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Abstract— Unscented Kalman Filter (UKF) remains to be a 

prevalent multi-sensor fusion method in many practices, 

including navigational tracking for Unmanned Surface Vehicles 

(USVs). This paper suggests that results from UKF fusion is 

unsatisfactory for USVs’ relatively smooth path due to UKF’s 

lack of versatility. Hence, it is proposed here that by replacing 

the UKF with Interacting Multiple Model (IMM), estimation 

results will better represent USV’s movement. Furthermore, 

this paper proposes slight modification to the IMM in order to 

heighten the algorithm’s confidence in switching modes. By 

exploiting angular velocity information from Inertial 

Measurement Unit (IMU), an independent mode probability can 

be obtained which is then injected into the IMM. Computer 

simulations based on maritime operations were done to show 

that the proposed IMU-based IMM is able to react faster to 

mode changes, giving more reliable outcomes. 

Keywords—Interacting Multiple Model (IMM), adaptive 

estimation, USV navigation, GPS/IMU 

I. INTRODUCTION 

A. Background & Problem Statement 

With the growing interest in Unmanned Surface Vehicles 
(USVs), more effort in research are being placed into the field. 
Similar to other autonomous vehicles, self-navigation is 
fundamentally based on localisation, path-planning and 
control. As localisation is one integral part of autonomy, it 
remains to be an aspect to be optimally addressed. 

Global Positioning System (GPS), Inertial Measurement 
Unit (IMU) and electronic compass are low-cost and highly 
effective combination of sensors widely found installed in 
USVs [1, 2, 3, 4]. The main issue of localisation stems from 
measurement uncertainties that each sensor carries. Added 
with environmental disturbances, raw data cannot be relied 
fully. Readings from all sensors need to be fused and filtered 
to produce useful information for USVs navigation. A robust 
algorithm that is able to take in raw data and produce good 
state estimates is therefore needed. 

Making physical connection between the sensors to its 
processor is detailed in [4] and [5]. While both papers 
prescribe their experimental apparatus containing GPS/IMU 
& compass sensor fusion along with its processor, the latter 
paper applies it more specifically on USVs. This paper follows 
the laid-out assembly and aims to bridge in the knowledge gap 
by proposing an improved algorithm for USVs’ localisation. 

B. Literature Review 

For the problem of data fusion, Kalman Filter (KF) is 
undoubtedly an acknowledged method for linear problems. 
State estimates are calculated recursively by passing a priori 
state through an appropriate dynamic model, then updating it 
with new measurement state. Two states are combined in a 
maximum likelihood sense considering both its state and 

defined noise covariances [6]. KF has been well accepted for 
integrated GPS/IMU fusion use [7]. However, application of 
linear problems is limited in practical scenarios and the nature 
of fusing multiple sensors itself may introduce nonlinearity. 
So, for problems indescribable with linear systems, nonlinear 
variants of KF are developed. 

Out of many nonlinear filters, Unscented Kalman Filter 
(UKF) is a highly respected algorithm [8]. Compared to its 
alternatives, UKF offers a more robust approximation to any 
nonlinear cases and simpler formulation. This is achieved by 
propagating a set of Sigma points through the actual nonlinear 
function. Newly transformed Sigma points are then 
recalculated to form the new covariance. Taking advantage of 
UKF, significant attention has been placed in applying the 
algorithm for USVs’ navigational purposes with GPS/IMU. 
[4, 6, 9, 10]. Other equally notable ways like Particle filter is 
ruled out of interest in limiting computational burden. 

