequency content of the noise

used to induce damage. For noise-induced hearing loss charac-

terized by damage to sensory hair cells, the greatest damage oc-

curs for frequencies within, and particularly above—where

displacement of the basilar membrane is maximal—the fre-

quency range present in the damaging sound [9, 10, 25]. We

tested this hypothesis by comparing neural discrimination per-

formance for VCVs as a function of the proportion of their energy

lying above the lower edge frequency of the octave-band noise

used to induce HHL (i.e., above 2 kHz). Discrimination perfor-

mance was modeled separately with respect to consonants

and vowel energy; 9 of the 11 VCVs were of the form AxA, where

x is the consonant, while 3 (UTU, ATA, ITI) had the same conso-

nant T in combination with a different vowel. For each consonant
Figure 3. Neurograms—IC Population Responses

Average neurograms were constructed by taking the PSTH (1-ms binning) from e

VCV as a ‘‘line’’ in the neurogram. PSTHs were arranged by characteristic frequen

CFs at the top. The PSTH across all neurons is shown above each neurogram. Th

for different SNRs (from top to bottom: no noise, +12 dB SNR; +6 dB SNR, 0 dB SN

dataset for 60 and 75 dB SPL, and the two columns on the right show neurogram
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and vowel, the proportion of energy above 2 kHz relative to the

total speech energy was calculated by first extracting the conso-

nant or vowel segment of the original (clean) recording, filtering it

to simulate the effect of the ear canal and middle ear in the gerbil

[26] and then performing a Fourier transform.

In control animals (Figure 5; black functions in top panels), the

consonants S and Sh—which show the highest proportion of en-

ergy above 2 kHz—are relatively well discriminated, particularly

at 75 dB SPL, as are the consonants M and N—which show

the lowest proportion of energy above 2 kHz. In order to deter-

mine the effects of noise exposure on discrimination of VCVs

with respect to their spectral content, we assessed the interac-

tion between exposure and proportion of high-frequency energy

in the fitted logistic regression models for 75 and 60 dB SPL.

Discrimination of VCVs presented at 75 dB SPL was most

impaired for consonants with the highest proportion of sound en-

ergy above 2 kHz. At 75 dB SPL, coefficients in the fitted logistic

regression model (assessed for an SNR of 0 dB and for the mean

value of the proportion of high-frequency energy) indicated a sig-

nificant negative association between the estimated effect of

noise exposure on the probability of a correct match and the pro-

portion of high-frequency energy (B = �2.48, z = �6.89, p =

5.54e�12). While we observed an overall increase in perfor-

mance in the noise-exposed group for VCVs presented at 60

dB SPL, (Figure 5), here too there was a significant negative as-

sociation between the change in probability of a correct match

and the proportion of consonant energy above 2 kHz (B =

�4.18, z = �10.13, p < 1e�16).

To test the effect of the energy distribution in the vowels (Fig-

ure S3), rather than consonants, of VCVs, we employed the same

logistic regression approach, but with proportion of vowel en-

ergy rather than proportion of consonant energy above 2 kHz

as an explanatory variable and the third-order interaction term

excluded to avoid perfect separation in the model fitting. The

model coefficient describing the effect of noise exposure on

the influence of the proportion of high-frequency vowel energy

on VCV discrimination was significantly negative at 60 dB SPL

(B = �28.4, z = �10.25, p < 1e�16). At 75 dB SPL, the corre-

sponding coefficient was also significantly negative (B =

�63.9, z = �10.12, p < 1e�16). In addition, we employed the

same logistic regression approach, but with vowel formant-fre-

quency rather than proportion of vowel energy as the explana-

tory variable. The third-order interaction term and the interaction

between formant frequency and SNR were excluded to avoid

perfect separation in the model fitting. The model was fitted

separately for the second, third, and fourth formants in each

vowel, which fall in the frequency range 1,242–4,346 Hz. The

model coefficients describing the effect of noise exposure on

the influence of formant frequency were significantly negative

at 60 dB SPL for the second (B = �0.00369, z = �9.75, p <

1e�16) formant. Similarly, at 75 dB SPL the corresponding coef-

ficients were significantly negative for the second (B =�0.00584,
ach of the 154 neurons in each group in response to all repetitions of a specific

cy with lower CFs represented at the bottom of each neurogram and increasing

is figure shows neurogram for the VCV ‘‘AGA,’’ presented at 60 and 75 dB SPL,

R,�6 dB SNR). The two columns on the left show neurograms from the control

s from the noise-exposed dataset for the same sound intensities.



