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We apply the hit-to-lead ESMACS (enhanced sampling of molecular dynamics
with approximation of continuum solvent) and lead-optimization TIES
(thermodynamic integration with enhanced sampling) methods to compute
the binding free energies of a series of ligands at the A1 and A2A adenosine
receptors, members of a subclass of the GPCR (G protein-coupled receptor)
superfamily. Our predicted binding free energies, calculated using ESMACS,
show a good correlation with previously reported experimental values of the
ligands studied. Relative binding free energies, calculated usingTIES, accurately
predict experimentally determined values within a mean absolute error of
approximately 1 kcalmol−1. Our methodology may be applied widely within
the GPCR superfamily and to other small molecule–receptor protein systems.
1. Introduction
There is an urgent need for approaches and tools that permit the prediction of
rapid, accurate and reliable properties of systems across science as a whole. We
have a longstanding interest in the development of in silico methodologies able
to predict values computationally that agreewith and thereforemay replace exper-
imental measurements [1–4]. Here, we focus our efforts on a subject of global
importance in computational biomedicine: the accurate prediction of protein–
small molecule binding affinities. The calculation of accurate binding affinities
will provide substantial insight into ligand–receptor interactions for scientists,
significantly impact the drug discovery process in industry and expedite the
implementation of personalizedmedicine, making itmore commercially attractive
and facilitating the development of bespoke, individualized, pharmaceuticals to
significantly improve patient prospects and bring about economic savings for
healthcare programmes. The prediction of binding free energies is a computation-
ally tractable task that, with iteration, can provide a self-reinforcing loop between
experimental data and theoretical calculations.

Binding free energy can be calculated using pathway or endpoint methods.
A pathway can be either a physical binding path or an alchemical path. The
former is usually defined by a suitable collective variable with which simu-
lation is driven and free energy change is derived. Large conformational
space needs to be sampled along the binding path, which usually requires
enhanced sampling approaches. Recently a metadynamics protocol has been
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applied for ligand binding free energies to G protein-coupled
receptors (GPCRs) [5,6], generating encouraging results. The
approach is valuable to explore the pathways of ligand binding,
to find the binding site(s), to predict the binding poses and to
estimate binding free energies. However, such simulations
require a timescale of microseconds and need to run for days
if not weeks on high performance supercomputers. The rapid
development of computational power may make it possible
for these techniques to deliver actionable predictions within
ten years. The metadynamics protocol, however, is unable to
satisfy the requirement for pharmaceutical drug development
today. Alchemical and endpoint approaches, on the other
hand, are being increasingly promoted by pharmaceutical com-
panies collectively [7] as they can be implemented in a rapid,
accurate and reliable manner [8].