Following these progresses, adaptive features are being 
introduced to enhance functionality. There are a few types of 
adaptive techniques, but of all, covariance matching is the 
most efficient for real-time computation [11, 12, 13]. 
Covariance matching is based on online noise covariances 
revision, mitigating imprecise priori knowledge that may lead 
into deteriorating results [14]. Reference [15] propound a 
covariance matching UKF by adjusting both covariances to 
actual value. Zheng et al. [16] takes a more particular 
approach by devising a statistical switch that detects necessity 
in making changes. In [17], the authors demonstrate 
effectiveness of using fuzzy logic to match measurement 
covariance in USV tracking. There are countless other 
methods; e.g. see [3, 11, 18, 19, 20, 21, 22]. Such benefits 
from solely adapting covariances, however, are observable 
only when covariances differ from initially defined. 
Furthermore, these features typically entail additional 
parameters, undermining the term ‘adaptive’ which ideally 
should adjust automatically to various conditions with least 
manual interventions or manual definitions. Most importantly, 
the emphasis of the problem statement here is that sticking to 
a single model algorithm is a major downside in a chaotic 
environment. 

Efforts to use multiple-model (MM) approach in USVs 
application has interestingly not been deeply explored. 
Dynamic behaviour in USVs operation can be opportunely 
split into two modes: straights and turns. To only use model 
beneficial for changes in direction will ensue responsive but 
noisy results. On the other hand, using model favourable for 
straights brings smoothness but lags in capturing turns. Most 
single model methods depend on acceleration-based models, 
understandably prioritising responsiveness over smoothness. 
Reference [2] takes in Multiple Model Adaptive Estimation 
into its USVs navigational system and has shown its potency. 
More recent works have presented that Interacting Multiple 



Model (IMM) [23] outperforms other MM methods. IMM’s 
ability to efficiently switch between different models appeals 
to many tracking scenarios. Work in [24] has proven effective 
usability of IMM in maritime tracking environment, but not 
with GPS/IMU combination. Variable Structure Multiple 
Model (VSMM) is a more recent advancement to the IMM 
[25]. Large number of models in IMM impose great 
computational demand. VSMM overcomes this by having a 
set of defined models to select from. The fewer chosen models 
are later used in the main MM algorithm, removing 
unnecessary ‘competitions’ from statistically irrelevant 
models. Although VSMM is computationally more beneficial, 
current developments indicate no significant superiority in 
estimation accuracy compared to IMM. Advantages of 
VSMM are apparent when numerous possible models are 
needed. In this case, with only two models, the more complex 
VSMM has nothing to offer over IMM. [26, 27, 28, 29, 30] 

Past works on adaptive GPS/IMU fusion uses accuracy as 
its primary scoring system. While smoothness, an essential 
attribute to have for USVs’ localisation, remains under-
appreciated. Achieving accurate and smooth results 
necessitate the use of multiple models than UKF alone. This 
paper demonstrates that IMM can lead to a more realistic 
estimation than the conventional UKF. Moreover, novel 
adjunctive adjustment based on the incorporation of 
independent statistics derived from IMU into the mode 
probability update step in IMM is proposed to enhance its 
adaptability. Since the amendments put forth is minor with 
nearly no additional parameters than the original, IMM’s 
integrity and efficiency are still maintained. 

The structure of this paper is distributed as follows. 
Section II briefly details model associated in USVs and 
Section III describes IMM framework in which proposed 
algorithm is built on. Followed by explanations on the added 
mechanism in Section IV. Evidence to support the hypothesis 
are presented through simulation results and their respective 
assessments in Section V. The paper is then concluded in 
Section VI with remarks regarding existing limitations and 
potential future work. 

II. UNMANNED SURFACE VEHICLES NAVIGATION 

The purpose of localisation in USVs is to provide valuable 
information of current state to other important aspects in the 
system. GPS, IMU and electronic compass are sensors that 
serves into mentioned state data, namely position (𝑝) , 
velocity (𝑣)  and heading (θ ). Defining state as 𝒙 , it can 
therefore be written in a vector form as:  

 𝒙 = [𝑝𝑥 𝑝𝑦 𝑣𝑥 𝑣𝑦 θ]T () 

Disturbances from installed sensors can be assumed to be 
constituted into three parts: true value, white noise and bias. 
Overall acceleration and angular velocity value (𝑎𝑜 and ω𝑜) 
are modelled from its true value (𝑎𝑖 and ω𝑖) added by random 
gaussian noise (𝑤𝑎 and 𝑤𝑔) and bias (𝑏𝑎 and 𝑏𝑔). Statistical 

uncertainty for the random gaussian noise is provided by 
manufacturers. 