Figure 4. Discrimination of VCVs Based on

Neural Responses

(A) To discriminate VCVs, single-trial neurograms

obtained from each presentation of a VCV in

background noise were compared to the average

neurogram ‘‘templates’’ obtained for clean speech

for all VCVs (STAR Methods, Equation 1). The

Euclidean distance was calculated (STAR

Methods, Equation 2), and the template with the

shortest distance to the single-trial neurogram

was taken as the decoding result.

(B–E) Average discrimination performance across

all VCVs for each of the 32 trials. Results for neu-

rograms from control animals are shown in (B) (60

dB SPL) and (C) (75 dB SPL) and for neurograms

from noise-exposed animals in (D) (60 dB SPL) and

(E) (75 dB SPL). The different SNR conditions are

indicated by the line colors. Please note that some

lines have been offset slightly to avoid overlap

(e.g., ‘‘N’’ and ‘‘12 dB’’).

(F and G) Overall discrimination performance

versus SNR for VCVs presented at 60 (F) and 75

dB SPL (G), for neural responses from control

(black) and noise-exposed animals (red). Confu-

sion matrices are shown in Figure S1, and results

for other selections of neurons are shown in Fig-

ure S2.
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z = �8.65, p < 1e�16) and fourth formants (B = �0.00297, z =

�4.60, p = 4.15e�06).

Together, the data suggest that the impact of HHL at high

sound levels is frequency-specific; discrimination of speech

sounds in background noise—both consonants and vowels—

was most impaired for sounds with higher proportions of energy

within and above the spectral region defined by the damaging
Curr
band of noise. This was true even for

the moderate sound level, for which the

overall effect of exposure was an in-

crease in performance. This suggests

that the detrimental effects of noise expo-

sure, which are frequency-specific, might

be ameliorated at moderate sound levels

by an overall increase in neural gain (see

also Figure 1D).

AModel Incorporating Loss ofHigh-
Threshold ANFs and Elevated Gain
Accounts for the Effects of Noise
Exposure on Neural Discrimination
of Speech
Wedeveloped amodel that captures how

the firing probability of auditory midbrain

neurons is altered by peripheral synapt-

opathy and compensatory increase in

neural gain in the central auditory system.

The simplest form of the model assumes

that firing rates saturate at lower sound

levels in noise-exposed animals, due to

the reduction in input from high-threshold

ANFs following noise exposure. To cap-
ture this in the model, firing probability is reduced to an asymp-

tote at a value lower than the highest firing probability observed

in the control condition (Figure 6A, 1-ms bin size). To optimize the

use of the neural dynamic range in the central auditory system,

multiplicative gain is then applied such that the saturation point

of the function after noise damage and gain increase corre-

sponds to the maximum firing probability of the normal, healthy
ent Biology 30, 1–12, December 7, 2020 7



Figure 5. Neural Discrimination Performance by Consonant

The two top rows show the neurogram-based discrimination performance for the VCVs AMA, ANA, AGA, AKA, AFA, AZA, ATA, ASHA, and ASA (ordered ac-

cording to the proportion of consonant power above 2 kHz) for neural responses from noise-exposed (red) and control animals (black). Results for 60 dB SPL are

shown in the first row; those for 75 dBSPL are in the second row. The two bottom rows show the performance difference between control and noise exposed, with

green signifying better discrimination performance for noise-exposed, and blue better discrimination performance for control. Neural discrimination performance

by vowel is shown in Figure S3.
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function (Figure 6B). This HHL-gain function for neural firing

probability was then applied to the PSTHs constructed from neu-

ral recordings from control animals to generate a model approx-

imation of PSTHs for the noise-exposed condition (HL-model

PSTHs).