To accurately and reliably compute these values, it is necess-
ary to appreciate that macromolecular biological systems are
capable of adopting various conformations depending on how
they are studied by simulation and that results obtained from
single trajectory (one-off) simulations—particularly long
ones—lack the accuracy and reproducibility needed for conver-
gence with experimentally determined values [9]. This is only
now becoming fully understood by many practitioners of mol-
ecular simulation. Despite this, single trajectory approaches
that use methods such asMMPBSA (molecular mechanics Pois-
son Boltzmann surface area) [10],WaterMap (WM) [11], and the
semi-empirical, linear interaction method (LIE) [12,13] have
been used extensively. Although the benefit of using ensembles
comprised ofmultiple simulations, or replicas, has been demon-
strated [14], and applied to the calculation of free energies [15] it
is only recently that new methods have been introduced which
improve sampling and accessibility of the conformational space
in molecular dynamics (MD)-produced trajectories [3,16–18].
One of these, ESMACS [2,14,16,17,19] (enhanced sampling of
moleculardynamicswith approximationof continuumsolvent),
uses ensembles of multiple and typically relatively short dur-
ation simulations to calculate absolute binding free energies
with high precision. There is a wealth of evidence in the litera-
ture and in unpublished work that, under equilibrium
conditions, multiple short MD simulations sample better
than a single long MD simulation and provide a meaningful
uncertainty of the results [8,9,20–22]. Under general non-
equilibrium conditions, ensembles are essential since there is
then no meaning to time averaging. Here, we use an ensemble
approach for precise sampling of restricted regions of confor-
mational space which are important for the calculation of the
properties of interest. Many other properties, such as kinetics
and transition rates, require sampling of a much larger confor-
mational space. Long time scale simulations will be needed,
usually with accelerated methods such as metadynamics. It
should be noted that single long time simulations are inaccurate,
as we have explained before (e.g. [22]). Ensembles are required
for all MD simulations [20,22], as precise predictions, along
with their uncertainties, can be obtained only when the most
relevant conformations have been extensively sampled. A par-
ticular benefit of ESMACS is the freedom to choose multiple
trajectory versions to enhance predictions and provide qualitat-
ive information about and insight into the associated binding
mechanisms. Most publications of MMPBSA studies use
1-trajectory approach in which conformations of the complexes,
proteins and ligands are all extracted from single simulations of
the complexes. The multiple trajectory versions of the approach
require separate simulations for complexes, proteins and
ligands, and take into account the flexibility and conformational
changes of the proteins and ligands upon binding. Such mul-
tiple trajectory versions of ESMACS can significantly improve
the predictions compared with those from the 1-trajectory
approachwhen ‘induced fit’of a ligand is a key feature of the rec-
ognition mechanism [18,19]. Relative binding free energies in
the alchemical free energydomainhave also attracted significant
interest, particularly for drug design and drug discovery
programmes. Methods for the calculation of these values
include, but are not limited to, free energy perturbation (FEP)-
based approaches [23,24], which have shown some potential
for predicting binding affinities at the accelerated time frames
needed for drug discovery, although their accuracy remains
inconclusive. We have introduced a method, TIES [25] (thermo-
dynamic integration with enhanced sampling), that makes use
of ensemble techniques to ensure reproducibility, accuracy and
precision in the calculation of relative binding free energies
and to control the errors associatedwith alchemical predictions;
it compares favourably with commercially offered solutions
based on FEP [8]. ESMACS can be applied to highly diverse
sets of ligands [2,14,16,17,19] whereas TIES is applicable to
pairs of ligands of similar chemical structure. Hence ESMACS
is suitable for hit-to-lead structure identification in drug discov-
ery, while TIES has a key role in lead optimization [2,8,25]. We
emphasize that both TIES and ESMACS have the advantage
of being more reproducible and reliable because of the ensem-
ble-based approaches that both protocols use [9,20]. While this
certainly increases computational cost, running ensemble
simulations in parallel on powerful computers reduces the
wall clock time to one relevant to timescales for drug discovery
and personalized medicine [18,25,26].

Both ESMACS and TIES have been employed on a variety of
globular proteins, including kinase domains of different pro-
teins, HIV proteases, peptide-MHC, bromodomains and so on
[3,8,18,19,21,25–28]. To test the accuracy of computational pre-
dictions of binding affinities on membrane proteins, we have
elected to use GPCRs because of their importance to the aca-
demic community and to the pharmaceutical industry. GPCRs
comprise the single biggest drug target [29] with many
unexploited receptors remaining to be used for drug discovery,
making the calculation of accurate binding affinities an impor-
tant means by which to improve the number of drugs that
successfully progress from the development pipeline to the
clinic. Interestingly, and despite the wealth of published exper-
imental data that exist for this receptor superfamily, there have
been relatively few studies that report the computational predic-
tion of the binding affinity of a ligand to its target GPCR [30–34],
providing us with the opportunity to compare computational
calculations of binding affinities using ESMACS and TIES with
published experimental results.

Proteins, generally, and GPCRs, in particular, are dynamic
and function in a complex energy landscape, possessing differ-
ent conformational states and interconverting between these in
response to the available free energy of the system [35,36].
They can be considered to exist ‘mainly as a group of struc-
tures not too different from one another in free energy, but
frequently differing considerably in energy and entropy’ [37].
The conformational changes that GPCRs undergo are elicited
in response to interactions between the receptor and the
ligands that bind specifically to it and to interactions between
the receptor and additional proteins involved in the signalling
process, including G proteins. Binding affinities and receptor
conformations are inextricably intertwined. The advent of
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Figure 1. Structures of the (a) inactive A1 (PDB accession number: 5UEN) and
(b) inactive (beige) and active (blue) A2A receptors (PDB accession numbers:
5IU4 and 4UHR, respectively) in cartoon representation.
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high-resolution X-ray crystal structures for GPCRs in active
and inactive physiological states [38] has provided an unprece-
dented opportunity to examine the structural coverage of
binding sites and receptor–ligand interactions [39] and affords
a means by which to explore the conformational states and
sub-states of these receptors, a number of which can be corre-
lated with receptor activity. It is somewhat ironic that the
experimental confirmation of the multiple active states pre-
dicted from the quantitative mathematical models of GPCRs
has been provided by X-ray crystallography, a technique that
emphasizes a single static macromolecule. However, the avail-
able active state GPCR X-ray crystal structures vary between
crystal structures of the same GPCR and between those of
different GPCRs in a manner that may be attributed either to
the formation of an intermediate state which precedes the
existence of a fully active state, or to the detection of one of
several active structures of the GPCR [40].