Generally, GPS and electronic compass are not associated 
with bias. Henceforth, their readings are represented by true 

position and heading value (𝑝
𝑖
 and θ𝑖) and random zero-mean 

gaussian noise (𝑣𝑝 and 𝑣θ). 

 𝑎𝑜 = 𝑎𝑖 + 𝑏𝑎 + 𝑤𝑎 () 

 ω𝑜 = ω𝑖 + 𝑏𝑔 + 𝑤𝑔 () 

 𝑝𝑜 = 𝑝𝑖 + 𝑣𝑝 () 

 θ𝑜 = θ𝑖 + 𝑣θ () 

where 𝑤𝑎 , 𝑤𝑔 , 𝑣𝑝  and 𝑣θ  are gaussian noises representing 

their own uncertainty 𝜎2  of distribution 𝑁(0, 𝜎2) . The 
algorithm’s main purpose is hence to provide information for 
state 𝒙  despite measurement uncertainties by filtering out 
associated noises. 

III. INTERACTING MULTIPLE MODEL (IMM) 

IMM consists of multiple recursive algorithms running in 
parallel that interacts with each other using Markovian 
coefficient. At every step, probability for every possible mode 
transition is calculated in a Markovian manner to manipulate 
a bank of multiple models such that the more relevant model 
for current condition is endorsed. Two modes of USVs, 
straights and turns, are represented by Constant Velocity 
Model (CVM) and Coordinated Turn Model (CTM), 
respectively.  

CVM best characterise the dynamics of USVs when it is 
undergoing constant velocity and constant heading. The 
discretised equation is defined as follows: 

 𝒙𝒌 = 𝑭𝑪𝑽𝑴𝒙𝒌−𝟏 +𝒘𝒌−𝟏 () 

where 𝒘𝒌−𝟏 is the process noise covariance assumed to be a 
random gaussian noise with 𝑝(𝒘)~𝑁(0, 𝑸) with 𝑸 being the 
process noise covariance and 𝑭𝑪𝑽𝑴  is the CVM prediction 
model. 

 𝑭𝐶𝑉𝑀 =

(

 
 

1 0 𝑇 0 0
0 1 0 𝑇 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1)

 
 

 () 

USVs are rather restricted in its rotational movements. 
During turns, CTM best portrays this limitation as it is derived 
from a constant velocity rotation along a circular path; a more 
realistic dynamics for surface vehicles. Comprehensive 
derivation of the model is expounded in [28] and the set of 
equations for CTM is shown below:  

 𝒙𝒌 = 𝑭𝑪𝑇𝑴(𝜔)𝒙𝒌−𝟏 +𝒘𝒌−𝟏 () 

with 

 𝑭𝐶𝑇𝑀(ω) =

 

(

 
 
 
 

1 0
sin(ω𝑇)

ω
−
1−cos(ω𝑇)

ω
0

0 1
1−cos(ω𝑇)

ω

sin(ω𝑇)

ω
0

0 0 cos(ω𝑇) −sin(ω𝑇) 0

0 0 sin(ω𝑇) cos(ω𝑇) 0

0 0 0 0 1 +
ω𝑇

𝑥𝜃,𝒌−𝟏)

 
 
 
 

 () 



Selected models then need to be mathematically connected 
together by the IMM. Below elaborates the mechanism in 
which IMM operates. It starts by normalising new mode 
probability for current step:  

 𝛍𝑘|𝑘−1
𝑖 = ∑ 𝛑𝑗𝑖𝑗 𝛍𝑘−1

𝑗
 () 

