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Abstract

This thesis focuses on providing a solid theoretical foundation and the associated

methodologies for the studies of cosmic magnetism and cosmological reionisation.

It develops covariant formalisms of cosmological radiative transport of (i) polarised

continuum radiation, and (ii) 21-cm line of neutral hydrogen that calculate, from

first principles, the polarisation arising from the emergence and evolution of cosmic

magnetic fields and the tomographic 21-cm line signals associated with cosmolog-

ical reionisation, respectively. The two formalisms, namely the cosmological po-

larised radiative transfer (CPRT) and the cosmological 21-cm line radiative transfer

(C21LRT), self-consistently account for the relevant radiation processes, relativistic

and cosmological effects along a ray transported in an expanding, evolving Universe.

Their all-sky algorithms adopt a ray-tracing method and a post-processing approach

by which complex physical models, such as those obtained from cosmological sim-

ulations, can be accounted for in the radiative transfer calculations. The power of

the CPRT calculations to compute unambiguous point-to-point polarisation of large-

scale structures, such as a 3D simulated galaxy cluster and a modelled magnetised

universe, is demonstrated. The ability of the C21LRT formulation to calculate the

21-cm line spectra across cosmic time, with full accounts of the essential cosmo-

logical radiative transfer effects, is verified. Furthermore, a new spherical curvelet

transform for efficient extraction of directional, elongated features within spherical

data is constructed. It is particularly useful for the studies in wide-field astronomical

research, such as analyses of the data of continuum polarisation and the structured

21-cm line from all-sky surveys or from the CPRT and C21LRT calculations. The

formulations, methodologies and techniques developed in this work together estab-

lish a solid framework within which reliable theoretical predictions and robust data

characterisation can be made, ultimately laying a foundation for the meaningful

physical interpretation of observations and studying the structural evolution of the
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magnetic ionised Universe.
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Impact Statement

(1) Impacts on understanding large-scale cosmic magnetism and cosmological

reionisation

This thesis research provides a solid theoretical foundation and the associated

methodology underpinning two core sciences, cosmic magnetism and cosmological

reionisation, of the Square Kilometre Array (SKA), the most powerful radio tele-

scope in the coming decade for the study of the fundamental aspects of astrophysics

and cosmology. The all-sky cosmological polarised radiative transfer (CPRT) for-

mulation makes it possible for the first time to compute unambiguous theoretical

point-to-point polarisation across the entire sky. The cosmological 21-cm line radia-

tive transfer (C21LRT) formulation provides a reliable theoretical framework that

account for the essential cosmological and astrophysical effects correctly and self-

consistently for the calculations of the tomographic 21-cm hyperfine line spectrum.

The new-generation spherical curvelets give an efficient representation of oriented,

elongated features within all-sky (spin) data, thus is a useful tool to extract and char-

acterise structural information in cosmological magnetic fields and cosmological

reionisation observations.

(2) Impacts on broader astrophysics and other sciences

The CPRT and C21LRT are generic formulations derived from first principles.

They provide a theoretical framework for the derivation of other cosmological radia-

tive transfer formulation for scientific explorations beyond cosmic magnetism and

cosmological reionisation. The CPRT formulation can be used, without much mod-

ification, for the calculations of polarised emission from sources (locally) through

magnetised line-of-sight medium (globally) with velocity, density, magnetic struc-

tures in an expanding Universe. Examples are polarised radiation from background

point sources, e.g. quasars or FRB, through a line-of-sight magnetised medium and

synchrotron radiation from jets or galactic outflows. Similarly, the C21LRT can
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be used for the calculations of line emission from systems with velocity, density

and thermodynamic structures in an expanding Universe, and an examples is the

Lyman-U emission from distant quasars or galaxies. The spherical curvelets are

well-suited to investigate any spherical data, not only those from wide-sky astro-

physical and cosmpological surveys. Examples of applications are in remote-sensing

in geophysics and planetary science (collected over spherical planetary surfaces),

360-degree videos in computer vision (taken by omnidirectional cameras) and med-

ical imaging (such as brain scans). Addition examples include data compression

and processing (e.g. noise reduction, inpainting, segmentation, etc) in scientific and

non-scientific disciplines.

(3) Impacts in a broader community

This thesis has contributed to the human endeavour of understanding how the

Universe that we live in came into being today. More specifically, it responds to our

philosophical and curiosity quests on how the Universe acquired its magnetic fields

and how it began to manufacture stars and galaxies. The thesis has also provided

an educational opportunity for two undergraduate students, whom I supervised,

to conduct real-life scientific research and produced frontier scientific material for

STEM outreach and public engagement activities, in particular, in my outreach

talks, in the featuring of the SKA telescope at the New Scientist Live Festival, and

in several scientific blogs for laypersons.
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, Bk
( 9) Curvelet coefficients of a spin function B 5 ∈ L2(S2)(

, Bk
( 9) )ℓ

<=
Wigner coefficients of curvelet coefficients defined as

〈, Bk
( 9)
, �ℓ∗

<=〉
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,̃ Bk̃

( 9) )ℓ
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`B 9.27401× 10−21

erg G−1
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a Radiation frequency
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drogen

ba = na/a2 Lorentz-invariant emission coefficient

Ξ =
=u
=l

6l
6u

Stimulated emission correction factor

Πl, Πc, Πtot Linear, circular, or total polarisation fraction

d =

(U, V, W)

Euler angles

d★ Euler angle describing the rotation to the North pole
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ga Optical depth evaluated at frequency a

qa Line profile function
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ponents

Bk̃
( 9)
ℓ<

Constructed scale-discretised spin curvelets centred at
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(
−B
_ 9

)
l = 2ca Angular frequency
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lp Plasma frequency
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Ωm, Ωr, ΩΛ Density of matter, radiation, and cosmological con-

stant or vacuum energy, respectively

(G, H, I) Cartesian coordinates
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longitude q ∈ [0, 2c)
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·∗ Complex conjugation (in curvelet context)
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sight
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·abs Denoting quantity related to absorption
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·co Denoting quantity measured in the comoving frame

·coll Denoting the collisional (pressure) damping

·C Denoting quantity related to continuum radiation

·e Denoting quantity related to electron
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·L Denoting quantity related to a spectral line

·nt Denoting the non-thermal component of the quantity

·obs Denoting the quantity measured at the observer frame
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·peak Denoting the peak value
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·th Denoting the thermal component of the quantity

·turb Denoting quantity related to turbulence

·refine Denoting quantity used in the refinement scheme of

the CPRT algorithm

·rad Denoting the radiative damping

·u Denoting quantity at the upper hyperfine level

·u Denoting quantity related to the transition from the

upper to the lower hyperfine level

·{ Denoting quantity that is velocity dependent

·a Denoting quantity that is frequency dependent
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Preface

“You are all right. But you are all wrong too.

For each of you touched only one part of the animal."

– Karen Backstein,

Blind Men And The Elephant (The lo S Seis Ciegos Y El Elefante).
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Chapter 1

Introduction

1.1 Thesis Overview

An important goal of astrophysics and cosmology is to understand how structures in

the Universe formed and evolved over the cosmic history to the current state. The

Universe is a complicated system. Today, it is predominantly filled with ionised

plasmas, threaded by large-scale magnetic fields. The objective of my thesis is to

understand these two important aspects: ionisation and magnetism in the Universe

on the largest possible scales. These are two inter-related frontiers in fundamen-

tal astrophysics, namely cosmic magnetism and cosmological reionisation. They

are underpinned by, and also somewhat underpin, the structural evolution of the

Universe that we live in. Cosmic magnetism and cosmological reionisation are

the research themes that form a number of key science projects for the upcoming

unprecedentedly powerful radio telescope, the Square Kilometre Array (SKA). The

scientific formulation, the methodologies, and the techniques developed in my re-

search will enable astrophysicists to utilise the SKA observations for advancing our

understanding of the structure evolution of the ionised, magnetised Universe.

This thesis focuses on providing a solution to each of the following immediate

research questions:

• How to compute the polarisation, determine its statistical properties, and

make reliable predictions of the continuum radio emission associated with

magnetism that co-evolves with the structural evolution of the Universe?

• How to properly calculate the 21-cm hyperfine line of neutral hydrogen from

an expanding, evolving Universe with broad ranges of length scales and time

scales over cosmic time, as the Universe proceeded from a neutral phase to an
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ionised phase?

• How to extract and characterise the structural information encoded in the data

defined on a sphere, in particular the all-sky andwide-sky observational survey

data that may carry spin information?

1.2 Thematic Sciences and Scientific Contexts

Charged particles interact with magnetic field, and the Universe is mostly ionised.

Magnetic activities, therefore, are present everywhere, from substellar objects (e.g.

Vallée 1998), stars (e.g. Parker 1970; Schrijver and Zwaan 2008; Vallée 2011),

stellar systems (e.g. Feinstein et al. 2008; Landecker et al. 2010; Vallée 2011) and

stellar remnants (e.g. Milne and Dickel 1974; Angel 1978; Putney 1997; Brogan

et al. 2000; Taverna et al. 2015) to galaxies and the interstellar space (e.g. Beck

2008; Fletcher et al. 2011; Jones et al. 2012; Beck and Wielebinski 2013; Carretti

et al. 2013; Iacobelli et al. 2013; Planck Collaboration XLIV 2016), to groups and

clusters of galaxies (e.g. Carilli and Taylor 2002; Clarke 2004; Govoni and Feretti

2004) and the intergalactic and intercluster gas, (e.g. Xu et al. 2006; Ravi et al.

2016), and to cosmic filaments and voids (Neronov and Vovk 2010; Taylor et al.

2011).

Magnetic fields are important on the scales of galaxies and above. They con-

tribute to the energy content of diffuse media such as interstellar gases (e.g. Beck

2003; Beck andWielebinski 2013; McBride 2014; Rodrigues et al. 2015), intraclus-

ter medium (e.g. Carilli and Taylor 2002; Govoni and Feretti 2004), and intergalactic

medium (e.g. Kronberg et al. 2001; Kronberg 2010). They also have intriguing inter-

play between turbulence and cosmic rays (e.g. Fermi 1949; Biermann and Schlüter

1951; Giacalone and Jokipii 1999; Subramanian et al. 2006; Yan and Lazarian 2008;

Lazarian et al. 2012; Xu and Lazarian 2018). Magnetic fields are essential in the

structural formation processes on the stellar scales (e.g. Balbus and Hawley 1991;

Krumholz and Federrath 2019). They also play non-negligible roles in the structure

formation processes on the galactic scales and beyond (e.g. Marinacci et al. 2015,

2018). Despite the omnipresence of magnetism in the Universe, there remain many
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open question surrounding the origin, evolution, and structure of large-scale cosmic

magnetic fields.

Our current knowledge of cosmic magnetism will be greatly advanced with

the forthcoming SKA all-sky polarisation surveys. With its wide field-of-view

and unprecedented spectro-polarimetric capabilities, the SKA permits studies of

the detailed structure of galactic and extragalactic magnetic fields across the entire

sky, and allows us to peer more deeply into the evolution of cosmic magnetism

(Gaensler et al. 2004; Johnston-Hollitt et al. 2015). Measurements of the strength

and structure of the large-scale magnetic fields will set constraints on their origin,

by distinguishing whether they originated from astrophysical processes, or from

cosmological mechanisms that operated before the structural formation epochs.

The Universe today is structured as a vast cosmic web, and it is filled with

brightly lit plasmas. As the observations of the cosmic microwave background

(CMB) reveal, the Universe was once generally smooth and filled with neutral gas,

which is mainly hydrogen. The Universe must have undergone a drastic transition,

which ushered the Universe from being neutral into being completely ionised. A

frontier in astronomical research concerns the cosmological reionisation process,

which transformed the intergalactic space from a diffuse fog of neutral hydrogen

into an ionised plasma network that we see today.

This transitional period, known as the Epoch of Reionisation (EoR), is yet to be

fully charted observationally (see e.g. Morales andWyithe 2010; Pritchard and Loeb

2012; Pritchard et al. 2015; DeBoer et al. 2017). The drivers of the cosmological

reionisation are believed to be the radiations from the first stars and galaxies, which

carved out ionised bubbles around them by their UV radiation, as well as from the

first quasars, which harbour accreting super-massive blackholes, where the strong X-

rays they emit would easily ionise the ambient gas (Barkana and Loeb 2001; Barkana

2006; Loeb 2001, 2011; Zaroubi 2013). The subsequent generations of the first stars,

first galaxies and first quasars also contributed to the ionisation. As more stars,

galaxies, and quasars emerged, the ionised bubbles that they produced percolated

and overlapped until the entire intergalactic space become almost completely ionised.
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Tracing how the sizes, morphology, number and spatial distribution of ionised

regions (and also the neutral regions) evolved since the first coming of luminous

structures (the Cosmic Dawn) will map out the Universe’s reionisation history (e.g.

Madau et al. 1997; Furlanetto and Briggs 2004). Measurements of these properties

will, in turn, provide information of the nature and properties of the different groups

of these first luminous ionising sources at great distances. This information is crucial

for advancing our understanding of the formation and evolution of structures in the

Universe and for the construction of a proper theory to describe how the Universe

began, have evolved and will end. The EoR statistics, which span a substantial frac-

tion of volume of the observable Universe, is also a powerful means to set constraints

on the cosmological models (see e.g. Loeb and Zaldarriaga 2004; Zaldarriaga et al.

2004; Morales and Hewitt 2004; Morales and Wyithe 2010; Pritchard et al. 2015).

1.3 The Evolving Universe

Our understanding of the early hot phase of the Universe was established mostly

based on CMB observations. The CMB radiation has an almost perfect thermal

blackbody spectrum, with a characteristic temperature of about 2.7 K (see Pen-

zias and Wilson 1965; Mather et al. 1994; Spergel et al. 2003; Planck Collaboration

XVI 2014). After subtracting the background radiation, there are anisotropy patterns

on the small scales in the CMB sky map, in spite of it appearing generally smooth

on a global scale. These patterns are miniature temperature fluctuations at a level

of about 1 part in 105 (Smoot et al. 1992; Bennett et al. 2013; Planck Collaboration

XVI 2014). The CMB anisotropies provide a stringent test for the theories of the

early Universe. The hot Big Bang scenario (see e.g. Peacock 2003) and the associ-

ated cosmological inflation1 theory (Guth 1981; Sato 1981; Albrecht and Steinhardt

1Inflation postulates a very brief period of exponential expansion of the Universe driven by a highly energetic
set of scalar fields during the first ∼ 10−32 seconds after the Big Bang (Guth 1981). Such an expansion
provides a resolution to several outstanding problems that the Big Bang theory alone did not address (Linde
1982). These outstanding problems include: (i) the horizon problem (why causally independent regions in
the Universe give nearly the same value for CMB temperature if it is not by assumption that the Universe is
homogeneous and isotropic on cosmological scales?), (ii) the flatness problem (why the Universe is flat if it is
not assumed in a specific set of initial conditions, i.e. the critical density of the Universe was extremely close to
unity?), and (iii) the monopole problem (why not a single of magnetic monopoles has ever been detected, nor
created experimentally, if the Big Bang models predict an efficient generation of these monopoles in the very
hot early universe and that these monopoles should be stable enough to exist and be observed today?). Inflation
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1982; Linde 1982) has been widely recognised and stood observational tests so far

(e.g. Komatsu 2010; Planck Collaboration XXIV 2014; Planck Collaboration XVII

2015).

The Big Bang Universe started with a hot, dense phase, and the Universe

expands. There was an early energetic epoch when atomic matter could not exist,

and the entire Universe was a “soup” of radiation, electrons and protons (i.e. a hot

ionised plasma). Electromagnetic radiation (photons) and charged particles were

strongly coupled in this infant Universe. Photons interact with free electrons via

Thompson scattering (see e.g. Padmanabhan 1993), and the large Thomson optical

depth made the Universe opaque to electromagnetic radiation. As the Universe

continued to expand, it gradually cooled down. It came a time when the material

in the Universe was not energetic enough for atoms to remain ionised. Protons and

electrons began to combine to form neutral hydrogen, and recombination left the

Universe as a neutral medium, and to the photons, which had also been decoupled

from the cosmic gas at this stage, a transparent medium. These photons freely

streamed through the Universe and emerged as the CMB radiation. The CMB that

we observe today is a snapshot of the cosmic time when the coupling of photons and

electrons disengaged. This occurred when the Universe was just about 380 thousand

years old, corresponding to a redshift I ≈ 1100 (Planck Collaboration XVI 2014;

Planck Collaboration XIII 2016; Planck Collaboration VI 2018).

The anisotropies in the observed CMB are fossils of the density fluctuations be-

fore cosmological recombination. These fluctuations are believed to be of quantum

origin. They arose during the inflation era (Guth and Pi 1982) and were recorded

as temperature fluctuations in the CMB, through the coupling of photons with the

baryonic fluids (see e.g. Padmanabhan 1993). At the time of recombination, photons

and the baryons and electrons were decoupled, and the previous density fluctuations

fossilised into the free-stream photons, that became the CMB that we observe to-

also provides a mechanism to produce the inhomogeneity in the universe (Guth and Pi 1982; Hawking 1982;
Starobinsky 1982; Bardeen et al. 1983), and gives specific predictions about the spatial pattern (scale-invariant
and follows Gaussian statistics) of primordial fluctuation. Their predictions generally agree with the CMB
observations (Planck Collaboration I 2015).
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day. Fluctuations in the CMB not only preserve the primordial information but also

provide the initial conditions for the subsequent structural evolution, such as galaxy

formation, in the Universe.

The recombination era commenced at redshift I ≈ 1100. At this redshift, the

CMB has a temperature ) = 2.7 (1 + I) K ∼ 3000 K. As the Universe expanded,

the CMB temperature continued to drop. The CMB was gradually shifted to the

lower frequencies and eventually dropped out from the optical waveband, letting the

Dark Ages of the Universe set in (see Miralda-Escudé 2003; Loeb and Furlanetto

2013; Natarajan and Yoshida 2014, for review and reference therein). For a hundred

million years, starting from I ∼ 200 till I ∼ 30, the Universe remained dark.

No objects were there to shine in the Dark Ages, as the first stars were yet

to ignite, although their formation was underway. The seed density enhancements

sown in the earlier epoch were growing under self-gravity. At I ∼ 15 − 30, the

first astrophysical objects began to take shape, signalling the start of the Cosmic

Dawn. Over time, the small-scale, over-dense regions acquired more and more mat-

ter falling into their developing gravitational well (contributed also by dark matter).

The trapped baryons eventually collapsed into stars, on the small scales, and the

trapped baryons and dark matter eventually assembled into galaxies, all under grav-

ity but regulated by non-gravitational processes, in particular, the radiative cooling

of the baryonic gas. When the first stars and the first galaxies emerged, the UV radi-

ation that they produced ionised the neutral hydrogen gas in their surroundings into

a plasma. The strong X-rays emitted from the first quasars, which were penetrative

and could reach longer distances, provided additional ionisation power. The ionised

regions expanded with the growing populations of stars, galaxies and quasars. These

expanding ionised regions conglomerated, and the intergalactic space was progres-

sively filled, leaving only some “islands” of neutral hydrogen gas that were shielded

from the ionising UV radiation and X-rays.

UV radiation is heavily absorbed by neutral hydrogen. The Lyman-U (LyU)

emission from an astrophysical source will therefore be strongly suppressed if a

substantial amount of neutral hydrogen is present along the line-of-sight. The
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striking forests of Lyman-U absorption features observed2 in the spectra of high-I

quasars (Fan et al. 2006) indicate that the intergalactic medium was predominantly

neutral hydrogen before becoming almost entirely ionised at I ∼ 6, corresponding

to about a billion years after the last scattering that produced the CMB (see Fan et al.

2006). Observational integrated constraint on the reionisation history of theUniverse

provided by the Thomson scattering of the CMB also indicates that the reionisation

might end by I ∼ 6, with the Thomson scattering optical depth g = 0.054 ± 0.007

and a model-dependent redshift mid-point at 7.82 ± 0.71 (Planck Collaboration VI

2018).

The Cold Dark Matter (CDM) model predicts that the formation of structure in

the Universe is hierarchical (see e.g. White et al. 1987), with clustering of matter

occuring on small scales first and non-linear structures of ever-increasing sizes

developed by merging processes. The large structures further collapsed to form

sheets and filamentary structures, resulting in the cosmic web observed in the large-

scale cosmological galaxy surveys (Jõeveer et al. 1978; Bond et al. 1996; York and

SDSS Collaboration 2000; Colless et al. 2001; Aihara et al. 2011; Sarkar and Pandey

2019).

How the Universe, in particular, the larger structures such as super-clusters,

cosmic filaments and voids, become magnetised is still an open question in fun-

damental astrophysics. The magneto-genesis could be a complex, multi-channel

process. Nonetheless, it would involve at least a mechanism for the seed field

generation and the subsequent processes that can efficiently amplify the seed field.

There are a number of propositions for the seed-field generation. It has been ar-

gued that primordial magnetic fields (e.g. Turner and Widrow 1988; Grasso and

Rubinstein 2001; Giovannini 2004; Widrow et al. 2012; Davies and Widrow 2000;

Kobayashi et al. 2007; Subramanian 2008; Kandus et al. 2011; Durrer and Neronov

2013; Naoz and Narayan 2013; Ichiki et al. 2006; Kronberg 2016b; Subramanian

2016; Han 2017) were generated during inflation, and the subsequent radiation era

2The LyU forests are measured at the frequencies from far-ultraviolet to near-infrared, corresponding to the
redshifted frequencies of the LyU line.
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(> Iequality = 3371) before and during cosmological recombination (I ≈ 1100). At

a later structural formation stage magnetic fields could be created by a local Bier-

mann battery process (Biermann 1950), when the density and pressure gradients are

misaligned (often occurring in shocks, gravity-induced mergers and gravitational

collapse). Magnetic fields could also be produced by the Weibel instability (Weibel

1959; Huntington et al. 2015; Huntington et al. 2017), which grow from anisotropies

in the velocity distribution of plasma, such as those in relativistic jets and outflows.

Stars (e.g. the Sun) are known to be magnetised. When they evolve and die,

part of their magnetic fields will be expelled into their surroundings, via stellar wind

or more catastrophic events, such as supernova explosion. In the nearby Universe,

galactic outflows driven by star-forming and/or AGN activities would deliver the

magnetisedmaterial to the circum-galactic and intergalactic space. Similarly, during

the Cosmic Dawn, supernova explosions of the very massive first stars (also known

as the population-III stars) would eject magnetic fields into the interstellar medium

(ISM).Magnetised galactic outflows, driven either by the early epochs of violent star-

formation or by the onset of accretion of the nuclear black holes in galaxies, would

deliver galactic magnetic fields into the intergalactic medium (IGM), and into the

intracluster medium (ICM; when galaxy clusters began to assemble) (see Kronberg

et al. 1999; Völk and Atoyan 2000; Colgate and Li 2000). Despite this appealing

qualitative scenario, themixing of themagnetised gas injected from galaxies with the

unmagnetised gas in the surrounding environments is still an issue yet to be resolved,

needless to say whether the vast volume in the Universe is actually magnetised by

galaxies.

Today, we see structures on various scales in the Universe, from stars and galax-

ies to cosmic filaments and voids. We also see diffuse media – the ISM, ICM and

IGM – on various scales, and these diffuse media have different properties. ISM

are multi-phase mixtures of ionised plasma, neutral atomic and molecular gas, and

dust. They can be found in a more condensed form, i.e. molecular clouds. Molec-

ular clouds are relatively cold gas condensates. They typically have a temperature

∼ 10 − 50 K. This is in contrast to the temperatures of the ambient ISM, where the
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cold neutralmediumhas a temperature∼ 100K, thewarm neutralmediumhas a tem-

perature ∼ 5000 K, and the hot ionised medium has a temperature ∼ 104 − 105.5 K

or even higher (Draine 2011). ICM are highly-ionised hot gases trapped inside

galaxy clusters by gravity. The ICM temperature reflects the depth of the cluster

gravitational well and the recent dynamical history of the host clusters. ICM are hot

enough to emit X-rays in the 0.1− 10 keV energy range. Spectroscopic X-ray obser-

vations of galaxy clusters showed that the ICM generally have a thermal temperature

∼ 106 − 108 K (see Fabian 1994; Böhringer and Werner 2010). IGM are also multi-

phase gases. Our knowledge of IGM is still very primitive. IGM are thought to be

complex and diffuse, as their many aspects in the dynamics, thermodynamics and

chemistry, are influenced by the history and activities in nearby galaxies and in the

higher structural hierarchy where they reside. Current observations have identified

a warm-hot component, which has a temperature between 105 and 107 K, in the

filaments, and a cold component, which has a temperature of < 105 K, in the very

tenuous diffuse regions (Ryden and Pogge 2016).

The missing big gaps in our knowledge of when the first structures formed, how

the reionisation proceeded, and how the first magnetic fields developed, have left us

many related open questions. To understand how the cosmos acquires its magneti-

sation on the large scales and how reionisation proceeded, proper theoretical tools

in modelling and in analysis are needed, in addition to the collection of more data

through observations and experiments. In the aspect of theoretical modelling of

radiation and providing testable predictions to compare with observations, radiative

transfer is an essential tool. In the context of understanding the physical processes

in the development of the large-scale cosmic magnetic fields and in the progression

of transforming the intergalactic gas from a neutral phase to a predominantly ionised

phase, constructing a proper covariant cosmological radiative transfer formulation

for the calculations of the radio polarised continuum radiation and of the 21-cm

hyperfine line of neutral hydrogen is a necessity. The radiation that we observe has

propagated through an evolving, expanding, structured Universe. On its journey

from the distant past to us in the present day, radiation processes and varieties of
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astrophysical sources and intervening media can leave imprints on the radiation.

The radiation itself is also subject to stretches in wavelengths due to the cosmologi-

cal expansion of the Universe. The observed radio continuum polarisation and the

21-cm hyperline of neutral hydrogen are shaped by these processes. Meaningful

comparisons between theories, models and observations require reliable quantifica-

tion and characterisation of the data, and accurate information extraction from the

data. The observational studies of large-scale cosmic magnetism and cosmological

reionisation would require wide-sky and all-sky surveys, where the data would live

on the celestial sphere. It is therefore a necessity to develop diagnostic tools to char-

acterise and extract information from the data registered in a spherical geometry.

The constructions of a covariant cosmological radiative transfer formulation and of

a new spherical data analysis technique are, therefore, the technical foci of my thesis

research.

1.4 Structure of the Thesis

Driven by the two key thematic sciences, cosmic magnetism and cosmological

reionisation, this thesis focuses on developing a proper formalism and appropriate

methodologies for the studies of the emergence and evolution of large-scalemagnetic

fields and for the proceeding of the reionisation of the Universe. More specifically,

my thesis research provides a solid foundation for robust diagnostics of all-sky

observations, based on a covariant formulation for cosmological radiative transfer

in continuum polarised radiation and in 21-cm line radiation. My thesis work

also includes the construction of data-characterisation tools, using wavelet-based

techniques. These tools are newly derived and applied to test various physical

scenarios against all-sky or wide-sky observational data. My thesis contains three

main components, which are inter-connected to each other as illustrated in Fig. 1.1.

The remainder of the thesis is organised as follows. In Chapter 2, I show the

derivation of the covariant cosmological polarised radiative transfer equation and

provide an introduction to wavelet analysis. InChapter 3, I show the computational

algorithm that I develop to calculate the polarised continuum radiation arisen from
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Fig. 1.1: This thesis concerns two aspects of the Universe: magnetism and reionisation. It
presents formulations and methodologies, linking theory, models, and observation, in the
context of forward modelling and backward modelling. For forward modelling, I develop
covariant cosmological radiative transfer formalisms for both polarised continuum radiation
and 21-cm line radiation. The covariant cosmological polarised radiative transfer calculates
the all-sky polarisation of large-scale structures obtained from cosmological magnetohy-
drodynamic (MHD) simulations. The covariant cosmological 21-cm line radiative transfer
calculates the radiative signals from the Epoch of Reionisation (or the preceding Dark Ages)
to the present Universe. For inverse-problem applications, I construct a new curvelet trans-
form on a sphere, which can efficiently extract and characterise elongated features in any
natural spherical images, in particular, those obtained from the all-sky cosmological surveys
or wide-sky astronomical observations.

sources in the Universe across the cosmic time. I also present an illustrative numer-

ical calculation of all-sky polarisation. In Chapter 4, I show the derivation of a

covariant formulation for cosmological radiative transfer of the 21-cm line, with the

objective of acquiring a quantitative understanding of how the reionisation of the

Universe proceeded over time. I also show the verification of numerical calculations

in a local frame setting, by means of 21-cm galaxy tomography, and a demonstration

in a global frame setting, which is essential for making theoretical models in 21-cm

tomography. In Chapter 5, I show my construction of a new curvelet transform on

the sphere for efficient extraction of features with elongated structures, e.g. edges

and filaments. They are particularly useful for the studies in wide-field astronomical

observations, such as those of the all-sky surveys of the continuum polarisation and

of the structured 21-cm line. The applications of the curvelets that I construct are not
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restrictive to only astronomical research involving wide-field data on the celestial

sphere. These curvelets are also applicable for the analysis of data on spheres in

areas outside astrophysics. A brief summary of this thesis is given in Chapter 6.

1.5 Adopted Conventions

The conventions used in this thesis are declared below. Unless otherwise specified,

the c.g.s. Guassian units are used. A [ −, +, +, + ] signature is adopted for the

space-time metric.

Polarisation convention conforms to the IEEE/IAU standard described in Ap-

pendix B given the coordinate systems explicitly defined in Appendix A. Attentions

are also drawn to the opposite sign (to the IAU standard) of Stokes parameter * of

linear polarisation used in the CMB community3, as well as to the factors that alter

the sign concerning Stokes parameter+ of circular polarisation (see Appendix B for

discussion).

The convention for the magnetic field is such that the field is positive when

pointing towards the observer. This is opposite to the traditional astronomical

convention (see Appendix B for relevant discussion). Geometry of the radiative

transfer problems considered in Chapters 3 and 4 are specified in Appendix A,

following similar coordinate systems as Huang and Shcherbakov (2011), such that

consistency of the signs of the Stokes parameters and their corresponding transfer

coefficients could be checked.