We have explicitly chosen to interrogate the A1 and A2A

adenosine receptors for this work as high-resolution X-ray
crystal structures of both the active and inactive forms [38]
are available, substantial amounts of kinetic binding data
exist and these are GPCRs with which we are familiar exper-
imentally [41–43]. Our findings are broadly applicable to
other GPCRs and to other, different cell surface receptors.
The automation of the ESMACS and TIES protocols within
our binding affinity calculator (BAC) [44] allows the rapid
generation of binding affinities for GPCRs and other receptor
protein families of interest.
2. Methods
In this section, we first describe the set-up of the simulations
before explaining the two methodologies used to predict binding
affinity values.

2.1. Creation of receptor models
The computation of accurate binding affinities depends upon
having both an accuratemodel of the target protein and accurately
predicted poses for the ligands. GPCR structures are highly
plastic, frequently adopting different conformations depending
on the type of ligand to which they are bound. Three different
states have been identified experimentally for the A2A receptor
depending on its binding partners, inactive (antagonist bound),
active (also referred to as partially active, agonist bound) and
fully active (in complex with a G-protein) [45,46]. The closely
related A1 receptor is believed to explore similar states but as yet
structures only exist for the inactive and fully active states [47].
The G-protein complexed (fully active) form of the receptors is
extremely large and we excluded it from investigation on the
grounds of computational cost. In the absence of a suitable
active state structure on which to base our models, we chose to
simulate A1 receptor agonists in the inactive state model (figure 1).

All available structures of the A1 and A2A adenosine recep-
tors are incomplete; all structures contain unresolved loop
regions and incorporate mutations designed to facilitate crystal-
lization. In order to obtain complete and wild-type structures
for simulation, we employed the homology modelling function-
ality of the Molecular Operating Environment (MOE) package.
The wild-type sequences of both receptors were taken from the
GPCR database (gpcrdb.org) [48]. The following PDB structures
were used as templates for the modelling of the different receptor
states: 4UHR (CGS21680 bound) [45], 5IU4 (ZM-241,385 bound)
[49], for the active and inactive forms of the A2A, and 5UEN [50]
(co-crystallized with a ligand with no kinetic binding data) for
the inactive form of the A1. The complete models of the two
receptors, used in the study, are shown in figure 1.

GPCRs are membrane proteins. To ensure physiologically rel-
evant simulations the models we have generated must be inserted
into appropriate ligand membranes. Coordinate models of the
membrane bound protein were generated within CHARMM [51]
using a temporary CGENFF [52] parametrization for the ligands.
A 100% DPPC lipid bilayer was generated around each receptor
using the replacement method based on scripts adapted from
the CHARMM-GUI membrane builder [53]. Each protein–
membrane model was solvated in a tetragonal box containing
TIP3P water molecules [54]. The ParmEd tool from AmberTools
16 [55] was then used to convert the systems to use the Amber
FF14SB [56] forcefield for the protein and Lipid 14 [57] for
the membrane (water remained parametrized using TIP3P).
Histidines were assigned standard AMBER protonation states
for a pH 7 environment. Final box dimensions for the A1 receptor
were 86 × 86 × 138 Å, with 100 and 97 lipid molecules in the top
and bottom layers of the membrane, respectively. Box dimensions
for the inactive and active A2A receptor models were 76 × 76 ×
132 Å and 77 × 77 × 132 Å, respectively, with 76 lipid molecules
in the top layer and 77 in the bottom layer of the membrane. All
systems were examined to identify any water molecules trapped
in the centre of the bilayer which were then removed. Counter
ions were added to neutralize the simulation boxes, with 12 Cl–

and 9 Cl– for the A1 and A2A receptors, respectively.