We then generated model neurograms from both control and

HL-model PSTHs (Figure 6C). Briefly, simulated spike patterns

were generated by drawing a random number uniformly distrib-

uted between 0 and 1 for each bin of the PSTH. If the numberwas

less than the spiking probability for that bin, a spike was deemed

to have occurred. This was repeated for 32 trials for each neuron

for each condition, and for each VCV. Model spike patterns were

subject to the same classification procedure as those generated

neurally: model responses for each VCV at each combination of

sound level and SNR were compared to simulated templates of

responses to clean speech, producing percentage-correct re-

sponses for each condition. Consistent with the neural data,

the model data indicate that a saturation of input at high sound

levels followed by a compensatory increase in gain generates

a sound-level dependent effect of HHL; discrimination perfor-

mance is reduced at 75 dB SPL (Figure 6E) but improved at 60

dB SPL (Figure 6D). The model thus supports the interpretation

that deficits in speech-in-noise discrimination by midbrain
8 Current Biology 30, 1–12, December 7, 2020
neurons at high sound levels (75 dB SPL) can be explained by

a relative loss of responses of high-threshold ANFs, and that

the surprising observation of an improvement in speech-discrim-

ination performance at moderate sound levels (60 dB SPL) can

be a result of elevated neural gain in the central auditory system

following noise exposure.

DISCUSSION

Wehave demonstrated evidence of impaired coding of speech in

background noise in animals exposed to noise designed to

induce so-called hidden hearing loss (HHL), i.e., noise exposure

causing only a temporary hearing threshold shift (TTS) with full

recovery of hearing thresholds over time, but permanent dam-

age to structures of the inner ear. Our data are consistent with

the interpretation that damage to ANFs following exposure to

loud sounds impairs the neural representation of speech in back-

ground noise in the central auditory nervous system, even when

hearing thresholds are spared. Consistent with the reported

pattern of damage to ANFs [9, 10], impaired speech-in-noise

performance is evident only at relatively high sound levels, and

speech sounds with energy within and above the band of

damaging noise are most affected. Conversely, at moderate



Figure 6. A Phenomenological Model of Syn-

aptopathy andGain Increase Reproduces the

Effects of Noise-Induced HHL on Neural En-

coding of Speech

(A) The effect of synaptopathy affecting predomi-

nantly high-threshold fibers was modeled through a

saturation of the spiking probability of IC neurons.

(B) Gain increase was modeled through a multipli-

cative increase of spike probability restoring the

maximum spike probability to the normal (non-

synaptopathic) value.

(C) The HHL+gain function was applied to PSTHs

from control animals to generate the corresponding

HL-model PSTHs. Poisson spikes were generated

from both the control and HL-model PSTHs to

generate model neurograms, which were then

subjected to the discrimination algorithm to

generate model results for the control and hearing

loss condition.

(D and E) Neurograms from the HL model (red)

showed better discriminability than neurograms

from the control model (black) at 60 dB SPL (D) but

reduced discriminability at 75 dB SPL (E), producing

a qualitative match to the results obtained with the

experimental neurograms (Figure 4).
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sound levels, we observed a paradoxical improvement in the

neural representation of speech sounds following exposure,

likely the result of elevated neural gain in the central pathways

in response to reduced input [24, 27, 28]. These findings
Cu
corroborate the hypothesis that the effects

of noise-induced HHL may be sound-level

specific [18] and therefore difficult to

detect in humans when standard speech-

in-noise tests are administered only at a

‘‘comfortable’’ sound level.

Different structures of the inner ear may

be affected in HHL: cochlear synaptopathy

[10, 29], cochlear neuropathy [10, 17, 30],

and even scattered loss of inner hair cells

[31] have been observed in ears of animals

with normal hearing thresholds after noise

exposure or administration of ototoxic

drugs. Compared to control animals sub-

jected to a sham exposure, neurons in

the auditory midbrain (IC) of noise-

exposed gerbils showed significantly

poorer neural discrimination of speech

sounds (VCVs) in loud background noise.