ΛCDM cosmology is assumed throughout this thesis. The maximum likelihood

cosmological parameters obtained by Planck Collaboration XIII (2016) are consid-

ered: the present Hubble constant is �0 = 100 ℎ0 = 67.74 kms−1Mpc−1, the present

matter density is Ωm,0 = 0.3089, the baryonic density is Ωb,0 = 0.0223(ℎ0)−2, and

the cosmological constant or vacuum density today is ΩΛ,0 = 0.6911.The radiation

density today is given by Ωr,0 = 4.1650 × 10−5(ℎ0)−2 (Wright 2006).

Rotation of functions on a sphere is specified by the Euler angles. The IHI Euler

3When spherical pixelisation scheme healpix (Górski et al. 2005) is used to compute polarisation power
spectra, which are widely adopted in the CMB studies, note that a sign flip of * is needed to bring the sign
consistent to the IAU standard.
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convention is adopted, corresponding to the rotation of a physical body in a fixed

coordinate system about the I, H and I axes by the angles W, V and U, respectively (see

Sec. 2.5.2). The Condon-Shortley phase convention is adopted in the spin spherical

harmonic functions (see Sec. 2.5.1 for its definition).



46

Chapter 2

Radiative Transfer and Wavelet

Characterisation

This chapter reviews the theory of (i) cosmological radiative transfer, and (ii) wavelet

transform on the sphere, concisely, and addresses the question of why they are

important. For (i), it starts with summarising the classical description of radiative

transfer theory, continues with the formal expressions for the covariant equation of

cosmological radiative transport (Chan et al. 2019), and ends with the transfer of (a)

polarised continuum radiation for studying large-scale cosmic magnetism, and (b)

21-cm line radiation for studying the Cosmic Dawn and the Epoch of Reionisation.

For (ii), it begins with a brief introduction of wavelets, and follows by a discussion

on curvelets and wavelet transform on a sphere (see Chan et al. 2017).

2.1 Radiative Transfer

As radiation (e.g. electromagnetic radiation) passes through matter, it may undergo

absorption, emission, and scattering. These interactions will modify the radiation,

and, in addition, leave imprints of the physical properties of the medium. Radiative

transfer deals with how radiation propagates, and is modified through the interaction

with matter. This leads to a critical question: how do the overall properties of the

radiation from astrophysical sources change on its course of travel to reach us?

This question is essential, as theories can only be tested against observations with

confidence when we have a proper understanding of the information encoded in the

radiation that we receive. This, in turn, affects the technical approaches that we

would adopt for the forward modelling and the inverse modelling.

In forward modelling, one first calculates the radiation from the sources. The
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pertinent physical properties of the material along the line-of-sight are specified

first, and with which we calculate the radiation and determine how it is transported

and hence the observable signatures in the radiation. This is facilitated by solving

the radiative transfer equation (on a specific space-time), and hence the forward

problem is essentially solving the transfer equation to predict the observables.

In inverse modelling, one deduces the properties of a medium or the emitter

from the observed signals. Models are physical interpretations derived from the

observational data. Many astrophysical problems are in fact of inverse modelling

nature. Two examples are related to the core science ofmy thesis. The corresponding

questions that I seek to answer are: (i) what does the emergent polarisation say about

the characteristics of large-scale magnetic fields, and (ii) what does the spatial and

spectral information encoded in tomographic observational data of the 21cm line

emission say about the morphological progress of the cosmological reionisation?

I investigate the transfer of electromagnetic radiation (in the radio frequencies)

emitted from the Universe spanning from a distant past to the present day. My focus

is on (i) the polarised continuum radiation encoded with the information of large-

scale cosmological magnetic fields that co-evolved with the structural evolution of

the Universe, and (ii) the 21-cm line associated with the hyperfine transition of neu-

tral hydrogen at Cosmic Dawn and the Epoch of Reionisation. As these radiation

travel over cosmological distances, they are modified accordingly, subject to global

effects, such as cosmic expansion and cosmological structural evolution, and local

effects, such as the ionisation state of the material along the line-of-sight and the

presence of turbulence and local hydrodynamic flows. There are both observational

aspects and theoretical aspects in the analyses of these radiation. However, the two

kinds of aspects are not always separable, because inference is, by nature, an inverse

process. In addition to the improvement in the statistical methods, constructing

correct theoretical models and deriving a workable formalism for theoretical cal-

culations are also an urgent necessity, given the advent of instruments, such as the

Square Kilometre Array (SKA), which will collect a vast amount of observational

data.
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The studies of all-sky polarisation data and all-sky cosmological 21-cm data

are still in an infant stage, although work has already started some decades ago.

For reviews on polarised radio emission as diagnostics of cosmic magnetism, see

e.g. Gardner and Whiteoak (1966); Asseo and Sol (1987); Saikia and Salter (1988);

Kronberg (2016a); Widrow (2002); Widrow et al. (2012); Han (2017), and refer-

ences therein. For reviews on using cosmological 21-cm line to probe the transitional

epochs of the Universe, see e.g. Furlanetto et al. (2006); Morales andWyithe (2010);

Pritchard and Loeb (2012); Loeb and Furlanetto (2013); Glover et al. (2014); Furlan-

etto (2016), and references therein.

In current theoretical and observational studies of cosmic magnetism and cos-

mological reionisation, simplified models are often used, even though very ad-

vanced statistical methods are employed. For instance, rotation measure has been a

workhorse for the diagnosis of the large-scale magnetic field, although this can be

better achieved by a polarised radiative transfer (PRT) calculation. Note that rotation

measure calculations are a simplification using a restricted form of polarised radia-

tive transfer; see Appendix D. The use of rotation measure overlooks certain subtle

complexity such as the contribution of density fluctuations and the convolution of

density fluctuations and magnetic field fluctuations.

In the tomographic studies of 21-cm line associated with cosmological reion-

isation, theoretical universes are generated by numerical simulations employing a

cubic comoving volume whose structure is allowed to evolve with the cosmological

time. They also involve a separate prescription to take account for only the light

from the past that can reach now (e.g. Ross et al. 2019, using a method of “light-cone

construction”). Although the evolution of the simulation cube can be visualised on a

computer screen, the visualisation is not a proper representation of the observation.

The radiation that we observe is a convolution of the radiation arisen from different

parts of the Universe at different cosmological epochs. They are not the same as

the radiation arisen from the same part of the Universe at different cosmological

epochs. Cross-correction of the radiation from a model universe using the same

simulated cube would give artefacts. These false signals arise from correlating the
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same particular region in a universe at different stages of evolution, as the simula-

tion is essentially a continuous self-mapping process, which is inevitably subject to

Brouwer’s fixed point theorem (see e.g. Starr 2011; Farmakis andMoskowitz 2013).

My study of the cosmological radiative transfer will provide a means to address

all of these issues properly and so to derive methods to avoid the known serious

pitfalls in the current approaches in theoretical modelling of the observables, while

still taking the advantage of the vast resources in the sophisticated cosmological

hydrodynamic simulations.

2.1.1 Polarised radiative transfer

From the conservation of energy, we may obtain an expression for the radiation

transfer equation (neglecting scattering), in a local rest reference frame:

d�a
dB

= −^a �a + na = −^a (�a − (a) (2.1)

(see e.g. Mihalas 1978), where the subscript a denotes the radiation frequency.

Hence, �a is a specific intensity, and (a = na/^a is the specific source function. The

radiative transfer equation describes the change in the specific intensity, d�a, over

a path length dB passing through a medium with an emission coefficient, na, and

absorption coefficient, ^a. The specific intensity at a location r, is the amount of

energy d�a, in a frequency range da, crossing an area d� of a normal n̂, over the

solid angle dΩ around the direction ŝ in a time interval dC, i.e.

�a (r, C)
��
B
=

d�a
(ŝ · n̂) d� dC da dΩ

(2.2)

(see e.g., Rybicki and Lightman 1986). It has the units of erg s−1 cm−2 Hz−1 str−1. �a

is a macroscopic quantity. It can be defined in a ray along which radiation propagates

and is therefore often used to describe the energy transported by a bundle of photons

of the same energy in a ray1.

1Note that quantum properties of light imposes certain restrictions for the ray approximation (Younsi 2013,
PhD thesis, UCL). Firstly, due to the uncertainty principle, d� dΩ & _2, where _ is the wavelength of radiation,
when d� ∼ _2 , one can no longer define the ray direction with accuracy. The concepts of ray would break down.
Also, d� dC & ~, hence da dC & 1/2c. When the wavelength of radiation exceeds atomic scales, Eqn. (2.2)
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In the absence of emission (na = 0) and absorption (^a = 0), d�a/dB = 0, and

hence, �a remains constant along a ray. If only emission is present (i.e. ^a = 0 and

na ≠ 0), then the change in the intensity over a distance dB is simply d�a = na dB, with

the emission coefficient 2 given by na (r, C)
��
B
= d�a/((ŝ · n̂) d+ dC da dΩ), which

has a unit of erg s−1 cm−3 Hz−1 str−1 (since [dB] = [d+]/[d�]). If only absorption is

present (i.e. na = 0 but ^a > 0), then d�a = −^a �a dB < 0. The absorption coefficient

has a unit of cm−1. Note that the absorption coefficient ^a can take a negative value,

resulting in d�a > 0. This corresponds to a stimulated emission, which is effectively

a negative absorption.

For a polarised radiation, the radiative transfer process involves not only the

change in the energy due to gain by emission or loss by absorption, but also the inter-

conversion between the polarisation components. The polarisation will modify as

the radiation propagates, and the processes can be decomposed into Faraday rotation,

which alters the angle of the plane of polarisation, and Faraday conversion, which

involves the conversion between the linear and circular polarisation components. A

commonly used formalism in astrophysics describes these effects in terms of the

4-Stokes parameters. From these, we can derive the according transfer coefficients

within the 4-Stokes framework and obtain a polarised radiative transfer equation.

This equation is conveniently expressed in terms of matrices, and it takes the form:

d�8,a
dB

= −^8 9 ,a � 9 ,a + n8,a . (2.3)

In an explicit matrix representation, it is

d
dB



�a

&a

*a

+a


= −



^a @a Da {a

@a ^a 5a −6a
Da − 5a ^a ℎa

{a 6a −ℎa ^a





�a

&a

*a

+a


+



n�,a

n&,a

n*,a

n+,a


(2.4)

using �a as a fundamental variable would no longer provide a good description of the interaction of light on
atomic scales. Nonetheless, the standard description of radiative transfer theory is still valid macroscopically.

2Note that some of the literature denote na defined here as 9a , and ^a here as Ua .
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(see Unno 1956; Sazonov 1969; Pacholczyk 1970; Jones and O’Dell 1977a; Pachol-

czyk 1977; Degl’innocenti and Degl’innocenti 1985; Huang and Shcherbakov 2011;

Janett et al. 2017a,b; Janett and Paganini 2018). The indices 8 and 9 runs from 1 to

4, corresponding respectively to the components �a, &a, *a and +a in the 4-Stokes

parameter formulation.

The Stokes parameters are measurable with appropriate instrumental design

and observational techniques. The first component �a is the specific intensity of

the radiation. It is contributed by all the polarisation components. Using it and

the other Stokes parameter, we may construct useful quantities for describing the

polarisation properties of the radiation. For instance, the total degree of polarisation

at a particular frequency a is Πtot =
√
&a

2 +*a2 ++a2/�a. This quantity equals

to 1 for fully polarised radiation, and it is less than 1 if the radiation is partially

polarised. The degree of linear polarisation is given by Πl =
√
&a

2 +*a2/�a, and

the polarisation angle by i = (1/2) tan−1(*a/&a). Thus, &a and *a are the two

parameters specifying the linear polarisation. The degree of circular polarisation

Πc = +a/�a, and hence +a is the parameter specifying the circular polarisation (see

e.g. Rybicki and Lightman 1986).

In the transfer equation, emission is specified by the emission coefficient n8,a.

Transfer effects are specified by the matrix ^8 9 ,a, analogous to the role of the absorp-

tion coefficient in the radiative transfer equation for non-polarised radiation. In ^8 9 ,a,

the ^a, @a, Da and {a components account for the absorption of the corresponding

Stokes parameters, the 5a component for Faraday rotation, and 6a and ℎa components

for the inter-conversion between linear and circular polarisation.

Faraday rotation is induced by circular birefringence due to the slight differ-

ence in the speeds that left and right circularly polarised radiation propagate in a

magneto-ionic medium. This leads to a rotation of the angle of polarisation in

the linear polarisation modes when the radiation propagates, resulting in the con-

version &a ↔ *a in the 4-Stokes formulation. Faraday conversion is caused by

linear birefringence, which is manifested in the inter-conversion between the linear

and circular polarisation modes of the radiation. In the 4-Stokes formulation, it is
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(&a ↔ +a,*a ↔ +a). The transfer matrix ^8 9 ,a can be decomposed into a symmetric

part and an anti-asymmetric part, and it contains ten independent components. The

symmetric part consists of only the absorptive components, and hence, it governs

the dissipation when the radiation propagates. The anti-symmetric part consists of

the rotation and conversion components, and hence, it specifies the corresponding

polarisation modulation in the propagation process. The polarised radiative transfer

equation (presented above) in this form is applicable for radiative transport in weakly

anisotropic medium (Sazonov and Tsytovich 1968; Sazonov 1969; Jones and O’Dell

1977a; Pacholczyk 1977).

Stokes parameters are dependent on the coordinate system, and each parameter

alone is not invariant when undergoing a coordinate transformation. However, it

is possible to derive invariant quantities with the linear combination of the Stokes

parameters. For instance, the two linear polarisation Stokes parameters can be com-

bined to a complex conjugate pair (&a ± i*a), which are invariant under coordinate

transformation. This pair can be linearly transformed to the so-called the �- and �-

modes of the linear polarisation, corresponding to an odd-parity and an even-parity

polarisation, respectively.

In the study of polarised properties of an astrophysical source using a Stokes-

parameter formulation, the coordinate system on which the specific representation

is constructed, the exact definition of the polarisation and convention by which the

polarisation is defined must be clearly stated. Otherwise, it will lead to ambiguities

in the theoretical calculations and improper interpretations of the observations. For

instance, the handedness of the coordinate system (left-handed or right-handed) will

give rise to different signs in transfer coefficients in the polarised radiative transfer

equations (cf. Sazonov 1969; Pacholczyk 1970; Melrose and McPhedran 1991;

Huang and Shcherbakov 2011). This coordinate handedness is also manifested

in the sign of the Stokes parameter +a, which specifies the circular polarisation.

There are also different conventions in the definition of the polarisation angle3,the

3Investigations of the polarisation of the CMB adopt the opposite convention to the International
Astronomical Union (IAU) standard, for which polarisation angle increases clockwise (counterclock-
wise) when looking at the source for the former (latter). To rectify the discrepancy, an opposite
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handedness of circular polarisation, and the Stokes parameter +a (see Robishaw

2008, for a compilation of the conventions used in radio polarisation work). All of

these must be clarified before carrying out polarised radiative transfer calculations

of extracting information from observed polarisation data by means of a theoretical

or simulated models.

In Appendix A, the coordinate systems and the underlying geometry considered

in this study are shown, and in Appendix B, the intricacies of keeping a consistent

polarisation convention is discussed. The Stokes parameter *a and its associated

coefficients, Da, 6a and n*,a, can be made to vanish by a choice of a local coordi-

nate system (see Sazonov 1969; Pacholczyk 1977). This is illustrated in Fig. A.1

in Appendix A, where Da, 6a and n*,a become zero in the basis (G, H), because

the projection of the magnetic field onto the (G, H)-plane is parallel to H. In this

representation, the circular polarisation Stokes parameter +a couples only to one if

the linear polarisation Stokes parameter*a, and the interchange between the Stokes

parameters are such that &a ↔ *a and*a ↔ +a, but +a = &a.

2.1.2 Lorentz-invariant radiative transfer equations

The covariant formulation for radiative transfer without the consideration of po-

larisation were presented in Rybicki and Lightman (1986); Fuerst and Wu (2004);

Younsi et al. (2012) for special relativistic and general relativistic settings. I elabo-

rate the derivation of Lorentz-invariant radiative transfer equation here, following the

approach adopted in Fuerst and Wu (2004) and Younsi et al. (2012), before I present

a more general, fully covariant radiative transfer formulation and the cosmological

radiative transfer equation. Consider a bundle of particles (presumably photons)

filling a phase-space volume element dV ≡ d3x d3p (where the 3-spatial volume

element d3x = dG dH dI and the 3-momentum volume element d3p = d?G d?H d?I

in the Cartesian coordinates) at a given time C. The Liouville’s theorem states that

dV/d_a = 0 (Misner et al. 2017), implying that the phase-space volume element dV

is conserved along the affine parameter _a, and hence dV is an invariant quantity.

sign has to be applied to the Stokes parameter *a (see https://aas.org/posts/news/2015/12/
iau-calls-consistency-use-polarisation-angle).

https://aas.org/posts/news/2015/12/iau-calls-consistency-use-polarisation-angle
https://aas.org/posts/news/2015/12/iau-calls-consistency-use-polarisation-angle
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The distribution function of the particles in the bundle is essentially the phase-space

density and is given by 5 (x, p) = d#/dV, where d# is the number of particles

in d+ . Particle number is a scalar. Therefore d#/dV is Lorentz invariant. Hence

5 (x, p) is also Lorentz invariant.

Photons are massless relativistic particles with speed { = 2. For a bundle of

photons with energy � (= 2?), the spatial and momentum volume elements in the

phase-space are d3x = d� 2 dC and 23d3p = �2 d� dΩ, respectively, where d�

is the area element through which the photons travel in the time interval dC and

dΩ corresponds to the direction of photon propagation. This gives a distribution

function

2−3 5 (x,p) = d#
d� 2 dC �2 d� dΩ

(2.5)

(cf. Fuerst and Wu 2004; Younsi et al. 2012). The specific intensity of the radiation,

in terms of energy of the photons, � , may be expressed as

�� =
� d#

d� dC d� dΩ
, (2.6)

along the propagation of the ray and across a surface element d� perpendicular to

the ray propagation. Thus,

��

�3 = 2
−2 5 (x,p) (2.7)

is invariant under Lorentz transformation. It follows that �a/a3 is a Lorentz-invariant

quantity. Hence, we may define a Lorentz-invariant specific intensity

Ia ≡
�a

a3 . (2.8)

Note that the increment of the optical depth along a ray dga (= ^a dB) is a scalar,

and hence it is invariant when undergoing a coordinate transformation. We may
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therefore expect the Lorentz-invariant radiative transfer equation to take this form:

dIa
dga

= −Ia + Sa (2.9)

(see Rybicki and Lightman 1986; Fuerst and Wu 2004). Here, Sa is the Lorentz-

invariant specific source function. We may obtain by a dimensional analysis the

Lorentz-invariant absorption and emission coefficients, with respect to the Lorentz-

invariant intensity, and they are Za = a ^a and ba = na/a2, respectively (see Fuerst and

Wu 2004). Thus, the Lorentz-invariant specific source function is

Sa ≡
ba

Za
=

1
a3

(
na

^a

)
=
(a

a3 , (2.10)

where (a is the specific source function as that in in Eqn. (2.2).

The coefficients Za and ba are Lorentz-invariant, and their values measured

in the observer’s frame and in the comoving frame (i.e. the local rest frame of the

medium, denoted by “co”) are related by a ^a = aco ^a,co and na/a2 = na,co/aco
2. It

follows that the Lorentz-invariant radiative transfer equation, in terms of radiation

path length and the intensity and absorption and emission coefficients evaluated in

the local comoving frame is

dIa
dB

�����
co

=

(
−^a Ia +

na

a3

) �����
co

, (2.11)

(Fuerst and Wu 2004; Younsi et al. 2012), which may also be expressed as

d
dB

(
�a,co

aco3

)
= −^a,co

(
�a,co

aco3

)
+

(
na,co

aco3

)
. (2.12)

2.1.3 Covariant radiative transfer formulation

In this section and the next, unless otherwise stated, the natural unit convention,

with 2 = � = ~ = 1, is adopted.

In general relativistic settings, it is more desirable that the radiative transfer

equation is expressed in terms of space-time intervals instead of the optical depth or
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path length in the 3-space. This can be achieved by introducing an affine parameter

_a. With this, the problem is translated into an evaluation of dB/d_a (i.e. the variation

in the path length B with respect to _a), and the comoving 4-velocity {V of a photon

travelling in the medium (which is practically a fluid) that has 4-velocity DV.

For photon with a 4-momentum :U, the comoving 4-velocity {V can be obtained

by the projection of :U on to the fluid frame, i.e.

{V = %UV:U = :
V + (:UDU)DV (2.13)

(Fuerst and Wu 2004), where the projection tensor %UV = 6UV + DUDV, with 6UV as

the space-time metric tensor. The variation in B with respect to _a is therefore

dB
d_a

= −


{V

 ���

_a,obs

= −
√
6UV (: V + (:UDU)DV) (:U + (:VDV)DU)

���
_a,obs

= −:UDU
���
_a,obs

(2.14)

(Younsi et al. 2012). Note that for a stationary observer positioned at infinity

:VD
V = −�obs. It follows that the ratio

:UD
U
���
_a,co

:VD
V

���
_a,obs

=
aco
aobs

, (2.15)

which corresponds to the relative energy shift of the photon between the observer’s

frame and the comoving frame. Using the Lorentz-invariant properties of Ia, Za and

ba yields the covariant general relativistic radiative transfer equation

dIa
d_a

= −:UDU
���
_a,co

(
− ^a,co Ia +

na,co

aco3

)
(2.16)

(Younsi et al. 2012), where all the quantities are frequency dependent and are

evaluated along the path of a photon (with the comoving frame denoted by the

subscript “co”) as in the previous section.
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2.2 Cosmological Polarised Radiative Transfer

Myderivation of the covariant formulation of cosmological polarised radiative trans-

fer (CPRT) is based on a covariant general relativistic radiative transfer (GRRT)

formulation (Fuerst and Wu 2004; Younsi et al. 2012), which starts from the con-

servation of phase-space volume and the conservation of photon number. I assume

a flat geometry of the Universe in my derivation as this geometrical property is

consistent with the recent observations (see Planck Collaboration XIII 2016). I

adopt a flat Friedmann–Robertson–Walker (FRW) metric with diagonal elements

(−1, 02, 02, 02), where 0 = 1/(1 + I) is the cosmological scale factor for the expan-

sion of the universe, and I is the cosmological redshift.

My objective is to construct a cosmological radiative transfer formulation that

correctly describes how polarisation interacts with magnetised media whose struc-

tures co-evolve with the Universe. To achieve this, the radiative transfer formulation

should properly account for various local relativistic and global cosmological ef-

fects. Also, it is expressed in terms of cosmological redshift because cosmological

distances and time are expressed in terms of this parameter in both theoretical and

observational studies of astronomy.

With these depositions in mind, I make two generalisations from the GRRT

formulation of Fuerst and Wu (2004) and Younsi et al. (2012), which (i) account for

the polarisation of the radiation and (ii) can incorporate a model universe in which

the radiation propagates. The former is straightforward in the sense that the PRT

equation, Eqn. (2.4), takes the general form of radiative transfer, Eqn. (2.1), and that

all the Stokes parameters have the same physical units. Therefore, similar to how one

can obtain the Lorentz-invariant intensity by taking Ia ≡ �a/a3, the invariant Stokes

parameters are obtained by Ia,8 = [Ia,Qa,Ua,Va]T = [�a, &a,*a, +a]T/a3, where

the tensor index 8 runs from 1 to 4, and the superscript “T" denotes the transpose.

For notational simplicity we drop the subscript a in the Stokes parameters and in

the coefficients of absorption and emission hereafter. It follows that the covariant
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polarised radiative transfer equation, in tensor notation, takes the form:

d(I8,co)
d_a

=
d(�8,co/aco

3)
d_a

= −:UDU
���
_a,co

{
−^8 9 ,co

(
� 9

aco3

)
+ n8,co

aco3

}
, (2.17)

(Chan et al. 2019). Next, to make the formulation appropriate in cosmological

settings and, therefore, suitable for (but not limited to) the investigation of cos-

mological magnetic fields, the factor :UDU is to be evaluated using the space-time

metric of a chosen cosmological model such that Eqn. (2.17) is evaluated in terms

of a cosmological variable, e.g. the redshift I, instead of the affine parameter _a.

For simplicity, consider a photon propagating radially in a cosmologicalmedium

with 4-velocity DV, i.e.

:U =



�

?A

?\

?q


= a



1

1

0

0


; DV = W



1

VA

V\

Vq


, (2.18)

wherep = (?A , ?\ , ?q) denotes the 3-velocity of the photon, # = (VA , V\ , Vq) denotes

the 3-velocity of the medium, and W = 1/
√
(1 + V2) is the corresponding Lorentz

factor (here, we use 2 = ℎ = 1), evaluation of :UDU then yields

:UD
U
���
I
= WIaI (−1 + 02VA,I) . (2.19)

The ratio of :UDU evaluated at an early epoch to that at the present day is given by

:UD
U
���
I

:VD
V

���
Iobs

=
aI

aIobs

(
WI

WIobs

(02 VA,I − 1)
(02

obs VA,Iobs − 1)

)
. (2.20)

If the motion of the medium can be neglected (i.e. V=0, W=1), the ratio is then

simplified to

:UD
U
��
I

:VD
V
��
Iobs

=
az
aIobs

, (2.21)
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which is the relative shift of energy (or frequency) of the photon, as one would

expect from Eqn. (2.15). By defining :U = (�,p) = dGU/d_a, one may also obtain

d
d_a

=
d G0

d_a

d
d G0 = �

d
dB
= �

dI
dB

d
dI
, (2.22)

and use this to also show that the photon’s energy is � ∝ 0−1 and thus

aI

aIobs

=
0obs
0

=
1 + I

1 + Iobs
, (2.23)

in a flat FRW universe (see e.g. Dodelson 2003). In other words, the ratio in

Eqn. (2.21) corresponds to the relative energy shift of the photon due to the cosmic

expansion.

Finally, by applying the chain rule given in Eqn. (2.22) to Eqn. (2.17), we obtain

the CPRT equation defined in redshift space:

d
dI



I

Q

U

V


= (1 + I)


−



^ @ D {

@ ^ 5 −6

D − 5 ^ ℎ

{ 6 −ℎ ^





I

Q

U

V


+



n�

n&

n*

n+


1
a3


dB
dI
, (2.24)

where dB/dI in a flat FRW universe is given by

dB
dI
=
2

�0
(1 + I)−1 [

Ωr,0(1 + I)4 +Ωm,0(1 + I)3 +ΩΛ,0
]− 1

2 , (2.25)

(see e.g. Peacock 1999), where �0 is the standard Hubble parameter, Ωr,0, Ωm,0

and ΩΛ,0 are the dimensionless energy densities of relativistic matter and radiation,

non-relativistic matter, and a cosmological constant (dark energy with an equation

of state of | ≡ −1), respectively. The subscript “0" denotes that the quantities are

measured at the present epoch (i.e. I = 0).

The general covariant PRT equation, Eqn. (2.17), and the equation specific

for a FRW universe, Eqn. (2.24), preserves the basic structure of the conventional

polarised radiative transfer (see e.g. Sazonov and Tsytovich 1968; Sazonov 1969;
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Jones and O’Dell 1977a,b; Pacholczyk 1977; Degl’innocenti and Degl’innocenti

1985), making it easy to implement for practical calculations, as I will demonstrate

in the example problems and applications in Chapter 3. Note also that the CPRT

formulation is general and can adopt different cosmological models with flat space-

time geometry through the :UDU factor. Ray-tracing calculation for Eqn. (2.24) can

then be performed for arbitrary photon geodesics. For clarity, I reiterate that a flat

space-time is considered inmy derivation such that straightforward parallel transport

of the polarisation Stokes vector (a,8 = [�a, &a,*a, +a]T of the radiation along the

photon geodesics is enabled4. For radiation propagating in a curved space-time,

the rotation of its polarisation vector measured by the observer has a contribution

caused not only by the Faraday rotation but also by the curvature of the embedded

manifold, i.e. angle is not preserved transporting along the line-of-sight. The flatness

of space-time ensures that the angles measured in the local comoving frame would

be the same everywhere along the geodesic.

The covariant nature of the CPRT formulation allows a straightforward trans-

form of an observable between the comoving frame and the observer’s frame. Com-

putation from the invariant Stokes parameters to the observable Stokes parameters

in the comoving frame requires only a scalar multiplication of the cube of the radia-

tion frequency, i.e. [�a (I), &a (I),*a (I), +a (I)]T = [Ia (I),Qa (I),Ua (I),Va (I)]T×

a(I)3. The results at I = 0 are then what would be measured in the observer’s

frame at the present time, provided that the transform of the local polarisation

frame to the instrument’s polarisation frame are properly handled (as is noted in

Appendix A), along with the corrections of instrumental effects and foregrounds,

4There have been studies in polarised radiative transfer in space-time appropriate for black-hole systems
(Broderick and Blandford 2003; Broderick and Blandford 2004; Shcherbakov and Huang 2011; Gammie and
Leung 2012; Dexter 2016; Mościbrodzka and Gammie 2018). In general, a ray-tracing approach was adopted
in these studies. It involves first solving the photon geodesic (to determine the ray), and keeping track of the
local reference frame along the ray. The polarised radiative transfer is executed on a local reference frame
along the ray. A reference frame on which the polarisation components are defined is connected to these local
reference frame at the point of observation. This reference frame is transported along the ray as the radiation
propagates. There are certain conceptual and technical issues in the standard ray-tracing approach for covariant
polarised radiative transfer when a 4-Stokes parameter representation is used. They stem from the fact that the
Stokes parameters are not vector, and they are rotationally invariant. A more proper formulation will require a
representation in which the polarisation is expressed in terms of rotationally invariant quantities (cf. the spin-2
signals of �- and �-modes in the CMB).
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such as ionospheric effects.

