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Abstract

The photon structure function Q2) has been measured using data
taken by the OPAL detector at e+e“ centre-of-mass energies of 91 GeV, 
183 GeV and 189 GeV, over the Q2 ranges 1.5-30.0 GeV2 (LEP1), and 7.0- 
30.0 GeV2 (LEP2), probing lower values of x than any previous experiment. 
New Monte Carlo models and new methods, including multi-variable un­
folding, have been used to reduce model dependent systematic errors in the 
measurement of .
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Chapter 1 

Introduction

The photon is the carrier of the electromagnetic force, and one of the fun­
damental particles of nature. In classical electrodynamics, the behaviour of 
photons is governed by Maxwell’s equations, which are linear. This means 
that classically there is no structure in the photon, and in this theory it is 
not possible for two photons to interact. However, in quantum electrody­
namics it is possible for a photon to fluctuate, for a brief period, into a pair 
of charged particles such as electrons or quarks. The pair always consists of 
a particle and its anti-particle. If there is no other particle present, the pair 
will recombine to form the photon again. But if a second photon enters the

f  +

Figure 1.1: Production of a fermion-antifermion pair from two photons in 
QED.

12



CHAPTER 1. INTRODUCTION 13

picture, it may interact with one of the charged particles, so that the first 
photon is broken up. Thus by studying the interactions of two photons, it is 
possible to learn about the internal structure of the photon.

Figure 1.2: An aerial view of LEP.

Figure 1.1 shows the simplest two-photon interaction, in which the pho­
tons produce a pair of charged particles. The particles produced may be 
leptons or quarks, which produce a hadronic final state. In the case of lep- 
tons, the interaction can be calculated exactly using QED. However, hadronic 
photon interactions are not completely calculable because some parts of the 
solution are non-perturbative.

Much of the theoretical interest in photon structure is related to existing
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ideas about proton structure, which has been measured accurately by a se­
ries of experiments beginning at SLAC [1 ] in the late 1960s. Some features 
of proton structure may be reflected in photon structure also, but photon 
structure has not been measured nearly so accurately.

The first measurements of hadronic photon structure were made in the 
early 1980s at the PETRA collider. This was an e+e“ collider operating at a 
centre-of-mass energy of about 30 GeV. In 7 7  interactions at e+e~ colliders, 
both the photon target and the photon probe are emitted from the beam 
electrons1. This means that the energy of the target is unknown, and must 
be reconstructed from the final state. Because is is not always possible to 
observe the whole of the final state, measurements of photon structure [2 -  
19] do not have the accuracy of their proton counterparts.

The most recent measurements of photon structure have been made at 
LEP collider at CERN (Figure 1 .2 ). Experiments at LEP are able to make 
these measurements over a large kinematic range, due to the high energy of 
the beams, and thus investigate many areas of photon physics.

This thesis describes a study of the hadronic photon structure function, 
using data from the OPAL experiment, at e+e~ centre-of-mass energies of 
91 GeV, 183 GeV and 189 GeV, collected during the years 1993-1995, and 
1998.

1For conciseness, positrons are also referred to as electrons.



Chapter 2 

LEP and OPAL

2.1 LEP

The LEP (Large Electron Positron) collider is an e+e“ storage ring at CERN 
which began operating in 1989. It has a circumference of 27 km and is located 
100 m underground. Four experiments are situated at symmetrical collision 
points around the ring: OPAL, ALEPH, DELPHI and L3. The layout of 
LEP is shown in Figures 2.1 and 2.2.

During the first phase of LEP (LEP1), from 1989-1995, the centre-of- 
mass energy of the electron and positron beams was close to the mass of the 
Z° particle at 91 GeV. The energy was increased for the LEP2 phase; first to 
161 GeV to produce W +W “ pairs, then in steps of a few GeV up to 189 GeV 
by 1998.

LEP has curved sections containing dipole magnets for bending the beams, 
with quadrupole and sextupole magnets for focusing, and four long, straight 
sections containing the accelerating cavities and the experiments. The accel­
erating components were originally room-temperature copper cavities, but 
many superconducting cavities have been added as part of a continuous up­
grade process in order to increase the beam energy during the LEP2 phase.

15
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Figure 2.1: A diagram of the LEP ring, showing the positions of the CERN 
site and the four LEP experiments.
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CERN Accelerators

LEP: Large Electron Positron collider 
SPS: Super Proton Synchrotron 
AAC: Antiproton Accumulator Complex 
ISOLDE: Isotope Separator OnLine DEvice 
PSB: Proton Synchrotron Booster 
PS: Proton Synchrotron

LP1: Lep Pre-Injector 
EPA: Electron Positron Accumulator 
L1L: Lep Injector Linac 
LINAC: LINear Accelerator 
LEAR: Low Energy Antiproton Ring

Rudolf LEY, PS Division. CERN, 02.09.96

LEAR

■' ■■ electrons
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— — proions
■ i » ■  anliprotons 
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ALEPH OPAL

W est Area

P Pb ions

South Area

East Area

Figure 2.2: The CERN accelerator complex (not drawn to scale).
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LEP was designed to use the existing accelerator system at CERN as 
an injector. The process begins in the LIL (LEP Injection Linac), where 
electrons from an electron gun are accelerated to 600 MeV. Positrons are 
produced by colliding some of the electrons with a fixed target. Particles 
from the LIL are accumulated in the EPA (Electron Positron Accumulator) 
into four or more bunches each of electrons and positrons. The bunches are 
injected into the PS (Proton Synchrotron) ring and accelerated to 3.5 GeV, 
then into the SPS (Super Proton Synchrotron) ring where they are acceler­
ated to 20 GeV. The PS and SPS accelerators can accelerate different types 
of particle in a complex cycle, so fixed target experiments using protons can 
operate at the same time as LEP. From the SPS the beams are injected into 
LEP and accelerated to the final collision energy. The process of filling LEP 
takes 15-30 minutes, after which the beams can be collided for several hours, 
while the four experiments collect data.

2.2 Bunch modes in LEP

The electron and positron beams in LEP are made up of a number of bunches 
containing ~  10® electrons or positrons. Various bunch modes may be used. 
From 1989 to 1992, LEP was operated with 4 bunches in each beam (4+4 
bunch mode). In 1992 this was changed to 8 + 8  bunch mode to increase the 
luminosity. From 1995 onwards, LEP has used bunchtrains, containing up 
to 4 bunches each, with 4 bunchtrains in each beam.

2.3 OPAL

The OPAL (Omni Purpose Apparatus for LEP) [20] experiment has been 
operational since the start of LEP in 1989. It was designed to detect, classify 
and reconstruct a wide variety of events that can occur in e+e~ collisions.
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The main feature of OPAL are

• tracking of charged particles and vertex reconstruction in the central 
detector,

• detection (and identification in the central region) of photons and elec­
trons,

• measurement of hadronic energy,

• identification of muons, and

• luminosity measurement by detecting electrons scattered at small an­
gles.

A diagram of OPAL is shown in Figure 2.3. OPAL has numerous subdetec­
tors, each of which has a two-letter shorthand name. For convenience, this 
convention is adopted in the following sections. Outside the central region, 
each subdetector is in two parts, one on either side of the detector.

2.3.1 The OPAL coordinate system

In the OPAL right-handed coordinate system, the aj-axis points towards the 
centre of LEP and the z-axis points in the direction of the e+ beam. This de­
fines a y -axis a few degrees away from the vertical. Spherical and cylindrical 
coordinates are also used, with (r,#,</>) defined in the usual way. The right 
and left sides of OPAL are defined such that right is the positive z direction.

2.3.2 The magnet

The magnet consists of a solenoidal coil and an iron yoke. It produces a 
nearly uniform magnetic field of 0.435 T within the tracking region. The yoke 
serves as part of the hadronic calorimeter, providing 4 interaction lengths of 
material for hadrons.
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Figure 2.3: A cut-away diagram of OPAL showing the locations of the main 
subdetectors.
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2.3.3 The central tracking system (CT)

The tracking detectors are designed to measure the momentum of charged 
particles. They are contained within a 4 bar pressure vessel at the centre of 
OPAL. The largest part of the tracking system is the jet chamber. Outside 
the jet chambers are the Z chambers, which give an improved measurement 
of the z position of tracks. A vertex chamber detects charged particles closer 
to the interaction region and finds secondary vertices. Between the pressure 
vessel and the beam pipe is the silicon microvertex detector, which accurately 
measures the primary vertex and the decays of particles such as r  leptons 
and heavy flavour hadrons.

The jet chamber (CJ)

C J measures the momentum of charged particles with good spatial resolution 
of tracks and the possibility of particle identification. It is 4 m long, with an 
inner radius of 0.25 m and and outer radius of 1.85 m. It is divided into 24 
sectors each with 159 sense wires parallel to the beam. Cathode wires planes 
form the boundaries between the sectors. CJ covers 98% of the total solid 
angle with at least 8  wire hits on a track (out of a maximum of 159).

The coordinates r  and (f> of a hit are determined accurately from the drift 
time and the wire positions; z is found by the charge division method using 
the integrated charge at both ends of the wire. The energy loss d E / d x  of a 
particles is measured from the total charge reaching the signal wires, and is 
used for particle identification.

The typical spatial resolution of CJ is 135 f i n l in r-<^, and 6  cm in z. The 
momentum resolution is <rp/p 2 =  2.2 x 10~ 3 GeV-1.
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Figure 2.4: The OPAL experiment, opened to expose the central barrel re­
gion. Also visible on the left is one of the endcap electromagnetic calorime­
ters.

T he  Z cham bers  (CZ)

CZ is used to give a better z measurement for charged particles after they 
leave CJ, which has poor z resolution because of the orientation of the sense 
wires. CZ forms a barrel around CJ. It consists of 24 drift chambers, each 
4 m long, 0.5 m wide and 59 mm thick. Each drift chamber is divided into 
8 sections in the z direction, with 6 sense wires in each section.

The average z resolution of CZ is 150 fim.
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The vertex chamber (CV)

CV is designed to find secondary vertices from particle decays by providing 
precise positional measurements of charged particles close to the interaction 
region. It surrounds the carbon fibre pressure pipe, inside the je t chamber. 
CV is a 1 m long cylindrical drift chamber with radius 0.24 m. It has an 
inner layer of 36 axial cells with 12 wires along the beam direction, and an 
outer layer of of 36 stereo cells with 6  wires each, at 4 degrees to the beam 
direction. The axial cells have an average resolution in r-^> of 55 //m, and give 
a coarse z measurement which is used for fast triggering. The combination 
of axial and stereo cells provides accurate measurements in r , <j> and z.

The silicon microvertex detector (SI)

SI is the closest subdetector to the interaction region, and is used to accu­
rately locate the position of the primary vertex and to find secondary vertices 
from the decays of particles such as r-leptons and heavy flavour hadrons. It 
is inside the carbon fibre pressure tube, outside the beam pipe. SI was first 
installed in 1991 as two barrels of silicon wafers providing measurements in 
r-<j>. Further wafers were added in 1993 to allow z measurements.

The resolution of SI is 5 fim  in r-<j> and 13-20 in z, depending on the 
angle of the particle.

2.3.4 The time of flight system (TOF)

The time-of-flight system is used for triggering and identification of charged 
particles. It also helps to reject cosmic rays.

Tim e of flight barrel (TB)

TB covers the barrel region outside the solenoid, for | cos 9\ < 0.82. It con­
sists of 160 6.84 m long scintillation counters. Light from the scintillators is
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collected at the ends of each counter via light guides glued to phototubes. 
The time resolution of TB is about 300 ps.

The tile endcap (TE) and MIP plug

TE [2 1 ] was installed in 1996 to enhance the triggering information from the 
forward region. It is located between the pressure bell and the endcap electro­
magnetic presampler. The tile-based design was used because of severe space 
constraints and the high magnetic field in that region. A 10 mm scintillating 
layer is read out with wavelength shifting fibres and phototubes. The timing 
precision is about 5 ns, which is sufficient to determine unambiguously the 
collision time when LEP is operating in bunchtrain mode.

The MIP plug was added in 1997 as an low-angle extension to TE. It is 
used as a muon veto, and to detect forward particles. It partly overlaps with 
the gamma catcher (see Section 2.3.8).

2.3.5 Electromagnetic calorimetry (ECAL)

The electromagnetic calorimeters detect and measure the energy of electrons 
and photons. They are made of lead glass blocks which provide total absorp­
tion of electromagnetic showers. They are outside the pressure vessel and the 
coil - which present about 2  interaction lengths of material to electrons and 
photons - making presamplers necessary for accurate energy measurement.

The barrel electromagnetic presampler (PB)

PB is located outside the coil and in front of the lead glass. It has 16 chambers 
with 2  layers of limited streamer mode tubes, covering a cylinder of radius 
2.39 m and length 6.62 m.

The resolution in r-<f> for a single charged particle is 1-2 mm depending on 
the angle, and the resolution in z is about 10 cm. The energy resolution for
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the combined presampler and lead glass calorimeter is given in the following 
section.

T h e  b a rre l lead  glass c a lo rim e te r (EB )

EB has 9440 lead glass blocks, instrumented with magnetic field tolerant 
phototubes. The blocks point at the interaction region, tilted slightly to 
remove gaps. EB covers the region |cos#| < 0.82. The energy resolution 
including information from the presampler is (Te / E  ~  10%/y/~E, where E  is 
in GeV.

Figure 2.5: A picture taken during the construction of OPAL, showing half 
of the barrel lead glass calorimeter.
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The endcap electromagnetic presampler (PE)

PE is located between the pressure bell and the lead glass calorimeters (TE 
was installed in front of PE in 1996). It consists of 32 thin multiwire chambers 
at each end of OPAL.

The resolution in r-<f> is 2-4 mm, and the resolution in 9 is about 4.6 mrad.

The endcap electromagnetic calorimeter (EE)

Like the barrel electromagnetic calorimeter, EE uses an array of lead glass 
blocks. They are not pointing at the interaction region but are coaxial with 
the beam line. The readout system uses single stage multipliers known as 
vacuum photo triodes, which are able to operate in the full axial field of the 
magnet.

The energy resolution of EE is <Je IE  «  5 % /\/E , where E  is in GeV.

2.3.6 Hadron calorimetry (HCAL)

The electromagnetic calorimeters totally absorb electrons and photons, but 
present only about 2.2 interaction lengths of material to hadrons. The re­
maining hadronic energy is measured by the hadron calorimeter. The iron 
yoke of the magnet is segmented into layers, with planes of detectors between 
the layers. The hadron calorimeter is divided into three parts, together cov­
ering 97% of the total solid angle: the barrel, the endcaps and the pole tips.

Hadron endcap and barrel calorimeters (H B /H E )

There are 9 layers of chambers in the barrel calorimeter, alternating with 
slabs of iron. Each end is closed by a doughnut-shaped endcap, with 8  

layers of chambers and iron. The active elements of the detectors are limited 
streamer tubes, with wires parallel to the beam in the barrel and horizontal 
in the endcaps. The signal is read out from pads; the wires are used only
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for monitoring purposes. Layers of pads are grouped together to form towers 
which divide the solid angle into 976 equal elements.

The energy resolution is typically <te! E  120%/y/~E, where E  is in GeV.

The hadron pole-tip calorimeter (HP)

The pole-tip calorimeters extend the coverage of the hadronic calorimeters 
to | cos 61 < 0.99. To avoid perturbing the magnetic field, the gap between 
the iron layers is only 1 0  mm compared to 25 mm in the barrel and endcaps. 
The detectors are thin multiwire chambers, similar to those in the endcap 
electromagnetic presampler.

The energy resolution is <te / E  ~  100%/y/~E for 15 GeV hadrons, where 
E  is in GeV, but degrades at higher energies due to leakage.

2.3.7 The muon detectors (M B/M E )

Muons, like hadrons but unlike electrons, tend to pass through the elec­
tromagnetic calorimeters. The muon detectors are outside the hadronic 
calorimeters. Muons are identified by matching tracks in the muon detectors 
and the central tracking detectors. The main background is from hadrons 
which either fail to interact before the muon detectors or produce secondary 
particles which give tracks in the muon detector.

The barrel part of the muon detector (MB) consists of 110 drift cham­
bers in 4 layers covering |cos0| < 0.68, while the endcaps (ME) extend the 
coverage to | cos#| < 0.98 with limited streamer tubes.

2.3.8 The forward detector (FD)

The forward detector’s main uses are to measure luminosity by counting 
Bhabha events and to tag low-angle electrons in two photon events. There are 
four parts to the forward detector: the main calorimeter, the tube chambers,
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the gamma catcher and the far forward monitor. Two other components of 
the forward detector, the fine luminosity monitor and the drift chambers, 
were removed between the 1992 and 1993 running periods in order to make 
room for the silicon tungsten detector (Section 2.3.9). The layout of the 
forward detectors is shown in Figure 2.6.

The forward calorimeter (FK)

The main calorimeter of FD has 35 layers of lead-scintillator sandwich, pre­
senting 24 radiation lengths of material to electrons. Hadronic showers are 
not well contained by FK, leading to poor hadronic energy measurement 
in the forward region. The first four layers are a presampler, and are read 
out on the outer edge only. The remaining layers are read out on the inner 
and outer edges, giving a coarse measurement of 6. There are 16 azimuthal 
sectors, giving a <f> measurement from the ratio of signals in adjacent sectors. 

The energy resolution of FK is v e / E  «  17% /\/E ,  where E  is in GeV.

The tube chambers (FB)

The tube chambers give a more accurate measurement of the position of 
showers than the calorimeters, and are situated between the presampler and 
the rest of the main calorimeter. There are three layers of proportional tubes; 
the first two are at right angles to each other and the third lies diagonally 
across the other two.

The resolution is about 2 mrad in 9 and <j>.