The effect of exposure differed markedly

between the two stimulus levels, impairing

discrimination at 75 dB SPL but improving

it at 60 dB SPL. The impairment in discrim-

ination performance at 75 dB SPL was

greatest for VCVs with consonants whose

spectral content was dominated by fre-

quencies within or above the 2–4 kHz fre-

quency band of damaging noise, i.e., in fre-

quency regions where noise damage

would be expected. Discrimination of
VCVs in quiet was not impacted by noise exposure. This pattern

is consistent with electrophysiological evidence that high-

threshold ANFs are more susceptible to noise damage than me-

dium- and low-threshold ANFs [9], although the relative
rrent Biology 30, 1–12, December 7, 2020 9
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sensitivity of the different fiber types to noise exposure is

currently a matter of some debate. Noise-induced synaptopathy

will reduce the number of ANFs providing input to the central

auditory system, thus lowering the effective signal-to-noise ratio

of the neural signal and increasing the variance of the input

received by the IC, with potential detrimental effects on the fidel-

ity of neural representations. Noise-induced damage to high-

threshold ANFs could also account for our finding that average

response thresholds of IC neurons to pure tones were even

slightly lower in the exposed compared to the control group: IC

neurons relying exclusively on high-threshold ANFs as input

(via intermediate relays) might have been silenced after noise

exposure, and sampling from the remaining unaffected neurons

would then yield a lower threshold.

In contrast to performance at the higher sound level (75 dB

SPL), neural discrimination performance for VCVs presented at

60 dB SPL was significantly better for neurons recorded from

exposed, compared to control, animals. Taken with evidence

that noise exposure that elicits a temporary elevation of hearing

thresholds generated increased firing rates at moderate sound

levels (Figure 1D), this improvement is consistent with the hy-

pothesis that reduced neural output of the noise-damaged co-

chlea and auditory nerve leads to elevated gain in the central

auditory nervous system [24, 27, 28] and that this elevated

gain can improve listening performance at moderate sound

levels. Notably, unlike the deficits observed at the higher sound

level, improved discrimination performance was not restricted to

speech sounds with relatively higher spectral energy but was

evident across the frequency gradient. This suggests that one

response to reduced neural input following noise damage is a

compensatory, potentially homeostatic, increase in neural gain

to compensate for this loss of input. A similar increase in gain

across a wide range of frequencies above and below the noise

exposure band, i.e., not limited to frequency regions affected

by cochlear damage, has, for example, been reported for the

auditory cortex after noise exposure [32]. The IC receives multi-

ple ascending and descending convergent inputs—including

from both ears—making it an ideal site in which to assess sys-

tem-level changes, such as overall neural gain, following altered

sensory input. However, this convergence militates against

determining more subtle factors, including in peripheral hearing

function, that might also contribute to altered speech-in-noise

processing. Sub-lethal noise exposure might broaden cochlear

filters, for example, without elevating hearing thresholds (or, at

least, beyond the range considered audiometrically normal).

Although likely subtle—and difficult to assess using current diag-

nostic tools—broadening of cochlear filters might be expected

to contribute to problems listening in noise, even in the absence

of elevated hearing thresholds.

The notion that reduced auditory-nerve output in humans may

lead to increased neural gain (and hearing pathologies) has been

demonstrated in listeners with tinnitus but otherwise normal

hearing thresholds. Compared to matched controls without

tinnitus, listeners with tinnitus showed reduced magnitude audi-

tory brainstem response (ABR) wave I—generated by the audi-

tory nerve—at high sound intensities [24, 33, 34], consistent

with the cochlear synaptopathy. Neural activity in the midbrain

(wave V of the ABR), however, was of normal [24, 34] or even

increased [33] magnitude, suggesting a compensatory increase
10 Current Biology 30, 1–12, December 7, 2020
in neural gain had offset reduced neural input, with generation of

tinnitus potentially a side effect of this central compensation.

Direct support of this gain hypothesis comes from a recent ani-

mal study demonstrating that severe selective ablation of ANFs

with the drug ouabain elicits an increase in neural gain in the

auditory midbrain and cortex [17], but that this increase in gain

is not sufficient to restore neural coding of complex signals

such as speech.

To assess the discriminability of neural responses to speech

sounds, we have used a nearest-neighbor classifier based on a

Euclidean distance metric [21]. For responses recorded from

the auditory cortex of normal-hearing rats, results obtained with

this classifier showed a high correlation to behavioral

performance for speech sounds presented in quiet [22]. A modi-

fied version of the classifier also showed a good correspondence

between neural and behavioral discrimination performance in

background noise [35]. Interestingly, a recent study reported an

increase in the average Euclidean distance between cortical ac-

tivity patterns in response to consonant sounds presented at 60

dB SPL for rats with moderate noise-induced hearing loss [36],

similar to our own data, although these authors did not report

whether the increase in Euclidean distance changed discrimina-

bility. Finally, it has been demonstrated that behavioral and

cortical neural discrimination performance in normal-hearing

rats is close to that of human performance [37, 38], supporting

the notion that the changes in neural discrimination performance

weobserved in thegerbil IC followingnoise exposuremaybepre-

dictive of changes in listening performance in humans with HHL.