2.3 Line Radiative Transfer - A Phenomenological Introduction

Here I describe the basic phenomenology of line radiative transfer with a simple

“stick-person” style model. In contrast to the continuum model described in the ear-

lier section, line radiative transfer requires the opacities contributed by both the line

and its underneath continuum. Thus, the radiative transfer is jointly determined by

the emission and absorption coefficients of the line and the emission and absorption

coefficients determined by the neighbouring continuum. In a simple phenomeno-

logical manner, the (non-polarised) radiative transfer equation in a local rest frame

may take the form:

d�a
dB

= −(^C,a + ^L,a qa,abs)�a + (nC,a + nL,a qa,emi) (2.26)

(cf. Wu et al. 2001) if (i) photon scattering, (ii) energy redistribution and (iii) stim-

ulated emission are not included. Here, the subscripts “C” denotes the continuum

underneath and neighbouring to the line, “L” denotes the line centre, and “abs”

associated with the line profile function qa refers to line absorption line and “emi”

to line emission.

In the above equation, the continuum underneath the line and at the frequencies

adjacent to the line centre is assumed to be slow varying. There is no assumption of

the same line profile functions for emission and absorption. In most astrophysical

situations, the same line profile is applied for emission and absorption, but in a global

cosmological setting, this assumption does not always hold, as the emitters and the

absorbers are not co-located at the same slice of space-time. Neglecting energy

redistribution simplifies the calculations greatly, as the radiative transfer equation

can be solved independently, without the consideration of the couplings between the

radiative transfer and the relevant physical processes, e.g. atomic transition induced

by the radiation, of the line-of-sight medium.

Without losing generality, the line profile function qa = 1 at the line-centre

energy is considered. For the situation that the emission and absorption lines are
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centred at the same frequency, the emission and absorption coefficients for the line

are therefore n!,a qa,emi = nL,aL and ^!,a qa,abs = ^L,aL , respectively. To simplify

the notation, the subscript “a” of the frequency-dependent quantities are dropped

hereafter, unless otherwise stated. With these, a qualitative description for the

radiative transfer at the line-centre frequency can be derived, as well as a qualitative

description for the continuum at the frequencies neighbouring to the line.

At the line-centre frequency, the radiative transfer equation is

d�L
dB

= − (^C + ^L) �L + (nC + nL) (2.27)

(see Tucker 1977; Wu et al. 2001). The transfer process is contributed jointly by

both the opacity of the line and the opacity of the continuum. The radiative transfer

of the continuum at the line can be approximated by the radiative transfer of the

continuum at the neighbouring frequencies at which the line profile function is

insignificant, i.e. qa � 1 when the continuum is sufficiently slow varying. This

gives the continuum radiative transfer equation:

d�C
dB

= −^C�C + nC , (2.28)

in which only the opacity of the continuum contributes to the transfer process.

Whether the line will appear as an emission feature or an absorption feature

depends on the relative strength of �L and �C, if the line is centrally peaked. The

line will appear as emission when �L > �C, and in absorption when �L < �C. For the

cosmological 21-cm line associatedwith the hyperfine transition in neutral hydrogen,

the line is seen against the continuum CMB radiation.

For the covariant radiative transfer of line in a cosmological setting, a gener-

alisation to account for frequency redistribution and the complexity and structure

in the line profile is required. Nonetheless, with the same arguments as presented

previously for the cosmological polarised continuum radiative transfer, the corre-

sponding cosmological line radiative transfer equation is expected to be similar to
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the following:

d(I8,a)
d_a

�����
_a,co

=
d(�8,a/a3)

d_a

�����
_a,co

= −:UDU
���
_a,co

{
−^8 9 ,tot,a

(
� 9 ,a

a3

)
+ n8,tot,a

a3

} �����
_a,co

,(2.29)

where ^8 9 ,tot,a = ^8 9 ,C,a + ^8 9 ,L,a and n8,tot,a = n8,C,a + n8,L,a. A more comprehensive

elaboration of how the covariant 21cm line radiative transfer across the cosmological

time is executed in practice will be presented later in Chapter 3 of this thesis.

2.4 Wavelet Transform

In astrophysics, there are often complex systems where multiple physical processes

are in simultaneous or in sequential operations. These processes could have different

length scales and/or time scales, and they manifest as spatial and temporal features

in the observational data. The wavelet transform is a useful tool for the analysis

of such observations, as it can efficiently extract the frequency-time or scale-space

information, identifying patterns in the data distributed on a real line of time (e.g. a

time series) or an image, which is on a plane or a high-dimension manifold (e.g. a

2-sphere). With the simultaneous spectral and temporal (or spatial for an image)

characterisation, we can separate the scale-dependent, localised features of interest

within the observational data and hence identify the relevant physical processes

that give rise to the corresponding observed scale-dependent temporal or spatial

features. Wavelets are now a prevalent analysis technique for studying cosmology

(Vielva et al. 2004; Vielva et al. 2006a; McEwen et al. 2005; Vielva et al. 2006b;

Wiaux et al. 2006; McEwen et al. 2006b,c, 2007; Pietrobon et al. 2006; McEwen

et al. 2008b; Wiaux et al. 2008c; Lan and Marinucci 2008; McEwen et al. 2008a;

Delabrouille et al. 2009; Bobin et al. 2013; Planck Collaboration XII 2014; Planck

Collaboration XXIII 2014; Planck Collaboration XXV 2014; Planck Collaboration

IX 2015; Planck Collaboration XVI 2016; Planck Collaboration XVIII 2016; Rogers

et al. 2016; Leistedt et al. 2017), astrophysics (e.g. Farge 1992; Frick et al. 2010;

Kowal and Lazarian 2010; Iuppa et al. 2012; Schmitt et al. 2012; Cornish and

Littenberg 2015; Farge and Schneider 2015; Sun et al. 2015; Robitaille et al. 2017;
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Chatziioannou et al. 2019), planetary science (e.g. Holschneider et al. 2003; Pascal

2011; Audet 2014; Xu et al. 2019), geophysics (e.g. Foufoula-Georgiou and Kumar

1994; Schmidt et al. 2006; Simons et al. 2011; Bhardwaj et al. 2020), neuro-science

(e.g. Dinov et al. 2005; Rathi et al. 2011; Hramov et al. 2015) and many disciplines

in science and beyond science.

In Chapter 5, I present a new generation of spin curvelets on a sphere that I

constructed. These spherical spin curvelets are specifically designed for the all-

sky data, and that are particularly efficient in extracting curvilinear features on

spherical surfaces. Some important examples of the all-sky data are the all-sky

polarisation and the all-sky 21-cm emission. These two are the core of the science

themes underpinning my thesis. In the following subsections, I first introduce

the concepts of the wavelet transform. I highlight the properties of wavelets and

discuss the strengths of wavelet transform in the analysis of non-stationary, noisy

and aperiodic (or quasi-periodic) signals, against the Fourier transform, a commonly

used technique in feature characterisation. I then present the extension of the wavelet

transform for Euclidean space in a plane to the wavelet transform on a sphere (i.e. in

a two-dimensional spherical surface, a 2-sphere). The practical consideration in the

applications are also discussed.

2.4.1 Wavelet transform versus Fourier transform

The Fourier transform decomposes a signal into a series consisting of orthogonal

bases which are represented by trigonometric functions (often in terms of sines

and cosines). The Fourier coefficients are variables that characterise the signal

in this linear decomposition, allowing a quantitative comparison between observa-

tional/experimental signals and theoretical models or two streams of data obtained

experimentally or observationally. Analogous to the Fourier transform, the wavelet

transform also decomposes signals into a series consisting of a set of atomic func-

tions, which are called wavelets, and the wavelet coefficients are variables that

characterise the signals. The Fourier transform employs the trigonometric functions

as the analysing functions, which, individually, are non-local as they stretch out
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to infinity. In contrast, wavelets are constructed such that they are localised both

temporally/spatially and spectrally.

The localisation properties of wavelets enable wavelet transforms to analyse

many practical problems where the Fourier transform may be inapplicable. For

instance, it is difficult for a Fourier analysis to adequately characterise a signal

stream/plane with sharp discontinuities, as the Fourier transform involves an im-

plicit averaging through the integration over the entire space or time domain, thus,

only global averaged information, but not the local information, would be retained.

To rectify this shortcoming, modifications of the conventional Fourier transform,

such as the short-time Fourier transform (STFT), have been developed. The STFT

uses a fixed-width window, which provides some degree of temporal (or spatial)

resolution throughout the analysed signals. Despite the improvement, it still falls

short of simultaneously capturing both the short-duration (or short-width), high-

frequency and long-duration, low-frequency features for aperiodic or more general

non-stationary signals.

Thewavelet transformdifferentiates from the STFTby utilising a sliding time (or

space) window of variable lengths (i.e. a frequency-dependent windowing). Thus,

it allows an “arbitrarily” high resolution (limited only by the uncertainty principle,

which will be discussed later) in time, or position, of the high-frequency signal

components. This capability gives wavelet transform a unique ability that is not

available to the STFT and methods based on the conventional Fourier transform.

In short, wavelet are mathematical functions used in representing data or other

mathematical functions. Wavelets can be purposefully constructed to represent the

signal of interest, picking out individual signal features by their dual localisation

properties in the temporal (or spatial) and spectral domains. They satisfy the

mathematical criteria of admissibility and regularity conditions, by which they

obtain their name (“wave + let"). In the next subsections, I will elaborate how

wavelet transform provides a multi-resolution time-frequency (or position-scale)

joint representation of signals and present some of its mathematical representations.
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Limit set by the uncertainty principle

The idea behind a time-frequency, or position-scale, joint representations lies in

dissecting a signal into parts and the subsequent analysis (Mallat 2009b). This

brings up a practical question: how to best cut the signal? The answer is, however,

circumstantial. It depends on what kind of information one would aim to extract

from the signals. In the techniques that involve integration of the segments of

the signals, such as the wavelet transform, as well as the STFT, the cutting itself

corresponds to a convolution between the signal and the cutting window. Thus, how

to choose the cutting will determine how the information is extracted from the data

and hence how the characterisation is presented.

Here is an elaboration. Consider that the signal of interest is a time series, and

we want to determine the frequency components of the signal at a specific time.

We may use a Dirac pulse to select a segment of the time series and transform

it into the frequency domain. The transform will involve a convolution of the

signal and the window function, the Dirac pulse in this case. Now consider that an

integral transform is used. For instance, the Fourier transform of a infinitely narrow

Dirac pulse is practically a white-noise spectrum. A similar integral transform of

a Dirac pulse will give a spectrum consisting of all frequencies. The convolution

of a Dirac pulse window will completely smear out the signals in the frequency

domain under a usual Fourier transform or a similar integral transform, i.e. a perfect

time localisation provides no frequency information. This outcome is precisely the

opposite to that of a direct Fourier transform of the entire time series, which gives

a perfect frequency resolution but at the expense of the time resolution through an

integration. This shows that when an integral transform is employed, it is impossible

to know at the same time the exact frequency and the exact time of occurrence of

this frequency in the signal. This also implies that in time-frequency analyses, if an

integral transform is used, a signal cannot be localised to a single point. Instead, its

location is distributed over a region, which may be represented by a “box” of finite

size (i.e. a packet of waveform, thus, wavelet). This is effectively a manifestation of
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the Heisenberg’s uncertainty principle, derived originally for quantum mechanics.

Multi-resolution analyses

For clarity, hereafter, the notations in general signal processing applications will be

adopted. The term “frequency” is reserved for Fourier transform, while the term

“scale”, which is the reciprocal of frequency at which we look into the signal of

interest (e.g. a time series), for wavelet transform. Also, signals can be defined on

domains apart from time. For instance, an image is a two-dimensional signal defined

on a spatial domain. The term “scale” is thus also appropriate in this aspect.

Wavelets resolve the signal-cutting dilemma in time-frequency (or space-scale)

analysis by constructing a scalable modulated window, and then shifting this window

along a time series or across an image on the plane. Then, the time-scale (or space-

scale) representations of the signal can be derived as follows. The scalable window

(known as the mother wavelet5) is shifted along a signal stream, or across a signal

plane, and a spectrum is computed for every location being analysed. The shifting

process is repeated but with a slightly shorter or longer window (i.e. the dilated

versions of the mother wavelet) for each repetition. As the entire signal is sieved

through by the wavelets of varying scales, a collection of time-scale (or space-scale)

representations of the signal, with different resolutions, are obtained. The original

signal may be expressed in terms of a linear combination of the wavelet functions

with the corresponding coefficients. With the wavelet function specified, the scale

information will be retained in the wavelet coefficients. As such, operations on the

signal can be performed using the wavelet coefficients. In addition, imposing an

admissibility condition on themotherwavelet ensures the signal can be reconstructed

from its wavelet coefficients without any loss of information (see e.g. Daubechies

1992; Mallat 2009a), resulting in an exact reconstruction. This guarantees that all

the signal content is captured by the wavelet coefficients.

Sparse representation of data can be achieved if the wavelet functions are chosen

to adapt to the target signals (data), or if truncation of the coefficients below a certain

5A mother wavelet is defined as a localised function upon which translation, dilation and rotation may be
applied.
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threshold is applicable. The latter is commonly practised in the applications of de-

noising, such as removing background white noise whose energy spreads uniformly

across all scales with a flat spectrum. This sparsity is utilised in data compression,

which is particularly important in practical astrophysics, as we envisaged a big data

era being ushered in with the new-generation telescopes like the SKA.

2.4.2 Practical considerations

Here, several considerations for the application of the wavelet transform in practical

signal/data analysis in science are highlighted. These considerations are important

as they will determine the framework of wavelet transform and the selection of the

wavelet functions to be used in the analysis.

Firstly, the method should accurately account for the geometrical properties of

the space where the data reside. In astrophysics and cosmology, all-sky (or wide-

sky) survey observations are conducted over the celestial sphere. All-sky survey data

are therefore positioned on a spherical surface (often referred to as a 2D sphere).

If distance (depth) information, such as the redshift, is also present, the data are

residing in a solid sphere (often refereed to as a 3D ball). Analyses of the data will

be the most efficient and accurate if the technique is derived to accommodate the

underlying spherical geometry. Thus, wavelet transforms using spherical wavelets

are a natural choice for the analysis of the observed all-sky data in astrophysics and

cosmology.

Secondly, the method should account for the spin information of the signals, if

present. For instance, the observed all-sky polarisation is a spin-2 signal on a sphere.

Such a spin signal is invariant for local rotations of ±c. The observed all-sky 21-cm

line intensity for cosmological structural evolution is a spin-0 (scalar) signal on a

sphere. Spin spherical wavelet techniques are essential for the study of the all-sky

radio polarisation observation and the study of all-sky 21-cm line observation.

Thirdly, the method should efficiently extract patterns and characterise struc-

tures in a complex data-set. All-sky radio polarisation and cosmological 21-cm

observations produce complex data-sets, which contain information of the physical
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processes that modify the signal on its path of propagation from the source to the

telescope, convolved together with the instrumental effects. Anisotropic signals with

noticeable directional features are often embedded in the all-sky observations. An

example is the Galactic polarised foreground, where oriented, elongated structures

are prevalent (as those seen in Fig. 2 in Han (2017), and references therein). Remov-

ing the Galactic and extragalactic foreground signals is essential, in order to allow us

to identify the features that are genuinely arisen from the large-scale magnetic fields.

Similarly, the foregrounds of the 21-cm emission must be removed, so to reveal the

signatures imprinted by the 21-cm hydrogen hyperfine transition occurring at the

Cosmic Dawn and the EoR. In addition to Galactic and extragalactic foreground

sources, ionospheric variations, human contributed Radio Frequency Interference

(RFI) and instrumental effects (e.g. Labropoulos et al. 2009) can also introduce

contamination in the radio all-sky observations of polarisation and of the 21 cm line.

This foreground contamination must be properly accounted for in the analyses of the

all-sky observations. Curvelets are an anisotropic extension to wavelets and they

can efficiently extract information associated with curvilinear structures. They were

first developed by Candes et al. (1999) to provide efficient representations of smooth

objects with discontinuities along curves, such as edges in 2D images, or sheet-like

structures in 3D space. The basis elements of curvelets obey a parabolic scaling

relation with width ≈ length2, and they are highly anisotropic and directionally sen-

sitive. Curvelets are capable of probing oriented, elongated structures in a complex

data-set. Curvelet transforms allow us to identify and separate the anisotropic signal

content at different physical scales of interest, owing to their sensitivity in the shapes

and localisation properties in position, scale and orientations.

Fourthly, the method should capture all the information contained in a complex

signal and process them without loss of information. In a wavelet analysis, the

signals are decomposed into wavelet coefficients. In synthesis, an exact transform

will ensure that there is no loss of information in the reconstruction of the signal from

the wavelet coefficients. This can be achieved by appealing to sampling theorems

and corresponding exact quadrature rules for the computation of integrals (McEwen
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et al. 2015a; McEwen and Wiaux 2011; McEwen et al. 2018).

Finally, the method should allow an efficient computation that can handle big

volumes of data obtained from observations. Thus, fast algorithms are desirable.

2.5 Wavelet Transform on a Sphere

Characterisation and analysis of data on or in a sphere are better described in a polar-

spherical coordinate system. A substantial amount of work have been conducted

to extend wavelets from a plane to a sphere (see e.g. Torresani (1995); Dahlke and

Maass (1995); Holschneider (1996); Freeden and Windheuser (1997); Antoine and

Vandergheynst (1998, 1999); Antoine et al. (2002); Demanet and Vandergheynst

(2003); Wiaux et al. (2005); McEwen et al. (2006a); Sanz et al. (2006) for continu-

ous wavelet transforms on a sphere, and Schröder and Sweldens (1995); Sweldens

(1996); Wiaux et al. (2005); Starck et al. (2006a,b); Wiaux et al. (2008a); Starck

et al. (2009); Leistedt et al. (2013); McEwen and Price (2015); McEwen et al. (2018)

for the discrete cases). The following subsections provides the mathematical pre-

liminaries of harmonic analysis on a sphere and the rotation group representation.

A particular emphasis is on how the relevant terms, that are used in this thesis,

are defined. I have derived a new-generation spin curvelet transform directly on a

sphere. For a review of the general spin scale-discretised wavelet framework upon

which my derivation is based upon, see McEwen et al. (2015b). The details of my

derivation of the generalisation of curvelet transform to a spherical manifold will be

presented in Chapter 5.

2.5.1 Spin harmonic analysis

A point on a spherical surface can be marked by an angular positionω = (\, q) ∈ S2,

where \ ∈ [0, c] is the polar angle (also known as the colatitude) and q ∈ [0, 2c)

is the azimuthal angle (also known as the longitude). Generally, the polar axis is

defined such that the north pole on the sphere is in the direction of the unit vector

Î of a Cartesian coordinate system (G, H, I), in which the centre of the sphere is

located at its origin.

Suppose that the signals of interest are square-integrable functions B 5 , with
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spin number B ∈ Z, defined on a sphere, i.e. B 5 = B 5 (ω) ∈ L2(S2, dΩ), where

dΩ = sin \ d\ dq is the rotational invariant measure of the sphere. The signal

can be expressed in terms of spin spherical harmonics B.ℓ< (ω) (= B.ℓ< (\, q)),

which form a complete, orthogonal basis on S2. The forward projection gives the

coefficients corresponding to the spin harmonic components:

B 5 ℓ< = 〈B 5 , B.ℓ<〉 =
∫
S2
3Ω(ω) B 5 (ω)B. ∗ℓ< (ω) , (2.30)

with the orthogonal relation for the spin spherical harmonics

〈B.ℓ<, B.ℓ′<′〉 = Xℓℓ′X<<′ , (2.31)

where X8 9 is the Kronecker delta, and the completeness relation for the spin spherical

harmonics is

∞∑
ℓ=0

ℓ∑
<=−ℓ

B.ℓ< (\, q) B. ∗ℓ< (\
′, q′) = X (cos \ − cos \′) X (q − q′) , (2.32)

where X(·) is theDirac delta function, and the asterisk ∗ denotes a complex conjugate.

This gives an expression for B 5 (ω) as an expansion of the spin spherical harmonics:

B 5 (ω) =
∞∑
ℓ=0

ℓ∑
<=−ℓ

B 5 ℓ< B.ℓ< (ω) . (2.33)

The Condon-Shortley phase convention, which is adopted here, gives a conju-

gate symmetry relation: B. ∗ℓ< (ω) = (−1)B+<−B.ℓ(−<) (ω). It follows that a function

satisfying B 5
∗ = −B 5 may also be expressed as B 5 ∗ℓ< = (−1)B+< −B 5ℓ(−<) .

Note also that B.ℓ< can be constructed from scalar (spin-0) spherical harmonics

.ℓ< through repeated action of the differential spin raising or lowering operators,
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which, when applied to a spin B function, are defined as


ð ≡ sinB \

(
m

m\
+ 8

sin \
m

mq

)
sin−B \

ð̄ ≡ sin−B \
(
m

m\
− 8

sin \
m

mq

)
sinB \

(2.34)

(see Goldberg et al. 1967; Marinucci and Peccati 2011), respectively. Then, in terms

of .ℓ<,

B.ℓ< (ω) =


[
(ℓ−B)!
(ℓ+B)!

]1/2
ðB .ℓ< (ω) (0 ≤ B ≤ ℓ)[

(ℓ+B)!
(ℓ−B)!

]1/2
(−1)B ð̄(−B) .ℓ< (ω) (−ℓ ≤ B ≤ 0)

. (2.35)

2.5.2 The rotation group

The spherical curvelet transform probes signal content in scales, positions, and

also in orientations. Rotations on the sphere, which can be specified by the Euler

angles, d = (U, V, W), with U ∈ [0, 2c), V ∈ [0, c], and W ∈ [0, 2c), form a SO(3)

group, i.e. d ∈ SO(3). In this thesis, the IHI Euler convention is adopted, which

corresponds to the rotation in a fixed coordinate system about the I, H and I axes (as

defined in the Cartesian coordinates) in sequence by W, V and U, respectively.

The Wigner �-functions �ℓ
<= ∈ L2(SO(3)), with ℓ ∈ N and <, = ∈ Z (where

|< |, |=| ≤ ℓ), are matrix elements of the irreducible unitary representation of the

SO(3) rotation group (Varshalovich et al. 1989). They (and their conjugate �ℓ∗
<=)6

form a complete set of orthogonal bases in L2(SO(3)). The orthogonality relation

for the Wigner �-functions is given by

〈�ℓ
<=, �

ℓ′
<′=′〉 =

8c2Xℓℓ′X<<′X==′

(2ℓ + 1) , (2.36)

6The Wigner �-functions satisfy the conjugate symmetry relation �ℓ∗<= (d) = (−1)<+=�ℓ−<,−= (d).
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and the completeness relation is given by

∞∑
ℓ=0

ℓ∑
<=−ℓ

ℓ∑
==−ℓ

�ℓ
<= (U, V, W) �ℓ∗

<= (U′, V′, W′)

= X(U − U′)X(cos V − cos V′) X(W − W′) (2.37)

(Varshalovich et al. 1989).

The Wigner �-functions satisfy

�ℓ
<= (U, V, W) = �ℓ∗

=< (−W,−V,−U) , (2.38)

and also

�ℓ
=< (U, V, W) =

ℓ∑
:=−ℓ

�ℓ
<: (U1, V1, W1) �ℓ

:= (U2, V2, W2) (2.39)

(Marinucci and Peccati 2011), where d = (U, V, W) describes the net rotation of

d1 = (U1, V1, W1) and d2 = (U2, V2, W2), i.e. Rd = Rd1 Rd2 . These Euler angles are

related via

cot (U − U2) = cos V2 cot (U1 + W2) + cot V1
sin V2

sin (U1 + W2)
, (2.40)

cos V = cos V1 cos V2 − sin V1 sin V2 cos (U1 + W2) , (2.41)

cot (W − W1) = cos V1 cot (U1 + W2) + cot V2
sin V1

sin (U1 + W2)
. (2.42)

It follows that

ℓ∑
:=−ℓ

�
ℓ∗
:<
(U1, V1, W1) �ℓ

:= (U2, V2, W2) = �ℓ
<= (U, V, W) (2.43)

(McEwen et al. 2018). Because of the property given in Eqn. (2.38), one can

interpret d in Eqn. (2.43) as the Euler angles that describe the rotation formed by

the inverse of the rotation by d1 followed by the rotation by d2, i.e. Rd = R−1
d1 Rd2 .

TheWigner �-functions can be expressed in terms of the spin raised or lowered
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scalar (spin-0) spherical harmonics:

�ℓ
<= (U, V, W) =



√
2ℓ+1
4c

[
(ℓ−B)!
(ℓ+B)!

]1/2
ðB .ℓ< (ω) eiBW (0 ≤ B ≤ ℓ)√

2ℓ+1
4c

[
(ℓ+B)!
(ℓ−B)!

]1/2
(−1)B ð̄−B .ℓ< (ω) eiBW (−ℓ ≤ B ≤ 0)

0 (ℓ < |B |)

,

(2.44)

where the scalar spherical harmonics are

.ℓ< (\, q) = (−1)<
√

2ℓ + 1
4c
(ℓ − <)!
(ℓ + <)! %ℓ< (cos \)ei<q . (2.45)

Here, the (−1)< phase factor is included following the adopted Condon-Shortley

phase convention, and %ℓ< (cos \) denotes the associated Legendre polynomials:

%ℓ< (cos \) = (−1)<
2ℓℓ!

(1 − cos2 \)</2 dℓ+<

d(cos \)ℓ+<
(cos2 \ − 1)ℓ , (2.46)

with \ ∈ [0, c], ℓ ∈ N0 and < ∈ Z, such that |< | ≤ ℓ. The index ℓ represents an

overall frequency on the sphere and |< | represents the frequency associated with the

variable of azimuthal angle q.

TheWigner �-functions may, then, be related to the spin-B spherical harmonics

by

B.ℓ< (\, q) = (−1)B
√

2ℓ + 1
4c

�ℓ ∗
<(−B) (q, \, 0) (2.47)

(Goldberg et al. 1967), for B ∈ Z, ℓ ∈ N and < ∈ Z such that |< | ≤ ℓ, |B | ≤ ℓ. The

Wigner �ℓ
<= (d) function can be further decomposed into

�ℓ
<= (U, V, W) = e−i<U 3ℓ<= (V) e−i=W , (2.48)

where the Wigner small-3-functions may be expressed as

3ℓ<= (V) = (−1)ℓ−=
√
(ℓ + <)!(ℓ − <)!(ℓ + =)!(ℓ − =)!

×
∑
:

(−1):
(

sin V

2

)2ℓ−<−=−2: (
cos V

2

)<+=+2:
:!(ℓ − < − :)!(ℓ − = − :)!(< + = + :)! , (2.49)
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in which the sum is performed over all values of : such that the arguments of the

factorials are non-negative. The spin harmonic in spherical coordinates is therefore

B.ℓ< (\, q) = (−1)B
√

2ℓ + 1
4c

3ℓ
<(−B) (\) ei<q . (2.50)

From Eqns. (2.47), (2.38), (2.39), and (2.43), it can be shown that

(Rd B.ℓ<) (ω) =
ℓ∑

==−ℓ
�ℓ
=< (d) B.ℓ= (ω) . (2.51)

Practical calculations often require the sphere to be sampled in grids to speed

up the computation. How the data are being sampled and which sampling method to

use depend on the nature of the problem to solve. For instance, healpix (Górski et al.

2005) is used in many CMB studies. This is an equi-area sampling method. Note

that spherical harmonic transforms using the healpix scheme are not theoretically

exact, and there are methods that allow exact spherical harmonic transforms on a

sphere, enabled by the existence of a sampling theorem on equi-angular grids (e.g.

Driscoll and Healy 1994; McEwen and Wiaux 2011). However, in many practical

uses, the accuracy of the healpix scheme is often sufficient. In general, a sampling

method is selected based on: (i) the number of sampling that is required to represent

a band-limited signal; (ii) accuracy; (iii) the computational complexity and speed;

and (iv) particular issues associated with the numerical pre-computation (or lack

thereof) and the associated storage requirements.

2.5.3 Spin scale-discretised wavelet framework on a sphere

The construction of a directional spin scale-discretisedwavelet transformon a sphere,

Bk
( 9) ∈ L2 (

S2) , is presented in McEwen et al. (2015b), where 9 is the discretised

scale. These wavelets are designed to be well localised in scale, position and

orientation, in both the spatial domain and the harmonic domain. They probe the

high-frequency (i.e. large ℓ; detailed-information) signal content. The directional

wavelet coefficients are defined on d ∈ SO(3) to probe directional information.

The low-frequency (rough-information) signal content that is not probed by
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wavelets is probed by a scaling function BΦ ∈ L2(S2). The directional structure at

low ℓ is generally not of interest in real-life astrophysical applications. Therefore, an

axisymmetric scaling function may be adopted, and its scaling coefficient is given

by an axisymmetric convolution with the signal.

The admissibility condition for directional spin scale-discretised wavelets is

4c
2ℓ + 1

��
BΦℓ0

��2 + 8c2

2ℓ + 1

�∑
9=�0

ℓ∑
==−ℓ

��
Bk
( 9)
ℓ=

��2 = 1 , ∀ℓ (2.52)

(McEwen et al. 2015b). This condition ensures that the signal B 5 can be recon-

structed exactly from the wavelets and their scaling coefficients. It can also be

shown that spin scale-discretised wavelets on a sphere satisfying the admissibility

condition constitute a Parseval frame on the sphere (see McEwen et al. 2015b, for

derivation details), thus providing a stable way of signal representation.
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Chapter 3

Cosmological Polarised Radiative Transfer

This research chapter is based on J. Y. H. Chan, K. Wu, A. Y. L. On, D. J. Barnes,

J. D. McEwen and T. D. Kitching, “Covariant polarised radiative transfer on

cosmological scales for investigating large-scale magnetic field structures" in

Monthly Notices of the Royal Astronomical Society (MNRAS), vol. 484, issue 2, pp.