2.2. Molecular dynamics simulations
MD simulations were then performed using the NAMD 2.10 pack-
age [58]. Periodic boundary conditions were applied, the Particle
Mesh Ewald method [59] was applied for long range electrostatics
and a Lennard-Jones cut-off of 12 Å employed. The Langevin ther-
mostat [60] was used with a low damping coefficient of 1 ps−1 to
keep the fluctuations between the current temperature and the
target temperature to a minimum. Simulations were run at
310.15 K, thehumanphysiological temperature, tomimic the behav-
iour of these receptors in vivo. Langevin piston control [61] was used
with a dampingperiod set to 50 fs anda time-decayperiod of 20 fs to
maintain the pressure at 1 atm. Snapshots were saved every 1 ps for
all simulations. Furthermore, all covalent hydrogen bonds were
constrained using the SHAKE algorithm [62].

30 000 steps of energy minimization were performed for each
system using the default conjugate gradient-coupled line search
algorithm. An equilibration protocol (table 1) was followed for
a total of 12.5 ns during which the first 3 ns were performed in
the NVT (constant number of atoms, volume and temperature)
ensemble to let the lipid molecules adjust to the volume space,



Table 1. Description of the equilibration protocol and the harmonic constraints applied per step in the simulation set-up.

step time step (fs) ensemble equilibration time (ns)

harmonic constraints (kcal mol−1 Å−2)

backbone sidechains lipid heads lipid tails ions

1 1 NVT 1 10 5 2.5 2.5 5

2 1 NVT 1 5 2.5 2.5 2.5 0

3 1 NVT 1 2.5 1 1 1 0

4 2 NPT 2 1 0.5 0.5 0.5 0

5 2 NPT 2 0.5 0.1 0.1 0.1 0

6 2 NPT 1.5 0.1 0 0 0 0

7 2 NPT 4 0 0 0 0 0
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and the remaining 9.5 ns were performed in the NPT (constant
number of atoms, pressure and temperature) ensemble to
mimic the biological experimental setting. Velocity rescaling
was performed every 500 steps while applying constraints to
the backbone, side-chains, and the heavy atoms of membrane
lipid heads and tails. Constraints were slowly released towards
the end of equilibration as described in table 1. The last 4 ns of
equilibration for each system was performed in an NPT ensemble
to allow sufficient time for the complexes to relax, adjust and
adopt initial stable configurations in the absence of restraints.
The final frame of the simulation was used in all docking and
subsequent simulations.
2.3. Ligand dataset
The ligands in the dataset (table 2 and figure 2) were chosen as
they all had binding affinities determined using kinetic radioli-
gand binding assays. The dataset is highly diverse comprising
both agonists, antagonists and inverse agonists. In addition,
eight of the ligands have experimental binding affinity values
determined for both the A1 and A2A receptor, enabling exper-
imentally determined receptor-relative selectivity binding free
energies to be calculated.

In order to accurately compare the computational predictions
of binding values to the experimental results, the experimentally
determined equilibrium dissociation constants, KD, were con-
verted into Gibbs free energies using the equation

DG ¼ �RT lnKD: ð2:1Þ
The binding free energies calculated from the experimentally
determined KD for all ligands are shown in table 2. Where the
same ligand had its KD value measured in multiple publications,
the average value is shown.
2.4. Ligand parametrization and docking
Crystal structures of 6 ligands in our datasets are available in com-
plex with the A2A receptor (table 2). In these cases, we use those
conformations in our modelling. For the remaining ligands, the
structures were manually produced and optimized in IQMol [71].

All ligands were parametrized using the Antechamber com-
ponent of AmberTools 16 [72,73]. For ESMACS ligands charges
were obtained using the AM1BCC approach and parametrized
using the general AMBER force field (GAFF) [73]. Individual
ligand topologies employed in the creation of hybrid topologies
used in TIES were also parametrized with GAFF but partial
charges were derived by invoking the RESP algorithm following
geometry optimization in Gaussian09 [74] (employing a Hartree–
Fock wavefunction with a 6− 31 +G* basis set).
For the six ligands bound to A2A for which crystal binding
poses were available (table 2), the experimental crystal docking
poses were retained by aligning the experimental structure
with the appropriate target structure. All other ligands were
docked into the binding pocket of their respective receptors
using the AutoDock Vina [75] plugin in the UCSF Chimera
[76] package. Single binding poses were chosen on the basis of
the best docking score obtained, which showed that all of the
ligands (including the antagonists) bind to the orthosteric bind-
ing site. This agrees with the experimental observation from a
high number of co-crystallized structures and site-directed muta-
genesis binding data. We would like to point out that in cases
where a ligand may target multiple binding sites, or target an
allosteric pocket, the metadynamics protocol [5,6] may be
useful. In the remainder of this work, we refer to a complete
parametrized model containing protein, equilibrated membrane
and docked ligand as a ‘starting structure’.
2.5. Binding free energy protocols
Here, we use two computational techniques to gain information
about ligand binding strengths: ESMACS, which ranks absolute
binding free energies (ΔG) directly, and TIES, which computes
differences in Gibbs free energies between two related systems
(ΔΔG). The set-up of the simulations for each protocol is substan-
tially different and is described in detail below. Simulation
execution and analysis for both protocols were automated via
our BAC [44] workflow tool.
2.6. ESMACS
ESMACS protocols are designed to provide converged binding
free energies calculated using the MMPBSA methodology from
ensembles of relatively short duration simulations for diverse
ligand datasets. They include a range of methodologies to com-
pute the entropic contribution to binding usually neglected in
standard MMPBSA approaches and may also account for
ligand and receptor flexibility using multiple trajectories, includ-
ing not only that of the complex but those of the unbound ligand
and apo protein.