Impaired neural coding of complex sounds due to HHL

could explain problems many otherwise normal-hearing

individuals experience when trying to understand speech in

disadvantageous listening environments such as noisy restau-

rants, railway stations, or busy streets. Despite some promising

recent results linking HHL to decreases in listening performance

[8, 39–41], a considerable degree of uncertainty remains con-

cerning the extent to which HHL might affect listening perfor-

mance in humans [13, 42–44], and diagnostic measures of syn-

aptopathy or other manifestations of HHL have yet to be

established [12]. Since direct anatomical evidence of cochlear

synaptopathy and neuropathy can only be obtained post-mor-

tem [11], clinical assessment of the degree of HHL is likely only

to be based on correlations between listening performance

and (yet to be determined) electrophysiological measures of

neural activity. This is exacerbated by the fact that data pertain-

ing to life-time noise exposure are largely anecdotal and difficult

to quantify. Investigations in animal models are therefore

required to progress new diagnostic approaches in humans.

Our results indicate that speech-in-noise tests could be made

more sensitive to the potential effects of HHL by testing at both

moderate and loud sound intensities. We predict that subjects

with HHL show an abnormally large reduction in performance

as presentation level is increased. In contrast, when testing is

performed simply at a ‘‘comfortable’’ sound level, as is

commonly the case, subjects with HHL might perform even bet-

ter than expected. It remains to be determined whether fre-

quency-specific effects of noise exposure seen in our animal

model might also be exploited to develop a more specific

listening test; HHL might be distributed more evenly along the

length of the cochlea in humans [11, 45], as any damage in
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human cochleae is more likely the consequence of exposure to a

variety of loud sounds over a lifetime, compared to a single insult

with a stimulus of limited frequency range employed experimen-

tally. Finally, our data also suggest a therapeutic intervention for

listeners who struggle following a conversation in challenging

listening conditions despite normal hearing thresholds: a device

that attenuates (rather than amplifies, as in a standard hearing

aid) high-level soundsmight bring them into the range over which

neural coding might not only be preserved, but potentially

enhanced, after HHL, and thus improve listening performance

in loud background noise.
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Klusters [46] N/A

Neurogram discrimination algorithm This study https://doi.org/10.17632/s9856wfgdd.1

Other
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Lead Contact
Request for further information and resources should be directed to and will be fulfilled by the Lead Contact, Roland Schaette (r.
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Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The datasets and code generated during this study are available under https://doi.org/10.17632/s9856wfgdd.1

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects for the animal experiments were adult, male Mongolian gerbils (Meriones unguiculatus) with typical weights between 70-90

g, and ages ranging between 3-6 months, which were randomly assigned to experimental groups. The experimental protocols

described in this section were approved by the United Kingdom Home Office Inspectorate under project license 30/2481, in confor-

mity with the 1986 Animals Scientific Procedures Act.

METHOD DETAILS

Protocol Timeline
Briefly, on day 1, auditory brainstem responses (ABRs) were recorded to estimate the hearing thresholds of animals contributing as

subjects. On day 2, animals were exposed to high-intensity (105 dB SPL) noise band-pass filtered between 2 and 4 kHz, for a period

of two hours. Auditory brainstem responses were recorded on day 3 to confirm that noise exposure elicited an elevation of hearing

thresholds. On day 30, another set of ABR recordings was carried out, followed by recording of extracellular responses of neurons in

the inferior colliculus (IC) using multi-electrode arrays.