1427–1455, April 2019, doi: https://doi.org/10.1093/mnras/sty3498,

and A. Y. L. On, J. Y. H. Chan, K. Wu, C. J. Saxton and L. van Driel-

Gesztelyi, “Polarised radiative transfer, rotation measure fluctuations and large-

scale magnetic fields" in Monthly Notices of the Royal Astronomical Soci-

ety (MNRAS), vol. 490, issue 2, pp. 1697–1713, December 2019, doi:

https://doi.org/10.1093/mnras/sty2683.

This chapter begins with a highlight of the features of the CPRT equation con-

structed for the FRW universe derived in Ch. 2. The construction of the all-sky

CPRT algorithm, followed by some of its applications, are presented. In particular,

how the CPRT formalism can (i) track the polarisation evolution of radiation travel-

ling through an IGM-like plasma with and without a (distant or nearby) bright radio

point source, (ii) generate intensity and polarisation maps of a simulated galaxy

cluster by performing pencil-beam CPRT calculations, and (iii) simulate the entire

polarised sky for a model magnetised universe obtained from the GCMHD+ simu-

lations, are demonstrated. The implications on large-scale magnetic field studies are

highlighted. Comparisons to the conventional methods that invoke rotation measure

are discussed.

https://doi.org/10.1093/mnras/sty3498
https://doi.org/10.1093/mnras/sty2683
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3.1 All-sky CPRT Formulation

The CPRT equation is derived from the covariant GRRT formulation as presented

in Sec. 2.1.3 and Sec. 2.2. Therefore, it also implicitly satisfies the conservation of

phase-space volume and conservation of photon number (see Sec. 2.1.2 for details).

The CPRT equation that I derived is general (see Eqn. (2.24)), although the FRW

space-time is considered in my study. I highlight some key features of my CPRT

formulation before I present examples of its implementation in practical astronomical

applications.

The CPRT equation for a FRW universe, Eqn. (2.24) is

d
dI



I
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dB
dI
, (3.1)

where dB/dI in a flat FRW universe is

dB
dI
=
2

�0
(1 + I)−1 [

Ωr,0(1 + I)4 +Ωm,0(1 + I)3 +ΩΛ,0
]−1/2

. (3.2)

The symbol definitions and the derivation of Eqn. (3.1) can be found in Sec. 2.2.

The CPRT equation preserves the basic structure of the conventional polarised

radiative transfer equation (see e.g. Sazonov and Tsytovich 1968; Sazonov 1969;

Jones and O’Dell 1977a,b; Pacholczyk 1977; Degl’innocenti and Degl’innocenti

1985). Hence, its implementation is straightforward for practical calculations, as I

will demonstrate in Sec. 3.2.

The CPRT formulation has accounted for the relativistic and cosmological ef-

fects in a self-consistent manner. The properties of the magnetic fields and electron

number densities at each epoch are captured through the transfer coefficients in

Eqn. (3.1), and their co-evolution with the structures in the expanding Universe are

naturally accounted for since the CPRT equation is covariant. The formulation also



79

explicitly accounts for the absorption, emission, Faraday rotation and Faraday con-

version processes. The conventional rotation measure (RM) (see e.g. Rybicki and

Lightman 1986) can be obtained from the CPRT equation by simply ignoring emis-

sion, absorption, Faraday conversion and the presence of non-thermal electrons in

the medium (see Appendix D and On et al. (2019) for details and the generalisation

of the standard RM expression to account for an isotropic distribution of non-thermal

relativistic electrons with a power-law energy spectrum).

The CPRT formulation presented here is the first of its kind1. For the study of

large-scale cosmic magnetism, it provides a reliable theoretical platform to compute

the polarised sky. With known input distributions of =e(I) and B(I), and the full

radiative transfer processes taken into account, results obtained from the forward

computation of the CPRT algorithm provide valuable data-sets that would serve

as a testbed for assessing analysis tools used for large-scale magnetic field studies.

Since the cosmological terms in the CPRT equation can be switched off in the

numerical computation, the CPRT equation becomes a local-frame PRT equation

that we can apply for the calculations of radiation of astrophysical sources, such as

galaxy clusters, locally at a specific redshift, and for the modelling of the foreground

contribution to the polarised sky in the cosmological studies.

3.1.1 Computational algorithm

The CPRT equation given in Eqn. (2.24) can, in principle, be either solved by direct

integration via numerical methods, or by diagonalising and determining the inverse

of the transfer matrix operator. I adopt the former approach and employ a ray-tracing

method.

The CPRT algorithm consists of three basic components concerning (i) the in-

teraction of radiation with the line-of-sight plasmas, (ii) the cosmological effects on

radiation and the co-evolution of plasmas with the Universe’s history, and (iii) nu-

1Formulations and codes capable of computing general relativistic polarised radiative transfer (GRPRT) in
the (curved) Kerr space-time metric have been extensively studied and presented (Broderick and Blandford
2003; Broderick and Blandford 2004; Shcherbakov and Huang 2011; Gammie and Leung 2012; Dexter 2016;
Mościbrodzka andGammie 2018; Pihajoki et al. 2018). Their applications primarily concern polarised emissions
from magnetised accretion flows and jets around a spinning black hole.
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merical computation of the CPRT equation, which is a set of four coupled differential

equations evaluated in the redshift I-space. In the following, I discuss each of these

components, starting with the numerical method. I describe the implementation

of the algorithm which solves the CPRT equation for a single ray, or for multiple

rays (either in a pencil-beam or an all-sky setting) wherein cosmological MHD

simulation results may be incorporated to generate a set of theoretical intensity and

polarisation maps. In addition, I highlight its specific designs to accommodate the

inclusion of line-of-sight astrophysical sources and intervening plasmas of different

properties.

Numerical method

The radiation propagation is parameterised by redshift I and is sampled discretely

into #cell number of cells. A sampling in which each I-interval corresponds to an

approximately equal light-travel distance is adopted. The total light-travel distance

Btot is computed by integrating dB/dI in a flat FRWuniverse (Eqn. (2.25); Eqn. (3.2)),

and the evaluation of the CPRT equation starts from an initial redshift (Iinit) to

the redshift of the observation (i.e. I = 0). The corresponding lower and upper

boundaries of I-interval over which the light-travel distance is the closest to Beq =

Btot/#cell are registered. The light-travel distance serves as a scaling factor in

the numerical integration of the CPRT equation. The computational efficiency is

optimised when its multiplications with the transfer coefficients are close to unity.

Each I-interval is then refined to accommodate the astrophysical structure(s)

and sub-structure(s). An on/off switch for the refinement scheme is implemented

in the code, and this allows appropriate adjustment when incorporating multiple

structures at different redshifts when the CPRT is executed. Within the refinement

zone, a uniform sampling in the log10 (1 + I) space is adopted. This sampling has the

advantage of preserving the (polarised) intensity profile shape whenmulti-frequency

calculations are carried out.

In algorithmic terms, at the cell of index 8=3refine, the increment over each

refined cell is given by [log10 (1 + I′) − log10 (1 + I)]/# refine
cell , where I′ and I are,

respectively, the upper and lower boundaries of the I-interval to be refined, and
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# refine
cell is the total number of refined cells.

A fourth-fifth order Runge-Kutta (RK) differential equation solver (Fehlberg

1969) is used to integrate Eqn. (2.25), and to solveEqn. (2.24), which ultimately gives

us the Stokes parameters {�, &,*,+} at I = 0 in the observer’s frame. Parameters

to be set for the solver include the total number of (coupled) differential equations to

be solved #eqn, the number of steps for the RK solver #step; and the error tolerance

level eps. The error estimation of the solver is carried out by comparing the

solution obtained with a fourth-order RK formula to that obtained with a fifth-order

RK formula. If the computed error is less than eps then the calculation proceeds;

otherwise the algorithm halts, reports errors of non-convergence, and returnswithout

further computation.

The upper and lower limits of the I-variables are updated along the ray. The

outputs are passed into the next computation as the inputs (i.e. as the updated initial

conditions). Since the evaluation of the CPRT starts from a higher I to a lower

I value until the present I0 = 0 is reached, a substitution of I → −I is made in

Eqn. (2.24) when that is set as the function to be evaluated by the RK solver.

Interaction of radiation with plasmas

Radiation is parameterised by frequency a(I), which has a redshift dependence of

a(I) = aobs(1 + I), where aobs is the observed frequency at the present epoch I = 0.

The radiation intensity and polarisation properties change when passing through a

magnetised intervening plasma(s). The strength of the radiative processes, captured

through transfer coefficients in the CPRT equation, depends on the physical proper-

ties of the plasmas, in addition to the frequency of the radiation. In general, both

thermal and non-thermal electrons are present in astrophysical plasmas. Parameters

describing them include: the total electron number density =e,tot, the fraction of non-

thermal electrons Fnt, the temperatures)e for thermal electrons, the power-law index

of the non-thermal electrons’ energy spectrum ? and the electrons’ low energy cut

off described by the Lorentz factor W8. Added to this list are parameters describing

the strength and orientation of magnetic fields, B, which can be decomposed into

two components. One component is decomposed along the line-of-sight direction
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|B‖ | = |B | cos \, and another component is decomposed in the plane normal to the

line-of-sight |B⊥ | = |B | sin \, where \ is the angle between the direction of the

magnetic field and the line-of-sight.

By specifying the observed frequency of radiation aobs at I = 0 and the radi-

ation background at an initial redshift Iinit, and given some input distributions of

electron number density =e(I) and magnetic field strength |B(I) | through which

light travels, solving the CPRT equation then provides the evolution of the intensity

and polarisation of the radiation as a function of redshift I.

Cosmological effects

The frequency shift of the radiation due to the expansion of the Universe is given

by a(I) = aobs(1 + I). The cosmic expansion effects on the temperatures, electron

number densities, aswell as the strengths ofmagnetic fields are given by, respectively,

)e(I) = )e,0(1+I)2, =e(I) = =e,0(1+I)3, and |B(I) | = |B0 | (1+I)2, assuming frozen-

in flux condition. Note that these properties, as well as the structures of magnetic

fields, are also subject to local structure formation, evolution and outflows, as well

as to influences by external injections, such as cosmic rays. Consequently, the inter-

stellar medium (ISM), intra-cluster medium (ICM), and intergalactic media (IGM)

all exhibit different characteristic properties.

All-sky polarisation calculation

The all-sky CPRT algorithm is designed to enable an interface between CPRT

calculations and cosmological simulations, thereby generating theoretical all-sky

intensity and polarisation maps that serve as model templates. The algorithm is

shown in Fig. 3.1.

Fig. 3.2 illustrates the ray-tracing concept of the all-sky algorithm, in which the

CPRT equation is solved in a spherical polar coordinate system (A, \, q), where (\, q)

corresponds to the celestial sky coordinates and the radial axis A corresponds to the

redshift axis I. Note that outputs of the cosmological evolution of plasma properties,

e.g. =e(I) and |B(I) |, from a cosmological MHD simulation can be inputted into

the CPRT calculations through the transfer coefficients. Spatial fluctuations of the
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Fig. 3.1: The CPRT algorithm flowchart. The program enables incorporation of cosmologi-
cal MHD simulation results into the CPRT calculations to generate intensity and polarisation
model templates.
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plasma properties in a finite simulation volume, usually in Cartesian coordinate

system (8, 9 , :), can also be mapped onto the spherical polar coordinate system

(A, \, q) at each sampled redshift.

A more rigorous treatment that guarantees the divergence-free condition of

magnetic fields to be satisfied is also possiblewithin this all-sky framework, although

this is beyond the focus of this thesis. Here, I add a remark on the sampling scheme

over a sphere for efficient follow-on data analysis. Rays that are randomly positioned

over the entire celestial sphere can be computed. Alternatively, one may utilise the

advantages of efficient spherical sampling schemes, such as the healpix sampling

(Górski et al. 2005) and the sampling scheme devised by McEwen and Wiaux

(2011) which affords exact numerical quadrature. In such a case, ray-tracing CPRT

calculation is performed at each grid point on the sphere. Map data constructed

this way allows efficient power spectrum analyses and spherical wavelet analyses

(e.g. McEwen et al. 2006a; Sanz et al. 2006; Starck et al. 2006b; Geller et al. 2008;

Marinucci et al. 2008; Wiaux et al. 2008b; Leistedt et al. 2013; McEwen et al. 2013,

2015b, 2018; Chan et al. 2017) to characterise the spatial fluctuations of polarisation,

crucial for searching polarisation signatures imprinted by large-scale magnetic fields

in observational data.

3.1.2 Polarised transfer coefficients

In this subsection I discuss the corresponding transfer coefficients in Eqn. (2.24)

appropriate for the studies of cosmic plasmas and structure. The expressions of the

coefficients considered in this work are explicitly specified in Appendix C.

An astrophysical plasma generally consists of both thermal electrons and non-

thermal electrons. These energetic electrons can be produced by various mech-

anisms. For instance, non-thermal electrons may result from shock acceleration

or cosmic ray interactions. In the astrophysical plasma of interest in this work,

the dielectric suppression2 (see e.g. Bekefi 1966; Rybicki and Lightman 1986) is

2Dielectric suppression, or known as the Razin effect or Razin-Tsytovich effect (see e.g. Ramaty 1968),
is a plasma effect on synchrotron emission. Synchrotron radiation is suppressed below the Razin frequency
lR = l2

p/lB, where lp is the plasma angular frequency and lB is the electron angular gyrofrequency, since
the electrons can no longer maintain the phase with the emitted radiation as the wave phase velocity would
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I

I = 0

(I, \, q)

Fig. 3.2: Illustration of the concept of the all-sky algorithm based on a ray-tracing technique:
the CPRT equation is solved for each light ray (indicated in red) that is parameterised by
(I, \, q). The radial direction coincides with the direction of redshift I while (\, q) maps
onto the coordinates of the celestial sky. The observer is positioned at the centre of the
circles, i.e. at I = 0. Note that the comoving Hubble radius is represented inside-out. The
comoving Hubble sphere expands as we approach the centre (I = 0) due to the expansion of
the Universe. This set-up is applicable for a universe that has a simple topology like ours, as
is suggested by measurements of the cosmic microwave background (Planck Collaboration
XXVI 2014).

insignificant (see e.g. Melrose and McPhedran 1991). As such, thermal and non-

thermal electrons can be treated as separate components in the radiative transfer

calculations. Thus, the total transfer coefficients are the sum of the transfer coef-

ficients of the thermal and non-thermal populations, i.e. ^8 9 = (^8 9 ,th + ^8 9 ,nt) and

n8 = (n8,th + n8,nt), where “th” and “nt” denote the thermal and non-thermal compo-

nents of the absorption and emission coefficients respectively.

In this work, thermal bremsstrahlung and non-thermal synchrotron radiation

processes are considered3. For thermal bremsstrahlung, expressions of the Faraday

rotation coefficient 5th and Faraday conversion coefficient ℎth, as well as the expres-

sions of the absorption coefficients ^th, @th and {th follow Pacholczyk (1977)4. The

increase to above the speed of light (see e.g. Melrose 1980).
3In addition to thermal bremsstrahlung and non-thermal synchrotron radiation processes considered in this

work, we note that transfer coefficients appropriate for different astrophysical environments have been extensively
studied in the literature. Accurate expressions for the coefficients of Faraday rotation and Faraday conversion
in uniformly magnetised relativistic plasmas, such as those in jets and hot accretion flows around black-holes,
are reported in Huang and Shcherbakov (2011). Expressions of the transfer coefficients in the case of ultra-
relativistic plasma that is permeated by static uniform magnetic fields, for frequencies of high harmonic number
limits, and for a number of distribution functions (isotropic, thermal, or power law) are presented in Heyvaerts
et al. (2013). Emission and absorption coefficients for cyclotron process, that is important in accretion discs
of compact objects, have been studied by Chanmugam et al. (1989); Vaeth and Chanmugam (1995). Careful
incorporation of the above would be a useful improvement to the current CPRT implementation, expanding the
range of its applications and simulate a more realistic magnetised Universe.

4The same expressions of ^th, @th and {th are provided in Wickramasinghe and Meggitt (1985), although
we find typographical error of an extra factor of the square of angular frequency in the denominator of {th via
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emission coefficients are computed via Kirchoff’s law accordingly. For non-thermal

synchrotron emission, relativistic electrons that have a simple power-law energy

distribution is considered. The expressions of the transfer coefficients that follow

Jones and O’Dell (1977a) is adopted and an isotropic distribution of relativistic

electrons’ momentum direction is assumed.

As detailed in Appendix B, the sign of Stokes + depends on its definition,

polarisation conventions, handedness of the coordinate systems, as well as the time

dependence of the electromagnetic wave (i.e. whether the exponent has +8lC or

−8lC), and the definition of the relative phase between the G and H-components

of the electric field of the radiation. However, some of these information were

not explicitly stated in Jones and O’Dell (1977a), and inconsistent definitions of

the time dependence of the electromagnetic wave were used in Pacholczyk (1977)

in deriving the radiative transfer coefficients for bremsstrahlung and synchrotron

radiation processes (see their Eqn. (3.33) and Eqn. (3.93)). I therefore eliminate

ambiguity inAppendix B and present a consistent set of expressions of all the transfer

coefficients in Appendix C, given the geometry explicitly defined in Appendix A

and the polarisation convention conforming to the IEEE/IAU standard.

3.1.3 Implementation and code verification

In this section the single-ray and multiple-ray experiments performed for code

verification is presented5. The I-sampling scheme follows the recipe described in

Sec. 3.1.1 (or see the related red boxes in Fig. 3.1). Polarised radiative transfer at

frequencies aobs = 1.42 GHz and 5.00 GHz is considered for illustrative purposes6.

Properties of the intervening plasma are listed in Table 3.1, which can be IGM-like

dimensional analysis. We also note that the sign of @th in Wickramasinghe and Meggitt (1985) is also different
to Pacholczyk (1977), which might be due to different polarisation sign conventions or a sign error.

5A consistency test is also performed by comparing the results of light-travel time obtained by integrating
Eqn. (2.25) using my code (then dividing by the speed of light) to those that are obtained using the publicly
available cosmological calculator by Wright (2006), http://www.astro.ucla.edu/~wright/CosmoCalc.
html. The results agree with each other, up to the maximum digits displayed inWright (2006), i.e. three decimal
places.

6aobs = 1.4 GHz is chosen since it lies within the operating range of many current and upcoming radio
telescopes, such as the Arecibo radio telescope (http://www.naic.edu/), the Five hundred meter Aperture
Spherical Telescope (FAST, http://fast.bao.ac.cn), the Australia Telescope Compact Array (ATCA,
https://www.narrabri.atnf.csiro.au/), LOFAR, MWA, ASKAP, SKA, etc.

http://www.astro.ucla.edu/~wright/CosmoCalc.html
http://www.astro.ucla.edu/~wright/CosmoCalc.html
http://www.naic.edu/
http://fast.bao.ac.cn
https://www.narrabri.atnf.csiro.au/
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IGM-like plasma ICM-like plasma

Properties
Model A-I A-II B-I B-II

=e,tot (cm−3) 2.1918 × 10−7 1.00 × 10−3

Fnt (%) 1.00 1.00
)e,th (K) 1.875 × 103 5.00 × 105

? 4.00 2.50
corresponds to U 1.50 0.75
Wi 10.0 30.0
|B | (G) 1.00 × 10−9 1.00 × 10−6

cos \ 0.5 [−1.0, 1.0] 0.5 [−1.0, 1.0]

Table 3.1: Properties of different intervening plasma models used in this work. To test the
ability of my CPRT equation solver to handle the extreme limits, the total electron number
density =e,tot for models A is set to be equal to the mean electron number density of the
Universe (see Appendix F for details); temperature of the thermal electrons in the IGM-like
and ICM-like plasma models are assumed to take the lower-end values typical of the IGM
and ICM. Fnt denotes the non-thermal relativistic electron fraction, ? denotes the power-law
index of the energy spectrum of the non-thermal relativistic electrons, which relates to the
spectral index of the synchrotron radiation U = (? − 1)/2. W8 is the electrons’ low-energy
cutoff Lorentz factor. |B | denotes the magnetic field strength. The magnetic field direction
along the line-of-sight is described by cos \ ∈ [−1.0, 1.0] which is randomised for Models
A-II and B-II.

(model A) or ICM-like (model B) with magnetic field directions along the line-of-

sight set at a fixed angle (models A-I and B-I) or set as oriented randomly (models

A-II and B-II). Thermal bremsstrahlung and non-thermal synchrotron radiation

processes are accounted for.

Single ray verification tests

To test the accuracy and precision of my CPRT integrator in handling polarised

radiative transfer in scenarios investigated in this work, the two integration tests

presented in Sec. 3.2 in Dexter (2016) are conducted. The numerical solutions

obtained from solving the standard PRT equation (Eqn. (2.4)), which is reduced from

the general CPRT equation (Eqn. (2.24)), are compared with the analytic solutions

given explicitly in Appendix C of Dexter (2016) for the idealised situations with

constant transfer coefficients along a ray.
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Pure emission and absorption in Stokes � and & is considered in the first test.

The light ray travels through the Faraday-thin IGM-like plasma or the Faraday-thick

ICM-like plasma (models A-I or B-I) over a cosmological distance from I = 6

to I = 0. Detailed values of both the (thermal and non-thermal) emission and

absorption transfer coefficients, as well as the optical depths used in the calculations

are given in Table G.1 in Appendix G. As is seen in Fig. 3.3, the numerical solution

obtained bymyCPRT integrator agreeswith the analytical solution up to themachine

floating-point precision throughout the entire light path.

In the second test, radiation of observed frequencies aobs = 1.4 GHz and

aobs = 5.0 GHz are considered. The radiation travels through the Faraday-thick

ICM-like plasma (B-I) of a few Mpc in length scale. Only pure Faraday rotation

and Faraday conversion and polarised emission in& and+ are considered (note that

n* is set to zero due to the choice of coordinate systems; see Appendix A). To ease

checking the oscillatory behaviour of the resulting + , the Faraday conversion effect

is boosted artificially by setting its transfer coefficient to the same order magnitude

as the Faraday rotation coefficient. The results of the second test is presented in

Fig. 3.4. An excellent agreement between the numerical and analytic solutions is

obtained in both cases of different radiation frequencies. Machine floating-point

precision is maintained over the ray despite that the residuals in&,* and+ increase

with each oscillation. A similar trend is also found in Fig. 4 in Dexter (2016) and

Mościbrodzka and Gammie (2018).

Multi-ray verification tests

To verify the redshift-refinement scheme and the entire code, I performed multi-ray

cosmological calculations of two Gaussian profiles centred at two different redshifts.

The two input profiles, originating at Iori = 5.94 and 1.00, have frequency samples

assigned through the redshift-refinement scheme at that specific Iori. The central

frequency of the profiles is then given by ain
central = aobs(1 + Irefine

central), where I
refine
central is

the redshift value of the # refine/2 cell, for # refine = 500. The ray freely propagates

in a vacuum, i.e. all transfer coefficients are set to zero when computing the CPRT

equation. As such, frequency shift of the radiation is the only cosmological effect
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Fig. 3.3: Plots of the analytic solutions (computed using Eqns. (C2) and (C3) in Dexter (2016); denoted by line) and numerical solutions (obtained frommy
CPRT code in Fortran; denoted in star) to the test problemwith pure emission and absorption in � and&. Transfer coefficients are constant over the entire ray.
The left-hand panels show the results using the IGM-like plasma model (A-I), where (n� ,tot, n&,tot) = (2.62 × 10−53, 2.06 × 10−55) erg s−1 cm−3 Hz−1 str−1,
(^tot, @tot) = (2.23 × 10−38, 7.07 × 10−52) cm−1. The right-hand panels show the results using the ICM-like plasma model (B-I), where (n� ,tot, n&,tot) =
(1.25× 10−38, 9.05× 10−39) erg s−1 cm−3 Hz−1 str−1, ^tot, @tot = (9.34× 10−34, 5.49× 10−34) cm−1. The other transfer coefficients are set to zero. Note that
the resulting � and & have a very small order of magnitude, and thus their residuals A4BG = Gemp − Gana too, with G = {�, &}; dividing A4BG by the order of
magnitude of quantity G gives the machine floating-point precision. Note that such a precision is attained over the entire light path in both models.
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Fig. 3.4: Plots of the analytic solutions (computed using Eqns. (C6), (C7), and (C8) in Dexter (2016); denoted by line) and numerical solutions
(obtained from my CPRT code in Fortran; denoted in star) to the test problem with pure constant Faraday rotation, Faraday conversion and emission
in & and + . ICM-like plasma parameters (model B-I) are used to compute the coefficients 5 , n&, and n+ while ℎ is set to be of the same order
of magnitude as 5 to make the oscillatory behaviour in + apparent. The left- and right-hand panels show the results using aobs = 1.4 GHz and
aobs = 5.0 GHz, respectively. At aobs = 1.4 GHz, the non-zero transfer coefficients are ( 5tot, ℎtot) = (1.16 × 10−23, 1.00 × 10−23) cm−1, (n&,tot, n+ ,tot) =
(9.05×10−39, 5.51×10−43) erg s−1 cm−3 Hz−1 str−1. At aobs = 5.0GHz, the non-zero transfer coefficients are ( 5tot, ℎtot) = (9.37×10−25, 1.00×10−25) cm−1,
(n&,tot, n+ ,tot) = (3.52×10−39, 1.14×10−43) erg s−1 cm−3 Hz−1 str−1. Residuals grow with each oscillation, yet machine floating-point precision is attained
(with residual divided by the order of magnitude of the corresponding Stokes parameters) over the entire light path in both cases.
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which modifies the radiation properties in its transport. The values of four quantities

obtained from the CPRT calculations are compared against their theoretical expected

values. These quantities are (i) the frequency at which the resulting profile peaks,

apeak,0, (ii) the standard deviation of the resulting profile, f0, (iii) the empirical

ratio of the output to the input peak intensity Aemp
�

= � in
peak/�peak,0, for each Gaussian

profile, and (iv) the power-law index of the ratio of the output peak intensities of

the two profiles, <emp. Analytically, the resulting profile obtained from the CPRT

of each case (i.e. emission at Iori = 5.94 or at Iori = 1.00) should remain Gaussian

and peak at the frequency of aobs × (1 + Irefine
central)/(1 + Iori) with aobs = 1.42 GHz.

The standard deviation of the normalised input and the output Gaussian profiles

should also remain the same. The ratio of the peak intensity of the output emission

profile to that of the input profile is Aana
�

= 1/(1 + Iori)3. Furthermore, comparing

the outputs of the two cases, the ratio of the peak intensity at zero redshift follows

a power law of [(1 + I′′ori)/(1 + I′ori)]3, where I′′ denotes the higher redshift, i.e. the

power-law index <ana = 3.0.

The results are summarised in Table 3.2, from which one can see that the

empirical results are consistent with the theoretical expectations up to machine

floating-point precision. Furthermore, consistent results are obtained using the

OpenMP parallelised code as those obtained by the serial execution.

3.2 Applications

Here a set of CPRT calculations that demonstrates the ability of the algorithm

in tracking the change of polarisation on astrophysical and cosmological scales is

presented. Changes in polarisation features caused by the frequency shift of the

radiation or those caused by the evolution of intervening cosmic plasmas can be

separately investigated; direct studies of their combined effects can also be carried

out.

I start with a set of single-ray calculations, with and without a bright line-

of-sight point source. I then demonstrate how to incorporate cosmological MHD

simulation results into CPRT calculations to make polarisation maps. I compute
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Profile I Profile II
Iori 5.93623409775142 1.00082825012323
Irefine

central 5.90499449730497 0.9992434724235666
Peak Input ain

central (GHz) 1.41400848881021 1.41928070323115
frequency Output apeak,0 (GHz) 1.41400848881021 1.41928070323115

Fractional difference
(apeak,0 −

ain
central)/a

in
central

−8.99280649946616 ×
10−15

−1.110223037256493×
10−16

Dispersion Input fin 0.000866648853601 −0.000123250853536
Output f0 0.000866648853601 −0.000123250853536

Fractional difference
(f0 − fin)/fin 1.59377719355 × 10−17 5.66495635124 × 10−18

Peak Analytical Aana
�

0.00299659998884 0.12484483163785
intensity Empirical Aemp

�
0.00299659998884 0.12484483163785

ratio(
�
Iori=5.94
peak,0

�
Iori=1.00
peak,0

) Fractional difference
(Aemp
�
− Aana

�
)/Aana

�

4.34172933267 × 10−16 1.06713879307 × 10−14

Power-law Analytical <ana 3.0000
index of Empirical <emp 3.00000000000099(
�
Iori=5.94
peak,0

�
Iori=1.00
peak,0

) Fractional difference
(<emp − <ana)/<ana −3.29218134236 × 10−13

Table 3.2: Results of the multi-ray code verification test where two Gaussian profiles,
originating at Iori = 5.94 and at Iori = 1.00 respectively, are cosmologically transported
in a vacuum in an expanding flat space-time. Four parameters are compared against their
theoretical values; the empirical results are found to be consistent with the expected values
up to machine floating-point precision.
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the polarisation of a simulated galaxy cluster. I also compute the entire polarised

sky using a model magnetised universe. Polarisation maps generated in such a way,

i.e. by CPRT calculations interfaced with simulation results, encapsulate theoretical

predictions. They are crucial to aid our interpretation of observational data. Model

templates of the entire sky are particularly important for comparison with future

observational data, such as those from all-sky surveys of polarised emission with

the SKA.

3.2.1 Cosmological evolution of polarisation

The polarised radiative transfer calculations were conducted using a ray tracing ap-

proach, for the observed frequency aobs = a0 = 1.42 GHz. The radiation propagates

from I = 6.0 through the magneto-ionic media along the line-of-sight, with the elec-

tron number distribution given by =e(I) and |B(I) | (see more detailed description

below). The I-sampling scheme is described in Sec. 3.1.1.