 𝛍𝑘−1
𝑗|𝑖

= 𝛑𝑗𝑖𝛍𝑘−1
𝑗
/𝛍𝑘|𝑘−1

𝑖  () 

where 𝛑𝑗𝑖  is the probability matrix of switching from mode 𝑗 

to mode 𝑖 and 𝛍𝑘−1
𝑗

 is the probability of mode 𝑗 at time step 

𝑘 − 1 . Mixed input state 𝒙𝑘−1|𝑘−1
𝑖  and its covariance 

𝑷̅𝑘−1|𝑘−1
𝑖  for each model 𝑖 are then calculated from previous a 

posteriori and the normalised mixing probability 𝛍𝑘−1
𝑗|𝑖

.  

 𝒙𝑘−1|𝑘−1
𝑖 = ∑ 𝒙𝑘−1|𝑘−1

𝑗
𝑗 𝛍𝑘−1

𝑗|𝑖
 () 

 𝑷̅𝑘−1|𝑘−1
𝑖 = ∑ [𝑷𝑘−1|𝑘−1

𝑗
+ (𝒙𝑘−1|𝑘−1

𝑖 −𝑗

𝒙𝑘−1|𝑘−1
𝑗

)(𝒙𝑘−1|𝑘−1
𝑖 − 𝒙𝑘−1|𝑘−1

𝑗
)
T
] 𝛍𝑘−1

𝑗|𝑖
 () 

Calculated input states and sensor input 𝒛𝑘 are then passed 

through the prediction-update step in each filter model 𝑖 . 

Posteriori likelihood 𝑳𝑘
𝑖  is also taken for proceeding stages. 

 [𝒙𝑘|𝑘
𝑖 , 𝑷k|k

i ] = 𝐾𝐹(𝒙𝑘−1|𝑘−1
𝑖 , 𝑷̅𝑘−1|𝑘−1

𝑖 , 𝒛𝑘 , 𝑓
𝑖(∙), 𝑯𝑖 , 𝑸𝑖 , 𝑹𝑖)

 () 

 𝑳𝑘
𝑖 = 𝒩(𝒚𝑘

𝑖 : 0, 𝑺𝑘
𝑖 ) () 

where  𝐾𝐹(⋅)  denotes the whole KF prediction-update 

process. 𝒚𝑘
𝑖  is the residual and 𝑺𝑘

𝑖  is the system covariance of 
model 𝑖. Likelihood function 𝒩(⋅) is defined as follows: 

 𝒩(⋅) =
1

√2π𝑺
exp (−

𝒚𝑺−1𝒚T

2
) () 

IMM determines current model probability for time step 𝑘 
with the attained a posteriori likelihood as follows: 

 𝛍𝑘
𝑖 =

𝛍𝑘|𝑘−1
𝑖 𝑳𝑘

𝑖

∑ 𝛍𝑘|𝑘−1
𝑗

𝑗 𝑳𝑘
𝑗  ()  

Finally, updated model probability and state posteriori 
from each model is fused to compute final IMM estimate. 

 𝒙𝑘|𝑘 = ∑ 𝒙𝑘|𝑘
𝑖 𝛍𝑘

𝑖
𝑖  () 

𝑷𝑘|𝑘 = ∑ [𝑷𝑘|𝑘
𝑖 + (𝒙𝑘|𝑘 − 𝒙𝑘|𝑘

j
) (𝒙𝑘|𝑘 − 𝒙𝑘|𝑘

j
)
T

]𝑖 𝝁𝑘
𝑖  () 

IV. IMU-BASED IMM 

Reconfigurations of IMM that makes IMU-IMM are done 
to improve sensitivity to mode changes. Modes of USVs are 
correlated to angular velocity. Angular velocity is expected to 
be zero when there is no change in heading during straights; 
and non-zero during turns. Compliant with the structure of 
IMM, the angular velocity has to be registered in a 
probabilistic sense. Likelihood function 𝒩(ω𝑘: 0, 𝑎σω

2 ) 

satisfies this by placing the measurement in a normal 
distribution with variance 𝑎σω

2 ; where 𝑎  is a constant that 
regulates its sensitivity and σω  is the specified angular 
velocity variance from manufacturer’s data.  