Auditory Brainstem Response Measurements
For ABR measurements, animals were anesthetized via intraperitoneal injection of a mix that consisted of fentanyl/medetomidine/

midazolam (ratio 1.6/0.4/10 respectively). Additional doses were administered throughout the experiment as required by assessing

the level of anesthesia using the pedal withdrawal reflex. Subdermal needles (Rochester Medical) were used as electrodes and were

inserted at the vertex and one each behind the ipsilateral and contralateral pinnae respectively. Throughout the recordings the body

temperature was maintained constant between 37–38�C using a homeothermic blanket (Harvard Apparatus, Cambridge, UK).
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Acoustic stimuli consisted of either tone pips (5 ms total duration and 1.5 ms rise/fall time) with frequencies set to 1024, 2048, 2896,

4096, 5793, 8192, 11585, 16384 and 23170 kHz presented at varying intensities from 0-80 dB SPL in 5 dB steps, or clicks (50 ms

duration, 0-80 dB SPL in 5 dB steps) delivered at a rate of 20/s. Stimuli were generated, attenuated and amplified using TDT system

3 (Tucker Davis Technologies, Alachua, FL, USA) and presented in a free-field manner via a TDT CF1 speaker positioned at a 45�

angle relative to the animal’s axis, and at a distance of approximately 18 cm. During the recordings, the ear contralateral to the

speaker was temporarily blocked using a foam earplug. Electrode signals were low-pass filtered (7.5 kHz cut-off frequency,

12 dB per octave) and recorded at a sampling rate of 24 kHz using TDT system 3 hardware. For analysis purposes, the data were

filtered using a bandpass filter (100-3000 Hz, 5th-order Butterworth filter). Once the ABR recordings were complete, an intraperito-

neal injection consisting of a mix of atipam/flumazenil/naloxone (ratio 1/50/15.6 respectively) was administered to the animal, which

was subsequently placed in a temperature-controlled recovery chamber for approximately one hour before returning it to the housing

facility.

Stimuli were calibrated using a 1/4-inch microphone (G.R.A.S., Skovlytoften, Denmark) placed at the location where the animal’s

ear would be during the recordings. A filter was applied to adjust the frequency response of the speaker such that it was flat (±3 dB)

between 1 and 24 kHz. ABR thresholds were determined visually by estimating the lowest sound level at which deflections in the ABR

waveform were judged to be greater than the background variability in the waveforms. Measurements of wave amplitudes were per-

formed using customwrittenMATLAB software (Natick, MA, USA). Briefly, a timewindow containing thewave of interest was defined

and themaxima andminima of the traces were estimated within this window. ABRwave amplitudes weremeasured from the peak to

the following trough.

Noise Exposure
Anesthesia in gerbils was induced by intraperitoneal injection of fentanyl/medetomidine/midazolam (using the same ratio as above).

Additional top up doses were delivered as required by assessing the pedal withdrawal reflex. Body temperature wasmaintained con-

stant at 37-38�C and the respiratory rate was checked every 30 minutes. Animals were placed in a custom-made sound-proof booth

directly under the center of a speaker (Monacor Stage Line PA Horn Tweeter MHD-220N/RD, Bremen, Germany) positioned 45 cm

above. The speaker was calibrated prior to each use to ensure that the frequency response was flat (±2 dB) over the 2-4 kHz range.

Animals were exposed to octave-band noise (2-4 kHz) at 105 dB SPL over a period of two hours. Stimuli were generated, attenuated

and amplified using TDT system 3 hardware. After noise exposure, animals were administered an intraperitoneal injection of a mix

which consisted of atipam/flumazenil/naloxone (using the same ratios as described above) and were allowed to recover for approx-

imately 1 hour in a temperature-controlled chamber. For sham exposures, the speaker was left unplugged.

Single-Neuron Recordings
Experiments were conducted in a sound-insulated chamber (Industrial Acoustics, Winchester, UK). Anesthesia in gerbils was

induced by intra-peritoneal injection of 1 mL per 100 g body weight of ketamine (100mg/ml), xylazine (2% w/v), and saline in a ratio

of 5:1:19 as described in [47]. The same solution was infused continuously during recording at a rate of approximately 2.1 ml/min.

Body temperature was maintained at 38.7�C by a homeo-thermic blanket controlled via feedback from a rectal probe. The skull

was exposed by incision of the scalp and a metallic pin was cemented to it. The pin was subsequently coupled to a stainless-steel

head-holder in a stereotaxic frame. A craniotomy was performed on the right side of the skull extending 3.5 mm from themid-line and

centered along the lambdoid suture. To improve the separation of single units, we used 32-channel silicon array electrodes (Neuro-

nexus Technologies, Ann Arbor, MI, USA) arranged in tetrodes with 2 tetrodes in each of the four shanks of the probe.