Point-source emissions

Bright polarised emitters such as quasars and radio galaxies may lie along the

line-of-sight acting as back-light illuminating the foreground. Here, I calcu-

late how the polarisation and intensity of a fiducial quasar-like point source

changes over a cosmological distance. Emissions of such a point source at

I observed at 1.42 GHz is given by [�, &,*,+] |I = [�, &,*,+] |I=0(1 + I)3,

where [�, &,*,+] |I=0 = [ 2.54 × 10−16,−1.32 × 10−18, 7.50 × 10−18, 1.27 × 10−19]

erg s−1 cm−2 Hz−1 str−1. The degree of linear polarisation is assumed to be 3.00%

(Jagers et al. 1982), the degree of circular polarisation to be 0.05% (Conway et al.

1971), and the polarisation angle is randomly selected as i = 0.87 rad. For demon-

strative purposes, a simple interpolation of from [�, &,*,+] |I=0 to [�, &,*,+] |I
is adopted, focusing on polarisation effects caused by the input plasma of known

properties.

Three cases are investigated, including where (i) the control experiment where

there is no bright point source lying along the line-of-sight, no radiation background,

but the intervening medium is a self-emitting, absorbing, Faraday-rotating and
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(i) (ii) (iii)
Without point source Point source at Point source at

I = 6.0 I = 0.206

initial


�

&

*

+

 I=6.0


0.0000
0.0000
0.0000
0.0000




8.7096 × 10−14

−4.5372 × 10−16

2.5731 × 10−15

4.3548 × 10−17




0.0000
0.0000
0.0000
0.0000


final


�

&

*

+

 I=0.0


1.0438 × 10−23

6.7617 × 10−25

5.1681 × 10−26

−1.7613 × 10−32




2.5392 × 10−16

−2.8095 × 10−18

7.0807 × 10−18

1.2696 × 10−19




2.5392 × 10−16

−1.3221 × 10−18

7.5021 × 10−18

1.2696 × 10−19


initial i(I = 6.0) 0.0000 0.8727 0.0000
final i(I = 0.0) 3.8142 × 10−2 0.9731 0.8726
initial Πl(I = 6.0) 0.0000 3.0000 0.0000
final Πl(I = 0.0) 6.4969 3.0000 3.0000
initial Πc(I = 6.0) 0.0000 5.0000 × 10−2 0.0000
final Πc(I = 0.0) 1.6874 × 10−7 5.0000 × 10−2 5.0000 × 10−2

initial Πtot(I = 6.0) 0.0000 3.0004 0.0000
final Πtot(I = 0.0) 6.4969 3.0004 3.0004

Table 3.3: Numerical results of the CPRT calculations for the demonstrative cases where a
bright point source is (i) absent, (ii) located at I = 6.0 or (iii) located at I = 0.206. Magnetic
fields have unbiased random orientations along the line-of-sight (see Sec. 3.2.1). The Stokes
parameters are in units of erg s−1 cm−2 Hz−1 str−1, i is measured in radian, and Πl, Πc, and
Πtot are expressed in percentages. Note that for case (i) the resulting � has an order of
magnitude 10−23, which is much smaller than the specific intensity of the cosmic microwave
background of 10−18 erg s−1 cm−2 Hz−1 str−1 at the same observed frequency. This suggests
that emission and polarisation signals would be overwhelmed by the CMB background in
real observations.
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Fig. 3.5: Cosmological evolution of the invariant Stokes parameters (in units of erg s−1 cm−2 Hz−4 str−1) for aobs = 1.42 GHz for the
cases where the radio bright point source is (i) absent, (ii) located at I = 6.0, and (iii) located at I = 0.206.
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Fig. 3.6: Cosmological evolution of the comoving Stokes parameters (in units of erg s−1 cm−2 Hz−1 str−1) for aobs = 1.42 GHz for the
cases where the radio bright point source is (i) absent, (ii) located at I = 6.0, and (iii) located at I = 0.206.



97Fig. 3.7: Cosmological evolution of Δi (in radian), Πl, Πc and Πtot (in percent) for the cases where the radio bright point source is (i)
absent, (ii) located at I = 6.0, and (iii) located at I = 0.206. Note that the change of polarisation angle is sensitive to the randomness of
the magnetic field angle along the line-of-sight.
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Faraday-converting medium, (ii) the fiducial point source is placed at I = Iinit = 6.0,

serving as a bright distant radio back-light, and (iii) the fiducial point source is

located much nearer, at I = 0.206 (cf.Jagers et al. 1982). The prescription of the

intervening plasma at I = 0 follows model A-II described in Table 3.1; simple

cosmological evolution of =e(I), )e(I) and |B(I) | described in Sec. 3.1.1 are now

accounted for while the fraction of non-thermal relativistic electrons Fnt, their en-

ergy spectral index ? and the Lorentz factor of low-energy electron cutoff W8 are

assumed to be constant over all redshifts. The results of the three different scenarios

are displayed alongside in Fig. 3.5 – Fig. 3.7 for comparison purposes. Numerical

results are summarised in Table 3.3.

Differences in the results of the three cases indicate that on a cosmological scale,

polarised radiative transfer of light travelling through a foreground cosmologically-

evolving IGM-like plasma, with or without a bright point source, can impart unique

polarisation features. Also, it can be readily seen from Fig. 3.5 and Fig. 3.6 that

both the total emission and the polarised emission from the fiducial point source

dominate over the contributions from the foreground plasma, as expected. The

invariant intensity I of the radiation stays by and large constant from where the

bright point source is positioned with a very small increase over increasing I due to

the emission of the line-of-sight plasma, which is calculated in case (i). Fluctuations

in Stokes parameters are induced by random magnetic field orientations along the

line-of-sight.

The observed change of polarisation angle Δi, which is a measure of the

amount of Faraday rotation and is sensitive to the magnetic field directions along

the line-of-sight, depends on the I-position of the point-source, as is seen in Fig. 3.7

and Table 3.3. In all three cases, Δi < c. This indicates that the effect of Faraday

rotation is weak, as is expected for a line-of-sight plasma that is threaded with a weak

magnetic field of nG and has a low electron number density. Insignificant Faraday

conversion is also observed in case (i), for which there is only the plasma but no

bright sources lying along the line-of-sight. Note that Πc is much weaker than Πl by

105. For case (ii), Πl and Πc are dominated by the contributions of the bright point
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source over the foreground plasmas. For case (iii), the sudden drops in Πl and Πtot

and the large rises in Δi and Πc shows the effects of having a foreground (nearby)

source. Understanding the foregrounds, particularly any bright line-of-sight sources

and their locations, is crucial for the correct inference of magnetic fields and their

evolution.

In addition, a depolarisation effect is observed: there is a net drop in Πtot

as I decreases (i.e. as path length increases). By the experimental set up, this is

mainly due to differential Faraday rotation (i.e. emission at different I is rotated by

different amounts due to their magneto-ionised foreground, thus reducing the net

polarisation). Random magnetic fields, in the context that the total magnetic fields

are decomposed into a regular (large-scale average) component, B, and a random

(small-scale fluctuation) component brandom, i.e.B = B + brandom, have also been

identified as another cause of depolarisation in the literature (see e.g. Burn 1966;

Sokoloff et al. 1998; Horellou and Fletcher 2014). Investigating the effects of such

random fields is beyond the scope of this demonstration, but the results here illustrate

how the effects on polarisation can be quantified by performing a full cosmological

polarised radiative transfer.

3.2.2 Single galaxy cluster

Here pencil-beam CPRT calculations are conducted, demonstrating the ability of

the CPRT formulation to interface with cosmological MHD simulation results (via

a post-processing treatment) and generate intensity and polarisation maps of an

astrophysical object. Each pixel of the maps corresponds to a solution obtained by

the radiative transfer calculation.

Polarisation of a simulated galaxy cluster obtained from the “cleaned” imple-

mentation of a higher resolution GCMHD+ simulation (see Sec. 4 in Barnes et al.

2018) is computed. The GCMHD+ simulations, designed to focus on the evolution

of the magnetic fields due to structure formation without the additional physics, are

adiabatic, i.e. no radiative cooling, reionisation, star formation and feedback from

supernovae andActiveGalactic Nuclei (AGN). The cluster obtained at I = 0 from the
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simulation has a virial radius of 'vir = 1.44 Mpc, and a gas mass of<gas ∼ 1013 M�.

It is assumed that non-thermal electrons have energy density that amounts to 1%

of the thermal energy density (see Barnes et al. 2018). Properties of the cluster

are summarised in Table 3.4. The central slices of the data cube viewed along the

I-direction are shown in Fig. 3.8, illustrating the input structures of electron number

density, magnetic field strength and orientation for the CPRT calculation.

Radiative transfer of a total number of 2562 = 65536 rays is computed from

I = 6.0 to I = 0.0 through the galaxy cluster centred at Icluster. Without loss

of generality, Icluster = 0.5 (i.e. placed between I = 0.500645 and I = 0.499355,

corresponding to a length scale of 2.89 Mpc ≈ 2'vir) is chosen. In order to study

the intrinsic polarisation emission of the cluster, no materials fill the line-of-sight

outside of the cluster and there is zero initial radiation background. Emission,

absorption, Faraday rotation, and Faraday conversion by thermal bremsstrahlung

and non-thermal synchrotron radiation processes are taken into account.

Fig. 3.9 shows the resulting intensity and polarisation maps obtained at I = 0;

statistics of those maps are summarised in Table 3.4. The simulated cluster is

intrinsically polarised at aobs = 1.42 GHz with a mean degree of total polarisation

of ∼ 68.57 %, dominated by linear polarisation. Emission is the highest in the

cluster’s central region, where the magnetic field strength and the electron number

density are the highest (see Fig. 3.8). Faraday rotation is also strong in the central

region, leading to a bigger change of polarisation angle, as is seen in the map of Δi

shown in Fig. 3.9. At the same time, depolarisation in that region is also the most

significant, where the degree of polarisation is . 30% and the minimum reaches

∼ 1%. Strong differential Faraday rotation and the effect of randomfield orientations

along the line-of-sight are the causes of depolarisation in this demonstration. These

results agree with the observational trends of smaller degree of polarisation for

sources close to the cluster centre (e.g. Bonafede et al. 2011; Feretti et al. 2012).

The CPRT calculation provides a rich set of data products, enables quantitative

measures of polarisation and intensity, and its algorithm allows interfacing with

simulation results. While here the calculation for a simulated cluster at a fixed
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Mean Standard Deviation Minimum Maximum
Input
=e, tot 6.3561 × 10−5 2.7001 × 10−4 6.3577 × 10−7 2.6508 × 10−2

|B | 1.5585 × 10−8 5.0621 × 10−8 2.5227 × 10−14 2.5175 × 10−6

cos \ −5.9235 × 10−3 5.7434 × 10−8 -1.0000 1.0000
Output
� 7.0217 × 10−18 4.4204 × 10−18 2.2564 × 10−27 1.3000 × 10−16

& 1.6270 × 10−19 1.0358 × 10−18 −2.96286 × 10−19 3.3099 × 10−17

* −2.3702 × 10−21 9.3950 × 10−19 −2.9899 × 10−17 3.2602 × 10−17

+ −2.6325 × 10−25 4.2232 × 10−23 −1.5752 × 10−21 1.9561 × 10−21

Δi 1.1957 × 10−3 0.2543 −3.1240 3.1401
Πl 68.5725 8.0302 1.1191 70.5876
Πc 2.3278 × 10−4 2.8580 × 10−4 6.4526 × 10−10 4.2846 × 10−3

Πtot 68.5725 8.0302 1.1191 70.5876

Table 3.4: Statistics of the input and output parameters at I = 0 of the demonstrative pencil-
beam CPRT calculation using the simulated galaxy cluster obtained from the GCMHD+
cosmological MHD simulation; see Sec. 3.2.2. =e, tot is in units of cm−3, while |B | is in G.
The Stokes parameters are in units of erg s−1 cm−2 Hz−1 str−1, Δi is in radian, and Πl, Πc,
Πtot are in percent. All values are corrected to four decimal places for compactness.

redshift is demonstrated and only the intensity and polarisation maps at I = 0

are presented, the CPRT algorithm can generate maps at any sampled redshifts.

Comparisons of the statistics of maps generated at different redshifts may provide

a useful means to study the cosmological evolution of magnetic fields, as well as

giving insights into tomographic studies of large-scale magnetic fields in real data.

Mock data-sets obtained from CPRT calculations can also be used to test analysis

tools used for magnetic field structure inference.

3.2.3 All-sky calculation

Here an all-skyCPRTcalculation is performed to compute theoretical radio polarised

sky maps, matching the sky coverage and the frequency that are covered by current

and upcoming radio surveys. The demonstrative application uses a model magne-

tised universe obtained from a cosmological MHD simulation with the GCMHD+

code (Barnes et al. 2012, 2018) as an input structure.

Ray-tracing CPRT calculations are carried out for a total number of #ray =

12 × 642 = 49152 rays distributed on I-spheres according to the healpix sampling

scheme (Górski et al. 2005). Radiation frequency is chosen to be aobs = 1.42 GHz.
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Fig. 3.8: The line-of-sight view of the central slices of a simulated galaxy cluster from the
GCMHD+ simulation, showing the structure of electron number density (top), magnetic
field strength (middle) and magnetic field orientations along the line-of-sight as defined by
cos \ (bottom). The whole galaxy cluster data of dimension 256 × 256 × 256 are used for
the demonstrative pencil-beam calculation (see Sec. 3.2.2).
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Fig. 3.9: The resulting maps at I = 0 of log �, log |+ |, log |& |, and log |* | in units
of erg s−1 cm−2 Hz−1 str−1, Δi in radian, and the maps of Πl, Πc, Πtot in percent, obtained
from the demonstrative CPRT calculation for the simulated galaxy cluster (see Sec. 3.2.2).
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The redshifted CMB background radiation and its influences are neglected, and ra-

dio polarisation is attributed to sources consisting both thermal and non-thermal

electrons distributed across the entire universe in the post-reionisation epoch7

(i.e. I ≤ 6.0). Both thermal bremsstrahlung and non-thermal synchrotron radi-

ation processes are taken into account. To highlight the polarisation signatures

imparted by magnetic structures, electron number density =e,tot(I, \, q) is assumed

to be uniform across the entire sky at each I; its cosmological evolution over I

underwent a dilution in an expanding universe, i.e. =e,tot(I) = =e,tot,0(1 + I)3, where

=e,tot,0 = 2.1918 × 10−7 cm−3 (see Appendix F for details). Non-thermal relativistic

electrons are assumed to amount to 1% of the total electron number density. Their

energy spectrum follows a power law with a spectral index of ? = 4.0 (i.e. the non-

thermal electrons have aged, steepening the spectrum), corresponding to a radiation

power-law spectrum with index U = (? − 1)/2 = 1.5. The low cutoff of the electron

energy is set to W8 = 10.0, and the high cutoff is set to infinity.

The GCMHD+ cosmological MHD simulation (Barnes et al. 2012, 2018) is

used to determine the evolution of the large-scale magnetic field as structures in

the universe assemble. A cubic region of comoving volume (40 Mpc)3 was taken

from a comoving (100 Mpc)3 volume in the simulation, which started at I = 47.4

as determined by the initial condition generator grafic++. The magnetic field was

assumed to be generated at some early epoch via a method that filled the volume of

the simulation. It has a configuration of B = (10−11, 0, 0) G. The output of �‖ (I)

obtained from the GCMHD+ simulation is fitted analytically by the piece-wise

7The non-linear growth in magnitudes and structures of electron number density during the reionisation
epoch would have imparted observational signatures to the travelling radiation, varying statistics such as the
polarisation power spectrum. However, for demonstrative purpose I do not consider such an effect in this work.
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function:

log10

(
�‖

2(I)
8c

)
=


8.1737 G4 − 40.352 G3 + 73.647 G2 − 55.264 G − 12.16 (0.64 < G < 1.70)

0.67 tanh(−G/0.18 + 2.72) − 26.14 (0.15 ≤ G ≤ 0.64)

− tanh(G/0.52 + 0.28) − 24.91 (−2.00 ≤ G < 0.15)

,

(3.3)

with G = log10 I. This fit, plotted in Fig. 3.10, is smoothed by interpolation using

twenty-one-point averages to model the input of �‖ (I) for the CPRT calculation. A

log-normal spatial distribution of �‖ (I, \, q) is assumed over each I-sphere, where

the mean value is calculated from Eqn. (3.3) multiplied by a factor of 103 to match

the expected observed field strength of 1.0 nG typical of filaments (see e.g. Araya-

Melo et al. 2012). The log-normal distribution ensures the magnetic field strength

to be all positive. Directions of the magnetic fields, which are defined by the cos \,

are assumed to have random orientations along the line-of-sight.

Results and discussion

(I) Along a randomly selected ray

Fig. 3.11 shows the resulting cosmological evolution of both the invariant and

comoving Stokes parameters, as well as the cosmological evolution of Δi, Πl, Πc

and Πtot of a randomly selected ray. Notably, one can see that the fluctuations in

&,* and + increase significantly during the later period, i.e. when the structure

formation and evolution processes (such as the assembly of galaxy clusters) in

the cosmological simulation become prominent and the magnetic fields become

significantly amplified during these processes, hence imposing a Faraday screen

(i.e. strong Faraday-rotating component). In addition, highly volatile behaviour is

observed in the change of polarisation angle over all I. Volatility in the evolution of

polarisation angle increases the difficulty to distinguish between different Faraday

depth components, limiting the usage of the standard approach to infer magnetic

field properties using RM synthesis (see e.g. Brentjens and de Bruyn 2005) in some
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Fig. 3.10: Plots of the cosmological evolution of the electron number density =e, tot (upper
panel) and the logarithmic ofmagnetic energy density*B = |B |2/8c (lower panel) outputted
from the GCMHD+ cosmological simulation. The solid red line in the bottom diagram
shows the piece-wise function that fits to the data, ignoring the anomalous bump caused
by instantaneous infall and outflow of the simulation box. Note that smoothing via the
21-point averaging method is applied to obtain � ‖ (I) for the CPRT calculation. Note also
that I consider only the post-reionisation epoch, i.e. 6.0 ≥ I ≥ 0.0, in the calculation. Note
that the anomalous bump in the evolution of magnetic energy density at log I = −0.5 is
caused by the instantaneous infall and outflow of the simulation box. This structure does not
appear in the other four simulations that ran with different initial conditions, and is therefore
neglected.
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Fig. 3.11: Cosmological evolution of the invariant Stokes parameters, the comoving Stokes
parameters, Δi, Πl, Πc and Πtot over the redshifts 6.0 ≥ I ≥ 0.0 obtained from the CPRT
calculation using a model magnetised universe obtained from the GCMHD+ simulation as
the input structure; see Sec. 3.2.3.
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Mean Standard Deviation Minimum Maximum
Input
=e, tot 2.1918 × 10−7 0.0000 2.1918 × 10−7 2.1918 × 10−7

|B | 5.2855 × 10−9 6.8763 × 10−9 4.5734 × 10−11 1.9587 × 10−7

cos \ −1.8850 × 10−3 0.5769 −1.0000 0.9999
Output
� 9.6274 × 10−24 3.3006 × 10−26 9.5894 × 10−24 1.1695 × 10−23

& 4.7385 × 10−26 2.6055 × 10−26 1.7357 × 10−26 1.6790 × 10−24

* 2.9300 × 10−31 3.5445 × 10−28 −2.7505 × 10−26 1.0346 × 10−26

+ −1.0209 × 10−33 2.0177 × 10−30 −2.1578 × 10−28 8.4035 × 10−29

Δi 1.1597 × 10−5 4.7925 × 10−1 −3.0689 × 10−1 3.4868 × 10−1

Πl 4.9131 × 10−3 2.5886 × 10−3 1.8100 × 10−3 1.4359 × 10−1

Πc 5.4946 × 10−8 1.8629 × 10−7 1.5424 × 10−12 1.8452 × 10−5

Πtot 4.9131 × 10−3 2.5886 × 10−3 1.8100 × 10−3 1.4359 × 10−1

Table 3.5: Statistics of the input and output parameters at I = 0 of the demonstrative all-
sky CPRT calculation using a model magnetised universe obtained from the cosmological
GCMHD+ simulation; see Section 3.2.3. =e, tot is in units of cm−3, while |B | is in G. The
Stokes parameters are in units of erg s−1 cm−2 Hz−1 str−1, Δi is in radian, and Πl, Πc, Πtot

are in percent. All values are corrected to four decimal places for compactness.

cases. Similar trends in polarisation evolution are observed in all the other randomly

selected rays.

(II) All-sky maps

Theoretical all-sky polarisation maps of �, &, *, and + can be generated at any

chosen redshift. Fig. 3.12 shows the Stokes maps obtained at I = 0. Their statistics

are summarised in Table 3.5. As pointed out from the previous discussion about the

single-ray results, the evolution of the change of polarisation angle, which serves as a

probe of the Faraday rotation effect, is highly volatile and complex. Thus, covariant

CPRT calculations and advanced statistical analysis techniques are essential for

proper science extraction from map data.

3.3 Implications on the Study of Large-scale Magnetic Fields

The results of the demonstrative calculations shown above have two major impli-

cations to the study of large-scale magnetic fields, firstly on the power spectrum

analyses, and secondly on the validity of the current methodologies to investigate

large-scale magnetic fields.
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Fig. 3.12: All-sky maps of the Stokes parameters �, &,*,+ at I = 0 obtained from the
demonstrative CPRT calculation in which cosmological GCMHD+ simulation results of the
cosmological evolution of magnetic field strength is incorporated, log-normal distribution
of the field strength over the redshift spheres are assumed, and the electron number density
is diluted by 1/(1 + I)3 due to the expansion of the universe; see Sec. 3.2.3. The scale
of the colorbar is adopted to make the fluctuations in the Stokes maps apparent. The full
dynamical range of the data is given in Table 3.5.
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A dominating complex Faraday component can be introduced when cosmo-

logical structure formation and evolution processes become prominent, as is seen

in Fig. 3.11, where significant polarisation fluctuations happened during the later

period when galaxy clusters started to assemble in the simulation, boosting the mean

magnetic field strength. This finding means that cosmological contributions from

line-of-sight IGM-like media will likely be screened (or shielded) by fluctuations

sourced from astrophysical structures like a galaxy cluster (i.e. ionised systems with

relatively high magnetic field strengths and electron number density). This further

implies that the power spectrum of an all-sky polarisation map will be dominated

by high frequency (small-scale) signals. At the same time, it is worth noting that

the morphology of ionised bubbles during the Epoch of Reionisation, which has not

been investigated in this work, may imprint observable signatures onto the polarisa-

tion maps, contributing to the power in low frequency (large-scale) in polarisation

power spectrum as those ionised regions overlapped.

Moreover, the highly volatile cosmological evolution of the Stokes parameters

reveals the need of a more sophisticated approach to extract information about

the properties of cosmological magnetic fields from polarisation data. Conventional

analyses usingRMand its fluctuations, RMF,would be inadequate in such a situation.

This is because RM/RMF are derived from a restrictive form of polarised radiative

transfer and their associated methods typically consider simplified models, thus

limiting their applicability. SeeOn et al. (2019) for detailed discussion and important

assessments of the validity of RMF analyses in different astrophysical conditions;

see Appendices D and E in this thesis for a concise summary. Here, emphasis is

put on the studies of the situations where Faraday rotation is not the sole important

radiative process in operation and effects from cosmological evolution are non-

negligible. Unambiguous predictions of polarisation signals from covariant CPRT

calculations are crucial for meaningful comparison with observations, as well as

providing insights to properly interpret the polarised sky and correctly determine

how large-scale magnetic fields have evolved and where they came from.
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3.4 Concluding Remarks

In this chapter, an all-sky algorithm for covariant cosmological polarised radia-

tive transfer is presented. The space-time metric of the FRW cosmological model,

which has a flat geometry, is considered. The CPRT formulation is constructed

from a covariant GRRT formulation, derived from the first principles of conser-

vation of phase-space volume and photon number. The (all-sky) CPRT algorithm

allows the results from cosmological MHD simulations to be incorporated and a

straightforward generation of theoretical intensity and polarisation maps. Since the

algorithm is constructed based on a self-consistent fully-covariant CPRT formula-

tion, it provides a reliable means to study the propagation of polarised radiation,

henceforth the cosmic magneto-ionic properties (through the Faraday effects and

synchrotron intensity) throughout the evolutionary history of the universe or from a

specific redshift of an astrophysical system of interest. Moreover, all radiation pro-

cesses (emission, absorption, Faraday rotation and Faraday conversion) are treated

explicitly in the CPRT formalism. Therefore its applicability is broad and general,

and not restricted to the special cases wherein all radiative processes except Faraday

rotation is absent/insignificant, the condition from which the standard RM formulae

is derived.

The CPRT algorithm is able to produce polarised radio maps with sky coverage

ranges from a point, to a patch, up to the entire celestial sky. Not only can it be

applied to study the polarised signatures/emissions of cosmic plasmas against/am-

bient to bright radio point sources, such as pulsars, quasars and fast radio bursts

(FRBs), it can also calculate the polarisation of extended cosmological structure,

such as emitting filaments of the cosmic web. The feature of the CPRT formalism

to handle complex spatial structure(s) along each line of sight and in the map-

making processes, not offered by conventional RMF analyses (see Appendix E), is

demonstrated in Sec. 3.2.2 and Sec. 3.2.3. Furthermore, the maps generated from

CPRT calculations contain unambiguous intensity and polarisation predictions of

the models of a magnetised structure (e.g. a magnetic universe as a whole, or the
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complex structure(s) within it). These maps serve as model templates to provide

physical insights that aid observational interpretations. Together with the applica-

tion of advanced statistical analyses which characterise structural features in the map

data, complex theoretical models can then be meaningfully compared with observa-

tional data, such as those to be collected by the forthcoming SKA, as well as from

spectro-polarimetric observations by SKA’s precursors (ASKAP, MeerKAT, MWA)

and pathfinders (in particular, LOFAR, CHIME, and FAST), which are operating

currently.

Two sets of CPRT numerical tests have been conducted to validate the code

implementation in single/multiple ray settings. Three sets of CPRT calculations

have been performed to demonstrate its application for practical astrophysical stud-

ies, including the study of the propagation of polarised radiation against a bright

radio point-source (or not), in a stimulated galaxy cluster, and in a stimulated mag-

netised universe that underwent cosmological structural evolution. I summarise

below the data products of the CPRT algorithm, the scientific information that they

contain, as well as the astrophysical implications of the findings of the demonstrative

calculations.

Solving the CPRT equation yields the evolution of the Stokes parameters of

radiation as a function of redshift I. This enables quantitative tracking of the changes

in the radiation intensity and polarisation over its path and studies of the impacts

by local radiation processes (thermal bremsstrahlung and non-thermal synchrotron

radiation processes in this work) in a cosmologically evolving universe.

The set of single-ray proof-of-concept calculations, which is presented in

Sec. 3.2.1, considered the cases in which a bright radio point source is absent

or present. In all cases, unbiased randomly-oriented magnetic fields are distributed

along the line-of-sight, and the field strength evolved adiabatically (frozen-in condi-

tion). As expected, the evolution of the radiation’s properties along the line-of-sight

are completely different in cases with or without a bright radio backlight, with sig-

nificant differences seen in the evolution of the degrees of linear, circular and total

polarisation. In the presence of a strong backlight, the case wherein the source is
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positioned at a high redshift also different clearly to the case in which the source is

nearby. The former situation allows studies of the foreground weakly magnetised

IGM-like plasmas, while the latter have the past evolution shielded by the bright

nearby sources. A key take-away message is the ability of the CPRT calcaultions

to directly track the cosmological evolution of the 4-Stokes parameters, the change

of polarisation angle, and the degrees of all types of polarisation. Not only does

it naturally resolve the issue of =c-ambiguity, which concerns the number of 180◦

rotations of the polarisation angle unknown to an observer, it also enables further

investigation of depolarisation and repolarisation of radiation caused by Faraday

effects along a ray path.

Carrying out multiple-ray CPRT calculations generates maps of the 4-Stokes

parameters, the change of polarisation angles, and the degree of linear, circular

and total polarisation, at the oberver’s frame (or at any arbitrary redshifts). In

the demonstrative calculations, polarisation of the simulated galaxy cluster obtained

fromaGCMHD+ simulation is calculated, taking into account the three-dimensional

spatial variations of electron number density and magnetic fields inside the cluster.

The galaxy cluster acts as a 3D Faraday block of magnetised plasma (in contrast

to the Faraday screen approximation commonly used in the studies of foreground

Faraday rotation), exhibiting more substantial Faraday effects than those in the

intergalactic space, which is explained by the much higher electron number density

and magnetic field strengths in an intra-cluster environment. At the same time,

significant depolarisation effects due to differential Faraday rotation occurred in

the central region of the galaxy cluster, agreeing with the trends seen in several

observational studies. The galaxy-cluster calculations have demonstrated the ability

of the CPRT calculations to deal with a complex spatial structure, whose electron

number density and magnetic field strength are inhomogeneous, exhibit different

configurations, and display structural features on varying spatial scales.

Conducting CPRT calculations over the entire sky in full cosmological settings

results in sphericalmaps of the observables. In the demonstrative application, all-sky

CPRT calculation are conducted using a model magnetised universe obtained from
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the cosmological GCMHD+ simulation, accounting for the cosmological evolution

of the magneto-ionic properties of the universe after the epoch of reionisation. The

cosmological evolution of the polarisation components of propagating radiation

is found to be highly volatile, implying that full covariant CPRT consideration is

essential for accurate inter-galactic magnetic field studies. Another implication

concerns the polarisation power spectra from all-sky observations. Those spectra

are likely to be dominated by the high-frequency (small-scale) signals caused by

strong Faraday-rotating components, such as galaxy clusters. Emissions from the

medium and the embedded sources along the line-of-sight also boost power in the

fluctuation on the small scales, which should be differentiated from the signals truly

arising from magnetic field structures (see Appendix E for the discussion about

issues relating to magnetic field inference from the polarisation data).