The gamma catcher (FE)

FE is non-containing calorimeter which fills the gap between FK and EE. It 
consists of 7 layers of lead-scintillator sandwich in 8  azimuthal sections.
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Figure 2.6: A diagram of the layout of the forward detectors, showing the 
silicon-tungsten calorimeter, the main forward calorimeter, the tube cham­
bers, the gamma catcher and the MIP-plug (labelled as ‘scintillator tiles’).
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The far forward monitor (FF)

FF consists of two small lead-scintillator calorimeters 7.7 m from the inter­
action point, on either side of the beam pipe. Its main use is for online 
luminosity measurements, but it can also be used for tagging very low-angle 
electrons, and has recently been upgraded to improve the positional mea­
surement of electrons [2 2 ].

2.3.9 The silicon tungsten detector (SW)

The silicon tungsten detector was installed between the 1992 and 1993 run­
ning periods in order to provide a more accurate luminosity measurement 
than is possible with FD. It covers the region in 8 from 25-59 mrad. For 
LEP2 running, a shield was installed to protect the central tracking detec­
tors from synchrotron radiation. This moved the lower edge of the useful 
SW acceptance to 33 mrad. SW has 19 layers of silicon detectors interleaved 
with 1 - 2  radiation lengths of tungsten, with a layer of silicon in front for 
presampling. The detector is divided into 16 wedge shaped segments in 0, 
arranged to avoid gaps. Each wedge is divided into 64 pads for positional 
measurements.

The energy resolution of SW is o s / E  ^  24%/y/E  (where E  is in GeV) at 
LEP 1 energies, and degrades to about 6 % at LEP2 energies due to leakage. 
The angular resolution is about 1 mrad in 9 and <f>.

During 1995, the first year of bunchtrain running, SW could only be 
read out on every third bunch crossing. This greatly reduced the amount of 
tagged 7 * 7  data available for that year, while introducing complications for 
the luminosity measurement. For this reason, the 1995 data with electrons 
tagged in SW is not used in this analysis.
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2.3.10 The trigger

The LEP bunch crossing rate is 45 kHz, which is much faster than the OPAL 
detector can be read out. By making fast decisions about whether a bunch 
crossing initiated an interesting physics event, the trigger system [23] reduces 
the event rate to 1-10 Hz. The trigger also has to reject cosmic rays, beam 
gas interactions and noise from detector elements. Most events are triggered 
by multiple independent conditions in different parts of the detector. Having 
more than one trigger condition increases the trigger efficiency and aids in 
estimating the efficiency.

There are two types of trigger: those that depend on an energy threshold 
in a single subdetector, and those that require a coincidence in more than 
one subdetector, for example a track in CJ and a corresponding cluster in 
EB, in the same $-<f> region.

The trigger system has two levels, the pretrigger and the main trigger. 
The faster response of the pretrigger was required when LEP was operating 
in 8 + 8  bunch mode (1992 to 1994).

The most important trigger signals for selecting 7 * 7  events are listed in 
Table 2.1. The trigger conditions are programmable, and vary slightly from 
year to year. More details are given in Sections 5.5.1 and 5.5.2.

2.3.11 The data acquisition system

The different subdetectors have a variety of different readout hardware, and 
are coordinated from a central control system. If a positive trigger decision 
is made, data from each subdetector is read out and passed to the event 
builder and filter, which is a multiprocessor system contained in two VME 
crates. The filter takes data from the event builder and is able to make a 
more sophisticated decision than the trigger on whether to keep or reject 
each event. A farm of HP workstations reconstructs and archives the events 
that pass the filter.
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trigger signal subdetector(s) description
FDHIOR* FD total energy at either end > high threshold
SWHIOR SW total energy at either end >  high threshold

TBM1 CT > 1 barrel track
TM1 CT > 1 track
TM2 CT > 2  tracks
TM3* CT > 3 tracks

EBTOTLO EB total barrel energy >  low threshold
EBWEDGE EB energy in ‘wedge’ >  threshold

EERLO EE total energy on left side > low threshold
EELLO EE total energy on right side >  low threshold

EEPRLR EE logical OR of left and right pretrigger signals
TPTTTO(B) C T/TO F > 1 correlated 0-<j> bin

TPTTEM CT/ECAL > 1 correlated 9-(f) bin
TPTOEM(B)* TOF/ECAL > 1 correlated 9-<f> bin

TPEML ECAL > 1 <j) bin over threshold, left side
TPEM R ECAL > 1 (f> bin over threshold, right side

T P T O (l/B ) TOF > 1 9-<f> bin
TPEM1 EM > 1 9-<f> bin
TBEBS TB/EB same (f) sectors hit

LCALLO FK > low threshold left
RCALLO FK > low threshold right

Table 2.1: Description of the OPAL trigger signals. The high and low en­
ergy thresholds for each trigger condition vary, especially between LEP1 and 
LEP2. Those marked with an asterisk are stand-alone triggers, while the rest 
require coincidences with other triggers.
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Theory of photon structure

3.1 Deep inelastic scattering of quasi-real pho­
tons

The kinematics of a two-photon event at an e+e-  collider are illustrated in 
Figure 3.1. Each beam electron emits a virtual photon and is scattered. 
The two photons interact to produce a final state which may be hadronic or 
leptonic. The case of leptonic final states can be calculated in QED. This 
study is concerned with hadronic final states, calculation of which involves 
not only QED but also QCD, in both perturbative and non-perturbative 
regimes.

The cross-section for two-photon events can be factorised into two parts: 
a luminosity function, which describes the production of the two photons 
from the beam electrons, and a term describing the interaction of the two 
photons. It can be written as [24]

d<re+ e -^ e + e -X  =  [(7TT +  €i<TLT +  C2<^TL +  C l ^ L L  - f  - € i e 2T rT  c o s2 < £

+ 2 ^ a T 7 0 v ^ O ^ ) ^ c o s 2 * ] / ! - ^  (3-1)
-C'tag -Caag2

33
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P i  —  SID. Ofagi  COS Otag}

P2 =  £ 76( 1 , 0 , 0 , - 1 )

p'2 =  Etag2 (1 , sin 0tag2 cos <t>, sin 0 tag2 sin <£, -  cos 0<Off2) 

Figure 3.1: Deep inelastic electron-photon scattering.

where X represents the hadronic final state. The photons can be either 
transversely or longitudinally polarised, so the cross-section has four parts: 
tf’TT? 0 LT, tf’TL and <jll- The luminosity function and the factors and 
62 can be calculated in QED. The interference terms t>tt and vanish 
after integration over <f>, the angle between the scattering planes of the two 
electrons. This integration is necessary because in the events studied in this 
thesis, only one of the scattered electrons is observed.

If one of the photons is nearly real, the two-photon interaction can be 
thought of as deep inelastic scattering (DIS) of an electron from a photon 
target. It is useful to introduce the usual DIS variables (neglecting the elec-
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tron mass):

Q2 =  —qi2 = 2 £ i£ tIlg( l — cos#t»g) (3.2)

P 2 = - ? 22 =  2EbE teg,(l -  cos^Ug2) (3.3)

W 2 = (q i + q2)2 (3.4)

» =  ^  =  ^ 4 _____  (3.5)
2qi 92 Q + P  + W 2 V 1

y  =  (3.6)
Pi • 92 Eb

The DIS picture is valid when P 2 <C Q2. This requires that one of the 
electrons is scattered at a large angle, while the other is scattered at an 
angle 8tag2 < ^min* The luminosity function peaks for low scattering 
angles, so the untagged electron will in most cases be scattered at a much 
lower angle than the tagged electron.

Equation 3.1 can then be integrated over the angular distribution of the 
undetected electron, to give the cross section for the process e j  —» eX .  In 
order to make a simple connection with the parton level, the cross section is 
usually written in terms of the structure functions

n  -  p .7 )

n - (!-8)
or

r '  -  ( 3 ' , )

F% = 4~ 2^ ( <7tt +  ^ l t)-  (3.10)

This leads ultimately to

(3' n »
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3.2 Part on distribution functions

The differential cross section for elastic scattering of an electron and a free 
quark within a hadron or photon can be calculated in QED [25]:

^  =  ^ ( l  +  ( l - , ) 2 ) ^ - C )  (3.12)

where e2 is the charge of the scattered quark which carries momentum frac­
tion (  of the target photon, and travels in the direction of the target photon
(i.e. with small transverse momentum). Rearranging Equation 3.11 gives

=  7$  K1 ■+(1- y)2) • (3-i3)

It can be seen by comparing Equations 3.12 and 3.11 and integrating over 
the momentum fraction carried by the struck quark, that in the leading order 
DIS model,

F2 =  Y l f  xeq2s(x ~  C M O dC
9.9

= Y ± xeq<l(x ) (3-14)
9.9

where q{x) is the parton distribution function (PDF) for a quark of type 
q within the hadron. The sum runs over all quarks and anti-quarks with 
4m q2 < W 2. The delta function ensures that the momentum fraction of the 
scattered quark is equal to the variable x, which was defined previously in 
terms of the final state quantities. The longitudinal cross-section is zero in 
the leading-order parton model; this is because a real spin |  quark cannot 
absorb a longitudinal photon. However, this is clearly not the complete 
picture even in QED, because of the restriction on the transverse momentum 
of the target quark.

In next-to-leading order (NLO), the quark-photon scattering process is 
one step removed from the parton distribution functions. The quark can emit
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a gluon before interacting, or a gluon can become a quark-antiquark pair 
and thus interact with the photon, which is impossible in the leading order 
calculation. There is also the possibility that the struck quark came directly 
from the target photon; thus the NLO picture includes the direct photon- 
photon interaction of QED. The transverse momentum of the struck quark is 
no longer required to be small, which has important consequences for the Q2 

evolution of the structure function. Fl is non-zero in NLO. Because the direct 
contribution is so important, it is generally included in LO parameterisations 
of F%, although it is strictly a NLO term.

There are several factorisation schemes for NLO structure function pa­
rameterisations, in which different NLO terms are absorbed into the defini­
tion of the parton distribution functions. In the DIS scheme, all the NLO 
terms are absorbed, leading to a definition of F% that is identical to the LO 
case (Equation 3.14). The other extreme is the MS (Minimal Subtraction) 
factorisation scheme, in which only certain divergent parts are absorbed. 
Also commonly used is the DIS7  factorisation scheme, in which only the 
direct term and the divergent parts are absorbed.

3.3 Theoretical models of photon structure

3.3.1 QED calculation of F%

If the interaction of quarks with gluons is ignored, the photon structure 
functions can be calculated within QED. The result in the limit of light 
quark mass and a real target photon is [26]

F2 = 3a £
e J x

q 16tT2
( 1  — 2x +  2 z 2)ln  ^  ^  ^  — x +  8 ® 2( 1  — x)

xm

Fl =  3a ^ 2  ^ -^ a j2( l  — x) (3.15)
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where the sum runs over all quark flavours with 4m q 2 < W 2. The QED struc­
ture function is shown in Figure 3.2. QCD corrections [26] to Equation 3.15 
show that at asymptotically high Q2, while the shape of the structure func­
tions is altered by quark-gluon interactions, the Q2 dependence remains the 
same; F 2  oc In Q2. The QED result corresponds to the direct photon term of 
the next-to-leading order DIS model. For the proton, the prediction of scal­
ing violations and non-zero F l  requires gluon interactions, yet these effects 
are already present for the photon in free quark theory. Because of this, the 
direct term  is sometimes referred to as the ‘anomalous’ part of the photon 
structure function.

The QED photon structure functions have been measured using the pro­
cess e+e“ —► e+e~fi+fi~ [27].

3.3.2 Vector meson dominance

At low Q2 the hadronic part of is dominant. It is not possible to calculate 
the shape of the structure function in this region, because the calculation 
involves non-perturbative QCD. It is possible to calculate the evolution of 
F2  with Q2, but a low Q2 input is still required.

The usual way of approximating F 2 at low Q2 is to use the Vector Meson 
Dominance (VMD) model. The photon can fluctuate into a vector meson (p, 
<jj or <̂ ), which has the same quantum numbers as the photon, and thereby 
interact as a hadron. The vector meson structure functions have not been 
measured, but can be identified with the pion structure function, which has 
been measured using the interaction x -  +  p —» +  X  for x > 0.2 [28].
The VMD prediction for F’j' is then [24]

F2vmd =  0 .2a(l -  x). (3.16)

Alternatively, a VMD estimate can be obtained from a fit to low-Q2 7 * 7  

data. This was done by the TPC / 2 7  experiment, which parameterised the
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VMD component of as [7]

F2VMD =  a[0.22a;°‘31(1.0 -  x)0 95 +  0.06(1.0 -  a )2’5]. (3.17)

These parameterisations are shown in Figure 3.2.

3.3.3 QCD evolution

At asymptotically high values of Q21 is completely calculable, because the 
perturbative QCD terms dominate [26]. However, at moderate values of Q2, 
from 1-100 GeV2, neither the asymptotic formula nor the VMD model can 
be expected to satisfactorily describe 7 * 7  interactions. The usual approach is 
to take an input distribution at low Q2, either from the VMD model or from 
a fit to 7 * 7  data, and evolve to higher Q2 using QCD evolution equations. 
These equations take into account that at higher Q2 the available phase space 
for gluon emission by the struck quark is increased. Since the momentum of 
the parent quark is shared between the emitted gluon and the quark itself, 
the average momentum fraction of the struck parton is lowered. Also, the 
gluons can produce sea quarks with even lower momentum. This means that 
a shift from high x  to low x is expected in the hadronic part of the structure 
functions as Q2 increases. In addition, the contribution from the bare photon 
increases with Q2 over the whole x range.

For massless quarks, the evolution of the quark distributions qi(x, Q2) and 
the gluon distribution g(x, Q2) is given by the DGLAP (Dokshitzer-Gribov- 
Lipatov-Altarelli-Parisi) [29] equations, which to leading order are1:

d<ii(x ’ Q2) _  f L p  w  +  
dlog Q2 ~  2x ',q( ) +

£ n v  ^  (3-is)
1For derivations of the DGLAP equations, see [30] or [25].
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Figure 3.2: Components of F% according to different models: QED (Equa­
tion 3.15) and FKP (Section 3.4.1) at Q2=10.0 GeV2, simple VMD (Equa­
tion 3.16) and the TPC / 2 7  VMD parameterisation (Equation 3.17).
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A g i ( x , Q 2 )  a .  [ x  A x '

d log Q 2 x
(3.19)

The splitting function Pij(z)  is the probability of finding a parton of type i 
inside a parton of type j  with momentum fraction z.

3.3.4 Low x

Results from the HERA [31, 32] experiments show that the proton structure 
function rises at low a:, which indicates the presence of a large sea-quark 
contribution (Figure 3.4). In this region, the evolution is expected to be 
dominated by the gluon distribution, which becomes more significant as x 
becomes lower. Hence low-a; measurements can constrain the gluon distri­
bution, even though in leading order F2  is not sensitive to gluons. It has 
not yet been possible to determine whether a similar low-a: rise exists in the 
photon structure function, because of the limited low-a: reach of e j  scattering 
experiments compared to ep scattering experiments.

The DGLAP equations should begin to break down at low x because 
log(l/a:) terms become important. At asymptotically high Q 2 the DLLA 
(Double Leading Log Approximation) retains the leading log terms and pre­
dicts the low x behaviour. Ignoring the effect of the quark distributions, the 
gluon distribution is given by [25]

/ \ 1g ( x , t )  exp
x

144 log t/A 2 1 . . .
!og, V /A, i og- .  (3.20)(33 —2 ny) logto/A 2 x

The factorisation scale t is the virtuality of the gluon, and to is the starting 
point of the evolution.

At lower Q 2, it is necessary to re-sum the leading log terms in 1/x  to 
all orders. This is accomplished using the BFKL equation, in which the 
integration is performed over the full phase space of the gluons. The result
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Figure 3.3: The evolution of according to the GRV parameterisation, 
from Q2 =2 .0  GeV2 to Q2= 2 0 .0  GeV2. Both the leading order and higher 
order predictions are shown.
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is [25]

g (x , t ) ~  — f  dk^k (k t)x~ x (3-21)
X w

where h{kt) ~  kt * at large kt and A =  1 2 log 2 ^  ~  0.5.
There is not yet any evidence that the BFKL approach is required to 

explain experimental data, even in kinematic regions where it ought to apply.

3.3.5 Heavy flavour contributions

The charm mass is much larger than that of the light quarks, and it is not a 
good approximation to treat charm as massless over the full kinematic range. 
The constraint W 2 > 4m 2 means that the charm contribution to will 
be absent at high x, but the cut-off is not sharp because the phase space 
for charm production is limited near the threshold. At lower x the charm 
contribution is large due to the |  charge. The contribution from b quarks 
is negligible at LEP energies because of their much higher mass and smaller 
charge. Calculation of charm evolution requires the massive quark DGLAP 
equations; however, a combination of direct and resolved QPM contributions 
is a good approximation and treats the charm threshold correctly [33].

3.3.6 The P 2 dependence of

The discussion in the previous sections has assumed that the target pho­
tons are real. In fact the virtuality P 2 is only restricted to be less than a 
fixed maximum, which is also the minimum Q2 for the tagged electron, the 
minimum Q2 by the anti-tag requirement. The distribution of P 2 can be cal­
culated as a luminosity function (the actual distribution of P 2 in the data is 
experimentally unknown). It is strongly peaked at the minimum P 2, which in 
single-tagged two-photon events is zero. It is therefore usual to treat the ta r­
get photons as real for the purposes of kinematics. This does not necessarily 
mean that the impact of non-zero P 2 on the structure function is negligible.
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Figure 3.4: Measurements of F f  by ZEUS [32].
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Virtual photons exhibit a more pointlike behaviour than real photons. The 
hadronic part of the structure function is therefore suppressed, and this may 
have consequences at low x, where the hadronic part of dominates.

Predictions for the P 2 dependence of F^ involve interpolation between 
the hadronic and perturbative regions. Typically, the input distribution is 
modified according to P 2 before evolving with Q2. There are problems in 
finding a suitable VMD input for virtual structure functions, as the only 
data available is for real mesons, and in extending the model to large P 2 ~  
Q2. There are large variations between the available parameterisations of 
P ^ x ,  Q2, P 2), though they show the same qualitative behaviour.