To prevent drift over time caused by the displacement of brain tissue along the shanks, electrodes were initially inserted into the

overlying cortex after removal of the dura, and guided through at a speed of 1 mm/sec, and then slowed to 0.3 mm/sec upon contact

with the IC in order to ensure tissue displacement was minimal, until all recording sites were located inside the central nucleus of the

IC (as determined by tonotopically ordered tuning curves recorded on the electrode arrays). After the responses to all the stimuli in our

set were recorded, the electrode was advanced ca. 300 mm to a deeper location. Typically, at least three different electrode pene-

trations were made along the rostral-caudal axis (at 150-mm intervals), with the data collected at two different depths in each pene-

tration. Human speech is dominated by sound-frequencies typically lower than 8 kHz, and we therefore aimed to record responses

from neurons with comparable low CFs, which are located more superficially in the ICc. Oxygen-enriched air was delivered to the

vicinity of the snout and ECG and body core temperature were monitored throughout the duration of the experiment.

For spike sorting, we followed established procedures described in detail in [48]. Briefly, the method consists of (1) bandpass

filtering each channel between 500 and 5000 Hz; (2) whitening each tetrode, i.e., projecting the signals from the four channels

into a space in which they are uncorrelated; (3) identifying potential spikes as snippets with energy [49] that exceeded a threshold

(within a minimum of 0.7 ms between potential spikes); (4) projecting each of the snippets into the space defined by the first three

principal components for each channel; (5) identifying clusters of snippets within this space using KlustaKwik (http://klustakwik.

sourceforge.net) and Klusters [46]; and finally, quantifying the likelihood that each cluster represented a single unit using an isolation

distance criterion [50]. The isolation distance assumes that each cluster forms a multi-dimensional Gaussian cloud in feature space

and measures, in terms of the SD of the original cluster, the increase in the size of the cluster required to double the number of snip-

pets within it. The number of snippets in the ‘‘noise’’ cluster (non-isolated multiunit activity) for each tetrode was always at least as

large as the number of spikes in any single-unit cluster [48]. Only single-unit clusters with an isolation distance > 20 were considered

for further analysis. On average, each tetrode yielded between 1-2 single-units which amounts to approximately 8-16 single-units per
e2 Current Biology 30, 1–12.e1–e4, December 7, 2020
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electrode penetration. After this stage, units lost during the presentation of our stimulus set, or units in which the CF could not be

reliably determined, were further excluded from the analysis.

Stimuli
To characterize the basic response properties of single neurons in the IC, we recorded frequency response areas (FRAs) using 50-ms

pure-tone pips of varying frequencies (250 Hz to 8.192 kHz) and intensities (20 to 80 dB SPL) presented once every 150 ms.

To investigate the neural representation of speech-in-noise, we assessed neural responses evoked by repeated (32) presen-

tations of 11 different vowel-consonant-vowel (VCV) tokens from an adult female speaker. A window function with a 5-ms

ramp was used to limit the VCVs to 0.9 s duration, and VCVs were presented at 1 s intervals at varying signal-to-noise ratios

(�12 to 12 dB, in steps of 6 dB). Nine of the VCVs took the form ‘AxA’; i.e., the vowel was A, and the consonants were M, N,

G, Z, T, K, F, S, Sh, (e. g., ‘AMA’, ‘ANA’, etc.). Responses to two further vowels of the form ‘xTx’ were assessed (‘ITI’ and

‘UTU’), providing a further comparison of three different VCV combinations (‘ATA’, ‘ITI’, and ‘UTU’) with the same consonant.

VCVs were presented at a sound level of 60 or 75 dB SPL, and in various levels of speech-shaped background noise to

create SNRs of �12, �6, 0, +6 and +12 dB.

Classifying Neural Responses to VCVs
For some neurons, it was not possible to record all stimulus conditions, and these neurons were excluded from further anal-

ysis. Additionally, some units had extremely sparse responses to tones, and thus a CF could not be determined reliably. These

units were also excluded, leaving a total of 154 neurons from control animals, and 246 neurons from exposed animals. In or-

der to enable a valid comparison between neural coding of speech sounds in control and exposed animals, neural populations

were matched according to their characteristic frequencies, and thus 154 neurons were selected from the noise-exposed

group.