 𝑳𝑘
𝑖 = 𝒩(𝒚𝑘

𝑖 : 0, 𝑺𝑘
𝑖 ) () 

 𝛍𝑘
𝑖 =

𝛍𝑘|𝑘−1
𝑖 𝑳𝑘

𝑖

∑ 𝛍𝑘|𝑘−1
𝑗

𝑗 𝑳𝑘
𝑗  () 

 ℒ𝑘
1 =

𝒩(ω𝑘:0,𝑎σω
2 )

𝒩(0:0,𝑎σω
2 )

 () 

 ℒ𝑘
2 = 1 − ℒ𝑘

1 () 

Equation (20) and (21) above are identical to (15) and (17) 
included to indicate where the equations would be added into. 
According to the likelihood function defined by 𝑎σω, variable 

ℒ𝑘
1  which corresponds to CVM would have a higher 

normalised value than ℒ𝑘
2 given that IMU input ω𝑘 is close to 

zero – going straight. Otherwise, ℒ𝑘
2 will be more dominant 

than ℒ𝑘
1 . These normalised values are stored in the matrix 𝓛𝑘

𝑖 . 
Assimilation of mentioned IMU-based mode likelihood with 

IMM’s probabilistic calculation of  𝛍𝑘
𝑖  from (17) increases the 

‘confidence’ of the algorithm in choosing most relevant 
model. Equation below shows the mixing and normalisation 
of the mode probabilities. 

 𝛍𝑘
𝑖 =

𝛍𝑘
𝑖 𝓛𝑘
𝑖

∑ 𝛍
𝑘
𝑗

𝑗 𝓛
𝑘
𝑗 ,  𝑖 = 1,2 () 

A better poised final model probability for current time 

step is acquired through this modification. Revised 𝛍𝑘
𝑖  is lastly 

mixed with posteriori produced by multiple models in IMM in 
(18) and (19) to yield final estimate. Minor restructuring of 
IMM also minimally affects IMM’s attractive computational 
efficiency, while still refining its confidence in performing 
mode switches. Fig. 1 lays out the newly proposed adaptation 
of the IMM, called as the IMU-based IMM here. 

V. SIMULATIONS AND DISCUSSIONS 

A. Set Up 

Quantitative analysis on stated improvements are supplied 
by computer simulations. A series of directional commands 
are instructed into the USV. Ground truth data are generated 
based on this input. Constraints to USV’s rotational behaviour 
and acceleration is applied into the simulation, implying a 
more realistic pathing. As the iteration progresses, USV 
measurement readings are modelled by adding appropriate 
gaussian noise to the existing true state. The simulated noisy 
sensor data are then passed into various filters, enabling 
assessments of filtering quality. Fidelity of simulation used to 
depict pragmatic operations is limited by a few assumptions: 

• Manufacturer’s technical data is taken at value. 

• Environmental disturbances are modelled by adding 
extra noise on top of sensor noise. 

• Ground truth behaves in a constant body velocity.  

Heading angle is not emphasised in this study due to its 
remarkably low noise relative to other states as seen from 
Table I [17]. 



 

Fig. 1. IMU-IMM Block diagram.  

TABLE I.  SIMULATION SENSOR NOISE CHARACTERISTICS 

Sensor Measurement 
Noise 

Standard 

Deviation 
Bias 

IMU 

Acceleration (𝑎𝑖𝑥 

and 𝑎𝑖𝑦) 

0.0042 𝑚𝑠−2 0.03 𝑚𝑠−2 

Angular velocity 

(ω) 
0.036 °/𝑠 0.28 °/𝑠 

GPS 
Position (𝑝𝑥 and  

𝑝𝑦) 

8 𝑚  

Compass Heading (θ) 0.8 °  

Accuracy is quantified by calculating the Root Mean 
Square Error (RMSE), obtaining the absolute distance 
between filtered results and ground truth. As for smoothness, 
its judgement is related to changes in error. Independent to 
accuracy, greater change in error hints lack of smoothness. 
Root Mean Square Changes in Error (RMSCE) is referred to 
here to analyse smoothness. Difference to preceding recorded 
error is taken to give the change in error. Over time, the values 
are averaged to yield useful numerical descriptions. 