3.4 Parameterisations of F $

3.4.1 Field, Kapusta and Poggioli (FKP)

This is an all-order QCD calculation of the perturbative part of the photon 
structure function [34]. The perturbative and non-perturbative parts are 
separated by a pt cut for the quarks at the target vertex. The calculation 
was performed using iterated Altarelli-Paresi equations.

No fit to data was performed, and an extra contribution is required for 
the non-perturbative part, such as, for example, the TPC / 2 7  low Q2 param- 
eterisation [7] which was used by AMY [35].

Schuler and Sjostrand [36] argued that there is no consistent way to com­
bine perturbative and non-perturbative parts within the FKP framework, 
and that the FKP model does not work well at low x and low Q2.

The FKP parameterisation for Q2 =  10.0 GeV2 is shown in Figure 3.2.
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3.4.2 Levy Abramowicz and Charcula (LAC)

The LAC [37] parameterisations use as an input distribution a general form 
suggested by the solution of the DGLAP equations:

xq0(x) =  A e 2x *_ X} x  ̂ +  C xD( 1 -  x )E

xg0(x) = CgXDa( l  — x)Eg. (3.22)

The first and second terms in the quark distributions correspond to the forms 
expected for the pointlike and hadronic parts, respectively. There are in total 
12 parameters, which were fitted to data in the range Q2 =4-100 GeV2 (LACl, 
LAC2 ), or Q2= l-100  GeV2 (LAC3). The LACl and LAC2 parameterisations 
use different forms for the gluon distribution. Charm is treated in the same 
way as the light quarks, except that the charm contribution is only included 
when W 2 > 4Mc2, which leads to a discontinuity at high x. The LAC 
structure functions are illustrated in Figure 3.5

The gluon distribution is not well constrained by the data, leading to 
unphysical behaviour in some regions. Because of this the LAC approach 
was criticised by Vogt [38]. Gordon and Storrow [39] argued tha t the LAC3 
structure function gives a good fit to the data at the expense of an unrealistic 
gluon distribution.

3.4.3 Gordon and Storrow (GS)

According to Gordon and Storrow [39], evolving from a low starting scale is 
inappropriate because the low Q2 region is outside the region of applicabil­
ity of perturbative QCD. Consequently they begin the evolution at Q2=5.3 
GeV2, using only data above this Q2 value. The input functions are a combi­
nation of VMD and QPM, since with a high starting scale the pointlike contri­
bution is significant. The free parameters are the total momentum fractions 
carried by sea quarks and by gluons, and the masses of the light quarks used
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Figure 3.5: The LAC parameterisations of at Q2=5.0 GeV2, for 4 flavours. 
The discontinuity is due to the charm threshold.
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in the QPM formula. The gluon momentum fraction is constrained (though 
within a fairly wide range) to avoid the unphysical behaviour seen in the 
LAC structure functions. Charm is treated similarly to the light quarks, but 
has a fixed mass of 1.5 GeV.

This was the first parameterisation of to include a next-to-leading or­
der calculation. The NLO input distributions at the starting scale of Q2=5.3 
were the same as the LO input.

3.4.4 Gluck, Reya and Vogt (GRV)

The GRV [40] parameterisation is evolved from a low starting scale using a 
VMD input based on measurements of the pion structure function, with the 
form

xf*  ~  jca( l  -  x)b (3.23)

where a and b are determined by experiment [28]. The only free parameter 
is the normalisation of the VMD input, which corresponds to uncertainty 
in the inclusion of the and <f> mesons. A least squares fit was performed 
to data in the range Q2=0.7-100 GeV2. Leading order and higher order 
structure functions were produced. The massive quark QPM model (Bethe- 
Heitler [41]) was used for the charm contribution.

The GRV approach requires the assumption that perturbative QCD is 
valid at a low enough starting scale to take a purely VMD based input. The 
evolution starts from 0.25 GeV2 (LO) and 0.3 GeV2 (HO), where there is 
no data to check the validity of this assumption. Nevertheless, the GRV 
structure functions fit all available data well.

These authors have also produced parton distribution functions for the 
pion and proton that describe the available data in the low-a; region, success­
fully predicting a low-a; rise. It has not yet been possible to test the photon 
structure function in the same region.
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3.4.5 Gluck, Reya and Stratmann (GRS)

The GRS parameterisation [42] is a development of the GRV model which 
allows for virtual target photons, i.e. P 2 > 0. Unlike the GRV parameterisa­
tion, the input distribution at the starting scale is not purely VMD, but an 
interpolation between VMD and a perturbative, pointlike contribution which 
dominates for large P 2. As with GRV, the input VMD distribution is taken 
from measurements of the pion structure function. However, the structure 
function of virtual pions is unknown. Therefore the VMD input is fixed for 
all P 2 up to the starting scale of the evolution.

The GRS parameterisation is valid for P 2 <  Q2, with a smooth transition 
to P 2 = 0. The virtual structure function is suppressed compared to the real 
one, with the largest difference at low x. The theoretical uncertainties are 
largest at low P 2 due to the large non-perturbative contribution. At P 2 — Q2 
the DIS picture is no longer valid.

3.4.6 Hagiwara et al. (WHIT)

The WHIT [33] parameterisations are essentially a study of the effect of the 
gluon content of the photon on the structure functions. Measurements of 
are not directly sensitive to the gluon distribution, but the DGLAP equations 
predict that it will it will affect the Q2 evolution of F%- 

The initial distribution is a fit to

^  =  A*b ( 1 - x )° ,  
a

^  =  A , zb ( \ - x )c‘, (3.24)
a

using data with Q2 > 4 GeV2. Some low x data points were omitted from 
the fit because of the possibility of large systematic uncertainties. The gluon 
parameters Ag and Cg were not fitted to the data but were varied system­
atically, leading to six different parton distribution functions with different



CHAPTER 3. TH EORY OF PHOTON STRUCTURE 50

gluon content. The charm contribution was taken to be the sum of the QPM 
direct and resolved processes. The evolution was performed in leading order 
only, as the variations in the gluon content are so large that there would be 
little advantage in using the higher order equations.

3.4.7 Schuler and Sjostrand (SaS)

In their parameterisation [36], Schuler and Sjostrand divide the photon struc­
ture function into three parts:

r ( * .  q 2) = q 2) + r ,VMD(®, q 2, q<>2) + q 2, Qo2). (3.25)

They argue tha t the hadronic part can be separated by a scale Qo into 
perturbative (anomalous) and non-perturbative parts, the latter modelled 
using vector-meson states. The different parts of are also expected to 
have different properties in the hadronic final state.

Unlike the case for the GRV parameterisation, the VMD input functions 
are not taken from the pion structure function, but are found by fitting to 
data. However, the normalisation is constrained because the higher mass 
vector meson states (above /?, u> and <f>) are included in the definition of the 
anomalous part. In the GRV approach, the separation between low and high 
mass vector meson states is not made explicit. The evolution is performed in 
leading order only, and the Bethe-Heitler cross section is used for the charm 
contribution. There are four sets of SaS structure functions, corresponding 
to two different starting scales for the Q2 evolution and two factorisation 
schemes: SaSID (DIS7, $ o=0.6 GeV2), SaS2 D (DIS7, Q0=2.0 GeV2), SaSIM 
(MS, $ 0 = 0 .6  GeV2) and SaS2 M (MS, $ o=2.0 GeV2). The SaS structure 
functions also contain a prediction for the P 2 dependence. This is modelled in 
a similar way to the GRS approach, though fitted within the SaS framework. 
The SaS and GRV structure functions are compared in Figure 3.6.
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Figure 3.6: Comparison of the GRV LO and SaSlD parameterisations of F j .



Chapter 4 

Monte Carlo models

The main use for Monte Carlo in this analysis is for correcting detector effects. 
W ith a perfect detector, F% could be determined simply by measuring x and 
Q2 from the hadronic activity and the tagged electron, and counting events. 
However, much of the hadronic energy of 7 7  events is deposited in the non- 
tracking region of OPAL and is not well measured, so some way of estimating 
the missing energy is needed. This is done using Monte Carlo events (the 
actual technique used is called unfolding and is discussed later). For accurate 
correction of missing energy, the Monte Carlo program must provide a good 
model of the data, particularly of the distribution of the hadrons in the final 
state. Unfortunately even the best models are only an approximation, so 
it is necessary to make the best use of the available information from the 
detector.

Another use for Monte Carlo programs is in providing a description of 
the physics background, so that it can be subtracted from the data distri­
butions. Modelling error is not such a problem here because the percentage 
of background is small, and generally, background processes are accurately 
modelled, or at least accurately described. Events with leptonic final states 
can be generated using exact m atrix elements, while hadronic Monte Carlo

52
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generators can be tuned to fit the data.
For F2  measurements it is not enough to have a Monte Carlo model that 

gives a good description of the data, because the form of the final state 
depends on the input F2  as well as the final state model. W hat is needed 
are models that give the best possible description of the underlying physics, 
possibly tuned to other processes, but not to 7 7  data.

Since 7 7  interactions involve non-perturbative QCD and many-particle 
final states, they cannot be modelled exactly. Instead, Monte Carlo programs 
split the problem into several stages that are dealt with separately using 
various approximations. The stages are usually

• emission of photons from one or both of the beam electrons,

• the hard sub-process,

• parton showers, and

• hadronisation of the final state partons.

Different Monte Carlo programs emphasise different aspects of the prob­
lem. In HERWIG (Hadron Emission Reactions W ith Interfering Gluons) [43], 
the focus is on providing an accurate description of the parton showers, while 
simulating a wide variety of hard processes. PHOJET [44] concentrates on 
collisions of photons and hadrons, particularly in the consistent treatm ent 
of soft and hard interactions. The advantage of F2GEN [45] is simplicity (it 
is purely a 7 7  generator) combined with the ability to select different final 
state models, represented by the angular distribution of the outgoing quarks. 
In this analysis, F2GEN is used only in pointlike mode, which means that 
the distribution of the outgoing quarks is the same as would be expected for 
a pair of leptons.
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4.1 The luminosity function

The cross-section for 7 7  interactions in e+e“ events can be factorised into 
two parts, one describing the production of a two-photon state and another 
describing the interaction of the two photons:

d < W ^ +.-x  =  (4.1)

Only the transverse part of the cross-section is included here, because the 
longitudinal part is small when the virtuality of the target photon is small.

For nearly-real photons, the luminosity function factorises into two parts, 
one for each photon. This is the Equivalent Photon Approximation (EPA), 
in which the photon flux is determined from the splitting function

- £ ( 1 ^ ! - ^ ) .  <«)

HERWIG neglects the me2 / P 4 term, and in the DIS model, the EPA is only 
used for the target photon, not the probe photon. PHOJET and F2GEN use 
the full EPA for both photons.

In the structure functions, it is assumed that P 2 = 0. Although some 
parameterisations of include a prediction for the P 2 dependence, these 
predictions vary widely and were not used when generating events for this 
analysis.

4.2 The hard sub-process

Monte Carlo events are characterised by a single hard scattering, to which 
corrections are applied in the form of initial and final state radiation. The 
hard scattering is calculated using matrix elements.

A variety of hard processes are used in generating 7 7  events. The main 
examples are
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• DIS, eq —* eq,

• Direct, 7 7  —> qq,

• Photon-gluon fusion, g7  —> qq, and

• Gluon Compton scattering, qy —► qg.

These processes are illustrated in Figure 4.1. HERWIG uses the DIS pro­
cess, with the momentum fraction of the scattered quark taken from a parton 
distribution function selected by the user. F2GEN simulates only the di­
rect process, with the cross-section given by the selected structure function. 
F2GEN has a limited ability to simulate other processes by changing the 
angular distribution of the outgoing quarks. PHOJET simulates the direct
process along with the two resolved processes, using its own internal cross-
sections. This means that PHOJET cannot generate events according to a 
user-defined structure function, though a similar effect can be achieved by 
reweighting the events.

4.3 Soft and multiple interactions

At low W , the cross-section for 7 7  scattering is dominated by processes for 
which there is no hard scale, such as diffraction or Regge scattering. Soft and 
hard processes are usually separated by a pt cut. PHOJET contains a de­
tailed model of soft processes, including soft reggion and pomeron exchange. 
Soft and hard interactions are unitarised together, allowing for multiple soft 
and hard interactions in the same event. As soft interactions are not per- 
turbatively calculable, they are tuned to data, but the same model should 
be applicable to various types of events: hadron-hadron, photon-hadron or 
photon-photon. This gives the model some predictive power. HERWIG al­
lows optionally the generation of a Soft Underlying Event (SUE), which is
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(c)

Figure 4.1: Hard processes simulated by Monte Carlo programs. Particles 
taking part in the hard interaction are drawn with bold lines: (a) deep in­
elastic scattering, (b) direct 7 7  interaction, (c) photon-gluon fusion and (d) 
gluon Compton scattering.
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the interaction of the photon remnant with its nearest neighbour from the 
hard event. This increases the transverse energy of the event. The SUE 
is turned off by default, because of poor agreement with HERA data. The 
events used in this analysis were generated without the SUE option.

F2GEN does not model soft processes.

4.4 Parton showers

The partons involved in the hard scattering may emit radiation before or 
after the scattering. For example, a quark may emit a gluon, or a gluon may 
become a quark pair. The probabilities of such branchings are given by the 
DGLAP splitting functions. Initial state radiation is calculated backwards, 
away from the hard scattering, and final state radiation is calculated for­
wards. Partons emitted as part of a shower can undergo further splitting, 
which is always at a lower virtuality than previous emissions, to account for 
interference effects. The emission continues until a cut-off is reached.

HERWIG has routines for both initial and final state radiation. The 
parton entering the hard scattering may be evolved back to the target photon, 
in which case the event is classified as anomalous, or the cut-off may be 
reached first, in which case the event is classified as hadronic. The distinction 
has consequences for the treatm ent of the photon remnant.

PHOJET and F2GEN use JETSET [46] for final state radiation. F2GEN 
has no initial state radiation, while PHOJET incorporates its own model, 
similar to the one in HERWIG.

The parton shower model is accurate in the limits of soft and collinear 
radiation. In order to provide a more accurate treatm ent of hard radiation, 
HERWIG includes NLO m atrix elements, which are matched in phase space 
to the rest of the parton shower to avoid double counting.
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4.5 Hadronisation

All partons produced by initial and final state showering, as well as the 
photon remnant, enter the hadronisation or fragmentation stage, in which 
partons are converted to hadrons. Hadronisation is a complex problem which 
is not understood from first principles. However, several phenomenological 
models exist which describe most features of the data. The most commonly 
used models are cluster fragmentation [47] which is used in HERWIG, and 
string fragmentation [48], used in JETSET.

In the cluster model, partons form colour-singlet clusters which decay 
isotropically in their centre-of-mass frame to pairs of hadrons. The hadrons 
are selected at random from a table of posible decays. A few clusters may 
be too heavy for two-body decay to be reasonable; these are split to form 
lighter clusters. Clusters that are too light to decay to a pair of hadrons decay 
to a single hadron, exchanging 4-momentum with a neighbouring cluster to 
maintain energy and momentum conservation.

In the string model, pairs of quarks originating from parton showers or 
directly from the hard interaction are connected by colour strings. Gluons 
in the final state appear as kinks in the strings. As the quarks move apart, 
they give energy to the string, which has energy per unit length consistent 
with hadron spectroscopy data. Eventually the string fragments into pairs 
of quarks, which combine to form hadrons.

4.6 Radiative corrections

The Monte Carlo programs discussed in this chapter do not include radiative 
corrections to the DIS process (see Figure 4.2). These were evaluated using 
the RADEG program [49]. They are dominated by initial state radiation 
from the deeply inelastically scattered electron. Final state radiation is ex­
perimentally integrated out due to the finite granularity of the detector. The
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Compton scattering process in which the probe photon is emitted at a low 
angle but the electron is tagged dne to final state radiation at a large angle, 
contributes very little, and corrections due to radiation from the electron 
that produces the target photon have been shown to be small [50].

Figure 4.2: Radiative corrections to two-photon DIS.

RADEG performs the calculation using mixed variables, which means 
that W  is calculated from hadronic variables, while Q2 is calculated from 
electron variables. This means that x is calculated from both electron and 
hadronic variables, without using the energy of the target photon - as in 
the experimental analysis. Without the additional radiation, both sets of 
variables would be identical.

Radiative corrections to the Monte Carlo cross-section are calculated in 
bins of x and Q2, applying the experimental restrictions on 0tag, W  and 
the anti-tag angle. They are largest at low values of and will be used later



CHAPTER  4. M ONTE CARLO MODELS 60

to correct the measurement of FJ when using Monte Carlo samples without 
radiative corrections.

4.7 Tuning HERWIG

Accurate measurement of F*[ requires a Monte Carlo program with a good 
description of the hadronic final state. However, there are discrepancies 
between existing models and the data. For example, HERWIG 5.9 shows 
a less pointlike behaviour than the data in variables such as the transverse 
energy out of the tag plane,

E%ui — ^2  Ei>t | sin <j>i.tag I ( 4 . 3 )
i

where i runs over all particles in the hadronic final state, with transverse 
energy E{tt, and azimuthal angle <f>ittag measured from the tag. The differ­
ences also appear in the energy flow (the average hadronic energy per event 
deposited in the detector as a function of rapidity).