The binding free energy associated with the binding of a
ligand to its target protein is calculated as follows:

DG ¼ hGComplexi � hGreceptori � hGligandi , ð2:2Þ
where hGComplexi, hGreceptori and hGligandi are the average values
of the free energy contribution from complex, receptor (protein)
and ligand respectively. Traditionally, in MMPBSA calculations,
sampling is conducted using simulations of the complex alone.



Table 2. Table of ligands used in this study including associated experimental binding affinity data. The PDB column contains the PDB accession number of A2A
receptor structures from which we extract three-dimensional ligand binding poses.

ligand name abbreviation ligand type PDB

experimental binding free energies (kcal mol−1) [62–69]

A2A A1

CGS15943 CGS antagonist — −12.70 ± 0.06 −12.49 ± 0.10

LUF5834 LUF34 agonist — −9.77 ± 0.25 −11.53 ± 0.10

LUF5963 LUF3 antagonist — −8.70 ± 0.15 −10.96 ± 0.05

LUF5964 LUF4 antagonist — −9.28 ± 0.42 −12.59 ± 0.09

LUF5967 LUF7 antagonist — −8.54 ± 0.33 −12.03 ± 0.10

NECA NECA agonist 2YDV −9.52 ± 0.13 −8.69 ± 0.13

theophylline Theo antagonist 5MZJ −7.16 ± 0.09 −7.68 ± 0.11

XAC XAC antagonist 3REY −10.11 ± 0.15 −10.86 ± 0.06

CGS21680 NGI agonist 4UHR −8.14 ± 0.09 —

LUF5448 LUF8 agonist — −8.49 ± 0.15 —

LUF5549 LUF9 agonist — −9.90 ± 0.14 —

LUF5550 LUF0 agonist — −8.84 ± 0.15 —

LUF5631 LUF1 agonist — −9.17 ± 0.20 —

LUF5833 LUF33 agonist — −9.83 ± 0.27 —

LUF5835 LUF35 agonist — −9.85 ± 0.26 —

UK-432,097 UK agonist 3QAK −10.31 ± 0.07 —

ZM-241,385 ZMA inverse agonist 5IU4 −11.71 ± 0.09 —

LUF6057 7 agonist — — −11.19 ± 0.15

CCPA CCPA agonist — — −9.59 ± 0.10

CHEMBL3613119 119 agonist — — −11.64 ± 0.10

CHEMBL3613120 120 agonist — — −11.17 ± 0.22

DPCPX DPX inverse agonist — — −12.11 ± 0.07

FSCPX FPX antagonist — — −11.91 ± 0.14
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The estimate of the component free energy provided by
ESMACS can be decomposed as follows:

Gi
ESMACS ¼ Gi

MMPBSA � TSiconf

¼ Ei
MM þ Gi

solvent � TSconf

¼ Ei
int þ Ei

vdW þ Ei
ele þ Gi

PB þ Gi
SA � TSconf,

9>>>=
>>>;

ð2:3Þ

where Ei
MM is the molecular mechanical energy contribution

of the species i, in a complex, free receptor or unbound ligand
in the gas phase. Sconf is the configurational entropy. This com-
prises internal bonded energies (Ei

int), van der Waals (Ei
vdW),

and electrostatic interactions (Ei
ele). Gi

solvent is the solvent free
energy term estimated from the sum of the Poisson–Boltzmann
(Gi

PB) and the non-polar solvation free energy terms (Gi
SA).