Finally, since the variations of the observable quantities along the ray prop-

agation and those across the sky plane are determined by the convolution of the

spatial variations of the magneto-ionic plasma properties at different epochs over

the ray path and the temporal variations of the magneto-ionic plasma properties

over cosmological evolution, ionised structures arisen during the EoR also impart

polarisation fluctuations. Investigations of the imprints on the polarisation signals

due to the morphology of cosmological reionisation, which are not addressed in this

thesis but are important research problems, can be achieved by utilising the CPRT

formalism.
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Chapter 4

Cosmological 21-cm Line Radiative Transfer

This chapter presents my derivation of a covariant formulation for cosmological

21-cm line radiative transfer (C21cmLRT). The formulation is the first of its kind.

It takes full account of (i) global effects, in particular, cosmic expansion and the

changes in the ionisation state of hydrogen along the line-of-sight as the cosmological

reionisation proceeds, and (ii) local effects, such as bulk motions of the medium in

the scales of galaxies and galaxy clusters, and the microscopic kinetic movements

and turbulence. Demonstrations of its applications in astrophysical settings are also

presented.

4.1 Hyperfine 21-cm Line of Neutral Hydrogen

4.1.1 Spin-coupling and hyperfine splitting

The 21-cm line (in the GHz radio waveband) observed in astrophysical sources is

attributed to the emission due to the hyperfine transition in the electronic ground

state of neutral atomic hydrogen (H I gas). The hyperfine splitting is induced by the

interaction of the magnetic moment (spin) of the electron with the magnetic field

generated by the magnetic moment (spin) of the proton at the hydrogen nucleus. The

orbital of the electron in the hydrogen atom is spherically symmetric in the ground

state. This symmetry makes all except one term in the interaction Hamiltonian

vanish. The surviving term corresponds to a direct spin-spin coupling (interaction)

between the electron and the proton. This spin-spin coupling has two energy states,

with the spins of the electron and the proton either in parallel or in anti-parallel, which

breaks the degeneracy of the 1S1/2 state of the hydrogen atom, and reveals a triplet

state and a singlet state of different energy levels. The triplet state, corresponding to

the electron and proton spins in parallel, has a higher energy and is referred to as the
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upper hyperfine level. On the other hand, the singlet state, corresponding to spins

in anti-parallel, has a lower energy and is referred to as the lower hyperfine level.

Hereafter, the triplet and the singlet states are denoted as “u” and “l”, respectively.

The energy shift of the triplet and the singlet states of the hyperfine splitting are

asymmetrical, in contrary to the energy shifts in Zeeman splitting in the electronic

ground state of hydrogen, although both are essentially caused by the interaction

of an electron spin with a magnetic field “exterior” to the electron. The hyperfine

interaction causes a perturbation in the Hamiltonian, and in hydrogen, it gives rise

to a perturbed Hamiltonian operator, which can be decomposed into two separated

terms:

Δ�1 ∝ (r̂ · µe) (r̂ · µp) ; (4.1)

Δ�2 ∝ (µe · µp) , (4.2)

where µe and µp are the magnetic moments of the electron and the proton, re-

spectively. The spherical symmetry of the unperturbed electronic wave-function of

hydrogen implies that the expected value of Δ�1 is zero, as

〈Δ�1〉 ∝ 2c
∫ c

0
d \̃ sin \̃ (cos \̃) = 0 , (4.3)

where \̃ = cos−1(r̂ · µe/|µe |) . It leaves the non-vanishing perturbation arisen from

the spin-spin coupling, i.e.

〈Δ�2〉 ∝ 〈(µe · µp)〉 ∝ 〈(ŝe · ŝp)〉 . (4.4)

Electron and proton are both spin-1/2 fermions, i.e. Be = 1/2 and Bp = 1/2, and

hence, the spin of an electron-proton pair, �, is either 1 (parallel configuration) or

0 (anti-parallel configuration). The spin-1 (� = 1, parallel) state is a triplet, as its

projection can take values of 1, 0, or −1. The spin-0 (� = 0, anti-parallel) state is a
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singlet, as its projection can only take a value of 0. It follows that

〈(ŝe · ŝp)〉 =
1
2

〈 (
(ŝe + ŝp)2 − ŝ2

e − ŝ2
p

) 〉
(4.5)

=
1
2
(
� (� + 1) − Be(Be + 1) − Bp(Bp + 1)

)
[~2] . (4.6)

For the triplet state, Be = Bp = 1/2 and � = 1, which gives 〈(ŝe · ŝp)/[~2] = +1/4;

for the singlet state, Be = Bp = 1/2 and � = 0, which gives 〈(ŝe · ŝp)/[~2] = −3/4.

The downshift-energy of the singlet state is, therefore, 3 times the upshift-energy of

the triplet state.

Hyperfine splitting can also occur in the excited states. For instance, if the

electron is in one of the 2P orbitals, then, 〈Δ�1〉 will be non-zero. This results in

a more complex network of state transitions, especially when the transition is also

coupled with an external radiation field.

The transition between the hyperfine triplet state and singlet state of neutral

hydrogen in a ground state involves a spin-flip of the electron, and the transition is a

magnetic dipole transition. The transition is mediated by an emission or absorption

of a photon of an energy difference between the two hyperfine levels, i.e.Δ�ul =

5.87 × 10−6 eV, corresponding to a frequency of 1.42 GHz and a wavelength of

21.1 cm. This 21-cm hyperfine line has long been predicted (van de Hulst 1945)

and observed (Ewen and Purcell 1951; Muller and Oort 1951; Pawsey 1951), and

its rest-frame frequency is one of the most precisely measured physical quantities1.

The precision in its frequency measurement and the abundance of hydrogen in the

Universe make the neutral hydrogen 21-cm hyperfine line a useful means for the

1The frequency of the hyperfine transition in H I in the ground state has been measured at a high precision
with 1420405751.7667 ± 0.001 Hz (Essen et al. 1971) and 1420405751.768 ± 0.002 Hz (Hellwig et al. 1970),
through maser experiments. The experimental uncertainty does not exceed 1 part in 1012 in these studies.
The highly-precise measurement of the 21-cm line frequency enables the searches for the variations, if any,
in the fundamental physical constants over cosmological time. One example is the fine structure constant U
(≡ 42/~2 ≈ 1/137.036), which relates to the rest-frame frequency of the 21-cm line as

aul =
8
3
6I

(
<e
<p

)
U2 ('H2) ≈ 1420.405751MHz (4.7)

(see e.g. Condon and Ransom 2016), where 6I ≈ 5.58569 is the nuclear 6-factor of proton. The hydrogen
Rydberg constant is 'H = '∞

[
1 + (<e/<p)

]−1, where '∞ (= U2<e2/4c~) is the Rydberg constant. This gives
a hydrogen Rydberg frequency 'H2 = 3.28805 × 1015Hz.
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investigation of various dynamical and physical processes in the diffuse medium on

galactic and cosmological scales.

4.1.2 Hyperfine 21-cm line in galactic astrophysics

The first study using the 21-cm emission to probe the properties of galaxies dates

back to the time when radio astronomy just emerged. Radio emission at the GHz

frequencies does not suffer much dust extinction. The 21-cm hyperfine emission line

from neutral hydrogen is, therefore, transparent across the Galactic plane, allowing

us to derive useful information regarding the kinematics, dynamics and structure of

the Galactic disk (see e.g. Sofue and Rubin 2001). Muller and Oort (1951) used

the Doppler broadening of the 21-cm line to deduce the rotational speed of the

Galaxy (Milky Way). Since then, the 21-cm hyperfine emission line has been used

to construct the Galactic rotation curves (e.g. van de Hulst et al. 1957; Clemens

1985; Sofue and Rubin 2001; Sofue 2016a,b) and also map the spiral structures

(e.g. van de Hulst et al. 1954; Sofue 2013).

The interstellar 21-cm emission line is now established as a standard kinematic

tracer for galaxies. In addition to the Milky Way galaxy, the rotation curves (see

Huchtmeier 1975; Sofue 2016a,b, and references therein) and the spiral structures

(e.g. Bosma 1981) of the external spiral galaxies have been determined using the

21-cm observations. The observed 21-cm emission provides a two-dimensional

velocity map (see e.g. Bosma 1981), from which not only the rotation curve of a

galaxy can be constructed, but also the deviations from the circular rotation velocity

can be measured. This precision measurement of the velocity field (e.g. Sanna et al.

2017; Wenger et al. 2018), would reveal galactic structures such as spiral arms, and

bars, if they are also present (e.g. Crosthwaite et al. 2000). The rotation curve is a

marker of the gravitational potential, and hence, the mass distribution of the galaxy

(e.g. Sofue 2013, 2016a). The flattening of the rotation curve out to tens of kpc

from their galactic centre universally observed in the spiral galaxies (e.g. Rubin and

Ford 1970; Rubin and Graham 1987) are one of the key evidences to establish the

presence of an invisible, non-baryonic matter component, which is referred to as
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darkmatter, on the galactic scale and above (e.g. Ostriker and Peebles 1973; Ostriker

et al. 1974; Einasto et al. 1974).

The centre frequency of the 21-cm emission line, which is accurately determined

in the laboratory (e.g. Peters et al. 1965), is a good reference of the local rest frame.

Thus, it provides a means to determine the radial velocities of external galaxies from

the measurement of the 21-cm lines. The radial velocities can, in turn, be used to

estimate the Hubble distances to the galaxies, if the peculiar velocities associated

with them are insignificant.

The strength of the 21-cm emission indicates the column density along the

line-of-sight, and hence, it can be used to map the amount of H I gas in the Milky

Way and the external galaxies (e.g. Dickey 1990; Dickey and Lockman 1990). Note

that H I gas can also be present outside of galaxies, and it has a detectable 21-cm

emission. Observations have shown that the interactions of galaxies could leave long

streamers and tails of atomic hydrogen gas (e.g. Cottrell 1977). The dynamics of the

galactic interactions can, therefore, be inferred from mapping the velocity structures

and density distributions of these cold galactic debris, which would otherwise not

be detected in the optical and X-ray observations.

The 21-cm line can appear in absorption in the presence of H I between a bright

GHz radio source and the observer. In fact, the 21-line absorption spectra have been

used to constrain the distances of hydrogen clouds in the MilkyWay using the bright

radio emission from a background source, e.g. a pulsar (see Gordon and Gordon

1973), or even a warm background continuum (Wienen et al. 2015).

4.1.3 Epoch of Reionisation and 21-cm tomography

The ability of the 21-cm line to trace the content and the distribution of neutral

hydrogen in the early Universe makes it an important probe of the cosmological

reionisation process (see e.g. Furlanetto et al. 2006; Pritchard and Loeb 2012, for

reviews). Hydrogen filling the early Universe went through three major transitions

in its ionisation state. It went from being fully ionised in the hot nucleosynthesis era

to becoming neutral and atomic, as the Universe cooled when it expanded. It then
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became ionised again when the first structures, such as stars and galaxies, emerged,

producing X-rays and UV radiation, and perhaps energetic particles, that drove the

global reionisation process. The unique spectral properties of the 21-cm line, which

is optically thin to the mostly-ionised intergalactic media (see e.g. Madau et al.

1997), and the abundance of neutral hydrogen in the Universe, have made it an

important probe to the evolutionary history of the Universe, starting from the end of

the Cosmic Dark Ages and the beginning of the Cosmic Dawn through the entire era

of reionisation to the present (see Furlanetto et al. 2006; Morales and Wyithe 2010;

Pritchard and Loeb 2012).

The 21-cm line originating from different cosmological epochs is identified by

the amount of redshifts in its frequency. Thus, the line spectrum is a tomographic

measurement of the structures of the Universe as it evolves, (see e.g. Madau et al.

1997; Loeb and Zaldarriaga 2004; Furlanetto and Briggs 2004; Mellema et al.

2015). The angular variations of the line intensity across the sky maps the spatial

structures in the Universe at the particular epochs associated with the redshifts of

the line. It gives important information of the Universe even before the first galactic

structures had formed2 (Loeb and Zaldarriaga 2004; Barkana and Loeb 2005), as

well as the progression of cosmological reionisation (see e.g. Furlanetto et al. 2006;

Morales and Wyithe 2010; Pritchard and Loeb 2012; Mellema et al. 2015).

4.2 Radiative Transfer of the 21-cm Line

The generic line transfer equation at the local rest frame, accounting for the line and

continuum opacities, takes the form:

d�a
dB

= −
(
^C,a + ^abs

L,a qa,abs − ^sti
L,a qa,sti

)
�a +

(
nC,a + nL,a qa,emi

)
, (4.8)

where the subscripts “L” and “C” denote the line, and the continuum underneath

and adjacent to the line, respectively. (The line transfer equation has assumed that

the emission is not polarised and also energy distribution is unimportant.) The

2In addition to the redshift information offered by the spectral nature of the 21-cm line, the 21-cm line does
not suffer from Silk damping that suppresses the CMB fluctuations on small scales, enabling it to probe the
small-scale (linear) density fluctuations prior to the first structure formation (Loeb et al. 2008).
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absorption coefficient has three components, contributed by the absorption of the

line and the continuum and the stimulated emission (which can be considered as

a negative absorption) of the line; the emission coefficient has two components,

contributed by the emission of the line and the continuum.

The line profile functions qa,x ≡ qx(a − a21cm), with x ∈ {abs, emi, sti} corre-

sponding to absorption, spontaneous emission and stimulated emission respectively,

are defined with respect to the rest-frame frequency of the 21-cm line, a21cm. They

are normalised, i.e. ∫ ∞

0
da qa,x =

∫ ∞

0
da qx(a − a21cm) = 1 . (4.9)

This gives the strength of the 21-cm line, in the context of absorption, spontaneous

emission and stimulated emission. In terms of the total effective line intensity, it

can be expressed as

�21cm =

∫ ∞

0
da �a qx(a − a21cm) . (4.10)

Equivalently, the expressions for the effective absorption, the spontaneous emission

and the stimulated emission coefficients of the 21-cm line are

^abs
21cm =

∫ ∞

0
da ^abs

21cm,a qabs(a − a21cm) , (4.11)

n21cm =

∫ ∞

0
da n21cm,a qemi(a − a21cm) , (4.12)

^sti
21cm =

∫ ∞

0
da ^sti

21cm,a qsti(a − a21cm) . (4.13)

If the radiative processes for the continuum are unimportant, the line radiative

transfer equation can be simplified to

d�a
dB

= −
(
^abs

L,a qa,abs − ^sti
L,a qa,sti

)
�a +

(
nL,a qa,emi

)
. (4.14)
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Fig. 4.1: The Grotrian diagram of the 2P and 1S levels of the hyperfine structure and the
associated transitions of neutral hydrogen. The transitions relevant for theWouthuysen–Field
effect are represented by the solid blue lines, and the other allowed transitions, but not
contributing to electron spin-flips, are represented by the dashed blue lines. The hyperfine
transitions, represented by the red lines, are characterised by the corresponding Einstein
coefficients. Figure adapted from Pritchard and Furlanetto (2006).

4.2.1 Einstein coefficients, line emission and absorption

The coefficients in the radiative transfer equations, Eqns. (4.8) and (4.14), are

macroscopic variables. They are, however, governed by microscopic processes. For

the radiative transfer of the 21-cm line associated with the cosmological reionisation,

the line absorption and emission are determined by the probability of transition

between the hyperfine states due to the spin-flip of the ground state electron in the

neutral hydrogen. The absorption and emission in the continuum at frequencies of

the line and adjacent to the line are less relevant, although electron scattering could

cause a certain degree of extinction when the line photons traverse the ionised matter

along the line-of-sight.

Fig. 4.1 shows the Grotrian diagram of the hyperfine transitions between the two

spin states (“u” for the higher-energy triplet 11S1/2 state) and “l” for the lower-energy

10S1/2 singlet state) of neutral hydrogen. The energy Δ�ul = ℎaul (= ℎa21cm).

The transition probabilities of the absorption, spontaneous emission and stim-

ulated emission of a photon with Δ�ul are specified by the Einstein coefficients

�lu, �ul and �ul, respectively. Consider an ensemble of neutral hydrogen atoms in

the 1S ground state, with the populations of electrons in its triplet and singlet spin



123

states specified by the number densities =u and =l, respectively. Thus, the effective

emission coefficient of the 21-cm line may be expressed as

n21cm = nul =
ℎaul
4c

=u�ul

∫ ∞

0
da qa,emi ; (4.15)

Similarly, the expression for the effective absorption coefficient of the 21-cm line is

^L = ^
abs
21cm − ^

sti
21cm

= ^abs
ul − ^

sti
ul

=
ℎaul
4c

[
=l�lu

∫ ∞

0
da qa,abs − =u�ul

∫ ∞

0
da qa,sti

]
. (4.16)

It follows that the specific emission and absorption coefficients are

nL,a =
ℎaul
4c

=u�ulqa,emi ; (4.17)

^L,a =
ℎaul
4c

[
=l�lu qa,abs − =u�ul qa,sti

]
(4.18)

(cf. Eqns. (4.11), (4.12) and (4.13)).

The Einstein coefficients are not independent. The ratio of �lu and �ul is

determined by the multiplicity (degeneracy) of the upper and lower energy states:(
�lu
�ul

)
=
6u
6l
, (4.19)

Also, �ul and �ul are related via(
�ul
�ul

)
=

2ℎa3

22

����
a=aul

(4.20)

(Einstein 1916, 1917). The Einstein coefficients are derived in terms of the atomic

parameters. They have no explicit dependence on the external conditions. Thus, the

relations in Eqn. (4.19) and Eqn. (4.20) hold universally, regardless of whether or

not the medium is in a local thermal equilibrium with itself and with the radiation.

For a two-level system in thermal equilibrium, characterised by a thermal tem-



124

perature ) , the relative population of the particles at the two levels differing by an

energy Δ�ba (with labels “b” and “a” for the levels with the higher energy and lower

energy, respectively), is specified by the Boltzmann factor:

=b
=a
=
6b
6a

exp
(
−Δ�ba
:B)

)
. (4.21)

Analogous to the expression for the thermal system, the relative population of the

upper and lower hyperfine states of the 21-cm line may be expressed in a term of a

temperature, )s, known as the spin temperature:

1
3

(
=u
=l

)
= exp

(
−Δ�ul
:B)s

)
= exp

(
−)★
)s

)
, (4.22)

with 6u = 36l (for neutral hydrogen in the 1S ground state) and )★ ≡ ℎa21cm/:B =

Δ�ul/:B = 0.0682 K. Note that when )s � )★, three of four atoms will be in the

upper hyperfine level. However, there are mechanisms, which will be discussed

later, that can cause violation of this population partition.

It is now clear that the emission and absorption coefficients of the radiative

transfer of the hyperfine 21-cm line of neutral hydrogen can be computed from the

Einstein coefficient �ul, for spontaneous emission, if the number density of neutral

hydrogen (which is =u+=l) and the ratio of =u/=l (given by the spin temperature)s) are

known, and the line profile functions qa,x, where x ∈ {abs, emi, sti}, are specified.

�ul ≈ 2.87 × 10−15 s−1 for the hyperfine transition of an electron in a ground-state

hydrogen atom (see e.g. Condon and Ransom 2016). The lifetime of an electron in

the upper hyperfine triplet state is therefore ΔC21cm = 1/�ul ≈ 3.5×1014 s (11 Myr).

This implies a negligibly narrow intrinsicwidth, (Δa21cm)intrinsic = (2c ΔC21cm)−1 �

a21cm (≈ 1.4 GHz), for the 21-cm line3.

3An emission line would have a Lorentzian profile if the broadening is due to radiative damping, specified by
a damping parameter Γrad. If there is only radiative-damping induced broadening, the profile of the hyperfine
21-cm line, centred at a21cm, is

q (a − a21cm) =
Γrad/4c2

(a − a21cm)2 + (Γrad/4c)2

(see e.g. Rutten 2003), where the damping parameter Γrad = (ΔC21cm)−1 = �ul, corresponding to an intrinsic
frequency broadening (Δa21cm)intrinsic = Γrad/2c. More details on the profile of the 21-cm line and the possible
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The spontaneous emission of 21-cm photons is forbidden in the electric dipole

transition and rarely occurs. Thus, electrons would reside in the upper hyperfine

triplet state for more than 10 Myr, unless they are disturbed by an external process,

e.g. de-excitation caused by atomic collisions or stimulated de-excitation by a radi-

ation field. However, it is evident that the 21-cm hyperfine lines are observed in

astrophysical systems, e.g. the Milky Way galaxy and many external galaxies. The

21-cm hyperfine transition could happen frequent enough for it to be detectable,

when taking into account of the amount of neutral hydrogen for a sufficiently large

astrophysical system, such as a spiral galaxy. Because of the abundance of neutral

hydrogen throughout the entire Universe4, especially before the Universe was com-

pletely reionised, the 21-cm hyperfine transition would be the major source of line

emission, from an atomic process, before the formation of luminous objects such as

stars and galaxies.

4.2.2 Radiative transfer equation for the 21-cm line

Without loss of generality, consider only the line absorption and the emission opacity

and ignore the continuum and its opacity for the time being. Then, the radiative

transfer equation is simply

d�a
dB

= −^L,a �a + nL,a = −^L,a
(
�a − (L,a

)
(4.23)

in the local rest frame, where (L,a = nL,a/^L,a is the source function of the line. (This

can be justified if the free-free processes, which usually contribute to the continuum

emission and absorption, are insignificant, i.e. ^C,a � ^L,a and nC,a � nL,a.) In

terms of the Einstein coefficients, the radiative transfer equation for the 21-cm line,

therefore, is

d�a
dB

= −ℎaul
4c

[ (
=l�lu qa,abs − =u�ul qa,sti

)
�a − =u�ulqa,emi

]
, (4.24)

broadening processes in astrophysical systems are discussed in Sec. 4.2.5.
4H I amounts to about 75% of baryonic matter (by mass) and over ∼ 90% of all of the atoms (by number) in

the Universe (Los Alamos National Lab: https://periodic.lanl.gov/1.shtml).

https://periodic.lanl.gov/1.shtml
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where aul = a21cm, and the source function is

(L,a =
=u�ul qa,emi

=l�lu qa,abs − =u�ul qa,sti

=

(
�ul
�ul

) (qa,emi/qa,abs)
(=l�lu/=u�ul) − (qa,sti/qa,abs)

=

(
2ℎaul

3

22

) (qa,emi/qa,abs)
(=l 6u/=u 6l) − (qa,sti/qa,abs)

. (4.25)

The derivation of the source function here has not assumed a thermal equilibrium.

If local thermal equilibrium is imposed, the source function will become the Planck

function, recovering the Kirchhoff’s Law5.

The line transfer equation can be further simplified using the relations between

the Einstein coefficients in the absorption coefficient. This gives

^L,a =
ℎaul
4c

(
=l�lu qa,abs − =u�ul qa,sti

)
= ^abs

L,a qa,abs (1 − Ξ) , (4.26)

where the normalised absorption coefficient is

^abs
L,a =

ℎaul
4c

=l�lu

=
1

8c

(
2

aul

)2 (
6u
6l

)
=l�ul , (4.27)

5In a local frame, qa,abs = qa,emi = qa,sti. If local thermal equilibrium (LTE) between the radiation and the
medium holds, then

=u
=l
=
6u
6l

exp
(
− ℎaul
:B)

)
,

and the source function in Eqn. (4.25) becomes

(L,a =

(
2ℎaul

3

22

) [
exp

(
ℎaul
:B)

)
− 1

]−1

= �a ()) .

The condition for a LTE between the radiation and the medium is not always satisfied, especially when the
transition is coupled with an external radiative process. In this situation,

=u
=l
≠
6u
6l

exp
(
− ℎaul
:B)

)
,

and the source function cannot be represented by the Planck function, i.e. the radiation is non-thermal, although
the relevant radiative processes involved could be thermal processes themselves.
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and the factor for the stimulated emission is

Ξ =
=u
=l

6l
6u

qa,sti

qa,abs
. (4.28)

The factor Ξ can exceed unity if the upper hyperfine level is sufficiently populated,

i.e. when (=u/=l) > (6u/6l) = 3 for qa,sti = qa,abs. This could occur during the

Epoch of Reionisation where a strong radiation field can be created by the first

quasars, first stars, or first galaxies.

Generally, there is no guarantee that the line profile functions qa,emi, qa,abs,

and qa,sti are the same. However, the intrinsic width of the 21-cm hyperfine line

is insignificant in comparison to the broadening of the line due to other processes.

In the local rest frame, all atoms are subject to the same external line broadening

processes. Thus, qa,emi = qa,abs = qa,sti can be adopted in the radiative transfer

equation. It follows that, by including the factor accounting also for the stimulated

emission [1 − Ξ], the radiative transfer equation becomes

d�a
dB

= −(^abs
L,a qa [1 − Ξ]) �a + nL,a qa , (4.29)

where qa is the line profile function (for absorption, spontaneous emission and

stimulated emission). The continuum and line absorption and emission coefficients

are additive, if there is no correlation between the continuum and the line opacities.

Hence, the radiative transfer equation is

d�a
dB

= −(^C,a + ^abs
L,a qa [1 − Ξ]) �a + (nC,a + nL,a qa) . (4.30)

4.2.3 Excitation and de-excitation of electrons

The line emission coefficient nL,a depends on the population of electrons (in number

density) in the upper hyperfine level, =u, while the total effective line absorption

coefficient ^L,a is determined by the relative population of electrons in the two

hyperfine states, i.e. (=u/=l). The total populations of electrons in the two levels

combined is given by the population (in number density) of neutral hydrogen atoms,
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i.e. =l + =u = =HI.

The concentration of H I (neutral hydrogen) gas, =HI, and hence, =u and =l,

changes as the Universe evolves. First of all, they are diluted as the Universe ex-

pands: the overall amount of H I gas per unit volume scales as =HI(I) = =HI,0(1+I)3.

Secondly, H I had been converted into H II during cosmological reionisation, which

resulted in an overall reduction of =HI as the reionisation process proceeded. The

survival of neutral hydrogen depends on several factors, and the most important two

are (i) the degree of shielding from the ionised radiation, and (ii) the efficiency of

recombination to compete with ionisation. Pockets of H I can survive in overdense

regions, where they are self-shielded from irradiation. The high density also en-

hances the recombination rate (see e.g. Sobacchi andMesinger 2014), counteracting

ionisation, especially when there is already a sufficiently high ratio of the H I number

density to the photon number density. Recombination is particularly efficient in the

cool regions, where the gas is not strongly heated and so maintains a temperature

well below ∼ 104 K such that collisional ionisation of hydrogen is insignificant.

The relative population of the neutral hydrogen atoms in the two hyperfine

states can be altered by processes that can induce the spin-flip (excitation and de-

excitation) of the electrons. Obviously, the absorption of a 21-cm photon would

excite the electron from the lower hyperfine (singlet) state to the upper (triplet)

state, and the reverse process (de-excitation) would be induced by the emission of

a 21-cm photon. An electronic spin-flip can also occur when a hydrogen atom

collides with a free electron, a proton or another hydrogen atom. In the presence of

a strong UV radiation field, an electronic spin-flip is made possible, facilitated by

an intermediate excited state, and an example is the resonant scattering of the LyU

photons (i.e. the Wouthuysen-Field effect; Wouthuysen 1952; Field 1958), which

were present during the EoR, presumably produced by the massive stars and/or by

the accretion into massive black holes (i.e. quasars).

Radiative excitation and de-excitation

High-frequency radio background radiation at a high I can be redshifted into the

frequency of the 21-cm line, causing absorption or inducing stimulated emission.
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The background radio sources can be the diffuse ambient CMB, but can also be strong

radio emitters, such as quasars. An absorption will excite the electrons from the

lower-energy to the higher-energy hyperfine level, and the stimulated emission will

induce the de-excitation of the electrons from the higher-energy to the low-energy

hyperfine level.

Collisional excitation and de-excitation

Spin-flips of the electron can be induced by collisions between two hydrogen atoms

(H-H) (Allison and Dalgarno 1969; Zygelman 2005), between a hydrogen atom and

an electron (e-H) (Hirata and Sigurdson 2007) or between a hydrogen atom and a

proton (p-H) (Furlanetto and Furlanetto 2007). In the absence of an external radiation

field, collisional excitation is important in establishing the population of electrons

in the upper (triplet) hyperfine state. The collision rate between particles generally

increases with the square of particle number densities. Collisional excitation and

de-excitation are, therefore, particularly important in high-density environments.

Collisions could be the dominant process for the hyperfine transitions during the

Dark Ages. However, they would give way to the radiative processes, when the first

luminous objects began to appear.

Wouthuysen-Field effect (LyU scattering)

Resonant scattering of LyU photons can induce a spin-flip. In Fig. 4.1, the hyperfine

structure of the hydrogen 1S and 2P levels, together with the transitions relevant

to the Wouthuysen-Field effect, are shown. The absorption of a LyU photon will

excite an electron from the 1S lower hyperfine level into either of the central 2P

hyperfine levels. The subsequent spontaneous emission of a LyU photon will send

the electron to one of the two 1S hyperfine levels. The absorption and re-emission

of a LyU photon thus cause a spin-flip of the electron, and hence, alter the relative

populations between the two 1S hyperfine levels. This LyU pumping is important

to populate the upper hyperfine (triplet) state, breaking the thermal equilibrium

between the 1S hyperfine transitions of neutral hydrogen and the CMB. It is this

process that allows the 21-cm line from the reionisation era to be seen in emission.
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4.2.4 Spin temperature and its coupling

A H I gas will be in a stationary state for the hyperfine transition when an equi-

librium between excitation and de-excitation, determined jointly by the collisional

and radiative processes, is set up. This implies that the rate of electrons entering a

hyperfine level equals to the rate of electrons leaving the level, i.e.

=l (�lu + %lu + �lu�a) = =u (�ul + %ul + �ul + �ul�a) (4.31)

(see Furlanetto et al. 2006). Here, �lu and �ul are the rates for collisional excitation

and de-excitation, respectively. %lu and %ul are the rates for radiative excitation and

de-excitation, respectively, due to LyU scattering. �lu�a is the rate of excitation

caused by photon absorption, �ul�a is the rate of de-excitation caused by stimulated

photon emission, and �ul is the rate of de-excitation caused by spontaneous photon

emission. In the low-frequency limit, which is appropriate for the radio emission due

to the hyperfine transition in H I gas, the Rayleigh-limit approximation is applicable,

and the intensity,

�a = 2(:B)r)
a2

22 , (4.32)

is characterised by a brightness temperature )r.