HERWIG 5.9+fct (dyn) is a modified version of HERWIG which gives an 
increased amount of transverse energy to the events. This is achieved by 
modifying the distribution of the transverse momentum of the struck parton 
in the target photon [51]. The default in HERWIG is an exponential distri­
bution; HERWIG 5.9+&t(dyn) uses a power law, which was originally tuned 
for photoproduction events at HERA [52]. The result is a small but notice­
able improvement in the agreement with the data distributions (Figure 4.3), 
and a shifting of energy flow towards the central region of the detector (Fig­
ure 4.4). The ‘dyn’ label refers to the fact that the cut-off for the exponential 
distribution is a function of Q2, and hence dynamic. In an earlier version, 
a fixed cut-off was used. HERWIG 5.9+fct(dyn) still falls short of the data 
at high E £ut. Further tuning would be possible, but has not been performed 
because tuning directly to 7 * 7  data might lead to biased measurements of
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Figure 4.3: Comparison of the transverse energy out of the tag plane, E£ut, 
for data and Monte Carlo. The sample is divided into three bins of x wis.
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LEP2 SW
□  HERWIG 5.9+kt(dyn) 
H  HERWIG 5.9

Rapidity

Figure 4.4: Comparison of hadronic energy flow per event as a function of 
pseudorapidity, rj = — log(tan(0/2)), where 0 is measured with respect to the 
beam axis on the tag side. The distributions for HERWIG 5.9 and HERWIG 
5.9+&t(dyn) are shown, at generator level, at cent re-of-mass energy 189 GeV.



Chapter 5 

Event Selection

5.1 The event samples

The largest data samples taken by OPAL prior to this analysis were at the 
energies 91 GeV, 184 GeV and 189 GeV. There are two tagging subdetectors, 
FD and SW. The beam energy and range of tagging angles in each sample 
determines the range of Q2 in which FJ can be measured (Equation 3.2). A 
lower tag angle also means that the minimum accessible value of x is lower. 
In order to measure to the lowest possible values of x, the SW detector is 
used for tagging at all beam energies. It happens that the range of Q2 for the 
data with electron tags in FD at LEP1 is approximately the same as for the 
data with electrons tagged in SW at LEP2. This gives a useful cross-check 
of the result.

Three samples of events are used, classified by the beam energy and the 
tagging subdetector. They are referred to as the LEP1 SW, LEP1 FD and 
LEP2  SW samples. The 183 GeV and 189 GeV data cover a similar region 
of x and Q2 and are both included in the LEP2 SW sample.
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5.2 Event reconstruction

The program ROPE (Reconstruction of OPal Events) is used to transform 
raw data from OPAL into a list of tracks and clusters that can be used for 
analysis. It also provides the basic framework for physics analysis. ROPE 
can be run on real or simulated data, ensuring that the same code is used 
for data and Monte Carlo events.

The first step in a 7 * 7  analysis is to flag candidate events, so tha t they can 
be accessed with greater efficiency later. This is performed by the subroutine 
RTWOPH in ROPE. It has very loose requirements and many events selected 
by RTWOPH are rejected in later stages of the analysis. RTWOPH requires 
two good tracks and an energy deposit of 35% of the beam energy in FD, 
SW or EE. The conditions for a good track are that

• there are at least 20 hits in CJ,

• the minimum distance in r-<j> from the interaction point, d0 < 2.5 cm,

• the minimum distance in z from the interaction point, z0 < 50 cm,

• the radius of first measured point in CJ is less than 75 cm, and

• the transverse momentum pt > 0.1 GeV.

5.2.1 Detector status

For every run, each subdetector is given a status code indicating how well it 
is working. These codes are described in Table 5.1. For those subdetectors 
that are vital for the analysis, a status code of 3 is required. These are the 
tracking detectors CV and CJ, the electromagnetic calorimeters EB and EE, 
and the tagging subdetectors FD and SW.
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Status code Description
0 dead or off
1 unreliable
2 minor problems
3 fully functional

Table 5.1: Description of the subdetector status codes.

5.2.2 Track quality requirements

In order for a track to be accepted for use in the analysis, it has to satisfy 
certain quality requirements. These are designed to reject tracks originating 
from, for example, particles backscattered in the solenoid, beam gas inter­
actions or cosmic rays. The requirements (stricter than those in RTWOPH) 
are that

• there are at least 20 hits in CJ,

• the number of hits in CJ is at least half the number of expected hits 
for the track,

• the minimum distance in r-<f> from the interaction point, d0 < 2.5 cm,

• the minimum distance in z from the interaction point, z0 < 30 cm,

• the transverse momentum pt > 0.12 GeV, and

• the angle 0 of the track satisfies | cos 0\ < 0.9622.

5.2.3 Cluster quality requirements

To remove clusters due to noise from the analysis, there are also quality 
requirements for clusters. First, all clusters are compared to a list of known



CHAPTER 5. E V E N T SELECTION 66

‘hot’ clusters, and the cluster is rejected if its energy is below the threshold 
for the expected noise. There are further requirements depending on the 
subdetector, which are listed in Table 5.2.

subdetector Exnin (GeV) other conditions
EE 0.25 at least 2  adjacent lead-glass blocks
EB 0 .1 at least 1 lead-glass block
HB 0 .6 at least 1 tower
HE 0 .6 at least 1 tower
HP 0 at least 1 tower
FD 1 .0 at least 2 0 % in the main calorimeter
SW 2 .0 -

Table 5.2: Quality requirements for calorimeter clusters.

5.2.4 Track-cluster matching

Particles leaving tracks in the central tracking region will usually also leave 
clusters in the electromagnetic or hadronic calorimeters. In order to avoid 
double-counting it is necessary to match clusters and tracks in the same 9-<f> 
region. This is done by the MT package [53].

MT takes the list of accepted tracks and clusters, and outputs a list of 
4-vectors. In the matching process, there are three possibilities for a track 
and cluster. The first is that they do not match in 8 and <j>, in which case 
both the track and cluster are used. The second is that they match, and the 
energy of the cluster is less than that expected for the track plus a certain 
tolerance. In this case the cluster is discarded and only the track is used, 
because the energy resolution of the tracking system is usually better than 
that of the calorimeters. The third possibility is that the track and cluster 
match, but the cluster energy is too large for it to be accounted for by the
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track alone. In this case the energy of the cluster is reduced by the amount 
expected from the track, and both the track and the reduced-energy cluster 
are used.

Clusters from the forward region (FD and SW) are not matched to tracks, 
as the tracking system does not extend to such low angles.

5.3 Final selection cuts

To select the events to be used in the final analysis, cuts are made on the 
tagged electron and on the hadronic final state. The aim of these cuts is 
to reduce background while retaining a high efficiency for 7 * 7  events. The 
variables on which cuts are applied are

• the energy of the tagged electron, E t&g,

• the angle of the tagged electron, 0ttig,

• the energy of the most energetic cluster on the opposite side of the
detector to the tag (the anti-tag), Ea,

• the number of charged tracks, N&,

• the number of tracks identified as electrons from their d E /d x  weight,
N e and

• the invariant mass of the hadronic final state, Wvis.

The cuts applied to each of the data samples are listed in Table 5.3. The 
reasons for these cuts are explained in the following section, which discusses 
background.
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cut L E P 1SW LEP1 FD L E P 2 SW
-Etag/^b min 0.75 0.775

0 tag min [mrad] 27 60 33.25
0 tag max [mrad] 55 120 55

E &/E ^  max 0.25
ATch min 3 (2 non-electron tracks)

Wvis min [GeV] 2.5
WviB max [GeV] 40 60

Table 5.3: The selection cuts applied to each data sample.

5.4 Background

There are many processes that could potentially produce a background to 
7 * 7  events. It is important to know which of these are significant and to 
exclude them as far as possible from the data sample when measuring FJ. 
The main tool used for for understanding background is Monte Carlo sim­
ulation. Standard OPAL Monte Carlos samples were used to estimate the 
contributions from the processes described in this section. The details of the 
Monte Carlo samples and the number of events passing the final cuts are 
listed in Tables 5.4 and 5.5.

5.4.1 Hadron production from e+e~ annihilation

At LEP1 there are many more hadronic Z° decay events than 7 * 7  events, 
so they could form a significant background. They are likely to pass the 
minimum N ch and minimum WY1S cuts, but usually do not have a high-energy, 
low-angle particle to act as a tag. Therefore, the tag requirements reduce 
this background considerably. The remaining hadronic events tend to have 
higher WYiS than 7 * 7  events, so a maximum Wvis cut is applied. This cut is 
higher at LEP2 because the cross-section for hadronic events is lower than at
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Y/Z< y/Z<

(a) (b)

Figure 5.1: Hadron production from Z° decay: (a) non-radiative, (b) radia­
tive return.

LEP1, and also because Wwi8 for 7 * 7  events at LEP2 is higher than at LEP1, 
due to the higher beam energy. At LEP2 the radiative photon can provide a 
tag.

5.4.2 Tau pair production from Z° decay

T~

Figure 5.2: Tau pair production from Z° decay.

These events have similar characteristics to the hadronic Z° decays except 
that the total visible energy may be lower due to the neutrinos from tau 
decay, so the WY1S cut is not so effective in removing these events. However, 
the cross-section is much lower than that of hadronic Z° decay.
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5.4.3 Lepton pair production in two-photon events

Figure 5.3: Lepton pair production in two-photon events.

These events are similar to hadronic 7 * 7  events, but leptons are produced 
in the two-photon collision instead of quarks. These events produce tagged 
electrons and so must be rejected by requirements on the hadronic final 
state. Having only two leptons in the final state, the electron-pair and muon- 
pair events usually fail the minimum cut. However, it is possible for a 
single particle to produce more than one track in the reconstructed event, 
for example by bremsstrahlung or bad reconstruction of a track, so some 
events survive the cut. This is much more likely to happen for electrons 
than for muons. An additional cut is made on the number of identified 
electrons, which further reduces the electron-pair background. Very little 
can be done to reduce the two-photon tau-pair background, but it is well 
modelled in Monte Carlo and can be subtracted from the data distribution 
when measuring

5.4.4 W  pair production

At LEP2, W  pairs can be produced. They are rejected in a similar way 
to the hadronic Z° decays, but the cross-section is much lower than tha t of
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■+

y/Z* W "W"

(a)

Figure 5.4: W pair production and decay: (a) annihilation, (b) conversion, 

the Z° events at LEP1 and this background is small enough to neglect.

5.4.5 Non-multiperipheral four-fermion events

There are other processes besides two-photon events that produce four- 
fermion final states, but none have a high cross-section or a high probability 
to produce a tagged electron. The background from these processes is negli­
gible.

5.4.6 Double-tagged two-photon events

These are the same type of events that make up the signal, but with a high 
enough value of P 2 that both of the scattered beam electrons are seen in 
the detector. The cross-section for 7 *7 * events is much lower than for 7 * 7  

events, but is not negligible. These events could cause several problems for 
the analysis: firstly, the approximation of real target photons breaks down 
for these events; secondly, they are not in the Monte Carlo samples that are 
used for comparison with the data, and thirdly, the second tagged electron 
would be included in the measurement of WviB, leading to an over-estimation 
of the hadronic energy. To reduce the number of these events, an anti-tag 
requirement is made on the energy of the most energetic cluster in the side
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(a)

e"

(c)

(b)

Figure 5.5: Non-multiperipheral four-fermion production: (a) annihilation, 
(b) bremsstrahlung, (c) conversion.

of the detector opposite the tag. This also has the effect of limiting the 
amount of energy that may be mistakenly included in the final state, for 
those double-tagged events which pass the cut.

5.4.7 Off-momentum electrons

If an electron interacts with gas in the beam pipe, it can be deflected 
by the focusing quadrupoles on either side of the OPAL detector at a suf­
ficient angle to be observed in SW or FD. If this occurs at the same time 
as a hadronic Z° decay or untagged two-photon event, the combination can 
look like a tagged 7 * 7  event. Unlike physics events, these events are not 
symmetrical in <f>. It is possible to see the effect of off-momentum electrons 
at low values of E t&g in the <f> distribution (Figure 5.6). It can also be seen 
that above the minimum E tag cut this background is negligible.
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Figure 5.6: Energy against polar angle for the tagged electrons in the LEP2 
SW sample. The dashed line represents the cut on the tag energy.

5.5 E stim a tio n  o f  th e  trigger effic iency

5.5.1 E stim ation  o f  trigger efficiency for th e FD  

sam ple

Calculation of the trigger efficiency involves the use of two triggers that are 
statistically independent, i.e. the probability of one trigger firing is the same 
whether the other trigger fires or not.

With two triggers, A and B, the sample of N  events can be divided into 
three classes:

• Aa events in which only trigger A fires,

• N b events in which only trigger B fires, and

• Aab events in which both triggers fire.
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It is assumed that all relevant triggers are contained in either A or B, so that 
events in which neither trigger fires are not recorded.

The efficiencies of triggers A and B are

N ab N ab (5.1)
A (Wab +  JVb ) ’ b£B (JVa b  +  ^ a ) ‘

If A and B are independent, the total trigger efficiency is

CTOT =  +  CB — eA eB* (5.2)

For events with electrons tagged in FD, there are separate triggers for 
the tagged electron and for the hadronic final state. It is assumed that these 
triggers are independent, and the efficiency is calculated according to the
method described above, using the following triggers:

• T rigger A:
FDHIOR,

• T rigger B , logical OR of:
TPTTTO 1

TPTTEM 2

TM3
TPTOEM
((TBMl.or.EBTOTLO).and.(LCALLO.or.RCALLO))
(TMl.and.(EELLO.or.EERLO.or.EBTOTLO)).

A description of these triggers signals is given in Table 2.1.

5.5.2 Estimation o f trigger efficiency for the SW  
samples

For events with electrons tagged in SW, there is no trigger for the tagged 
electron that is independent of the hadronic final state triggers, because a

1Ftom 1993, TPTTTO requires a coincidence with TBEBS.
2From 1993, TPTOEM requires a coincidence with EBWEDGE.



CHAPTER 5. E V E N T SELECTION 77

coincidence is required with the tracking or ECAL triggers. In this case, it 
is necessary to use a third trigger to check the correlation of the first two 
triggers. The third trigger is used to define a subset of N ' events, which 
can be classified in a similar way to the case with two triggers described in 
Section 5.5.1 (but there is now an additional class):

• Anot events in which neither A nor B fire,

• jVa events in which only trigger A fires,

• N b events in which only trigger B fires, and

• ATAb events in which both triggers fire.

The correlation of triggers A and B for the subset of events in which trigger 
C fires is

CorrAB =  (5.3)
<TA<Tb

where the efficiencies are now given by

N ab  +  A a  N ab  +  N b N a b
=  jp ---- 1 eB = ------- j p  , eAB =  - jp -  (5.4)

and the standard deviations are

<?a =  ca(1 -  eA), ctb =  £b(1 -  eB). (5.5)

It is assumed that the correlation of triggers A and B is independent of the
firing state of trigger C. If the correlation between triggers A and B is small, 
a lower estimate for the total trigger efficiency is

ctot  = €a +  cb — ca€b- (5.6)

It is a lower estimate because it does not include the effect of trigger C on
the total efficiency.

The triggers used to estimate the efficiencies for the SW tagged samples 
were
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(Q2) [GeV2] sample luminosity [pb *] events Q2 range [GeV2]
1.9 LEP1 SW 74.6 4356 1.5-2.5
3.7 4010 2.5-6.0
8.9 LEP1 FD 97.8 1909 6 .0 - 1 2 .0

17.5 1578 12.0-30.0
10.7 LEP2  SW 222.9 4593 7.0-13.0
17.8 5495 13.0-30.0

Table 5.6: The integrated luminosity, number of selected events in the data, 
Q2 range, and trigger efficiency for each data sample. The error on the trigger 
efficiency is estimated to be about 1 %.

• T rig g er A, logical OR of:
SWHIOR.and.(TPEML.or.TPEMR) (not active in 1993) 
SWHIOR.and.TBMl
TPTT TO 3 .and.TBEBS
(TPEM L.and.TPTTR).or.(TPEM R.and.TPTTL),

• T rig g er B , logical OR of: 
(T M l.or.T PT 01 4 ).and.(EELL0.or.EERL0.or.EBT0TL0) 
TPTOEM 5 .and.EB WEDGE,

• T rig g er C 
TPTTEM .

3Renamed TPTTOB in 1996
4Renamed TPTOB in 1996
5Renamed TPTOEMB in 1996
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5.6 Comparison of data with Monte Carlo 
predictions

Figures 5.7 to 5.24 show data distributions compared to Monte Carlo for a 
number of variables.

The cross-section for the selected events is similar in the data and Monte 
Carlo samples, though the data is significantly higher than both HERWIG 
5.9+&t(dyn) and PHOJET 1.05 in the LEP1 SW sample.

The variables relating to the tagged electron (Etag/E b , 9tag and Q2) are 
generally well described by both Monte Carlo models (Figures 5.7 to 5.12). 
The cuts on the Q2 distributions show how the samples are each divided into 
two Q2 regions for the F% measurement.

The LEP1 SW data shows a higher peak at low E &/E}y than either of 
the Monte Carlo samples. This suggests that the energy distribution of the 
particles in the final hadronic state is not perfectly described. The anti­
tagged electrons do not influence this plot very much, as they are mostly at 
higher values of EA/E}>.

PHOJET 1.05 has too few events at low W y which is a known problem 
with the program. For the unfolding, PHOJET 1.05 is reweighted in x  (and 
therefore in W ) to match HERWIG 5 .9 -f &t(dyn). For the plots in this section, 
the unweighted distributions are shown. The difference between HERWIG 
5.9+fet(dyn) and PHOJET 1.05 can be clearly seen in the x vls distributions; 
Figures 5.16, 5.17 and 5.18.

There are some differences in the N& distributions (Figures 5.13b, 5.14b 
and 5.15b), with the Monte Carlo samples having on average fewer tracks 
than the data.