Gi
SA is calculated from the solvent accessibility surface area

(SASA) using

Gi
SA ¼ g� SASAþ b, ð2:4Þ

where γ is the surface tension, and b the offset (we use the default
values of 0.00542 kcal mol−1 Å−2 and 0.92 kcal mol−1 respectively
[77]). The entropic term is introduced as the product of the temp-
erature (T ) and configurational entropy. The most common
method of computing the configurational entropy is through
normal mode analysis [78,79]. However, converging these calcu-
lations is computationally demanding for large systems [18]
(potentially using as many computational resources as the orig-
inal molecular dynamics calculations). This motivated the
creation of an alternative solution: the weighted solvent accessi-
ble surface area (WSAS) model [19,80]. This method was
parametrized to reproduce normal mode analysis results from
computationally cheap atomistic surface area calculations. In
this approach the solvent accessible surface area (SAS) and
buried surface area (BSAS) are weighted according to atom
type and the sum of the contributions of each atom is used to
estimate Sconf as per the following relationship:

SWSAS
conf ¼

XN
i¼1

wi(SASi � kBSASi), ð2:5Þ

wherewi is the atom-type specific weighting of the atom i and k is
a scaling parameter of BSAS. BSAS for atom i is computed using:

BSASi ¼ 4p(ri þ rprob)
2 � SASi, ð2:6Þ

where ri is the radius of the atom i, and rprob the probe radius of a
water molecule. Here, we compute the surface areas using the
Lee and Richards algorithm [81] as implemented in freesasa [80].

The starting structure generated for each protein–ligand was
used to initiate ESMACS runs using a protocol modified from
that used for previous work on globular proteins [3,16,18].
In each run 25 replica simulations were executed varying only
by initial velocities, which were randomly drawn from the
Maxwell–Boltzmann distribution. Each run was initialized with
weak harmonic constraints (of up to 3 kcal mol−1 Å−2) applied
to the receptors’ backbone and ligand’s heavy atoms, which
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Figure 2. The structures of the ligands used in our study with the shortened names corresponding to table 2.
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were slowly released during 0.5 ns of equilibration. Following
this, production simulations were instigated. The same NAMD
settings were used in production simulations as for the NPT
steps of the membrane equilibration protocol.

Between 30 and 45 ns were required for convergence for
models containing docked ligands, with slightly more rapid con-
vergence for the ligands using poses copied from crystal
structures (up to 28 ns). This is around 10 times longer than the
protocol used in previous ESMACS studies and is due to the com-
plex nature of GPCRs. The binding free energies predicted from
ESMACS were based on 50 uniformly distributed frames across
the last 10 ns of each of the 25 replicas and then averaged.
2.7. TIES
TIES is based on thermodynamic integration (TI), a well-
established example of so-called alchemical binding free energy
methods [82–85]. Alchemical free energy calculations employ
unphysical (alchemical) intermediates to calculate changes in
free energies between two physically real systems. It is
common in these methods to refer to a variable, λ, which
describes the path taken to transform one ligand into another.
The parameter varies between 0 and 1, with 0 representing the
initial ligand, L1, and 1 the final ligand, L2. The potential
between these endpoints is given by

V(l,x) ¼ (1� l)V1(l,x)þ lV2(l,x) , ð2:7Þ
where V1 and V2 are the potential energies of L1 and L2, respect-
ively, and x represents the coordinates of the system. The
derivative of the hybrid potential energy with respect to λ,
@V(l,x)=@l, is used to compute the free energy difference using

DGTI ¼
ð1
0

@V(l,x)
@l

� �
l

dl, ð2:8Þ

where h. . .il denotes the ensemble average at the chosen λ.
In practice, the integral is calculated numerically, with MD
sampling used in the computation of the ensemble averages at
a set of discrete points (the so-called λ-windows). In TIES, mul-
tiple replica MD simulations are performed at each λ-window.

We employ a thermodynamic cycle approach to calculate
relative free energy difference (ΔΔGTIES) between two ligands:

DDGTIES ¼ DG1 � DG2 ¼ DGaqueous
TI � DGbound

TI , ð2:9Þ

where ΔG1 and ΔG2 are the binding energies for L1 and L2,
respectively. DGaqueous

TI and DGbound
TI are the free-energy com-

ponents resulting from the alchemical transformation of L1 to
L2 in the unbound and bound states.