Suppose that the ratio of the rates of excitation to de-excitation due to particle

collisions can be represented by a temperature )k, and also, the ratio of the rates

of excitation to de-excitation due to LyU scattering by a temperature )U. Then,

Eqn. (4.31) gives the spin temperature:

)s =

[
)−1

r + GU)−1
U + Gc)

−1
k

1 + GU + Gc

]−1

(4.33)

(Field 1958, 1959; Pritchard and Loeb 2012). Here, the coupling coefficients Gc and

GU indicate the strengths of collisions andLyU scattering, respectively, in determining

the excitation and de-excitation processes, relative to the ambient radiation field (that
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is characterised by the brightness temperature )r).

For cosmological reionisation, the ambient radiation field in the GHz radio

frequencies is provided mainly by the CMB. Hence, )r = )CMB(I). Collisions are

determined by the kinetics of the particles involved. The temperature relevant for

the efficiency of particle collisions is, therefore, the thermal temperature, which is

referred to as )k here. If only collisions are present, the populations of the electrons

in the two hyperfine levels for a H I gas in a thermal equilibrium will depend only

on )k, and the transition rates satisfy(
�lu
�ul

) (
6l
6u

)
= exp

(
− )★
)k

)
. (4.34)

For )k � )★(= ℎaul/:B = 0.0682 K), exp(−)★/)k) ≈ (1 − )★/)k). Hence,

1
)k
≈ 1
)★

[
1 −

(
�lu
�ul

) (
6l
6u

) ]
. (4.35)

Analogous to the collisional excitation and de-excitation, an effective temperature

)U may be defined for the excitation and de-excitation caused by LyU scattering:(
%lu
%ul

) (
6l
6u

)
≡ exp

(
− )★
)U

)
, (4.36)

where )U is referred to as the colour temperature of the LyU radiation field (see

e.g. Field 1958; Madau et al. 1997; Pritchard and Furlanetto 2006; Furlanetto and

Pritchard 2006). It follows that

1
)U
≈ 1
)★

[
1 −

(
%lu
%ul

) (
6l
6u

) ]
(4.37)

as )U � )★.

The spin temperature )s, as expressed in Eqn. (4.33), is a weighted harmonic

mean of the three effective temperatures, )r, )k and )U, corresponding to the three

main mechanisms driving the electron excitation and de-excitation. When collision

and LyU scattering are unimportant, i.e. Gc + GU � 1, the relative population of the
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electrons in the two hyperfine levels is determined by the ambient radiation field, and

hence, )s ≈ )r. If collision and LyU scattering are not negligible, i.e. GU + Gc & 1,

then )s ∼ [(Gc/)k) + (GU/)U)]−1 ∼ )k.

The spin temperature )s is a useful parameter in the radiative transfer equation

of the 21-cm line. Provided that )s(I) and =HI(I) are known, the emission and

absorption coefficients along the line-of-sight can be computed. Theoretical models

of the evolution of)s over cosmological time has been conducted, using semi-analytic

or numerical methods (e.g. Nusser 2005; Furlanetto et al. 2006; Pritchard and Loeb

2008; Thomas and Zaroubi 2011; Mesinger et al. 2011).

4.2.5 Shaping the profile of the 21-cm line

Line frequency shifting

When an emitting medium and the observer are not co-located and do not co-move,

the frequency of the emitted radiation will appear to be shifted as seen by the

observer. For the hyperfine 21-cm line from distant astrophysical systems, the shift

of the line can be caused by (i) cosmic expansion, and (ii) the relative velocity

between the sources and the observer.

The former is a global effect. It leads to a red-shift of the frequency of the

radiation, and it can be manifested in the shift of centre frequency of the hyperfine

21-cm line to a lower frequency at the observer’s reference frame. Quantitatively,

the relative frequency shift at two cosmological location/epoch I and I′ is given by

a(I′)
(1 + I′) =

a(I)
(1 + I) . (4.38)

In the context of radiative transfer and spectral evolution, the frequency red-shift

of radiation caused by cosmic expansion is essential to a flow of photons from the

high frequencies to the low frequencies at a constant rate if evaluated in terms of the

cosmological redshift I.

The latter is associated with the local movement of the emitter with respect to

the observer. The frequency shift is simply a Doppler effect. In the non-relativistic
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limit, the frequency of the centre of the observed 21-cm line a′ is

a′21cm = a21cm (1 ± {‖/2) , (4.39)

where {‖ is the relative line-of-sight velocity of the H I gas with respect to the

observer. {‖ can be positive or negative. The 21-cm line will be shifted to higher

frequencies if the emitting H I gas is approaching, and to lower frequencies if the

emitting H I gas is receding.

Line broadening

Spectral lines can be broadened by various mechanisms. The astrophysical 21-cm

hyperfine line is broadened by radiative damping, particle collision, thermal motion

and turbulence. The first two are intrinsic to individual emitters, and they can be

explained in terms of damped oscillations in models for line emission. The last

two are essentially a manifestation of Doppler effects, caused by the incoherent

movements of a collection of H I gas particles with respect to the observer.

The damped oscillations6 associated with the emission process will lead to

broadening of the 21-cm hyperfine line, resulting in a Lorentzian profile (see e.g.

Rutten 2003):

q (a − a21cm) =
1
c

[
(Γall/4c)

(a − a21cm)2 + (Γall/4c)2

]
, (4.40)

where Γall is the sum of the damping parameters (i.e. reciprocals of the damping

timescales) of all the uncorrelated damping processes.

The spontaneous emission of a photon for the spin-flip of the electrons from

6The frequency response of damped oscillations has the functional form:

5 (a − a0) =
1
c

[
(Γall/4c)

(a − a0)2 + (Γall/4c)2

]
,

where a0 is the normal-mode frequency. The damping parameter Γall is the linear sum of the damping
parameters Γi (which have the dimension of 1/time) of all uncorrelated damping processes, as those described
in the differential equation:

¥b +
(∑

i
Γi

)
¤b + (2ca0)2 b = 0 ,

where b is the oscillating variable.
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the triplet hyperfine state to singlet hyperfine state is essentially a radiative damping

process, where energy is released as a result of the state transition. The radiative life-

time, which equals to 1/�ul, gives the characteristic damping timescale, and hence,

a damping parameter Γrad. Collisions will cause a perturbation of the electron spins,

and the restoration of the system from perturbation will involve energy dissipation,

i.e. a damping process, leading to line broadening. A consequence of the collision

is the reduction of the effective lifetime of an electron at the upper hyperfine state

(see Padmanabhan 2000a), and the effective timescale for spin-flips induced by the

collision process gives the damping parameter Γcoll, and hence, the broadened width

of the 21-cm line. Spontaneous emission and collision-induced emission are in-

dependent processes, and hence, their combined broadening will be specified by a

total damping parameter: Γall = Γrad + Γcoll ∝ 1/Crad,spon + 1/Crad,coll, where Crad,spon

(= 1/�ul) and Crad,coll are the timescales for the spontaneous emission and for the

collision-induced emission, respectively. During the Epoch of Reionisation, the

Universe was sufficiently dense such that the timescale of collisional de-excitation

was significantly shorter than the timescale for spontaneous emission7, implying

that Γcoll � Γrad. The total broadening of the two processes combined is, therefore,

Γall ≈ Γcoll, corresponding to a full-width-half-maximum (FWHM) in frequency,

FWHMa, of (Γcoll/2c) in the Lorentzian line profile.

The thermal motion and turbulent motion of the gas particles will give rise to

Doppler shifts in the radiation that they emit. The incoherent Doppler shifts of the

21-cm line emitted from an ensemble of H I gas particles with different line-of-sight

velocities would make the line appear to be broadened. When the H I gas particles

have a Gaussian velocity distribution, the line will have a Gaussian profile.

The thermal velocities of an ensemble of particles is characterised by a kinetic

temperature. Suppose that the particles are identical and each has a mass <, then

7The collisional timescale is inversely proportional to the density of the gas. The relative importance
of collisional damping and radiative damping is, therefore, environment dependent in the 21-cm hyperfine
transition. While collisional damping dominated in H I gas suffusing the early Universe, it is less important in
the present-day IGM.
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their velocities have a Maxwellian distribution:

5 (v) d3v =

(
<

2c:B)k

)3/2
exp

(
− <{2

2:B)k

)
d3v , (4.41)

where )k is the kinetic (thermal) temperature. For isotropic velocities, d3v =

4c {2 d{, and hence,

5 (v) d3v =

√
2
c

(
<

:B)k

)3/2
exp

(
− <{2

2:B)k

)
{2 d{ . (4.42)

However, Doppler shift is caused by the line-of-sight motions (denoted as {‖ , here-

after) of the emitters only. Note that {2 = {‖
2 + {⊥2, and an isotropic velocity

distribution would ensure that the equi-partition of energy between the three de-

grees of freedom in the velocities. Hence, the distribution of the line-of-sight

velocity is

5̃ ({‖) d{‖ =
[∫

d2v⊥ 5 (v)
]

d{‖

=

(
<

2c:B)k

)1/2
exp

(
−
<{‖

2

2:B)k

)
d{‖ . (4.43)

The velocity-induced Doppler shift of the 21-cm line is given by

a − a21cm
a21cm

=
{‖
2
. (4.44)

The normalised profile function of the 21-cm line subject to thermal broadening

should, therefore, satisfy

q(a − a21cm) da ∝ 5̃ ({‖)
(d{‖

da

)
da , (4.45)

where {‖ ∈ (−∞,∞) and (a − a21cm) ∈ [−a21cm,∞). However, if the frequency

broadening Δa is sufficiently small such that (a21cm −Δa) � 0, then the line profile
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function effectively becomes a simple Gaussian:

q(a − a21cm) =
1

√
cΔaD

exp

[
−

(
a − a21cm
ΔaD

)2
]
, (4.46)

and the width of the Doppler broadening, ΔaD, is simply

ΔaD = a21cm

( {‖
2

)
= a21cm

√
2:B)k

<22 . (4.47)

An expression for the turbulence-induced broadening can be obtained from a

similar argument as in the thermal broadening. Suppose that the turbulent motion

in a H I gas has a well-defined characteristic mean-square velocity, {turb
2. Then,

a velocity dispersion can be assigned for the H I gas particles, analogous to the

thermal velocity dispersion, and from it, a Maxwellian velocity distribution can

be constructed. As thermal motion and turbulence motion are independent, their

velocity dispersions are additive. In terms of the Doppler parameter 1D, the effective

width of the broadened line is

ΔaD ≡ a21cm

(
1D
2

)
= a21cm

√
2:B)k

<22 +
( {turb
2

)2
, (4.48)

with a Doppler parameter

1D =

√
2:B)k
<
+ {turb2 . (4.49)

The broadened line has a FWHM{ = 2
√

ln 2 1D in velocity, for a Gaussian profile

function. The corresponding FWHMa, in frequency, is

FWHMa = 2
√

ln 2 (a21cm)
(
1D
2

)
= 2
√

ln 2 (a21cm)
√

2:B)k

<22 +
( {turb
2

)2
. (4.50)
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Convolved line profile

While the damping-induced line broadening is associated with the internal action

and response of the emitters, the velocity-induced line broadening is associated with

the kinetics of the emitters. These two broadening mechanisms are different by

nature, but their effects are not additive, despite that damping and velocity induced

broadening are independent. If the processes of both mechanisms are present, the

resulting broadening will be determined by the convolution of the two mechanisms

to which the processes belong. The convolution of a Lorentzian line profile and a

Gaussian line profile is a Voigt line profile. Voigt profiles have no simple analytic

form in terms of elementary functions (see e.g. Schreier 1992; Boyer and Lynas-

Gray 2014; Mohankumar and Sen 2019; AlOmar 2020). However, the normalised

Voigt profile for the 21-cm hyperfine line can be expressed as

q (a − a21cm) =
� (@, G(a))
√
c ΔaD

�����
a21cm

(4.51)

(see e.g. Rutten 2003). It is an implicit function of frequency a, and is specified by

three parameters: the line frequency centre, a21cm, the damping parameter, Γall, and

velocity induced width, ΔaD, within the Voigt parameter @ and the Voigt function

� (@, G(a)). The Voigt parameter,

@ =
Γall

4c ΔaD
, (4.52)

is a measure of the relative strength of the damping and the kinetic effects. The

Voigt function,

� (@, G(a)) = @
c

∫ +∞

−∞
dH

exp(−H2)
[G(a) − H]2 + @2 , (4.53)

is the convolution of the Lorentzian and the Gaussian functions in a dimensionless

form. The variable G specifies the frequency spread from the line centre frequency
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normalised to the velocity-induced width:

G(a) = a − a21cm
ΔaD

. (4.54)

The variable H is a dimensionless measure of the line-of-sight velocity, over which

the weighted effects of its induced Doppler shift are summed. It is given by

H =
{‖
1D

=
a21cm
ΔaD

( {‖
2

)
. (4.55)

For ΔaD � (Γall/4c), @ � 1, and the velocity-induced broadening dominates

over the damping-induced broadening, Note that � (@, G) ≈ (4−G2 + @/G2√c) for

@ � 1, and hence, the line profile function becomes

q (a − a21cm) ≈
1

√
c ΔaD

(
e−G

2 + @
√
c G2

)
(4.56)

(see Padmanabhan 2000b; Rutten 2003). In the casewhere velocity-inducedDoppler

broadening is significant, then setting @ = 0 in Eqn. (4.56) will give a pure Gaus-

sian line profile. In the astrophysical environments of cosmological reionisation,

damping-induced broadening is unimportant when compared with velocity-induced

broadening. Thus, a Gaussian line profile is adopted in the radiative transfer calcu-

lations presented in the following sections of this chapter.

4.2.6 21-cm forests

A line is seen as emission when it has a higher brightness temperature than its neigh-

bouring continuum. It is seen as absorption when it has a brightness temperature

lower than its neighbouring continuum. The 21-cm line will appear as absorption

when it is observed against a continuum background of a bright source, e.g. a radio-

loud quasar8. The radio continuum emission of a quasar is generally non-thermal

8Distant quasars have been identified as candidate sources for the detection of 21-cm forests. Several quasars
have already been found at I > 6 (during the Epoch of Reionisation). The most distant radio-loud quasar
known to date is QSO J1427+3312, at I = 6.12 (Momjian et al. 2008). The most distant quasar known is
ULAS J1342+0928, at I = 7.54 (Bañados et al. 2018). Note that, other candidate bright point sources would
be hypernovae. They show gamma-ray burst, with radio afterglows, and some could be fast radio burst sources.
However, little is known about the number distribution of hypernovae and evolution at very high redshifts, such
as I ∼ 6 or higher.
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synchrotron radiation from relativistic electrons, and it tends to have a very high

brightness temperature (e.g. Jagers et al. 1982; Kellermann and Verschuur 1988;

Willott et al. 1998; Vernstrom et al. 2018). In comparison, the )s associated with

the 21-cm emission is negligible. The 21-cm line is, therefore, always in absorption

against the emission from a background quasar.

The presence of cold H I gas at different redshifts along the line-of-sight in front

of a bright radio source, presumably a radio quasar, leads to a “forest” of absorption

lines (Carilli et al. 2002; Furlanetto and Loeb 2002; Furlanetto 2006; Xu et al. 2009;

Mack and Wyithe 2012; Ciardi et al. 2015). The 21-cm forests can be considered

as direct analogues to the LyU forests. Here, photons emitted at frequencies a > aul

by the bright background radio quasar at redshift Iemi are absorbed by the diffuse

neutral hydrogen gas along the line-of-sight at redshift I = [aul(1 + Iemi)/a − 1].

The detectability of the 21-cm forest depends on the strength of the absorption,

which, in turn, depends on the optical depth of the absorbing line-of-sight diffuse

H I gas. Dense gas with a high =HI and a low )s would have a large optical depth in

the 21-cm line, hence, giving observable signatures. The 21-cm forest is expected

to be stronger at the redshifts where the gas is cold and mostly neutral, i.e. before

reionisation and the associated heating have already substantially proceeded. The

21-cm forest, if it is detected, will complement the LyU forests, which probes the

properties of the IGM at intermediate and low redshifts (I . 6), for providing

important information of the diffuse media in the Universe crossing over the cosmic

time when the Universe was barely ionised to become almost completely ionised.

The 21-cm line is relatively optically thin to the diffuse gas suffusing the entire

Universe (g21cm < 1) and would not saturate even at high redshifts. The 21-cm

forests, therefore, preserve the detailed information about the progression of the

cosmological reionisation. For example, the emergence of ionised bubbles will

appear in the 21-cm forest as an increasing number of transparent windows. The

21-cm forest may also be a diagnostic of the dense structures in the line-of-sight

IGM in the post-reionisation structural formation era. Absorption systems that

contribute to the 21-cm forest could be of different scales, ranging from mini-halos,
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dwarf galaxies, galaxies, large-scale neutral/ionised regions to the cosmic web. In

particular, mini-halos tend to have a high overdensity and low virial temperatures (<

104 K), and therefore, theywould show21-cm absorption features (see Furlanetto and

Loeb 2002). The number density of these mini-halos is sensitively dependent on the

thermal properties of IGM (by varying the Jeans mass upon the degree of heating,

with the collapse of the halos prevented by strong heating). Thus, the 21-cm forest

can, in principle, be used to probe the early halo formation, and hence, the thermal

state of their ambient IGM.

The presence and the amount of the 21-cm absorption have important impli-

cations to the statistical properties of the 21-cm line measurements over the sky, in

particular, the power spectra. Even when the ionisation fraction and spin tempera-

ture are fixed for each neutral gas cloud, which is unlikely, fluctuations in the 21-cm

hyperfine line across the redshift space and across the sky would not vanish.

4.3 Cosmological Radiative Transfer of the 21-cm Line

4.3.1 Covariant formulation and representation

The cosmological radiative transfer of an emission line is described by the covariant

radiative transfer equation:

d
d_a

(
�a

a3

)
= −:UDU

���
_a,co

{
−^tot,a

(
�a

a3

)
+ ntot,a

a3

}
(4.57)

(see Sec. 2.3). For the radiative transfer of the 21-cm hyperfine line of neutral

hydrogen, the processes that give rise to the opacity of the line and the continuum are

independent. The absorption and emission coefficients can, therefore, be expressed

as the sum of the contributions of the relevant processes, i.e. ^tot,a = ^C,a + ^L,a

and ntot,a = nC,a + nL,a. In the covariant radiative transfer equation, Eqn. (4.57),

the emission and absorption coefficients are evaluated in a local reference frame,

specified by the redshift I. The covariant line radiative transfer equation for a flat
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Friedmann–Robertson–Walker (FRW) Universe (see Sec. 2.2) is therefore

d
dI

(
�a

a3

)
= (1 + I)

[
−

(
^C,a + ˜̂L,a

) (
�a

a3

)
+ (nC,a + ñL,a)

a3

]
dB
dI
. (4.58)

The line profile functions depend only on the properties of the emitting and absorbing

gas. Thus, when I is fixed, the line profile functions qa,emi = qa,abs = qa,sti, and

they can be represented by a single line profile function qa. Here, the line emission

coefficient is ñL,a = (ℎaul/4c) =u�ul qa (see Eqn. (4.17)), and the line absorption

coefficient is ˜̂L,a = (ℎaul/4c) =l�lu qa [1 − Ξ] (see Eqns. (4.26) and (4.27)), where

Ξ = (=u/=l) (6l/6u) (see Eqn. (4.28)). The increment of path length with respect to

the change in redshift is

dB
dI
=
2

�0
(1 + I)−1 [Ωr,0(1 + I)4 +Ωm,0(1 + I)3 +ΩΛ,0

]−1/2
. (4.59)

4.3.2 Computational algorithm and numerical implementation

The cosmological 21-cm line radiative transfer (C21LRT) calculations consist of

three key elements: (i) a ray-tracing algorithm accounting for the transport of

radiation from the past to the observer in an expanding Universe, (ii) a computational

component to determine the interaction between the incoming background radiation

and the local medium and to evaluate the absorption of the incoming background

radiation and emission in the local medium, and (iii) a numerical solver of the

C21LRT equation, Eqn. (4.58), along with the ray-tracing calculations.

Ray tracing: redshift and frequency sampling

Solving the line radiative transfer equation, Eqn. (4.57), requires the determination

of the continuum and the line transfer coefficients over a frequency range fully

covering the line and the relevant underlying continuum, in the local rest frame.

The propagation of the radiation is parameterised by the redshift I (as in the CPRT

calculations presented in Sec. 3.1.1), which is divided into #I discrete cells along

each ray. In addition to the discretisation along the ray, another sampling in frequency

on each I-grid is constructed to account for the changes in the line profile and the
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Fig. 4.2: An illustration of a two-dimensional C21LRT square computational grid. The grid
runs through the indices “:” (for redshift) and “ 9” (for frequency). Equal uniform samplings
in log(1 + I), through the index “:”, and in log a, through the index “ 9” are adopted. The
propagation of a ray is a diagonal shift in the computational grid coordinates ( 9 , :). The
C21LRT calculations are performed along the rays as those indicated by the red dotted lines.

continuum along the ray. The sampling scheme is constructed also to optimise the

efficiency in the line radiative transfer calculations.

For a discretisation of ray-tracing in the logarithmic representation, Eqn. (4.38)

becomes

log aI′ − log aI = log (1 + I′) − log (1 + I) . (4.60)

The interval in log a is Δ log a ≡ log aI′ − log aI, and the interval in log (1 + I) is

Δ log (1+I) ≡ log (1 + I′) − log (1 + I). Thus, Eqn. (4.60) can be re-expressed as

Δ log a = Δ log (1+I) . (4.61)

In the computation, the grid is specified by the coordinates ( 9 , :) with the

index “:” running through the redshift, and the index “ 9” through the frequency

of the radiation. For a uniform sampling in log(1 + I), through the index “:”, and

in log a, through the index “ 9”, the interval Δ log a = Δ log (1+I) = �, where � is a

positive constant. This gives a square ( 9 , :) lattice, and the tracing of a ray over

cosmic time, stamped by I = 10 log10 Δ1+I − 1, is simply a diagonal shift in the ( 9 , :)

lattice, as illustrated in Fig. 4.2. The sampling scheme with Δ log a = Δ log (1+I) = �
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Fig. 4.3: An illustration of the two-dimensional C21LRT rectangular computational grid
(top panel), where frequency can be “reallocated” to each grid point (shown in the bottom
panel). A uniform sampling is adopted in both log(1+ I) and log a. The propagation of rays
over cosmological redshift, represented by the red dotted lines in the top panel, corresponds
to the tracing of the rays through the index “:” with fixed “ 9” in the lattice in the bottom
panel.

is straightforward, but it requires a high density sampling across the redshift to

simultaneously resolve the line. The variations in the physical conditions associated

with redshift are generally on a rate slower than the rate of the variations in the

line profile when the radiation is transported in a ray through the computation

lattice defined above. While an appropriate sampling in the frequency is chosen, a

less dense sampling in the redshift would be sufficient in most practical situations.

A rectangular grid is, therefore, preferred for achieving a higher computational

efficiency.

An optimal scheme with Δ log (1+I) = �1 in the redshift sampling and Δ log a = �2
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in the frequency sampling, where �1 and �2 are positive constants, and their ratio

�1/�2 is set to be a fixed positive integer (, is adopted in the ray-tracing for the

C21LRT calculations. Fig. 4.3 illustrates the ray tracing in the rectangular grid.

In the covariant formulation constructed for the C21LRT calculations here, the

emission and absorption processes are evaluated in a local rest frame. This allows

the physical variables, and hence, the emission and absorption coefficients and their

changes along a ray, to be parameterised by the cosmological redshift only. The

computational grids for the C21LRT calculations can then be constructed such that a

ray is traced along the same 9 over a descending : (from a high redshift I: to I0 = 0

at : = 0). Each grid point ( 9 , :) along the ray is assigned with a redshift I, according

to I: = 10: Δ log 1+I − 1, where Δ log (1+I) = �1 = [log (1 + Imax) − log (1 + I0)]/#I.

Also, a specific frequency is assigned to the grid point, satisfying the rectangular

grid specification as described above.

At : = 0, the redshift I0 = Iobs = 0, and the frequency a( 9 , 0) is specified by

the frequency from amax to amin with the frequency interval (resolution) Δ̃ log (a)
��
I0
=

[log amax − log amin)/# 9

��
I0
= �2. The radiation frequencies at higher redshifts are

assigned by a( 9 , :) |I: = a( 9 , 0) × (1 + I: ), satisfying Eqn. (4.60). The frequency

interval at each : is different, and it scales by (1 + I: ) with respect to that at I0 = 0,

with a coarser frequency interval at a higher I: . A sufficient frequency sampling

around a21cm at the maximum sample redshift Imax would be sufficient for a detailed

tomographic study of the changes in the line shape at all I: . Fig. 4.3 illustrates

the assignment of the frequency and the redshift to the computational grids. The

constant integer ratio [Δ log (1+I)/Δ log a] = �1/�2 = ( governs a constant shift in the

9 index of where a21cm lies (denoted by ind21cm) at each I: . If at : = 0, ind21cm = 0

by a choice (i.e. a(0, 0) = a21cm), then, for : ≥ 1, ind21cm |I: = −:(. Local 21-cm

emission and absorption at all redshifts can, therefore, be tracked.

The algorithm can be optimised to increase computational efficiency. For in-

stance, in certain post-reionisation epochs, where foreground effects are insignificant

(i.e. absence of significant foreground absorption, emission, and line-continuum in-

teraction), the radiative transfer of the 21-cm line can be performed simply by passing
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on the invariant specific intensity along the same 9 index as the index : descends

to zero in the computational lattice. The local comoving specific intensity in the

observer frame is calculated directly from invariant specific intensity.

The computational efficiency can further be boosted by an OpenMP paralleli-

sation of the C21LRT code, when evaluating the frequency range (over the index 9)

at each redshift (at a given :). Consistent results are obtained using the OpenMP

parallelised code as those obtained by the serial execution in all code verification

tests, which are presented in the subsequent section.

Emission, absorption, and background radiation

The line transfer coefficients (Eqn. (4.17) and Eqn. (4.18)) can be computedwhen the

line profile function qa and the number densities of H I atoms in the two hyperfine

states =l and =u at each location along the ray are known. The population of

atoms in the upper (or lower) hyperfine state can be re-expressed using the relation

=u = =HIs − =l, where =HIs is the number density of H I atoms in the (1S) ground

state. At the temperature of interest here, practically all H I atoms are in the ground

state, and hence, =HIs = =HI. Hereafter, =HI is used without distinguishing from =HIs

for simplicity of notation.

Modelling of either =l or =u and =HI in astrophysical environments involves

detailed investigations of the spin-flip mechanisms at play (see Sec. 4.2.3) and

is beyond the scopes of this work. Here, a post-processing approach is adopted

for which given an input model of these parameters, the line transfer coefficients

can be computed and the (cosmological) 21-cm line radiative transfer calculations

can be conducted to predict the observed spectra at individual lines-of-sight. For

calculations in the cosmological context, the upper limit of =HI is constrained by

the baryonic number density and can be further combined with a spin temperature

model )B (I) to calculate =l or =u.

The omnipresence of the CMB photons provide the radiation background that

must be accounted for when looking at the cosmological 21-cm line. The CMB’s

spectra at different redshifts are well described by the Planck function at its character-

istic temperature )CMB(I) = )CMB,0(1 + I), with )CMB,0 = 2.73 K. In addition to the
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CMB, continuum radiation can arise from free-free processes and synchrotron radi-

ation. The continuum absorption and emission coefficients for the thermal free-free

process and the non-thermal synchrotron radiation have been discussed in Sec. 3.1.2

and presented in Appendix C. To isolate the 21-cm line emission and absorption,

which is the focus of this work, the continuum emission and absorption are assumed

to be zeros.

Numerical method

The radiative transfer equation can be directly integrated. A fourth-fifth order

Runge-Kutta (RK) differential equation solver (Fehlberg 1969) is used to solve

Eqn. (4.58) and also Eqn. (4.59). The description of the implementation of the RK

solver can be found in Sec. 3.1.1. Different to the CPRT calculations, which involve

simultaneously solving four coupled differential equations in the radiative transfer,

the C21LRT calculations have only one differential equation. Therefore, #eqn is set

to be 1 in the RK solver. Also, #step (the number steps) is set to be 1000 over each

I interval, and eps (the error tolerance level) is set to be 10−5.

4.4 Code Verification

A number of numerical tests are conducted to verify the implementation of the

algorithm and the execution of the code for C21LRT calculations. Here shows the

example tests that verify the ability of the code to account for the cosmological

evolution effects and for the local effects on the line shift and broadening on the

line-continuum interaction in the ray-tracing.

4.4.1 Code verification I: Generic continuum and line

Case IA: Radiative transfer of the CMB

This test, referred to as Case 1A, is to verify that the C21LRT code properly accounts

for the sole effect of cosmic expansion, i.e. in the absence of emission and absorption.

TheCMB is chosen as the radiation to be transferred, as the evolution of its properties

with the Universe can be determined to great precision. It is a continuum, with a

blackbody spectrum, specified by the Planck function that only has one parameter:
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Fig. 4.4: The observational frequencies covered by the low frequency array (SKA-low) and
themid frequency array (SKA-mid) of the SKA. The redshifted 21-cm lines originating from
different cosmological epochs are shown, as vertical dotted lines, at I = 30 (corresponding
the end of the Dark Ages), I = 15 and I = 6 (corresponding to the start and the end of the
Epoch of Reionisation, respectively), I = 2 (corresponding to the epoch that star-forming
activity peaked), and I = 0 (present time). The spectra of the CMB, representing the
continuum background, at I = 0 (with ) = 2.73 K) and at I = 15 (with ) = 43.6 K) are also
shown as a reference.