The variables E ^ / E totei (Equation 4.3) and E{OI/E totai are designed to 
be sensitive to the angular distribution of the hadrons in the final state. 
EfOI is the total energy measured in SW and FD. These variables show that
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the data has more energy in the central region of the detector than either 
of the Monte Carlo models (Figures 5.13, 5.14 and 5.15). This can also be 
seen in the energy flow plots; Figures 5.22, 5.23 and 5.24. Large peaks in 
the central region are characteristic of the ‘pointlike’ QED coupling of two 
photons. F2GEN, an entirely pointlike model, has peaks above the data in 
the central region.
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Figure 5.7: Comparison of data distributions with Monte Carlo predictions 
for the LEP1 SW sample. The dominant background source, 7 * 7  —» r +r _ , 
the total background and the sum of the signal and the total background 
for HERWIG 5.9Tfct (dyn) and PHOJET 1.05 are shown. The Monte Carlo 
samples have been normalised to the data luminosity. All selection cuts have 
been applied, except for any cut on the variable in the plot. The cuts are 
shown as dotted lines. The errors are statistical only. The distributions 
shown are: a) E t^ /E ^ ,  the energy of the tagged electron as a fraction of the 
beam energy, and b) #tag? the polar angle of the tagged electron.
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Figure 5.8: Comparison of data distributions with Monte Carlo predictions 
for the LEP1 FD sample. The dominant background sources, 7 * 7  —> r +r~ 
and Z° —> hadrons, the total background and the sum of the signal and the 
total background for HERWIG 5.9+fct(dyn) and PHOJET 1.05 are shown. 
The Monte Carlo samples have been normalised to the data luminosity. All 
selection cuts have been applied, except for any cut on the variable in the 
plot. The cuts are shown as dotted lines. The errors are statistical only. The 
variables in the plots are as defined in Figure 5.7.

e 1 1 • 1 1 r
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Figure 5.9: Comparison of data distributions with Monte Carlo predictions 
for the LEP2 SW sample. The dominant background source, 7 * 7  —> t + t ~ ,  

the total background and the sum of the signal and the total background 
for HERWIG 5.9-t-fct (dyn) and PHOJET 1.05 are shown. The Monte Carlo 
samples have been normalised to the data luminosity. All selection cuts have 
been applied, except for any cut on the variable in the plot. The cuts are 
shown as dotted lines. The errors are statistical only. The variables in the 
plots are as defined in Figure 5.7.



Ev
en

ts 
E

ve
nt

s
CHAPTER 5. EVENT SELECTION 84

2000 # OPAL LEP1 SW
175() F —  HERWIG 5.9+kt(dyn) 

F - -  PHOJET 1.05
1500

(a) :

H y  y->x t  

—  total background
1250

1000

750

500

250

0

Q2 [GeV2]

3000 -

Ea/Eb

Figure 5.10: Comparison of data distributions with Monte Carlo predictions 
for the LEP1 SW sample. The dominant background source, 7 * 7  —> t + t ~ ,  

the total background and the sum of the signal and the total background 
for HERWIG 5.9+fet (dyn) and PHOJET 1.05 are shown. The Monte Carlo 
samples have been normalised to the data luminosity. All selection cuts have 
been applied, except for any cut on the variable in the plot. The cuts are 
shown as dotted lines. The errors are statistical only. The distributions 
shown are: a) the measured Q2, and b) E&/E\>, the energy of the most ener­
getic electromagnetic cluster in the hemisphere opposite the tagged electron, 
as a fraction of the beam energy.
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Figure 5.11: Comparison of data distributions with Monte Carlo predictions 
for the LEP1 SW sample. The dominant background sources, 7 * 7  —> r +r “ 
and Z° —* hadrons, the total background and the sum of the signal and the 
total background for HERWIG 5.9+fct(dyn) and PHOJET 1.05 are shown. 
The Monte Carlo samples have been normalised to the data luminosity. All 
selection cuts have been applied, except for any cut on the variable in the 
plot. The cuts are shown as dotted lines. The errors are statistical only. The 
variables in the plots are as defined in Figure 5.10.
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Figure 5.12: Comparison of data distributions with Monte Carlo predictions 
for the LEP2 SW sample. The dominant background source, 7 * 7  —> t + t " ,  

the total background and the sum of the signal and the total background 
for HERWIG 5.9+&t(dyn) and PHOJET 1.05 are shown. The Monte Carlo 
samples have been normalised to the data luminosity. All selection cuts have 
been applied, except for any cut on the variable in the plot. The cuts are 
shown as dotted lines. The errors are statistical only. The variables in the 
plots are as defined in Figure 5.10.
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Figure 5.13: Comparison of data distributions with Monte Carlo predictions 
for the LEP1 SW sample. The dominant background sources, 7 * 7  —> r +r _ , 
Z° —> hadrons and 7 *7 *—> hadrons (P 2 > 1.0 GeV2), the total background 
and the sum of the signal and the total background for HERWIG 5.9+/et(dyn) 
and PHOJET 1.05 are shown. The Monte Carlo samples have been nor­
malised to the data luminosity. All selection cuts have been applied, except 
for any cut on the variable in the plot. The cuts are shown as dotted lines. 
The errors are statistical only. The distributions shown are: a) WV1S, the 
measured invariant mass of the hadronic final state, and b) Nch, the number 
of charged tracks in the event.
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Figure 5.14: Comparison of data distributions with Monte Carlo predictions 
for the LEP1 FD sample. The dominant background sources, 7 * 7  —> r +r _ , 
Z° —> hadrons and 7 *7 *—̂► hadrons (P 2 > 1.0 GeV2), the total background 
and the sum of the signal and the total background for HERWIG 5.9+/et(dyn) 
and PHOJET 1.05 are shown. The Monte Carlo samples have been nor­
malised to the data luminosity. All selection cuts have been applied, except 
for any cut on the variable in the plot. The cuts are shown as dotted lines. 
The errors are statistical only. The variables in the plots are as defined in 
Figure 5.13.
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Figure 5.15: Comparison of data distributions with Monte Carlo predictions 
for the LEP‘2 SW sample. The dominant background sources, 7 * 7  —» r +r “ , 
Z° —> hadrons and 7 *7 *“ > hadrons (P 2 > 4.5 GeV2), the total background 
and the sum of the signal and the total background for HERWIG 5.9+&t(dyn) 
and PHOJET 1.05 are shown. The Monte Carlo samples have been nor­
malised to the data luminosity. All selection cuts have been applied, except 
for any cut on the variable in the plot. The cuts are shown as dotted lines. 
The errors are statistical only. The variables in the plots are as defined in 
Figure 5.13.
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Figure 5.16: Comparison of the data xvis distribution with Monte Carlo 
predictions for the LEP1 SW sample. The dominant background source, 
7 * 7  —> r +r~ , the total background and the sum of the signal and the total 
background for HERWIG 5.9+&t(dyn) and PHOJET 1.05 are shown. The 
Monte Carlo samples have been normalised to the data luminosity. All se­
lection cuts have been applied, except for any cut on the variable in the plot. 
The cuts are shown as dotted lines. The errors are statistical only.



CHAPTER  5. EV EN T SELECTION 91

— HERWIG 5.9+kt(dyn) 
1000 b  - PHOJET 1.05

800

600

400

200

OPAL LEP1 FD

m  y y—>x x
Zjj—> hadrons

—  total background

*og(xvJJ

Figure 5.17: Comparison of the data x wls distribution with Monte Carlo 
predictions for the LEP1 FD sample. The dominant background sources, 
7 * 7  —> t + t ~  and Z° —» hadrons, the total background and the sum of the 
signal and the total background for HERWIG 5.9+/?t (dyn) and PHOJET 
1.05 are shown. The Monte Carlo samples have been normalised to the data 
luminosity. All selection cuts have been applied, except for any cut on the 
variable in the plot. The cuts are shown as dotted lines. The errors are 
statistical only.
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Figure 5.18: Comparison of the data x vis distribution with Monte Carlo 
predictions for the LEP2  SW sample. The dominant background source, 
7 * 7  —> t +t~ ,  the total background and the sum of the signal and the total 
background for HERWIG 5.9+/et(dyn) and PHOJET 1.05 are shown. The 
Monte Carlo samples have been normalised to the data luminosity. All se­
lection cuts have been applied, except for any cut on the variable in the plot. 
The cuts are shown as dotted lines. The errors are statistical only.
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Figure 5.19: Comparison of data distributions with Monte Carlo predictions 
for the LEP1 SW sample. The dominant background source, 7 * 7  —> t + t ~ ,  

the total background and the sum of the signal and the total background 
for HERWIG 5.9+fct (dyn) and PHOJET 1.05 are shown. The Monte Carlo 
samples have been normalised to the data luminosity. All selection cuts have 
been applied, except for any cut on the variable in the plot. The cuts are 
shown as dotted lines. The errors are statistical only. The distributions 
shown are: (a) E^V-^'totai? the transverse hadronic energy out of the plane 
containing the beam line and the tagged electron, divided by the total ob­
served energy, and (b) Efor/E tot&i, the observed energy in the forward regions 
divided by the total observed energy.



CHAPTER 5. EV EN T SELECTION 94

1600 ^  1 1 1 ( 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 [ 1 ' 1 1 | 1 1 1 1 | 1 1 r 
c  • OPAL LEP1 FD [<] Z0-4 hadrons (a) I
>  1400 —  H E R W IG  5 .9 + k t(d y n ) —  total background
*  F - -  P H O JE T  1.05

1200 — _
H  y y->x x

1000 -

800 F-

600 [
F

400 F-t
200 F-

0 U  I , I I L I L 1 . L  L I  1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IX )u t fT?

T tot

B 4000

a  3500

3000

2500

2000

1500

1000

500

0 0.1 0.3 0.7 0.8 0.9 10.2 0.4 0.5 0.6

tot

Figure 5.20: Comparison of data distributions with Monte Carlo predictions 
for the LEP1 FD sample. The dominant background sources, 7 * 7  —> t +t ~ 
and Z° —> hadrons, the total background and the sum of the signal and the 
total background for HERWIG 5.9+fct(dyn) and PHOJET 1.05 are shown. 
The Monte Carlo samples have been normalised to the data luminosity. All 
selection cuts have been applied, except for any cut on the variable in the 
plot. The cuts are shown as dotted lines. The errors are statistical only. The 
variables in the plots are as defined in Figure 5.19.
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Figure 5.21: Comparison of data distributions with Monte Carlo predictions 
for the LEP2 SW sample. The dominant background source, 7 * 7  —> r +r “ , 
the total background and the sum of the signal and the total background 
for HERWIG 5.9T&t(dyn) and PHOJET 1.05 are shown. The Monte Carlo 
samples have been normalised to the data luminosity. All selection cuts have 
been applied, except for any cut on the variable in the plot. The cuts are 
shown as dotted lines. The errors are statistical only. The variables in the 
plots are as defined in Figure 5.19.
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Figure 5.22: Comparison of hadronic energy flow per event as a function of 
the pseudorapidity, rj = — log(tan(0 / 2 )), where 0 is measured with respect 
to the beam axis on the tag side, for the LEP1 SW sample. The samples are 
divided into three bins of £vis. The errors are statistical only.
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Figure 5.23: Comparison of hadronic energy flow per event as a function of 
the pseudorapidity, 77 =  — log(tan(0 / 2 )), where 0 is measured with respect 
to the beam axis on the tag side, for the LEP1 FD sample. The samples are 
divided into three bins of x vls. The errors are statistical only.
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Figure 5.24: Comparison of hadronic energy flow per event as a function of 
the pseudorapidity, rj = — log(tan(0/2)), where 0 is measured with respect 
to the beam axis on the tag side, for the LEP2 SW sample. The samples are 
divided into three bins of £vis. The errors are statistical only.
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Chapter 6 

U nfolding

W ith a perfect detector, FJ could be determined simply by measuring the 
distribution of events in x  and Q2. In practice this is not possible because

• not all events are observed, due to the finite efficiency of the detector,

• the measured value of x is smeared because of the limited resolution of 
the detector, and there are migrations from one region of x  to another, 
and

• there is some contamination from background events.

W ithout correcting for detector effects it would be impossible to compare to 
the results of other experiments, and comparisons with theoretical predictions 
would be difficult. The correction involves using Monte Carlo events that 
have been passed through a simulation of the detector.

Background from physics processes is simulated and subtracted from 
the measured distributions. Non-physics background such as caused by off- 
momentum electrons cannot be easily simulated, but is excluded by the se­
lection cuts.

The most difficult detector effects to correct are limited resolution and 
migration. This is because the problem is ill-defined: it is unstable against

99
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small changes in the initial system, and a given measured distribution could 
have arisen (within statistical errors) from a wide range of different true 
distributions. To avoid this problem, it is usually necessary to assume some­
thing about the answer, typically that it is a smooth distribution, which is a 
reasonable assumption in the case of structure functions.

Resolution, migration and detection efficiency can be corrected simulta­
neously by unfolding. There are several unfolding programs available. For 
this analysis, GURU [60] was used as the main unfolding program. The re­
sults from GURU were compared to those from RUN [61] and a Bayesian 
unfolding program [62] (referred to in this thesis as BAYES).

6.1 The unfolding problem

In general, the effect of an imperfect detector can be described by a response 
function A, defined by

g(y) = J  A(x,  y ) f ( x )  dx +  b(y). (6 .1 )

The function f ( x )  is the true distribution to be measured. The function g(y) 
is the ‘expected’ measured distribution, and b(y) is the total background. 
Because the true and measured variables can be different, they are called 
x and y  respectively. The function g(y) differs from the actual measured 
distribution d(y), because of statistical errors e(y);

d(y) = J  A ( x , y ) f ( x ) d x  + e(y). (6 .2 )

For simplicity in subsequent formulae, d(y) is defined to be the background- 
subtracted distribution.

To solve the problem numerically, the distributions must be discretised. 
Equation 6.1 becomes

gj = '52Aijf i + bj . (6.3)
»=i
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A{j is the probability for an event in bin i of the true distribution (with n 
bins) to be detected in bin j  of the measured distribution (with m bins), 
Equation 6.3 can also be expressed as a matrix equation,

9 =  A f  +  b (6.4)

where A  is an n  x m  matrix and g, b and /  are vectors corresponding to the 
distributions.

If A - 1  exists, and in the absence of statistical errors, this equation can 
be solved very easily;

/  =  A - 'd .  (6.5)

The matrix A  is determined from Monte Carlo simulation. (The vector /  
means an estimate for /  derived from the data. This notation will be used 
again for different estimates).

The problem with Equation 6.5 is that the errors e have been neglected. 
Error propagation typically gives very large errors for / ,  even if e is small
compared to d. An intuitive way to understand why this happens is to
consider the nature of the matrix A.  In most problems it is a smoothing 
matrix, which means that events in a certain x bin will be smeared out 
into several y bins, because of the limited resolution of the detector. High 
frequency components in /  will be reduced by the smearing. This means that 
the inverse of A  must amplify the high-frequency components in d. But these 
components are small, and impossible to measure because of the statistical 
errors, which are also a high-frequency component. Thus the errors receive 
a large weight from the direct inversion method.

To reduce statistical fluctuations, the solution needs to be regularised. 
This procedure is described in the next section.
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6.2 Unfolding programs

6.2.1 Regularised unfolding using singular value de­
composition (GURU)

The singular value decomposition (SVD) of a matrix A  is the factorisation

A =  USVT (6.6)

with UT = V ~ \ V T =  V - 1 and Si3 =  0 for i f  j ,Su  >  0.
It is useful in many problems involving matrices, including unfolding. 
GURU uses a least squares fit of the form

j= 1 V e3 )

where ej is the error on the jth. measurement and /» is the estimate of the 
true distribution1. The general case with correlated errors can be written in 
matrix form as

( A f  — d)T E~1( A f  — d) =  min (6 -8 )

where E  is the covariance matrix of the data d. The matrix E  can be de­
composed using SVD to rewrite this equation in a form that is easier to work 
with:

E  = Qt R Q , (6.9)

R j j1 =  r) for j  = j ,  Rjji =  0 for j '  ^  j

Then, defining A'-  =  ^  Qjj'Aij> and dj = -L Y,™=i Qjj 'dj ' leads to

( A ' f  — d')T(A ' f  — d!) = min. (6.10)

1In GURU, the unfolded distribution is actually the ratio of the Monte Carlo and data 
true distributions. This makes little practical difference to the procedure.
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A regularisation term can now be introduced:

(.A ' f  -  d')T( A ' f  -  d') +  r ( C f ) T( C f )  =  min. (6.11)

r  is the regularisation parameter as described in the previous section and C 
is a matrix giving the degree of curvature of / .

In one dimension a possible definition of curvature is

r = £[(/m  -  f i )  -  ( f i  -  L i ) f (6.12)

and the corresponding form of C is

C =

- 1 1 0 0

1 - 2 1 0

0 1 1 to 1

\

1 - 2  1 
1 - 1

(6.13)

This is the default form of C in GURU. It is possible to change C, which 
allows the possibility of multi-dimensional unfolding.

The unfolding proceeds with the following stages:

1. The curvature matrix is made equal to the identity matrix by defining 
/  —> C f  as the solution vector, and A ' —► A 'C - 1  as the response matrix.

2. The new response matrix is decomposed using SVD to give

A 'C - 1 =  U S V T (6.14)

with Sij = S{ for i = j , Sij = 0  for i /  j ,  and the rows are ordered so 
that Si is a non-increasing vector.
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3. The system is first solved for r  =  0:

U S V TC f  =  d'. (6.15)

A rotated vector is defined:

frot =  V TC f  (6.16)

and the nnregularised solution for f rot is

u  -  s s a .  (6 , , )

4. The regularised solution can now be found by weighting the rotated 
solution;

U , i  -  U , i  ( ^ 7 )  • (6.18)

Weighting the rotated solution in this way is equivalent to introducing 
non-zero r  in Equation 6.11 [63].

5. Finally, the unrotated solution is found using

/  =  C - ' V U -  (6-19)

The weighting procedure relates the regularisation parameter to the Num­
ber of Degrees of Freedom (NDF) by

NDF =  E ( ^ ) -  (6.20)

This is the sum of the weights applied to the rotated function.
An example of unfolding using GURU is shown in Figures 6.3 and 6.4.