As described in previous work [25], treating the integrals in
equation (2.9) through the lens of stochastic calculus provides a
robust method to estimate uncertainties. The ensemble average of
the potential derivative is calculated as the average of its values
from all replica simulations in our ensemble simulation, where the
individual value for each replica is taken to be the average potential
derivative over the whole simulation length. The error associated
with each λ-window is computed as a bootstrapped standard
error of themeanof the λderivatives fromall sampled replicas using

s2
x¼aqueous,bound ¼

X
l

s2
lðDlÞ2, ð2:10Þ

where s2
l is the variance associated with the relevant λ-window in

the aqueous or bound calculation, as appropriate. This error is the
convolution of the individual errors for each λwindow. The overall
error, σ, then is computed using

s2 ¼ s2
aqueous þ s2

bound: ð2:11Þ

The domain of validity of TIES targets resides in determining
differences in binding free energies between closely chemically
related (for example congeneric) ligands between which there
are no charge differences. A list of ligand pairs which meet
these criteria in our experimental dataset is provided in table 3.



Table 3. The ligand pairs (L1 and L2) for which TIES calculations were
performed in this study and their associated experimentally determined
relative binding affinities (ΔΔG).

transformation ΔΔGExperiment (kcal mol
−1)

L1 L2 A2A A1

LUF3 LUF4 −0.58 ± 0.45 −1.63 ± 0.10

LUF3 LUF7 0.16 ± 0.36 −1.07 ± 0.11

LUF4 LUF7 0.74 ± 0.53 0.56 ± 0.13

Theo XAC −2.95 ± 0.17 −3.18 ± 0.13

LUF8 LUF1 −0.68 ± 0.25 —

LUF34 LUF35 −0.08 ± 0.36 —

LUF33 LUF34 0.06 ± 0.37 —

LUF33 LUF35 −0.02 ± 0.37 —

NECA CCPA — −0.90 ± 0.16

119 120 — 0.47 ± 0.24

XAC DPX — −1.25 ± 0.09

E
SM

A
C

S 
DG

 (
kc

al
 m

ol
–1

)

experiment DG (kcal mol–1) experiment DG (kcal mol–1)

–35.0

–12 –11 –10 –9 –8 –12–13 –11 –10 –9 –8 –7

–32.5

–30.0

–27.5

–25.0

–22.5

–20.0

–17.5

–15.0

–35

–30

–25

–20

–15

–10

–5

0
(a) (b)

Figure 3. Summary of results obtained using ESMACS for ligands of the (a) A1 and (b) A2A receptors. The grey dashed line in (a) is the linear correlation line for all
the ligands. For the A2A receptor (b), agonists and antagonists are coloured blue and red, respectively. The two dashed lines in (b) show the linear correlation for
agonists and antagonists, also coloured blue and red, respectively.
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A hybrid ligand topology must be created based on the
chemically common region, a disappearing domain comprising
the atoms only present in L1 and an appearing domain contain-
ing atoms unique to L2. We generated initial common region for
each pair of ligands using FESetup [86] and used these to align
the two ligands. Atoms were removed from the common
region if their charge differed by more than 0.1e. The partial
atomic charges for the hybrid ligand were obtained from the
RESP derived partial atomic charges on the individual ligands
such that the common atoms had identical charges, taken to be
the average of their charges in the individual ligands. The
charges on disappearing and appearing parts were then adapted
by reparametrizing the ligands after constraining the charges on
the common atoms to their new values.

We deployed the same basic TIES protocol set out by Bhati et al.
[25], using 5 replica simulations in each of 13 non-interacting
λ-windows, placed at: 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
0.95 and 1.0. We employed a soft-core potential [87,88] for the van
der Waals interactions to prevent divergent potential energies,
which may arise when there are sudden appearances or disappear-
ances of atoms close to the endpoints of the alchemical
transformations. The electrostatic interactions of the disappearing
atoms were linearly decoupled from the simulations between λ
values of 0 and 0.55 and then turned off, while those of the appear-
ing atoms were linearly coupled from λ values of 0.45 to 1 and then
fully activated.