The PSTH classifier we used for this analysis is described in detail in [21]. Briefly, single-trial responses were grouped in sets of S

possible stimuli (n = 11). Each stimulus in the set was presented T (n = 32) times during the experiment while the activity of N single

neurons was recorded. For every neuron, a 1 s time window following the stimulus onset was divided into B 1-ms bins containing

spike counts with the desired temporal resolution. The dataset thus consists of a matrix T x S rows and B x N columns (see Figure 2

in [21]). vi;j denotes the spike counts in the ith row and the jth column of the matrix, where i goes from 1 to ST (total number of stimuli x

trials per stimulus) and j goes from 1 to NB (number of neurons x number of bins). The template for each stimulus s is defined by vs =

½vs;.; vsNB�, and the jth element is calculated as

vsj =
1

T

X
i ˛ s

vsij ; (Equation 1)

where T represents the total number of trials. The templates were generated from responses to the clean VCV at each sound

level and separately for each exposure condition. An equal number of neurons (154) were used in each level and exposure

condition. For each single trial, vi = ½vi;1; .; vi;NB�, the Euclidean distance between the single trial itself and each stimulus

template vs is defined as

di
s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNB
j = 1

�
vi;j � vsj

�2

vuut : (Equation 2)

Single trials were classified to the template with the smallest distance. To avoid artifacts the trial being tested was not used to

generate the template when the clean conditions were assessed.

Phenomenological Model of Cochlear Synaptopathy and Enhanced Central Gain
To test the hypothesis that synaptopathy and a central gain mechanism could account for the pattern of results seen in the

neural data from the exposed animals, a simple model was used to transform the data from the unexposed animals (Figure 6).

The effect of synaptopathy was modeled with a broken-stick such that the firing probability was saturated above the knee-

point, truncating the top of the dynamic range. It was hypothesized that the function of the central gain would be to normalize

the firing rate such that the maximum firing rate after the synaptopathy model plus the compensatory gain was applied would

be equal to the maximum firing rate of the neurons before exposure. The maximum firing probability was taken as the mean of

the maximum firing probability—0.127—across all neurons in the 75 dB SPL (non-exposed) condition. The knee point of the

function was determined from the observed gain between firing rates across all SNRs (including quiet) for control and exposed

conditions at 60 dB SPL, equivalent to 1.40. The reciprocal of the gain (0.716) multiplied by the maximum firing probability

generates the saturation point of the function (0.09) (Figures 6A and 6B). Application of this ‘‘HHL-gain’’-function to the PSTHs

of responses from control animals yielded ‘‘HHL-model’’ PSTHs (Figure 6C). Both control and HHL-model PSTHs, for all VCVs

and all SNR conditions, were then used as input to a Poisson process with variable rate to generate artificial spike trains,

which were then assembled into model neurograms and analyzed for their discriminability using the PSTH-based classifier

(Figure 6C).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data Analysis and Statistical Testing
Characteristic frequencies and response thresholds of IC neurons were determined from the FRAs by a trained observer who was

blinded to the experimental group. The VCV classification analysis was performed in MATLAB using a custom script. All statistical

analysis was performed in R (version 3.6.1). The performance of the classifier in terms of whether each presentation of a VCV was

correctly or incorrectly classified was modeled using binomial logistic regression (glm function). The fitted model took level and

exposure as categorical variables and SNR and proportion of consonant or vowel energy over 2 kHz as continuous variables. All

interaction terms were included in the model and the likelihood ratio test was used to determine the significance of each term in

the model using the ‘Anova’ function from the car package (version 3.0-6). The significance of the coefficients in the model was

evaluated using the Wald test. Analysis of the similarity of the distribution of the CFs for the populations of neurons was performed

using Fisher’s exact test (‘fisher.test’) and analysis of the similarity of the threshold distributions was performed using the Wilcoxon

rank sum test with continuity correction (‘wilcox.test’). Spike rates were tested for normality using the Shapiro-Wilks test (‘shapiro.t-

est’ in the ‘stats’ package, version 3.6.2), and since the assumption of normality was violated, non-parameteric statistics were used

to test differences between the spike-rate distributions with level (using the Kruskal-Wallis test, kruskal.test) and exposure status

(using the Friedman test, friedman.test). All error bars in figures are ± SEM.
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