 RMSE =
∑ √(𝒙𝑖−𝒙̂𝑖|𝑖)

2𝑛
𝑖=1

𝑛
 () 

 RMSCE =
∑ √((𝒙𝑖−𝒙̂𝑖|𝑖)−(𝒙𝑖−1−𝒙̂𝑖−1|𝑖−1))

2𝑛
𝑖=2

𝑛−1
 () 

where 𝑛 is the total step taken by the autonomous operation, 
𝒙𝑖 denotes simulated true state during step 𝑖 and 𝒙𝑖|𝑖 defines 

final estimated output from the algorithm.  

B. Scenario 1 

Scenario 1 begins by testing filter performances in a 
relatively straight route. Slight curvatures in the path are 
added to simulate course corrections that may occur in an 
autonomous operation. Programmed commands involve a 
small right turn followed by an adjustment to the left. 

Fig. 2 and Fig. 3 displays positional estimates of different 
algorithms given readings from perturbed sensors. Ground 
truth and GPS readings are shown in Fig. 2 as black line and 
blue dots, respectively. The same figure overlaps IMU-IMM 
(orange-line), IMM (green line) and conventional UKF (red 
line) for comparison. In the enlarged inset, UKF is seen to lie 
close to true state but struggles in keeping smoothness even in 
relatively straight path. Abrupt changes in UKF reacts quickly 
to deviations, but in a notably unrealistic way. In contrast, 
IMM stays consistently apart but without dramatic changes. 
IMU-IMM inherits the two benefits, retaining IMM’s 
smoothness while keeping UKF’s accuracy. 

Fig. 3 shows how IMU-IMM fares in error against other 
filters; both positional and velocity errors are maintained at 
low magnitude. Taking average of RMSE over the whole 
course, IMU-IMM does about 50% and 70% better than UKF 
in position and velocity estimation, respectively. Compared to 
IMM, IMU-IMM is around 30% better in position and 15% 
better in velocity estimation. About smoothness, IMU-IMM is 
expectedly superior to UKF by 50% and 75% in position and 
velocity, respectively. Whereas marginal drop in smoothness 
performance from IMM to IMU-IMM can be observed at 
approximately 5% worse for each state of interest. This can be 
explained by accounting IMU-IMM’s higher degree of 
flexibility in tolerating possible changes. This actually shows 
that IMU-IMM can reasonably keep IMM’s desirable quality, 
while tremendous RMSCE discrepancy to UKF affirms 
improved reliability. Scenario 1 clearly reveals IMU-IMM’s 
benefits over conventional UKF. 

 

Fig. 2. Scenario 1: Position results for IMU-IMM, IMM and UKF. 

 

Fig. 3. Scenario 1: Position & Velocity RMSE for IMU-IMM, IMU and 

UKF.  

 

 

 



C. Scenario 2 

The aim of Scenario 2 is to simulate a more practical 
autonomous drive. Route planned by USVs usually involve 
numerous adjustments to avoid detected obstacles. Arbitrary 
turns are introduced in Scenario 2 to imitate this effect. This 
simulation initialises straight up North from origin, before 
entering a right turn into a curved forward movement, 
emulating current effects. The path ends with two consecutive 
right turns continued by a left to return the USV. 