The hybrid ligands were docked into the target structures
using the same approaches employed for the single ligands
within the ESMACS calculations. Each replica simulation was
instigated from the starting structure and varied only by the
initially randomized velocities [25]. To ensure accurate and pre-
cise values of ΔΔGTIES, a three-step equilibration process lasting
2 ns was performed at each λ window. The integration time
steps over the three equilibration periods were 0.5, 1 and 2 fs,
respectively. The electrostatic interaction energies were com-
puted at every step to ensure integrator stability. As the TIES
protocol only computes the difference in binding free energy
between two similar ligands, 4 ns production runs were per-
formed, as done for other systems within the TIES protocol
[2,25]. All molecular dynamics simulations were performed
using NAMD with the same thermostat and barostat settings
as applied in ESMACS and the membrane equilibration protocol.
3. Results
In this section, we present binding affinity predictions from
both ESMACS and TIES.
3.1. ESMACS
Predictions of binding free energy (ΔG), using the ESMACS
protocol, were carried out on 14 and 17 ligands of the A1 and
A2A receptors, respectively (structures and experimentally
determined data shown in figure 2 and table 2). The results of
the predicted ΔG compared to experimentally determined
data are shown in figure 3. As there is an approximately 1 kcal
mol−1 range of experimentally determined ΔG values available
from different publications, it is likely that the associated errors
are underreported. For the 14 A1 receptor ligands, the
correlation obtained is reasonable (RP = 0.53). The overall corre-
lation for the A2A receptor ligands is slightlyweaker (RP= 0.43).
As ‘active’ and ‘inactive’ starting structures were used to calcu-
late ΔG values for agonists and antagonists (and inverse
agonists), respectively, use of two separate correlation lines is
more appropriate for the A2A receptor. This results in stronger
correlations of RP = 0.73 for the antagonists (and the inverse
agonist) and RP = 0.55 for the agonists. If one includes the
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configurational entropy in the ESMACS ΔG binding free
energies predictions, the A1 and A2A correlations become
weaker, with the exception of the A2A agonists which retains
the same strength in correlation (RP = 0.55). Overall ESMACS
performs similarly well for structurally diverse A1 ligands,
A2A agonists and A2A antagonists and better without inclusion
of the configurational entropy.
3.2. TIES
Relative binding free energies (ΔΔG) were calculated using TIES
for 7 and 8 pairs of ligands for the A1 and A2A receptor, respect-
ively (table 3). These 15 ligand pairs were the only ligands
structurally similar enough in the data (table 2) that we were
able to calculate hybrid topologies. To our knowledge, this is
the first published use of an alchemical binding free energy pre-
dictionmethodon ligands of theA1 receptor. The results of these
relative binding free energy calculations against experimentally
determineddata are plotted in figure 4.AsTIES aims to calculate
relative binding free energies, the correlation linewas set asy= x.
The overall mean absolute error was calculated as 1.2 and
0.98 kcal mol−1 for all ligands of the A1 and A2A receptors,
respectively. This is similar to values reported previously
using TIES on much simpler, non-membrane proteins [25]. All
but one of the predicted ΔΔG values are directionally correct.

Furthermore, only one transformation pair’s predicted ΔΔG
values, from each receptor subtype, was classified as an outlier
from its true value when its Cook’s distance [89] was greater
than 4/n (n being the number of points used in the regression
line). These pairs are highlighted in orange in figure 4. One of
the outliers, the Theo -> XAC ligand pair in the A1 receptor, is
the largest alchemical transformation performed in our TIES
calculations, as these ligands are themost structurally divergent
among all the ligand pairs and therefore the least reliable
calculation. Excluding these outliers, the mean absolute error
improves to 0.98 and 0.66 kcalmol−1 for remaining A1 and
A2A ligand pairs, respectively. This is similar to the weighted
mean absolute errors achieved using alchemical free energy
calculations on two ligand series of the A2A receptor [31].
4. Conclusion
Using the TIES and ESMACS protocols, we have computed the
binding free energies of a series of ligands at the A1 and A2A
adenosine receptors, two GPCRs for which substantial quan-
tities of structural and functional data exist. Our rankings for
binding free energies determined by both ESMACS and TIES
are in line with previous experiments, confirming our ability to
use these protocols on GPCRs, which are much larger protein
targets than used previously with these protocols. ESMACS
predicts values that correlate well with experimentally deter-
mined binding free energy values for structurally diverse sets
of ligands, confirming its value for the hit-to-lead phase of
drug discovery. TIES is again found to be a powerful protocol
for the accurate calculation of relative binding free energies
between structurally similar ligands, and is superior tomethods
that donot use equivalent ensemble-based sampling techniques,
such as FEP+ [8]. TIES is thus of considerable value in lead
optimization; here, we demonstrated this in a relatively extreme
case involving a complex protein class with large alchemical
transformations and correspondingly small common substruc-
tures. Although drug design has numerous constraints, we
conclude that this methodology provides a useful tool with
which to inform structure-based drug discovery workflows for
the development of novel GPCR therapeutics.
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