In this example, the number of degrees of freedom to be used is determined 
from the statistical significance of the values of d{. Because of the way that
the input covariance matrix E  is transformed using SVD, the vector d{ has
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a unit covariance matrix. For large enough, values of i, di is expected to 
be consistent with zero. This can be seen in Figure 6.3c, where di falls 
exponentially to a constant of about 1 . The GURU program uses statistical 
tests to find the number of significant values of <f», which gives the number 
of degrees of freedom and hence r  from Equation 6.20.

6.2.2 Regularised unfolding using B-splines (RUN)

RUN is a regularised unfolding program by V. Blobel.
Distributions in RUN are parameterised as B-splines, rather than given 

as simple histograms. This means that the output is a continuous function 
which can be re-binned if desired.

It is easiest to begin by describing the unregularised solution. A maximum 
likelihood fit is performed to the function

m
S ( f )  =  - £ l n p (dj\Si) (6.21)

>=i
where P(dj\gj) is the initial probability of observing dj events in the j th
bin given an expectation of gj =  ££!-i A{jf{. It is given by the Poisson
distribution, in which

e~BB A
P(A\B)  =  — — . (6.22)

Disregarding constant terms which are irrelevant to the minimisation, Equa­
tion 6 .2 1  becomes m

S ( f )  = -  X X ft -  di log(&))- (6-23)
j=l

Assuming a quadratic form for S,

A S( f )  = - ( A  f f h  + i ( A / ) r J? (A /) (6.24)

where A S =  the change in S  arising from change A / ,  and

d / i  j = i  V 9 > J
(6.25)
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Hih =  = ( 6 -2 6 )  d f i d f k p ,  \  9j J

The minimum condition is A S  = 0. This suggests using A /  =  H _1h as 
an iteration step. Convergence is usually reached after a few iterations.

W ithout regularisation, the solution is identical to that obtained by direct 
inversion, with the same large fluctuations. To regularise the solution, a new 
term  is added to the function to be minimised:

r ( f )  =  J [ f " ( x )]2dx (6.27)

where / "  is the second derivative of / .  This term  measures the smoothness 
of the solution. It is multiplied by a regularisation parameter r .  The new 
function to be minimised is

R( f )  =  S ( f )  +  rr ( f ) .  (6.28)

If r  is zero, there is no regularisation. If r  is large, the solution will be biased 
towards a smooth solution. In discrete form, the second derivative f ”(x)  is 
found using a regularisation matrix C , which follows a similar principle to 
the GURU regularisation matrix, but has a different form due to the use of 
spline functions in RUN. In m atrix form, the regularisation term is

r ( f )  = r f TC f .  (6.29)

A similar method to the one described above for the unregularised solution 
is used to solve the regularised system. Full details are in the RUN docu­
mentation.

6.2.3 Bayesian unfolding (BAYES)

Bayes’ theorem can be stated as

P(cause|effect) oc P (effect|cause) x  P0 (cause). (6.30)
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In the context of unfolding, a ‘cause’ is an event in a certain bin of the
true distribution, and an ‘effect’ is a event in another bin of the measured
distribution. The probabilities P(effect|cause) are equivalent to the response 
matrix in regularised unfolding. P0( cause) is the initial probability of the 
cause, which can be estimated from Monte Carlo simulation. Although the 
output is independent of Po(cause), if the initial estimate is far from the true 
distribution, the convergence is slower.

The normalised form of Bayes’ theorem is

p r r . p x  P j E A C i W C i )
( 1 Yrk= iP { E i \c k)P o (c k) ( 6 - 3 }

with the normalisation condition X)?=i P (C t|P j) =  1 .
After N  experimental observations one has a distribution of events, with 

the number of events in the j th  bin n(Ej).  Events can then be assigned to 
causes, according to

-| 771
n \C i)  =  -  £  n iE ^P iC i lE j )  (6.32)

Ci j= 1

where E{ is the detector efficiency in the ith  bin, obtained from Monte Carlo 
simulation. The total number of events is

N '  =  (6.33)
»=i

And the updated probabilities are given by

p '(c <) = r̂ r -  (6-34)

The probabilities P'(Ci) can then be put into Equation 6.31 as an im­
proved guess, and the procedure repeated until some criterion is satisfied, for 
example, that x 2 between two iterations is less than a certain value.

No smoothing is performed by the BAYES program, but it is recom­
mended that the user smoothes the distribution before each iteration. This
can be done, for example, with a fit to a simple function.
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6.2.4 Comparison o f unfolding programs

GURU and RUN are both regularised unfolding programs and are very sim­
ilar in principle. They differ mostly in numerical implementation. RUN 
parameterises the distributions using spline functions, while GURU uses his­
tograms. RUN performs a maximum likelihood fit while GURU uses a least 
squares fit. These factors are not very important for the result. W hat may 
have some influence are the different treatments of the response matrix and 
the regularisation. RUN uses a probability matrix, and regularises the ac­
tual unfolded distribution, while GURU uses a number-of-events matrix, and 
regularises the ratio of the Monte Carlo distribution and the unfolded distri­
bution. This means that if the Monte Carlo distribution is reasonably close 
to the unfolded distribution, the regularisation in GURU will not bias the 
result as much as RUN.

The most important difference from the point of view of the user is the 
design philosophy. GURU is intended to be simple and transparent. The 
user fills the arrays directly, and can modify the code, for example, chang­
ing the curvature m atrix for different treatment of the endpoints or multi­
dimensional unfolding. RUN works more as a black box. It has more ad­
justable parameters than GURU; a necessity because it is not easy to change 
the code directly. This makes RUN easier to use than GURU, but harder to 
understand.

The BAYES unfolding program works in a rather different way to the 
other two programs. W ithout regularisation it is equivalent to them (there 
is only one exact solution to the problem) but unlike RUN and GURU it 
will not do any regularisation itself; this is left to the user. While there are 
some advantages to this approach, such as the ability to fit to any desired 
function while unfolding, it is impossible to balance smoothness against bias 
through the use of a regularisation parameter. Also, as the smoothing is 
not an integral part of the unfolding process, the errors cannot take it into
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account.
Error calculation is a problem with the BAYES program. Figure 6 .2 a 

shows a test of unfolding with GURU, RUN and BAYES. GURU and RUN 
give results consistent with the input distribution, while BAYES does not. 
It is not simply that the errors from BAYES are too small. It is possible to 
reduce the errors from GURU and RUN by reducing the number of degrees 
of freedom, but this has no effect on the size of the errors from BAYES 
(Figure 6.2b).

A related problem with BAYES is that if smoothing is not performed, 
the convergence is very slow, and while the oscillations become as large as in 
any unregularised method, the errors given by the program remain small. In 
contrast, RUN and SVD give errors consistent with the size of the statistical 
fluctuations, whatever the value of r .

On the other hand, the errors from BAYES include the statistical errors 
on the response matrix, which is neglected in GURU and RUN. This makes 
it safe to use BAYES if the Monte Carlo statistics are limited. The main 
advantage of the BAYES program is that it can be used for two dimensional 
unfolding with no alterations, although then it is necessary to smooth in two 
dimensions also.

6.3 Two-dimensional unfolding using GURU

The two-dimensional (2D) unfolding problem differs from the one-dimensional 
case only in the regularisation matrix. This is because an unregularised 
method does not depend on which bin is adjacent to which, so 2D unfolding 
can be performed just by placing all of the bins in a single ID vector, as 
shown in Figure 6.1.

However, for regularisation, the curvature matrix needs to contain infor­
mation about adjacent bins. The 2D curvature m atrix is actually very similar
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Figure 6.1: Two-dimensional unfolding can be reduced to one-dimensional 
unfolding.

to the ID case. It is simply necessary to remove the smoothing between the 
end of one row and the beginning of the next.

The result of 2D unfolding is a distribution in two variables. To find 
the distribution in just the first variable, all of the columns are added to­
gether. For the errors, entries in the 2D covariance matrix are added together 
according to the usual rules of statistics.

a A+B = <t2a  +  <t2b  +  2cov(A, B)  

co v(A + B , C )  = cov(A, C)  +  c o y ( B ,  C).

(6.35)

(6.36)
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6.4 Unfolding

The methods described so far unfold the number of events in each bin of the 
distribution. From this we need to obtain a measurement of F 2 • At any 
value of x, the expected number of events is proportional to the structure 
function, therefore the measured structure function is

_  F2 ,Mc(X) f ( X)
2,measuredv ) f M c (® ) * ( 6 .3 7 J

The function f ( x )  can be obtained from a spline fit to the unfolded points. 
I m c ( x )  is the corresponding distribution in the Monte Carlo sample and 
F 2 , m c ( x )  is the input structure function of the Monte Carlo sample. The 
final measurement is actually an average over each bin. One possibility is to 
calculate the simple average over x:

, p r  v , * ? m c ( * ) / ( « ) ,  , f i W
2,measured/* “  \  f MC( x )  ’ ’

But /(x )  and /m c(*) have approximately the same shape, and in any case 
f ( x )  is fitted to only one point in each bin. Therefore it makes sense to 
replace f ( x ) / f M c ( x )  with (/(® ))/(/m c ( ® ) ) 5 which is no longer a function of 
x and is just the ratio of the bin contents, i.e.

=  ( F l u c ^ ) ) — - (6-39)

However, the error is not

J .  =  (6-40)

unless the function f ( x )  is nearly flat across the bin, and if f ( x )  falls to 
zero, as it does in the lowest x  bin, the relative error can become very large. 
It would be necessary to evaluate e(x) to find the error, as the unfolding
programs only give e;. This means that this form of the average is not very
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useful for low-® measurements. An alternative is the average over the events 
in the bin. This is given by

inn \ ,Fm c ( x ) P ( x ) M 1 *
( 2 .measured)* ( f M C ( x )  ^ / ( s ) ^   ̂ ^

This reduces in the same way as the first formula, to

jF y \ -  ^ 27.Mc(a;) / ( g)) /g 42n
2 .measured/* ~  7 • ( 0 .4 2 )

JMC, i

Now the error (neglecting the error on the weighting function, which has 
little effect) is

, F 2M c ( x ) e (x ) f ( x ) ,  1 
'  } m o ( x )  >ft

(F 2,Mc(X ) e ( X )) / g 4 3 r

/ m c ,»

But mc can be treated as a constant for the purposes of the error, so

a =
fM C . i

Thus the error can be found from e», with no need to calculate e(®).

(6.44)
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Figure 6 .2 : A test of the unfolding programs RUN, GURU and BAYES. 
The same true and measured distributions were used for all three programs, 
including the effects of statistics and smearing of the measured distributions. 
The number of degrees of freedom were (a) four, and (b) two. The dashed 
line indicates the input true distribution.
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I I | I I I | I I I | I I
•  true distribution 
- - measured distribution

| 1 I 7 | I | I I I I | I I I I

j —  actual value (c) 
j—  weighted value

n  (t=5°)

Figure 6.3: An example of unfolding using GURU (originally from the RUN 
program) (a) The response matrix, (b) the true and smeared distributions, (c) 
the values of di, compared to the regularised values, (the dotted line indicates 
the point above which the values of di become consistent with zero), (d) the 
values of S{.
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Figure 6.4: The results of unfolding the distributions shown in Figure 6.3 
with various numbers of degrees of freedom. The true distribution is the 
same in each case, (a) NDF=4, (b) NDF= 8  (recommended by GURU), (c) 
NDF=12, (d) unregularised.



Chapter 7 

M easurement of F2

7.1 Correction for detector effects

The technique of unfolding, described in Chapter 6 , is needed to correct for 
detector effects when measuring GURU is used as the main unfolding 
program rather than RUN or BAYES, so that two-dimensional, regularised 
unfolding can be performed.

Some parameters need to be chosen before unfolding:

• The binning of the true variable(s),

•  The binning of the measured variable(s) and

• The regularisation parameter, r .

As the main goal of the analysis is to measure the structure function at 
low x , the binning is optimised for the low-x data. Equal-sized bins in log(x) 
were chosen because this gives more resolution at low x than a linear scale 
would. The lower and upper limits for x were chosen so that all accepted 
Monte Carlo events fitted within the range, without leaving empty regions 
that could lead to under-populated bins. The measured variable limits were

116
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set in the same way, with equal-sized bins on a log scale. The bin limits for 
both true and measured variables are different for each data sample, due to 
the different kinematic ranges.

The regularisation parameter is set according to the effective number 
of degrees of freedom, which is estimated by GURU as described in Sec­
tion 6 .2 .1 .

7.2 Reconstruction of W
The true variable to be unfolded is the DIS variable a?, but there is some 
freedom in the choice of the measured variable. Equation 3.5 suggests

Q2
*v“ = W T w L  (7-1)

where WV1S is the observed invariant mass of the final hadronic state, eval­
uated by summing over all tracks and calorimeter clusters, and including 
objects from the forward region of the detector (SW and FD). Hadronic en­
ergy is not well measured by the electromagnetic calorimeters in the forward 
region, and some energy is lost in the beam pipe. At higher W , a higher 
proportion of energy is deposited in the forward region. Unfolding corrects 
the energy losses using Monte Carlo events. But the distribution of hadronic 
energy in the final state is dependent on the Monte Carlo model. This is 
potentially a large source of systematic error.

It would be preferable not to rely so heavily on Monte Carlo simulation, 
and instead use more information from the data to provide a better measure­
ment of x.

It is possible to improve the reconstruction of W  by including kinematic 
information from the tagged electron [64]. W*1S is defined by

W L  =  ( E  Ei)2 -  £ p , , ) ! -  ( E k v ) 2 -  ( E n * ) 2 (7-2)
i i i i
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where i runs over all tracks and clusters in the hadronic final state, with 
energy Ei and momentum vector (pi,x ,Pi,y,Pitz)- This can also be written as

W 'i  =  ( E ? . +  ) Q > . - )  -  (P . ,0 2 (7 .3 )
i i

where pi± = E{±. pitZ and piit =  yjpitX2 +  Pi,y2- Using conservation of energy 
and momentum, and assuming that the untagged electron travels along the 
beam direction, p+ and pt can be replaced by variables related to the tagged 
electron, leading to

Wrec =  (lW n+  “  Ptag+XX) P i-) ~  (Ptag.t) 2 (7.4)
i

where Pbeam+ and Ptag+ are calculated for the tagged electron before and after 
scattering, respectively, and Ptag.t is calculated according to the definition of 
p*)t, above, for the tagged electron. When using Equation 7.4 instead of 
Equation 7.3 to evaluate the measured W  of each event, the hadronic energy 
resolution enters only through the p i-  term. This is an advantage because 
the leptonic energy resolution is usually better than the hadronic energy 
resolution. The (reconstructed) variable formed in this way is called WTCC 
and the corresponding measurement of x is called ajpec.

Even after the above technique has been applied, the value of WTCC is still 
generally smaller than the true value of W .  This is mainly due to energy 
losses in the forward region of the detector; only about half of the hadronic 
energy deposited in that region is observed. In an attem pt to make the energy 
response of the detector more uniform and to reduce the systematic error due 
to the uncertainty in the Monte Carlo modelling, a new (corrected) variable 
is formed: WCOT (with the corresponding x measurement aicor), in which the 
contribution of energy from the forward region is increased by a factor of 2.5. 
This factor was obtained by comparing the generated and measured energy 
in the forward region in Monte Carlo events.

W 2. =  (Pb.«n+ - P t . g+) ( E p ; - ) - ( P f «.‘ ) 2 (7-5)
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, J 2.5pi- For particles in SW or FD
* 1 pi_ otherwise.

Figure 7.1a shows the correlation of W  and the three measured quantities 
Wvis, WTCC and Wcor for the LEP2 SW sample generated with HERWIG 
5.9+&t(dyn). The spread of WCOI in W  is larger than that of the other two 
variables, because in WCOI more weight is given to the forward region, where 
the energy resolution is worse than in the central region. The larger spread 
could lead to slightly larger statistical errors in the unfolding. However, if 
the systematic error is significantly reduced by the use of WCOT, the total 
error may be lower. Figure 7.1b shows the correlation between the generated 
energy in the forward region and the scaled observed energy in that region, 
E"cor*

The improvement when using W COt o r  W TCC compared to Wvis is largest 
when the most energy is deposited in regions where the measurement is poor. 
It is therefore both detector and model dependent.

7.3 Two-dimensional unfolding

The GURU program can be modified to perform unfolding in two dimensions 
as described in Section 6.3. As with the W  reconstruction methods described 
above, the motivation is to reduce the dependence of the unfolding on a 
particular Monte Carlo model. There is information in every event about the 
angular distribution of energy in the detector, but it is lost if only x is used 
in the unfolding procedure. Including another variable in a second unfolding 
dimension allows the unfolding program to make use of this information. 
Two-dimensional unfolding of has previously been found to give lower 
systematic errors than one-dimensional unfolding [65].

Two variables were considered as possible second unfolding variables:

• l?TUt/ '̂totai> the transverse hadronic energy out of the plane containing
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the beam line and the tagged electron (Equation 4.3), divided by the 
total observed energy, and

• Fj£OTj Etotal) the observed energy in the forward region divided by the 
total observed energy.

These variables are shown in Figures 7.3, 7.4 and 7.5. They were chosen be­
cause they are very sensitive to the angular distribution of the hadrons in the 
final state. Dividing them by the total observed energy serves two purposes: 
it normalises them on a scale of zero to one, which is useful for binning, and 
it reduces their correlation with x, leading to more evenly populated bins.

7.4 Unfolding tests

Varying the number of degrees of freedom affects the amount of smoothing 
between the unfolded points. Figure 7.2a shows the same sample unfolded 
using three different NDF values. As expected, a lower value of NDF de­
creases the errors while increasing the correlations. The value of NDF used 
for the final results is the one recommended by GURU, in this case, three.

The results using the three unfolding programs GURU, RUN and BAYES 
were compared. The results for one sample are shown in Figure 7.2b. The 
three programs give generally consistent results, though the errors given by 
BAYES tend to be smaller than those given by the other two programs.