Fig. 4 and 5 adheres to the same format as of figures in 
Scenario 1. Consistent to previous discussion, red line (UKF) 
in Fig. 4 sustains satisfactory accuracy throughout, although it 
is unstable even during. Such accuracy is matched with orange 
line (IMU-IMM) but with comparable smoothness to green 
line (IMM). IMM’s smooth estimation lags behind in turns 
before eventually merging back closer to ground truth. The 
figure exhibits IMU-IMM’s aptitude in giving smooth and 
accurate localisation under unpredictable manoeuvres. This 
ability is granted through the incorporation of angular velocity 
input to emend the posteriori mode matrix. 

Error plot is now less consistent as the scenario involves 
irregularities, testing different properties. IMM’s incapability 
to immediately capture mode switches is further hinted by its 
error peak during turns. Meanwhile, errors in UKF oscillates 
persistently at about 4 m and 0.3 m/s, suggesting consistency 
without stability. IMU-IMM displays the best trade-off 
between the two properties.   

 

Fig. 4. Scenario 2: Position results for IMU-IMM, IMM and UKF. 

 

Fig. 5. Scenario 2: Position & Velocity RMSE for IMU-IMM, IMU and 

UKF.  

Quantitatively speaking, RMSE found in IMU-IMM is 
about 30% less than both UKF and IMM. For velocity, 
proposed algorithm is 65% and 35% better than UKF and 
IMM, respectively. Again, IMU-IMM differs negligibly to 
IMM in smoothness by just around 2% while performing 
exceptionally than UKF at 55% improvement for position and 
77% for velocity. 

D. Scenario 3 

Commands in Scenario 3 attempts to replicate common 
autonomous trials with short return missions such as 
environmental surveys. The route consists of a series of 
curved journeys intermediated by a couple of sharper right 
turns. The ordered and repeated movements allow the analysis 
of algorithm’s consistency in adaptations. 

As before, figures here preserve the same formatting. Fig. 
6 visualises the nearly enclosed return path taken by the USV. 
IMM (green line) localisation starts eminently close to black 
line until it approaches the first turn and struggles to keep up, 
offsetting the stable trajectory away from the true state. UKF 
(red line) produces unsteady estimations around black line as 
expected, accumulating RMSE. Combination of the two 
positive attributes are displayed by the IMU-IMM (orange 
line); evident in the enlarged inset by performing smoother 
than UKF but as accurate. IMU-IMM’s credibility in 
sustaining low error over the alternatives are strengthen in Fig. 
7. Furthermore, in this scenario, it is just around 20% off in 
RMSCE from IMM. 

 

Fig. 6. Scenario 3: Position results for IMU-IMM, IMM and UKF. 

 

Fig. 7. Scenario 3: Position & Velocity RMSE for IMU-IMM, IMU and 

UKF.  

 

 

 

 



VI. CONCLUSION 

This paper proposes the use of IMU-IMM for USV 
localisation using GPS/IMU and compass in practical setting. 
Contemporary single model filtering techniques lack 
reliability for USVs as its dependency on one model yield 
noisy results, implying that USVs are operating in an 
unpractical manner. IMM first replaces previous method. 
Then, minor readjustment to the IMM was proposed. With 
only small alterations, the IMU-IMM is able to exploit IMU’s 
gyroscope that senses relevant mode change responsively. 
Adjunctive mode likeliness derived from the IMU is merged 
with IMM’s mode probability, raising its confidence in 
assigning suitable mode. Theorised algorithm was examined 
in simulations based on USVs’ pragmatic operations in 
comparison to UKF and IMM. IMM was proven to have 
desirable smoothness in its estimations than UKF but is poor 
in quickly responding to mode shifts. Through simulations, 
IMU-IMM was seen to produce states closer in overall to 
ground truth than IMM, while still possessing IMM’s realistic 
localisation stability. Error evaluations taking account 
different scenarios indicate approximately 25% increase in 
accuracy to UKF and only a maximum of 10% difference in 
smoothness to IMM. Future work may be continued by adding 
adaptive measures to the possibility of poor a priori 
knowledge. Preferably, the adaptive feature should avoid 
more parametric definitions. Moreover, this research work 
would also benefit from having empirical validation. 
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