To test the two-dimensional (2D) unfolding procedure, a random number 
was used as the second variable. This is shown in Figure 7.2c. The results are 
consistent with one-dimensional (ID) unfolding, which is as expected since 
there is no extra information in a random number. The number of degrees 
of freedom in 2D unfolding needs to be larger to allow for the extra variable, 
and was chosen according to the recommendation of the unfolding program 
from statistical analysis of the data. The statistical errors are comparable to 
those given by ID unfolding.
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The results when using various different unfolding variables ( z vi8, xrec and 
2;cor) are compared in Figure 7.2d. The difference between them is about the 
size of the statistical error.

7.5 Comparison of unfolding methods

To find which of the unfolding variables were the most useful, OPAL data 
was unfolded with four Monte Carlo programs HERWIG 5.9, HERWIG 
5.9+fct(dyn) PHOJET 1.05 and F2GEN. Despite not giving good descrip­
tions of the data, HERWIG 5.9 and F 2 GEN were included in this study 
to investigate the effectiveness of the new techniques using extreme models. 
The best methods are considered to be those which give the smallest differ­
ence between the unfolded results with the four Monte Carlo models. The 
quantity compared is X2modeis» defined by

X*™-* =  \  £  £  ( f 2 V  ( J ? i ) V  (7.6)
4 models t V /

where F is the value of the unfolded result in the ith  bin, (FJi) is the average 
of the results from all four Monte Carlo models and is the statistical error 
for the ith  bin. The values of X2modeis are shown in Table 7.1 and the results 
of the unfolding are shown in Figures 7.6 and 7.7. The X2modeis values show 
how large the differences between the models are, compared to the statistical 
error. Due to the different statistics in each sample, the numbers can only 
be compared meaningfully for different unfolding methods for the same data 
sample. For the ID unfolding, using xCOT as the measured variable gives 

the lowest X2modeis ^  samples. Using x ^ c as the unfolding variable gives 
only a small improvement over unfolding with ajvis. For the 2D unfolding, 
E-put/Etotai is the best second variable overall, and using xCOI instead of ajrec 
generally gives some improvement, though not as much as in the ID case. 
The x 2 values are smaller for the LEP1 FD sample than the other two,
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partly due to the the smaller number of bins. Also the LEP1 FD sample 
has the lowest statistics, which means that any difference between the Monte 
Carlo programs would be less significant. For the ID unfolding results using

V2A models
ID 2D, ^ r /^ to ta l 2D, F7fbr/#total

(Q2) [GeV2] sample ®vis •Ccor *rec ®cor ®rec ®cor
1.9 LEP1 SW 66.8 29.1 22.1 9.6 24.7 26.9
3.7 53.1 26.1 13.5 8.1 19.5 16.8
8.9 LEP1 FD 15.4 6.8 7.1 3.4 10.7 8.7
17.5 8.5 4.5 8.8 12.4 4 4.1
10.7 LEP2 SW 62.5 22.4 18.7 6.8 20.6 16.8
17.8 57.2 18.3 13 8.4 57.7 15.4

Table 7.1: X2modcis? as defined in Equation 7.6, for different unfolding meth­
ods. The number of bins in x was 4 for the LEP1 SW and LEP2 SW samples, 
and 3 for the LEP1 FD samples.

Xvis as the unfolding variable, the HERWIG 5.9 sample tends to give higher 
unfolded points at low x than the other three Monte Carlo samples, and 
unfolding with the F2GEN sample gives the lowest result at low x. W ith 
both 2 D unfolding and ID unfolding using xcor, the results using HERWIG
5.9 and F2GEN became closer to the other two. Using different unfolding 
methods with the HERWIG 5.9+&t(dyn) and PHOJET 1.05 samples makes 
less difference than with the other two Monte Carlo samples, which is as 
expected for models which give a better description of the data.

Overall, the best unfolding method was 2 D unfolding, with E^ut/ E totai 
as the second variable, which is consequently used as the standard unfolding 
method for the results.

As a final test of the method, samples of events generated using HERWIG
5.9 with the SaSID structure function were unfolded using HERWIG 5.9 with 
the GRV structure function (Figure 7.13). The results agree with the input
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structure function, within the statistical errors.

7.6 Bin-centre corrections

For convenience in making fits to the data, the measured points are corrected 
to represent F1̂  at a specific value of x , rather than the average F^ over each 
bin. The x value chosen is the log centre of each bin, except for the highest 
x bins where this would be close to the charm threshold, which could lead 
to large errors due to uncertainty in the charm mass. In those bins, F^ is 
corrected to the log centre of the portion of the bin below the charm threshold 
for rac =  1.5.

The corrections are calculated as the average of the corrections obtained 
using the GRV and SaSID structure functions, and are given in Table 7.5.

7.7 Systematic errors

The systematic error should include all uncertain factors that could signif­
icantly bias the result. It is estimated by varying different aspects of the 
analysis one at a time while keeping everything else the same, finding the 
difference in the result, and adding all of the differences in quadrature. In 
general, the systematic errors may be asymmetric. For this reason, positive 
and negative errors are added separately.

To avoid overestimating the systematic errors, it is important not to intro­
duce additional statistical errors. For example, changing the event selection 
may remove a significant portion of events in one x  bin, which can lead to a 
change in the result for purely statistical reasons. This is a particular prob­
lem when a number of systematic effects have to be combined, because they 
all contain a statistical component, so the size of the total error would depend 
on the number of separate systematic checks, which can be made arbitrarily
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large. To study the effect of statistical fluctuations on the size of the system­
atic errors, Monte Carlo is used as mock data. The statistical components 
are then subtracted from the errors. This is described in Section 7.7.13.

Because the Monte Carlo samples used for unfolding are only 3-6 times 
the size of the data sample, sometimes there are unfolding instabilities due to 
limited Monte Carlo statistics. This is more likely to happen when bins are 
under-populated. To avoid this, the bin boundaries of the true and measured 
variables are carefully positioned so that there are no empty or nearly empty 
bins at the edges of the ranges.

Another possible problem when changing the event selection is that the 
average Q2 of the sample may be shifted. As the structure function evolves 
with Q2, the result will change due to this alone, quite apart from any sys­
tematic effect. However, for most changes the Q2 shift is small.

The possible sources of systematic errors that have been considered and 
the means of estimating them are explained in the following sections.

7.7.1 Monte Carlo modelling

The angular distribution of the hadrons in the final state is not well un­
derstood and not well measured outside the central region of the detector. 
Therefore, a selection of Monte Carlo models must be considered. It was 
demonstrated in Chapter 5 that the default version of HERWIG 5.9 and 
F2GEN are not in agreement with the data even in the central region, so the 
models used to estimate the systematic error are HERWIG 5.9-t-fct(dyn) and 
PHOJET 1.05, which give a better description of the data. While previous 
studies [14, 13] did use HERWIG and F2GEN, they were made before the 
other Monte Carlo programs became available.

There is no compelling reason to prefer one over the other, so the central 
value for F% is taken as the average of the unfolding results with HERWIG
5.9 - |- f c t( d y n )  and PHOJET 1.05, and the systematic modelling error is taken
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to be plus or minus half the difference.

7.7.2 Choice of second variable

Two second variables were considered: E ^ /E to te i  and EfOT/ E totet[. The 
central value is the result with E ^ / E toteii, and the difference when using 
E{ot/Ftotal is considered as a systematic error.

7.7.3 Unfolding parameters

The number of bins used for the measured x distribution is independent of 
the true-® binning, and was varied from the same as the number of bins in 
the true variable, to twice as many. The standard value is 6  bins, compared 
to 4 bins in the true variable.

7.7.4 W  reconstruction

The amount of extra weight to be given to the forward energy is not precisely 
determined because of the poor energy measurement in this region. Any 
systematic effect due to this ought to be smaller than the modelling error, 
which the forward energy treatm ent is intended to reduce.

To investigate the systematic effect of the W  reconstruction procedure, 
the weighting of EfOT was varied from 2.0-3.0. The value was changed at the 
same time in both data and Monte Carlo.

7.7.5 Cut variations

Various systematic effects can be studied by changing the cuts. These in­
clude the effect of background contamination near the cut boundaries, poor 
reconstruction of event quantities and uncertainties in the acceptance. Gen­
erally the cuts are varied by an amount at least as much as the resolution of
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cut LE P1SW  LE P1FD LEP2SW
Eizg/Eb min ±0.025 (0.75) ±0.025 (0.775)

0 t.g min [miad] +2 (27) ± 2  (60) ±2 (33.25)
#t.g max [mrad] - 2  (55) - 2  (1 2 0 ) - 2  (55)

.E,/.Eb max ±0.05 (0.25)
Wyis min [GeV] ±1.0 (2.5)
W , is max [GeV] ±5 (40) ±5 (60)

Table 7.2: Systematic variations in the cuts. The standard cuts are given in 
brackets after the variations.

the variable to which the cut is applied, on the principle that it is impossible 
to determine the best position for the cut to a greater precision than this.

Because the event selection is changed when a cut is varied, there will be 
some difference due to statistics. It is important to keep this to a minimum 
by not moving the cut more than necessary.

The cut variations are listed in Table 7.2 and described in the following 
sections.

• - t̂ag

The minimum E t&g cut is varied to study the effect of off-momentum 
background contamination. Care is required when varying this cut, 
however, because low E tag events are concentrated at low x. Moving 
the cut too much would introduce statistical fluctuations in the lowest 
x bin. Consequently, this cut is varied only by the resolution of E t&g1 
which is about 4%, in both directions.

• $tag

Changing the 0tag cuts varies the acceptance region and allows for the 
possibility that reconstruction of position and energy of particles is not 
perfect at the edges of the detectors. 0tag is more correlated with Q2
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than any other variable with a cut, so this variation could affect the 
average Q2. However, there is no need for the variation to be so large 
as the resolution of 9tag is very good. The cuts are varied only inwards, 
away from the edges of the detector, because the whole region of good 
acceptance is already used when finding the central value.

• JVch

The minimum number of charged tracks can only be changed by a whole 
integer, but raising it by a single unit already removes too many events 
- around one quarter of the total sample, and these events are concen­
trated in the high x region. This means that systematic uncertainties 
in the track reconstruction procedure cannot be studied by varying the 
minimum number of charged tracks, Instead, the tracking parameters 
in the Monte Carlo simulation are studied (see Section 7.7.8).

•  W v i s

The high-W  region is the least well modelled by the Monte Carlo pro­
grams, and background from hadronic Z° decays is significant in the 
91 GeV data, and also present in the 189 GeV data. To investigate 
systematic effects in this region, the maximum W w  cut is varied. Too 
loose a cut will let through more background events than necessary. 
Too tight a cut risks affecting the low-® acceptance in a model depen­
dent way, because the number of events removed by the cut will depend 
on the final state modelling. Also, a low maximum WV1S cut will deplete 
the lowest x bin, causing statistical fluctuations.

There is also a cut on low WV1S. This is because of low-mass effects such 
as resonances which are not accurately simulated in the Monte Carlo 
programs. The minimum is raised by 1 GeV as a systematic check.

•  E a
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Since real double-tagged events have a low cross-section, the highest 
energy particle opposite the tag usually comes from the hadronic final 
state. Therefore, the anti-tag distribution in Monte Carlo depends on 
the final state model. HERWIG, PHOJET and F2GEN differ in the 
shape of the anti-tag distribution. Setting the cut too low will remove 
mostly events with high W , because those events are more likely to 
have an energetic particle. Setting the cut too high will leave some 
events with a scattered beam electron in the final state. To study these 
effects the anti-tag cut is varied.

It would make little sense to move the anti-tag cut higher than 30% of 
the beam energy, as above that point the double-tagged events domi­
nate. On the other hand, moving the cut below 20% of the beam energy 
eliminates very few extra double-tagged events while depleting the low 
x  bin considerably. The range of variation of the cut is from 20% to 
30%.

7.7.6 Off-momentum electrons

There are signs of some contamination from off-momentum background in 
the 184 GeV data. It is apparent in one <f> region only, at low E t&g. The 
region in question is cut out of the main analysis, but included as one of the 
systematic checks.

7.7.7 Calibration of the tagging detectors

The energy of the tagged electron in the Monte Carlo was varied to allow 
for uncertainty in the calibration of the tagging detectors. The variation 
was ±1% , motivated by a comparison of the data and Monte Carlo E t&g 
distributions.
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As this only affects Monte Carlo, and not data, it should not introduce 
large statistical fluctuations.

7.7.8 Measurement of hadronic energy

To allow for uncertainty in the simulation of the detector, the energy scale 
of the electromagnetic calorimeters is varied by ±3%. This does not include 
the forward region, which is dealt with separately.

The different N& distributions in data and Monte Carlo indicate that 
it may be necessary to systematically vary the tracking parameters. The 
variations are listed in Table 7.3. The parameters were varied all at the 
same time, to a set of tighter cuts and a set of looser cuts. The effect of 
these variations on the observed number of tracks is shown in Figure 7.12. 
The change in the distribution with these variations is of comparable 
size to the difference between the data and Monte Carlo N& distributions. 
Changing the tracking parameters in data and Monte Carlo at the same time 
produces effects that very nearly cancel. Smearing the tracking resolution 
in Monte Carlo only also had a very small effect on the result. Therfore, 
the systematic error from variation of the tracking parameters is taken to be 
negligible.

parameter standard tight loose
CJ hits 2 0 25 15

d0 max [cm] 2.5 2 .0 3.0
zq max [cm] 30 2 0 50

pt min [GeV] 0.125 0.15 0 .1

Table 7.3: Variation of quality requirements for tracks.
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7.7.9 Simulation of background

The largest background source, from r  pair production in two-photon events, 
is purely QED and well modelled. The largest uncertainty in the background 
modelling comes from the hadronic events at LEP1, which involve the pro­
duction of light mesons with a high fraction of the beam energy. The cross- 
section for these events was measured by OPAL [6 6 ] with an accuracy of 
about 50%, and found to be consistent with the JETSET prediction. The 
normalisation of the simulated background was therefore varied by ±50%.

7.7.10 Bin-centre correction

The corrections depend on the shape of in each bin. The average of the 
corrections based on GRV LO and SaSID was used, as these parameterisa- 
tions are the closest to the data. The error is half the difference between the 
GRV LO and SaSID corrections, and is symmetric.

7.7.11 MC structure function

Simply changing the x  distribution of the Monte Carlo sample should have no 
systematic effect on the unfolding result. However, if the structure function 
is used by the Monte Carlo program in other ways than for setting the x 
distribution, there will be a dependence on the parameterisation of F% used 
when generating the events.

This was studied by generating an additional Monte Carlo sample using 
HERWIG with the SaSID parameterisation, unfolding the data with that 
sample, and comparing the results to those from HERWIG with the GRV 
parameterisation.

The two samples give consistent results, within statistical errors. This 
suggests that there is no systematic effect from using different structure func­
tions in HERWIG.
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7.7.12 Other systematic errors

The lower estimates for the trigger efficiencies are close to 100% (see Sec­
tion 5.5), with a 1% systematic error. No correction to the results is made 
for the trigger efficiency, but the 1% error is included. The variation of the 
trigger efficiency with x is small and therefore neglected.

The uncertainty in the luminosity measurement gives a small overall nor­
malisation error, which is neglected.

7.7.13 Estimation o f the statistical component o f the 
systematic errors

Checking a systematic effect by unfolding the data with one parameter or 
cut varied will lead to a result different from the central value. Some of the 
difference may be systematic, but some will be statistical. It is important 
to have an idea of how large the statistical component is, in order to avoid 
including statistical effects in the systematic errors.

The statistical effect of changing a cut will be less than the full statistical 
error, because only a subset of events are affected by the change. In principle 
the statistical errors on the systematic errors could be calculated, but in 
practise it is easier to repeat the unfolding several times with different data 
samples and take the spread of the different results. There is not enough 
real data to do this, so Monte Carlo events are used instead. The statistical 
errors on a Monte Carlo sample the same size as the data ought to be about 
the same as the statistical errors on the data itself.

The change in the result in bin i when changing parameter or cut k is 
A f i tk. The error on this value (found from Monte Carlo) is o'A/.i.fc* The 
total systematic error, resulting from adding all of the individual errors in
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quadrature, is

A /i+ =  /  E  (A / a ) 2

A /i-  =  /  E  (A/;,*)2- (7.7)
V *:AA*<0

However, many of the individual errors are not statistically significant, and 
should not be included in the total error. A better estimate of the real 
systematic error is given by

A/»+ =  , /  E (A ' / * ) 1

= . /  E  (A 'A * ) 2 (7.8)
Y k:A'fitk<0

(A'/i,fc) 2 =  (A /i ,* ) 2 -  for A/i,* > <rA/,i,*

A fi,k =  0 for A/i,* < ^

7.8 Results

The photon structure function F^ is measured by unfolding each data sample 
in bins of log(aj). The results are listed in Table 7.4. The quoted values were 
measured as the average F^/a: in each bin of x weighted by the unfolded x 
distribution, according to Equation 6.42, then corrected to the log centre of 
each bin, except for the highest x  bins where the log centre of that portion 
of the bin below the charm threshold for m c = 1.5 GeV was used. The bin- 
centre corrections are the average of the GRV LO and SaSID predictions for 
the correction from the average F^ over the bin to the value of F^ at the 
nominal x position.

The results are corrected for radiative effects. The radiative corrections 
were calculated using the RADEG [49] program and are listed in Table 7.5. 
The statistical correlations between bins are shown in Table 7.6. Each OPAL
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data sample is divided into two ranges of Q2 containing approximately equal 
numbers of events. The ranges correspond to to (Q2) values of 1.9 and 
3.8 GeV2 for the LEP1 SW sample, and 8.9 (10.7) and 17.5 (17.8) GeV2 for 
the LEP1 FD (LEP2 SW) sample, and 10.6 and 17.7 GeV2 for the LEP2 
SW sample.

The results are compared with previous OPAL measurements of F% [13]— 
[15] in Figures 7.14 and 7.15. The measurements of F% using LEP1 data in 
bins with (Q2) =  1.9 GeV2 and (Q2) =  3.8 GeV2 are lower than the previous 
OPAL LEP1 results, which were unfolded using HERWIG 5.8d. Repeating 
the unfolding with HERWIG 5.8d gives results which are consistent with 
the old analysis, but with better precision. The HERWIG 5.8d Monte Carlo 
model has now been replaced by HERWIG 5.9+fct(dyn), which gives a better 
description of the data. The LEP1 FD and LEP2 SW are generally consistent 
with each other and with previous OPAL results in the same Q2 regions.

In Figures 7.16 and 7.17 the results are compared to measurements of F^ 
from other experiments: TPC / 2 7  [7], PLUTO [3], TOPAZ [11], ALEPH [19], 
DELPHI [16] and L3 [17], [18]. At high x  the new results are consistent with 
previous measurements. At lower x the L3 results are higher then the OPAL 
results, however as the L3 points are strongly correlated, the discrepancy 
looks larger in the plots than it actually is.

Also shown in Figures 7.16 and 7.17 are the GRV LO, SaSID and WHIT1 
parameterisations of F?, along with the QED quark parton model (QPM), 
for four active flavours with masses of 0 .2  GeV for the light quarks and 1.5 
GeV for the charm quark. The GRV LO and SaSID parameterisations are 
consistent with the data in all accessible x and Q2 regions except in the lowest 
Q2 region where they are too low. The WHIT1 prediction is significantly 
higher than the data. The QPM model is not able to describe the data, 
falling too low at low x.
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( Q 2 )

[GeV2]
sample bin x range X * ? /«

1.9 LEP1 SW I
II
m

rv

0.0006 <  x <  0.0028 

0.0028 <  x <  0.0143 

0.0143 <  x < 0.0724 

0.0724 < x < 0.3679

0.0012

0.0063

0.0322

0.1124

0.269 ±  0.027 

0.177 ± 0 .0 0 9  

0.179 ±  0.007 t o i o l  

0.227 ±  0.010

3.7 LEP1 SW i

h

m

IV

0.0015 <  x <  0.0067 

0.0067 < x <  0.0302 

0.0302 <  x < 0.1353 

0.1353 <  x <  0.6065

0.0032

0.0143

0.0639

0.1986

0.269 =b 0.033±g;g|J 

0.232 ±  0.013±g;gl? 

0.259 ±  0.010 

0.296 d= 0.014±g;gl|

8.9 LEP1 FD i

n

in

0.0111 < x < 0.0498 

0.0498 < x < 0.2231 

0.2231 < x < 0.8187

0.0235

0.1054

0.3331

0.221 d= 0.017±g;g|g 

0.308 ± 0 .0 1 4 l° ;g ; j  

0.379 ± 0.022

10.7 L E P 2SW i

n

i n

IV

0.0009 < x < 0.0050 

0.0050 < x < 0.0273 

0.0273 < x < 0.1496 

0.1496 < x < 0.8187

0.0021

0.0117

0.0639

0.3143

0.362 ± 0.045 ±g;g||

o.263 ± o .o i5  ±S:8i§
0.275 ± 0.011 ±g;g|g 

0.351 d= 0.012±g;gf|

17.5 LEP1 FD i

ii  
m

0.0235 < x < 0.0821 

0.0821 < x < 0.2865 

0.2865 < x < 0.9048

0.0439

0.1534

0.3945

0.273 d= 0.028±g;g || 

0.375 ± 0.023 

0.501 ± 0.027

17.8 LEP2 SW i

ii  
i n

IV

0.0015 < x < 0.0074 

0.0074 < x < 0.0369 

0.0369 <  x < 0.1827 

0.1827 < x <  0.9048

0.0033

0.0166

0.0821

0.3483

0.428 ± 0.061 

0.295 ± 0.019±g;g|g 

0.336 ±  0-013±g;gS  

0.430 ± 0 .0 1 3  ±g;g||

Table 7.4: Results for F ^ /a  as a function of x  for four active flavours in six 
Q2 regions. The first errors are statistical and the second systematic. The 
structure function was unfolded in bins defined by the x ranges and corrected 
to the x values given.
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(Q2)
[GeV2]

sample bin x range X radiative
correction

bin-centre
correction

1.9 LEP1 SW I 0.0006 < x < 0.0028 0.0012 -12.7 -4.2

II 0.0028 < x < 0.0143 0.0063 -9.0 0.4

m 0.0143 < x < 0.0724 0.0321 -7.1 1.8

IV 0.0724 < x < 0.3679 0.1124 -6.0 4.7

3.7 LEP1 SW i 0.0015 < x < 0.0067 0.0032 -11.8 -5.0

ii 0.0067 < x < 0.0302 0.0143 -8.9 0.6

m 0.0302 < x < 0.1353 0.0639 -7.3 1.9

IV 0.1353 < x < 0.6065 0.1986 -6.5 1.6

8.9 LEP1 FD i 0.0111 < x < 0.0498 0.0235 -7.7 0.9

i i 0.0498 <  x < 0.2231 0.1054 -6.3 2.4

in 0.2231 <  x < 0.8187 0.3331 -4.1 -0.9

10.7 LEP2 SW i 0.0009 <  x < 0.0050 0.0021 -12.5 -8.7

i i 0.0050 <  x < 0.0273 0.0117 -7.3 -0.5

m 0.0273 <  x < 0.1496 0.0639 -4.4 3.2

IV 0.1496 <  x <  0.8187 0.3143 -2 .2 -1.0

17.5 LEP1 FD i 0.0235 < x < 0.0821 0.0439 -9.4 2.1

i i 0.0821 < Z < 0.2865 0.1534 -7.9 2.5

in 0.2865 < x < 0.9048 0.3945 -6.5 0.0
17.8 LEP2 SW i 0.0015 < x < 0.0074 0.0033 -13.6 -8.2

i i 0.0074 < x < 0.0369 0.0166 -9.9 -0.5

m 0.0369 < x < 0.1827 0.0821 -8.4 3.7

IV 0.1827 < x < 0.9048 0.3483 -7.3 -0.4

Table 7.5: Corrections to the result as a function of x  in bins of Q2, as a 
percentage of the non-corrected The radiative corrections were predicted 
by RADEG [49]. The bin-centre corrections are the average of the GRV LO 
and SaSID predictions for the correction from the average F% over the bin 
to the value of F at the nominal x position. The x  positions are at the log 
centre of the bins, except for the highest x  bins, where they are at the the log 
centre of that portion of the bin below the charm threshold for m c =  1.5 GeV.
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(Q2)=1.9 GeV2 (LEP1 SW)
I II III IV

I 1 .0 0

II -0.28 1 .0 0

III 0.03 -0.35 1 .0 0

IV 0 .0 1 0 .1 0 -0.48 1 .0 0

(Q2 )=8.9 GeV2 (LEP1 FD)

I II III

I 1 .0 0

II -0 .0 2 1 .0 0

III -0 .1 2 -0.31 1 .0 0

(Q2)=17.5 GeV2 (LEP1 FD)

I II III

I 1 .0 0

II -0.09 1 .0 0

III -0.09 -0.35 1 .0 0

(Q2)=3.7 GeV2 (LEP1 SW)
I II III IV

I 1 .0 0

II -0.27 1 .0 0

III 0 .0 2 -0.34 1 .0 0

IV 0 .0 1 0 .1 0 -0.52 1 .0 0

(Q2 )=10.7 GeV2 (LEP2  SW)
I II III IV

I 1 .0 0

II -0.32 1 .0 0

III 0.04 -0.29 1 .0 0

IV 0 .0 0 0.06 -0.36 1 .0 0

(Q2)=17.8 GeV2 (LEP2  SW)
I II III IV

I 1 .0 0

II -0.35 1 .0 0

III 0.05 -0.33 1 .0 0

IV -0 .0 1 0.09 -0.41 1 .0 0

Table 7.6: Statistical correlations between the x bins for each sample. The 
numerals refer to tbe bins listed in Table 7.4.
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experiment Ecm [GeV] (Q2) [GeV2] x range reference

OPAL 91 1.9 0.0044-0.07 [141

L3 91 1.9 0.0035-0.075 [17]

PLUTO 34.6 2.4 0.063-0.535 [3]
TPC /2 7 29 2 .8 0.04-0.4515 m

OPAL 91 3.8 0.01315-0.15 [14]

PLUTO 34.6 4.3 0.1-0.62 [3]
L3 91 5.0 0.0075-0.15 [17]

TPC /27 29 5.1 0.11-0.5495 [7]
TOPAZ 58 5.1 0.043-0.138 [1 1 ]
PLUTO 34.6 5.3 0.0535-0.745 [3]
OPAL 91 7.5 0.046-0.466 [13]
OPAL 161/172 9.0 0.06-0.425 [15]

PLUTO 34.6 9.2 0.145-0.72 [3]
ALEPH 91 9.9 0.0425-0.6 [19]

L3 183 1 0 .8 0.055-0.25 [18]

DELPHI 91 1 2 .0 0.0235-0.2335 [16]

OPAL 161/172 14.5 0.06-0.425 [15]

OPAL 91 14.7 0.0715-0.679 [13]
L3 183 15.3 0.055-0.4 [18]

TOPAZ 58 16.0 0.085-0.555 [1 1 ]
ALEPH 91 20.7 0.0645-0.695 [19]

DELPHI 91 2 2 .0 0.03-0.5 [16]

TASSO 34 23.0 0.1-0.9 [6 ]
L3 183 23.1 0.055-0.4 [18]

JADE 33.6 24.0 0.05-0.75 [5]

Table 7.8: Measurements of F% at Q2 < 30 GeV2. The x ranges refer to the 
centres of the extreme bins.
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Figure 7.1: (a) The correlation between the generated and measured invariant 
mass, W , for the HERWIG 5.9+&t(dyn) LEP2  SW Monte Carlo sample, 
using, Wfd, WTCC and WCOT. (b) The corrected energy, E cor, (2.5 times the 
visible energy) in the forward region against the total generated energy, 2?gen, 
deposited in that region, for the same sample as in plot a).
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Figure 7.2: Tests of the unfolding procedure. The errors are statistical 
only, (a) Changing degrees of freedom with one dimensional unfolding, 
(b) RUN compared to GURU, for LEP1 SW data unfolded with the HER­
WIG 5.9+&t(dyn) Monte Carlo sample, (c) Degrees of freedom with two- 
dimensional unfolding using a random number as the second variable, (d) 
Different measured x variables with one dimensional unfolding.
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1.5<log(x . )<-1.0
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□  PHOJET 1.05 
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2000 I I □  F2 CKN

1000
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Efo/E tot
E DUt/I?

T tot

Figure 7.3: Data and Monte Carlo distributions for the variables used for 
two-dimensional unfolding, for the LEP1 SW sample divided into three bins 
of Zvis- Plots a) c) and e) show EfOT/ E tot&\, the observed energy in the for­
ward regions divided by the total observed energy. Plots b) d) and f) show 
Eyut/ E tot&i, defined as the component of hadronic energy out of the plane of 
the tagged electron, divided by the total observed energy.
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Figure 7.4: Data and Monte Carlo distributions for the variables used for 
two-dimensional unfolding, for the LEP1 FD sample divided into three bins 
of a?vis- The variables are as defined in Figure 7.3.
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Figure 7.5: Data and Monte Carlo distributions for the variables used for 
two-dimensional unfolding, for the LEP2 SW sample divided into three bins 
of z vis. The variables are as defined in Figure 7.3.
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Figure 7.12: The effect of varying the track quality cuts on the N ,ch distri­
bution. To illustrate the change in shape, the Monte Carlo distributions are 
normalised to the same number of events as the data, rather than to the 
same luminosity.
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Figure 7.13: Two independent samples of Monte Carlo events generated using 
HERWIG 5.9 with the SaSID structure function unfolded with HERWIG 5.9 
with the GRV LO structure function, in six Q2 ranges. The solid histogram 
shows the SaSID structure function at the same average Q2 as the sample 
in each plot, weighted by the x distribution in the HERWIG SaSID sample 
(this is the quantity measured by Equation 6.42). The dotted lines show the 
GRV LO structure function weighted by the unfolded x distribution. The 
unfolded SaSID samples were about the same size as the data samples in 
each Q2 region. The errors are statistical only.
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Figure 7.14: The measurement of F ^ /a  using the LEP1 SW sample, for (Q2) 
values of (a) 1.9 and (b) 3.7 GeV2. Also shown are the previous OPAL results 
in these Q2 ranges, which were unfolded using HERWIG 5.8d, and the result 
of unfolding the LEP1 SW data using HERWIG 5.8d. For each point, the 
inner error bars show the statistical error and the full error bars show the 
total error, except for the new result with HERWIG 5.8d, for which only 
statistical errors are shown. The positions of the new OPAL points are as 
given in Table 7.4. The other points are shown at the centre of the log(x) 
bin. The curves show the GRV LO structure function.
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Figure 7.15: The measurement of F^fcx using the LEP1 FD and LEP2 SW 
samples for {Q2) values of (a) 8.9 (10.7) and (b) 17.5 (17.8) GeV2 for LEP1 
(LEP2). Also shown are the previous OPAL results in these Q2 ranges, which 
were unfolded with HERWIG 5.8d {{Q2)=7.5 GeV2 and (Q2)=14.7 GeV2) 
and HERWIG 5.9 ((Q 2)=9.0 GeV2 and (Q2)=14.5 GeV2) using a linear x 
scale. For each point, the inner error bars show the statistical error and the 
full error bars show the total error. The positions of the new OPAL points 
are as given in Table 7.4. The other points with closed symbols are shown at 
the centre of the log(a:) bin, and those with open symbols are shown at the 
average x value of the bin. The curves show the GRV LO structure function.
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Figure 7.16: The measurement of F J /a  using the LEP1 SW sample, for 
(Q2) values of (a) 1.9 and (b) 3.7 GeV2. Also shown are the results from 
L3 [17], [18]. PLUTO [3], and TPC / 2 7  [7]. For L3 the two sets of points were 
unfolded using different Monte Carlo programs. The lower /  upper points 
correspond to PHOJET 1.05 /  TWOGAM. For each point, the inner error 
bars show the statistical error and the full error bars show the total error. 
The positions of the new OPAL points are as given in Table 7.4. The other 
points with closed symbols are shown at the centre of the log(x) bin, and 
those with open symbols are shown at the average x value of the bin. The 
curves show the GRV LO, SaSID, W HIT1 and QPM structure functions.
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Figure 7.17: The measurement of F ^ /a  using the LEP1 FD and LEP2 
SW samples for (Q2) values of (a) 8.9 (10.7) and (b) 17.5 (17.8) GeV2 for 
LEP1 (LEP2). Also shown is a selection of results from other experiments: 
ALEPH [19], DELPHI [16], L3 [17], [18], PLUTO [3], and TOPAZ [11]. For 
each point, the inner error bars show the statistical error and the full error 
bars show the total error. The positions of the new OPAL points are as given 
in Table 7.4. The other points with closed symbols are shown at the centre 
of the log(ic) bin, and those with open symbols are shown at the average x 
value of the bin. The curves show the GRV LO, SaSID, WHIT1 and QPM 
structure functions.



Chapter 8 

Conclusions

The photon structure function F% has been measured using deep inelastic 
electron-photon scattering events recorded by the OPAL detector in the years 
1993-1995 (LEP1) and 1998-1999 (LEP2), with centre-of-mass energies of 
91 GeV, 183 GeV and 189 GeV. The data samples are separated into six 
ranges of Q2, including two pairs of overlapping regions. The average Q2 
values of the samples are 1.9 and 3.8 GeV2 for LEP1 SW, and 8.9 (10.7) and
17.5 (17.8) GeV2 for LEP1 FD (LEP2 SW).

In previous OPAL studies of the photon structure function, it became 
clear tha t a large source of uncertainty in the measurement came from the 
Monte Carlo modelling of the hadronic final state of deep inelastic electron- 
photon scattering events. This is because it is necessary to correct for detec­
tor effects using Monte Carlo samples, by unfolding the true distribution of 
x. The modelling uncertainty was especially large at low values of x, where 
a large proportion of the hadronic energy is directed into the forward region, 
where it can be measured only by electromagnetic calorimeters, and some is 
lost in the beam pipe.

This is the first OPAL analysis to use the Monte Carlo programs PHO JET
1.05 and HERWIG 5.9+&t(dyn). I t was demonstrated in Chapter 4 that these
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models give a better description of the hadronic final state than the programs 
which were used previously, HERWIG 5.9 and F2GEN.

The reconstruction of the invariant mass of the hadronic final state has 
been improved by including information from the deeply inelastically scat­
tered electron, and by scaling the energy from the forward region to partially 
compensate for energy losses. Two-dimensional unfolding was introduced as 
a way to reduce the modelling error further. The ratio E^ut/E totBi was used 
as a second unfolding variable.

Three unfolding programs have been compared and shown to give con­
sistent results for the central values, although the errors from one program 
(BAYES) are not always consistent with the other two. The method was 
tested by unfolding a Monte Carlo sample with another sample using a dif­
ferent input structure function. The correct structure function was recovered, 
within statistical errors.

The method for determining the systematic errors includes subtraction 
of the statistical component of each source of error, to avoid overestimating 
the error.

Monte Carlo modelling is still a large source of error, but no longer dom­
inates all other sources as was the case in previous OPAL measurements of

. The statistical and systematic errors are of similar size; therefore future 
analyses will have to reduce both in order to see substantial reductions in 
the total errors.

The GRV LO and SaSID parameterisations are generally consistent with 
the OPAL data in all the accessible x  and Q2 regions. In the lowest Q2 
region, (Q2) =  1.9 GeV2, they are significantly lower than the data, though 
similar in shape. Although the results are not sufficiently precise to show a 
rise in the photon structure function at low x , they are consistent at low x 
with parameterisations which do have a rise.

In contrast, the naive quark-parton model is not able to describe the data 
for x < 0.1. These results show that the photon must contain a significant
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hadron-like component at low x.
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