Fig. 4.5: The transfer of the CMB spectrum, in a log-log representation, from high redshifts
to the present epoch. The hyperfine 21-cm transition of the neutral hydrogen in the local
rest frame, with a = a21cm, is indicated by the vertical dotted line.
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Fig. 4.6: Numerical output of the computed CMB spectrum �a at I = 0 (purple solid line),
is plotted along with the Planck function �a at ) = 2.73 K (black dotted line) in the top
panel. The corresponding residuals, A4B log �a = [log �a/log �a () = 2.73 K)] |I=0.0 − 1.0,
are shown in the bottom panel. The residuals do not exceed 7.5 × 10−15, indicating that the
numerical outputs of the C21LRT calculations agree with the theoretical values up to the
machine floating-point precision. The pattern in the residual plot is due to the over-sampling
of the continuum spectrum in the frequency space, which will be the case for the study of
the 21-cm line profile.

the thermal temperature.

The computation is assigned to trace a ray from I (= Imax) = 38.8 to I = 0,

with the initial specific intensity �a |Imax = �a ()CMB
��
Imax
). Without absorption and

emission along the ray, the evolution of the CMB spectrum is determined by the

cosmic expansion only, and hence, the redshift. In a FRW universe, the thermal

temperature of the CMB scales with the redshift as )CMB(I)/(1 + I) = )CMB,0

(see Fig. 4.4), where )CMB,0 = 2.73 K at the current epoch (e.g. Spergel et al.

2003; Planck Collaboration XVI 2014). The C21LRT code will be validated if
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the computed CMB spectrum at I = 0 is a blackbody of a thermal temperature

) = 2.73 K. Fig. 4.5 shows the CMB spectra at different cosmological epochs, and

Fig. 4.6 shows the results of Case IA, demonstrating that the computed CMB spectra

deviate from the Planck functions at the expected temperatures in smaller than 1

part in 1014.

Case IB: Radiative transfer of a line in an expanding universe

This test, referred to as Case 1B, is to verify correct shifting, broadening and intensity

reduction of a generic 21-cm line when it is transported in an expanding Universe,

in the absence of absorption, emission, and external radiation, in the ray-tracing

using the C21LRT code. As in Case 1A for the CMB, the 21-cm line is assigned

also to originate from Iemi = 38.8, and it propagates along a ray towards I = 0.

The frequency shift of the line is determined by the [(1 + I)/(1 + Iemi)] factor (see

Eqn. (4.38)). Moreover, in a FRW universe, the line profile should exhibit the

following properties along its propagation: (i) the invariant intensity Ia remains

constant along the ray, implying that the comoving intensity �a will be suppressed

by a factor of [(1 + I)/(1 + Iemi)]3, (ii) the line width in frequency will be squeezed

(as opposed to the stretch in wavelength) by a factor of [(1 + I)/(1 + Iemi)]. The

line width in terms of velocity will, however, stay constant, in the absence of local

physical processes that can broaden the line. Also, the shape of the line will

be preserved when it is expressed in the log a representation instead of in the a

representation. In the calculations, the line is assumed to have a Gaussian profile

initially, in the local rest frame at Iemi = 38.8. It is centred at a21cm = 1.42 GHz.

The line width is specified by ΔaD, which is set to be 4.738 MHz. This corresponds

to a velocity dispersion9 of Δ{ = 1000 km s−1.

Fig. 4.7 shows the profiles of the 21-cm line, in terms of the specific intensity

�a and frequency a, at the selected redshifts. The three panels, from top to bottom,

9Velocity dispersions Δ{ ≈ 1000 km s−1 have been observed in galaxies inside massive galaxy clusters,
e.g. the Coma cluster (see Struble and Rood 1999), where the thermal and turbulent motions are substantial.
A large value of Δ{(= 1000 km s−1) is selected in the tests here for the verification that the C21LRT code is
capable to handle the extreme situations of line broadening. The velocity dispersion caused by the differential
motions within a galaxy is generally in the range Δ{ ∼ 100 − 400 km s−1 (see e.g. Bezanson and Franx 2012),
which gives rise to a frequency spread of ΔaD = 0.474 − 1.89 MHz.
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Fig. 4.7: The computed frequency shift and the intensity change of a 21-cm line propagating
from Iemi = 38.8 to Iobs = 0 in an expanding universe, in the absence of line-of-sight
absorption, emission and external radiation. For an illustrative purpose, the specific intensity
of the 21-cm line in the local rest frame is arbitrarily scaled up such that its peak is
1.0 erg s−1 cm−2 Hz−1 str−1 at I = 38.8. The redshift range is sub-divided into three regimes,
shown in the three panels: (i) (top panel) before the completion of cosmological reionisation,
at I & 6; (ii) (middle panel) between the end of reionisation and the period of peak star
formation and quasar activities, at 6 & I & 3; (iii) (bottom panel) in the epochs when star
formation and quasar activities peaked, at I ∼ (2 − 3), galaxy clusters assembled, and the
cosmic web underwent virialisation, at I . 3. The comoving intensity of the line against
the comoving (i.e. cosmological redshifted) frequency at different redshifts are indicated by
different colours as labelled in the legends.
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Fig. 4.8: The computed invariant line intensity Ia (first panel) and line intensity �a (second
panel) against a in log-log scales, in an expanding universe without a line-of-sight medium
and an external radiation field. The arbitrary scaling of the specific intensity �a in Fig. 4.7 is
also adopted here. The results show that Ia remains constant over redshift I, �a scales with
[(1 + I)/(1 + Iemi)]3, and the line shape is preserved in the log a space, all agreeing with
the predictions of the analytical calculations. The log-linear plot of �a against a shows an
apparent reduction in the frequency spread of the line (third panel), and the linear-linear plot
of �a against a shows the decrease of the comoving intensity as I approaches zero (fourth
panel).
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Fig. 4.9: The peak intensity for each output redshift (from Iemi = 38.8 to Iobs = 0) is plotted
against the frequency of the shifted line centre (top panel). This plot corresponds to the
tilted straight line in the second panel of Fig. 4.8. The residuals of �a (middle panel) and the
residuals of a (bottom panel) are calculated by subtracting the ratio of the computed value
to the analytical value by one. The plots show agreements between the computation and
analytical calculation to the machine floating-point precision.
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Fig. 4.10: The line profiles, characterised by the full-width-half-maximum of the line in
frequency, FWHMa , at Iemi = 38.8 (top panel) and Iobs = 0.0 (bottom panel). The arbitrary
scaling of the specific intensity �a in Fig. 4.7 is also adopted here. Note that the G- and H-axes
in the two panels are in different scales. Frequencies at which �a attains its half maximum
value, (�peak |I)/2, at the specific redshift are labelled by aL |I and aR |I , with aR |I > aL |I .
The FWHM in frequency is then calculated by FWHMa |I = aR |I − aL |I . FWHMa |I=38.8 =

11.15 MHz while FWHMa |I=0.0 = 0.2801 MHz, showing a reduction in the line width, in
the frequency space, as expected from cosmic expansion. The fractional difference between
the computed value and the theoretical value at FWHMa |I=0.0 is −2.14 × 10−13.
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Fig. 4.11: (Top panel): The full-width-half-maximum of the line in frequency (FWHMa)
at each output redshift against the frequency of the shifted line centre. The slope of the
FWHMa with the line frequency is equal to 1.0, as predicted by the theoretical scaling
that both FWHMa and a decrease following [(1 + I)/(1 + Iemi)] as I decreases. (Bottom
panel): The corresponding normalised full-width-half-maximum of the line in the velocity
(FWHM{/FWHM{ − 1) against the frequency of the shifted line centre, where FWHM{ =(∑

: FWHM{ |I:
)
/#Ioutput = 2353.8939150709657 km s−1, with #Ioutput = 11. The velocity

dispersion, which depends only on the line broadening mechanisms (absent here) in a local
frame, should not vary. The fluctuations at the level of 10−13 indicate that the computed and
the theoretical values are in excellent agreement.
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in the figure correspond, respectively, to the three epochs: (i) before the completion

of cosmological reionisation (I & 6), (ii) in between the end of the Epoch of

Reionisation and before the period of peak star formation and quasar activities

(6 & I & 3), and (iii) in the epochs when star formation (Hopkins and Beacom 2006;

Lacaille et al. 2019) and quasar activities (Friaca and Terlevich 1998; Mújica and

Maiolino 2004) peaked (I ∼ 2 − 3), galaxy clusters assembled, and the vast cosmic

web underwent virialisation (I . 3). Fig. 4.8 shows the invariant specific intensity

and the comoving specific intensity of the 21-cm line at the frequencies of the

corresponding eleven redshifts.

The frequency of the 21-cm line decreases and the specific intensity is sup-

pressed as the line is transferred from high to low redshifts (see Fig. 4.7). The

decrease of the specific intensity with the line propagation (which is stamped by the

redshift I) follows a trend as indicated by the dashed straight line in the second panel

of Fig. 4.8. The shape of the line is preserved in log-a (top two panels, Fig. 4.8),

and the invariant specific intensity remains constant (first panel, Fig. 4.8). The

line width in frequency, however, decreases in the transfer from high to low red-

shifts (bottom two panels, Fig. 4.8). All of these findings agree with the theoretical

predictions. Quantitative assessment of the computed line profile with respect to

the analytical counterparts are presented in Fig. 4.9, for the line peak intensity and

centre frequency, and in Figs. 4.10 and 4.11, for the line width. The residuals of

�a and a, which are calculated by subtracting the ratio of the computed values to

their corresponding analytical values by unity, attain a level below 10−14, reaching

machine floating-point precision. The variations of the line frequency, characterised

by FWHMa, in frequency, and FWHM{, in velocity, also agree with their analytical

values at a level of 10−13.

Note that the reduction of the line width, in terms of frequency, can be-

come significant in the cosmological evolutionary context. For instance, a

FWHMa |I=38.8 = 11.2 MHz when the line was emitted near the end of the Dark

Ages would be reduced to a FWHMa |I=0 = 11.2 MHz/(1+38.8) = 0.28 MHz when

it is observed at the present. This width reduction is caused by the expansion of the
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Universe, and the line width is scaled by [(1 + I)/(1 + Iemi)], which is the same as

the scaling factor10 of the radiation frequency. This scaling will be cancelled out if

Δa/a (whereΔa is the line width) is used in an observational analysis. Interpretation

of data using a theoretical model is an inverse process. Therefore, caution must be

taken when using the line width in interpreting spectroscopic results associated with

distant sources, and, in particular, the subtleties on cosmological expansion effects

and on local physical processes that lead to the change in the line profile must be

properly accounted for.

4.4.2 Code verification II: Galactic rotation

This test, referred to as Case 2, is to verify the ability of the C21LRT code in

(i) handling the differential structures of H I gas along the ray, (ii) accounting

for the effects on the line spectrum arising locally from the movement of the H I

gas with respect to a distant stationary observer but at the same redshift, and (iii)

giving a correct combination of the line spectra of multiple rays. Mock galaxies

are constructed such that the radiative transfer calculations are conducted for rays

propagating through the galaxy in the G̃-H̃ plane.

Geometry

Standard spherical (A, \, q) and Cartesian (G̃, H̃, Ĩ) coordinate systems are adopted

in the calculations, and the geometrical set up of the system is shown in Fig. 4.12.

10Cosmological redshift I is defined as

(1 + Iemi) ≡
_obs
_emi

=
aemi
aobs

,

with a rest-frame observer at Iobs = 0. This gives

(1 + Iemi) =
aemi + Xaemi
aobs + Xaobs

=
aemi
aobs

[
1 + (Xaemi/aemi)
1 + (Xaobs/aobs))

]
,

where Xaemi is a frequency displacement from aemi, and Xaobs is the corresponding frequency displacement
from aobs measured by the observer. It follows from the two expressions that

Xaemi
aemi

=
Xaobs
aobs

,

which implies that

Xaobs
Xaemi

=
aobs
aemi

=
1

(1 + Iemi)
.

If Xaemi is the marker of the width of a line, centred at aemi, emitted from Iemi, the width of the line will reduce
when measured by the observer in its local reference frame (for Iemi > Iobs = 0 in an expanding Universe).
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Fig. 4.12: Geometry of the galactic rotation example problems.

The galactic disk is geometrically thin, with a negligible thickness. It is centred at

the origin ((G̃, H̃, Ĩ) = (0, 0, 0)) and lies in the (G̃-H̃) plane, i.e. \ = c/2. The H I

emitting gas located at (', c/2, q) in the disk is specified by a vector

[
G̃ H̃ Ĩ

]
= '

[
cos q sin q 0

]
(4.62)

in the Cartesian coordinate. The disk rotates clockwise with a speed {rot('). The

rotational velocity of the H I emitting gas at (', c/2, q) in the disk is therefore

vrot =
[
{G̃ {H̃ {Ĩ

]
= {rot(')

[
sin q − cos q 0

]
. (4.63)

The disk is viewed at an inclination angle, 8, by a distant observer in the H̃-Ĩ half-plane

containing the −H̃ axis. Thus, the emission that reaches the observer propagates in

the direction specified by the unit vector

k̂ =
[
: G̃ : H̃ : Ĩ

]
=

[
0 − sin 8 cos 8

]
. (4.64)



158

This gives the pitch angle of the emission (i.e. the angle between the propagation

unit vector of the emission and the rotation velocity of the H I emitting gas)

r = cos−1

(
k̂ · vrot
|vrot |

)
= sin 8 cos q , (4.65)

and the magnitude of the projected line-of-sight velocity of the H I emitting gas

{‖ = k̂ · vrot = {rot(') sin 8 cos q . (4.66)

Galactic structure

Three model galaxies are first constructed: model galaxy (i) has a disk with no spiral

arms, model galaxy (ii-a) a disk with two loosely-winded spiral arms, and model

galaxy (iii-a) a disk with two winded clumpy spiral arms. Two controls, with respect

to model galaxies (ii-a) and (iii-a) are also constructed: model galaxy (ii-b) has

two loosely-winded spiral arms without a disk, and (iii-b) a disk with two winded

non-clumpy spiral arms. The galaxies have a radius of ' = 17 kpc, and their disks,

if present, have a uniform H I number density =HI = 0.5 cm−3. The spiral arms have

an enhanced H I number density =HI = 30.0 cm−3. The clumps in model galaxy

(iii-a) are randomly positioned11 across the disk. The number density of the H I gas

of the five model galaxies are shown in Fig. 4.13.

A cold-phase H I gas with a uniform )k = 100 K across the entire galactic

structure is assumed12. At this temperature, all neutral hydrogen atoms are practi-

cally in the (1S) ground state. In the absence of LyU pumping (assumed here), as

)k > )CMB � )★ the relative populations of the electrons in the two hyperfine levels

11The Mersenne Twister pseudo-random number generator (Tada 2005) is used to select twenty-three
(indG , indH). The clumpy arms are then produced by resetting =HI, arm = 30.0 cm−3 to =HI, disk = 0.5 cm−3 at
the randomly selected coordinates and their adjacent eight cells (two cells up, down, left, right to the selected
cell). The H I gas density is zero for radial distances > ' = 17 kpc from the galactic centre.

12The interstellarmedium (ISM) in galaxies ismulti-phase (see Sec. 1.3). Two distinct phases of atomic neutral
hydrogen gas can co-exist in the ISM: (i) a denser cold neutral medium (CNM; )k ∼ 100 K, =HI ∼ 30 cm−3),
and (ii) a warm neutral medium (WNM ; )k ∼ 5000 K, =HI ∼ 0.5 cm−3) (see e.g. Draine 2011). The CNM is
thought to predominant at high interstellar pressure, while the WNM should dominant at low pressure (Braun
1997). In aWNM, collisional excitation of the 21-cm hyperfine transition alone is not strong enough to establish
the thermal equilibrium equilibrium )s = )k, but requiring the resonant scattering of the LyU photons (Liszt
2001). Calculation of the spin temperature in the WNM involves knowledge about the ionisation state, phase
structure and spatial distribution of the ISM (see Liszt 2001).
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(i)

(ii-a)

(iii-a)

Fig. 4.13: The H I distribution, in =HI, of model galaxies (i) with no spiral arms (top panels),
(ii-a) with two loosely winded arms (middle panels), and (iii-a) with two winded clumpy
arms (bottom panels). The disks of the galaxies have a uniform =HI = 0.5 cm−3. The
arms have an enhanced density =HI = 30 cm−3. The H I distribution =HI (\, q) in the polar
coordinate are shown in the left panels. The rays for radiative transfer in each galaxy are
shown in the corresponding right panel. The vertical red lines indicate the rays for the
calculations of the 21-cm line spectra in the later figures.
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(ii-b)

(iii-b)

Fig. 4.14: The H I distribution, in =HI, of model galaxies (ii-b) with two loosely-winded
arms and no disk (top panels), and (iii-b) with two winded non-clumpy arms and a disk
(bottom panels). These two galaxies serve as the controls to model galaxies (ii-a) and (iii-a),
respectively.
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Fig. 4.15: The distribution of {rot (left) and {‖ (right) of the H I gas in a model galaxy with
a rotation curve similar to that of the Milky Way. The +G̃-axis corresponds to q = 0◦, and
+H̃-axis corresponds to q = 90◦ (c/2) (see Fig. 4.12). The markers (5, 10, 15, 20) on the
radial axis indicate the radial distances in kpc from the galactic centre, which is at (0,0).
The galaxy is observed edge-on, in the −H̃-direction, from afar. All rays are in parallel with
each other on the disk plane and are traced in a direction from positive to negative ỹ in the
radiative transfer calculations.

is =u/=l = 3. The number density of H I in the upper (triplet) and lower (singlet)

hyperfine states is

=u(\, q) = 3=l(\, q) =
3
4
=HI(\, q) . (4.67)

The stimulated emission factor Ξ (in Eqn. (4.28)) is equal to 1 when =u/=l = 3.

This corresponds to a balance between stimulated emission and absorption (see

Eqn. (4.26)). The redistribution of electrons in the two hyperfine levels is, therefore,

caused only by the spontaneous emission. The incoming radiation background is

provided solely by the CMB.

Velocity induced line frequency shift and broadening

The galaxy is assumed to be at rest with respect to the observer and at a redshift

I = 0. Without losing generality, an edge-on disk (i.e. 8 = c/2) is adopted in the

calculations, as the viewing inclination simply introduces a scaling factor sin 8 that is

uniformly applied to the projected line-of-sight velocities of all the H I emitting gas

in the disk. The galaxy has a rotation curve similar to that of the Milky Way galaxy,



162

which can be described by an analytical fit-model13 as that in Clemens (1985), for the

IAU standard parameters of '� = 8.5 kpc for the distance of the Sun to the Galactic

centre and {rot� = 220 km s−1 for the rotation speed of the Sun. The rotational speed

profile of the galaxy and its projected line-of-sight value for the viewing geometry

adopted for the calculations are shown in Fig. 4.15. These bulk differential motions

of the H I emitting gas in the galactic disk leads to the differential frequency shifts in

the 21-cm emission. A uniform temperature of )k = 100 K and a uniform turbulent

velocity {turb = 10 km s−1 (Agertz et al. 2009) are adopted for the H I gas in the

entire galactic disk. The thermal and turbulent motion broadens the line, resulting

in a Gaussian line profile, which is as described in Eqn. (4.48).

Results and Discussion

The spectra of the 21-cm line from a galaxy is determined jointly by bulk rotation

of the galaxy and turbulence and microscopic thermal motion of the H I gas within.

Along each line-of-sight the spread of a line seen by an observer is caused not only

by the turbulence and the microscopic motion but also by the differential frequency

shift due to the projected speed of the galactic rotation velocity, which varies with the

radial distance from the galactic centre. The differential smearing of the 21-cm line

along the line-of-sight propagation of the radiation will introduce radiative transfer

effects, because of the interactions between the line and its underlying continuum.

This effect is present except in the ray along the line-of-sight passing through the

galactic centre, as {‖ = 0 throughout.

The 21-cm line spectra over the ray path along different lines-of-sight symmetri-

cal to the galactic centre (see 4.14) for the fivemodel galaxies are shown in Figs. 4.16

– 4.20. As expected, the 21-cm lines are red-shifted for the rays along the lines-of-

sight on the left-hand side of the galactic centre but are blue-shifted for the rays along

the lines-of-sight on the right-hand side in the spectra (cf. the velocity map in the

right panel, Fig. 4.13). In the absence of spiral arms, i.e. in model galaxy (i), there

would be a left-right symmetry in the line spectra of the line-of-sights, which is as

13See Eqn. (6) and Table 3 in Clemens (1985) for the polynomial fit and the associated coefficient values,
respectively.
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Fig. 4.16: The 21-cm line spectrum of model galaxy (i), which has a uniform H I disk but
no spiral arms. Panels from top to bottom show the spectra for the lines-of-sight as labelled
in Fig. 4.13i. Different coloured lines (from blue to red) represent the spectra at different
light travel distances, showing the progressive changes of the spectra (in every four steps in
indH). The red line corresponds to the spectrum seen by the distant observer.
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Fig. 4.17: The 21-cm line spectra of model galaxy (ii-a), which has a pair of loosely-winded
spiral arms in addition to a uniform H I disk. Panels from top to bottom show the spectra
for the lines-of-sight as labelled in Fig. 4.13ii-a. Different coloured lines (from blue to red)
represent the spectra at different light travel distances, showing the progressive changes of
the spectra (in every four steps in indH). The red line corresponds to the spectrum seen by
the distant observer.
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Fig. 4.18: The 21-cm line spectra of model galaxy (ii-b), which has only a pair of loosely
winded spiral arms (i.e. the H I disk is absent). Panels from top to bottom show the spectra
for the lines-of-sight as labelled in Fig. 4.14ii-b. Different coloured lines (from blue to red)
represent the spectra at different light travel distances, showing the progressive changes of
the spectra (in every four steps in indH). The red line corresponds to the spectrum seen by
the distant observer.
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Fig. 4.19: The 21-cm line spectra of model galaxy (iii-a), which has a uniform H I disk and a
pair of clumpy spiral arms. Panels from top to bottom show the spectra for the lines-of-sight
as labelled in Fig. 4.13iii-a. Different coloured lines (from blue to red) represent the spectra
at different light travel distances, showing the progressive changes of the spectra (in every
four steps in indH). The red line corresponds to the spectrum seen by the distant observer.



167

Fig. 4.20: The 21-cm line spectra of model galaxy (iii-b), which has a uniform H I disk
and a pair of non-clumpy spiral arms. Panels from top to bottom show the spectra for
the lines-of-sight as labelled in Fig. 4.14iii-b. Different coloured lines (from blue to red)
represent the spectra at different light travel distances, showing the progressive changes of
the spectra (in every four steps in indH). The red line corresponds to the spectrum seen by
the distant observer.
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(i)

(ii-a) (ii-b)

(iii-a) (iii-b)

Fig. 4.21: �max (maximum �a at each pixel) of the 21-cm emissions from the model galaxies.
The maximum values of �max are 9.909×10−16 for model galaxy (i), 1.095×10−14 for model
galaxy (ii-a), 1.083 × 10−14 for model galaxy (ii-b), 1.508 × 10−14 for model galaxy (iii-a),
and 1.776 × 10−14 for model galaxy (iii-b). The minimum value of �max is 1.673 × 10−18,
which is the CMB continuum intensity, for all the model galaxies.

shown in Fig. 4.16. The left-right symmetry in the frequency shift and broadening

will be broken if arms are present (see the line spectra of model galaxies (ii-a), (ii-b),
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(i)

(ii-a) (ii-b)

(iii-a) (iii-b)

Fig. 4.22: Same as Fig. 4.21 but for log �max (the logarithm of the maximum �a at each
pixel) of the 21-cm emissions from the model galaxies. The colour-bars for model galaxies
(ii-a) (ii-b) (iii-a) and (iii-b) are plotted on the same scales for comparison purposes.

(iii-a) and (iii-b) in Figs. 4.17 – 4.20, respectively). The asymmetry can be seen,

for example, by comparing the line spectra of the pair of lines-of-sight at indG = 16

and 76 in model galaxies (ii-a) and (ii-b), in Figs. 4.17 and 4.18, respectively. This

asymmetry in the red-shifted line and its corresponding blue-shifted line is due to

the difference in the order of encounter of H I gas with the same kinetic and thermal
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(ii)

Fig. 4.23: (Top panel): 2D intensity-position-velocity diagram of model galaxy (i), which
has a uniform H I gas but no spiral arms. {‖ is the line-of-sight projection of the rotational
velocity and ΔA is the displacements of lines-of-sight from the line-of-sight passing through
the centre of the galaxy. The diagram shows the rotation curve of the galaxy and the velocity
dispersion in the galaxy. (Bottom panel): 3D surface plot with �max on a plane spanned by
ΔA and {‖ . �max is indicated by height in a linear scale and by colour in a logarithmic scale.

properties along a line-of-sight on the left-hand side with respect to the galactic

centre and its counterpart on the right-hand side. For instance, the resulting line

spectra to be observed by a distant observer, indicated by the red lines in the Figures,

have different peak intensities, because of the different radiative transfer effects and
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the different contributions by the H I gas along different lines-of-sight. The subtle

evolution of the line profile when the 21-cm line is transported progressively along

the lines-of-sight to the observer can be seen in the intermediate spectra, marked by

the rainbow colours (with blue colour denoting the farthest from the observer), in

Figs. 4.17 and 4.18. The radiative transfer effects are more significant for the model

galaxies (iii-a) and (iii-b), which have greater arm sweeps than model galaxies (ii-a)

and (ii-b). The effects are manifested in the more obvious difference in the line

profiles of each pair of lines-of-sights mirrored left-right with respect to the galactic

centre. The clumpiness of the spiral arms, as those in model galaxy (iii-a), further

enhances the effects, leading to an increasing asymmetry in the spectral profile of

the 21-cm lines of the mirror pair of the lines-of-sight. This left-right (a)symmetry

in the line spectra of the corresponding pair rays can also be seen in the polar plots

of the maximum specific intensity of each pixel, �max, in the rays propagating in the

galactic plane to the observer (see Figs. 4.21 and 4.22).

The outputs of the C21LRT calculations are (2+1)D cuboids each containing the

information of their individual spatial location and line profile, in term of the specific

intensity evaluated at the local rest frame. This information allows a construction

of an intensity-position-velocity diagrams14 for the model galaxies. Figs. 4.23 –

4.26 show the 2D projections and 3D visualisations of �max with respect to XA ,

the displacement from the galactic centre and {‖ , the local projected line-of-sight

velocity. These diagrams also serve as a self-consistency check of the code in

properly handling the modification of the frequency and specific intensity of the

21-cm line in a system with both velocity and density structures. The plots show

that the galactic bulk velocity, {‖ , at the galactic centre, XA = 0, is zero in all model

galaxies, as required. The galactic rotation curve is also fully recovered when tracing

14The intensity-position-velocity diagrams shown in this C21LRT test are distinct from those commonly used
in observational galactic studies. Here, a forward modelling approach is adopted for which the galactic rotation
curve and the distribution of =HI are the inputs. This differs from the conventional observational construction
of the intensity-position-velocity diagrams, which are used for deducing the rotation curve of a galaxy from
the spatial-spectral data and the intensity are an overlay in those plots. Instead, the intensity-position-velocity
diagrams here show the 21-cm emissions at a given horizontal displacement from the galactic centre, XA, and at
the line-of-sight velocity allowed at that position {‖ .
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along the maximum {‖ values in the right-hand-side of each diagram15 of the model

galaxies. The spread in {‖ at a fixed XA reveals the range of the allowed {‖ given the

geometric structure and the rotation curve of the model galaxy. (Note that {‖ = 0

is seen across all XA due to the line-of-sight components outside the galactic disk,

except that at XA = 0, {‖ has its a true physical meaning of the velocity of the entire

galaxy.)

15The left-hand-side of each diagram shows the galactic structure receding from the observer, and has a shape
mirrored (about both the H- and G-axes) to the shape in the left-hand-side of the diagram, which shows the
galactic structure towards the observer.
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(ii-a) (ii-b)

(iii-a) (iii-b)

Fig. 4.24: The 2D intensity-position-velocity diagrams for the model galaxies with spiral arms, with model galaxies (ii-a) and (ii-b) in the top left and right
panels, respectively, and model galaxies (iii-a) and (iii-b) in the bottom left and right panels, respectively. In each panel, the colour-bar indicates �max.
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(ii-a)

(ii-b)

Fig. 4.25: The 3D intensity-position-velocity diagrams for the galaxy (ii-a), which has both
a H I disk and two spiral arms, and model galaxy (ii-b), which has only two spiral arms and
no H I disk.
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(iii-a)

(iii-b)

Fig. 4.26: The 3D intensity-position-velocity diagrams for model galaxy (iii-a), which has
clumpy spiral arms, and model galaxy (iii-b), which has smooth spiral arms.
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4.5 Demonstrative Study: Cosmological Radiative Transfer

The cosmological 21-cm line radiative transfer (C21LRT) calculations can be per-

formed for the entire sky using a ray-tracing scheme as those in the cosmological

polarised radiative transfer (see Fig. 3.2). The C21LRT equation is solved along

rays specified in a spherical polar coordinate system (A (I), \, q), with (\, q) being

the celestial sky coordinates. Here, the C21LRT equation is solved along a single

ray as a conceptual demonstration that the convolution of cosmological and radia-

tive transfer effects are properly accounted for. The rays reaching the observer at

the present epoch are specified by (\, q), and are independent of each other in an

isotropic universe, in the absence of significant photon scattering along the line-

of-sight. Thus, the radiative transfer calculations of 21-cm line in the rays of the

entire sky just follow the same procedures as the calculation of the ray shown in this

demonstrative study.

4.5.1 Evolution of neutral hydrogen density and populations of

the hyperfine states

The diffuse gas suffusing the Universe (hereafter, referred to as the intergalactic

medium, IGM, after the appearances of the first luminous structures) consist of two

phases: (i) ionised (hereafter, referred to as H II, without losing generality) gas

in bubbles embedded with luminous sources which provide the ionising photons,

(ii) largely neutral IGM in regions outside the H II bubbles. Gas inside the H II

bubbles with a strong radiation field is practically fully ionised, as recombination

cannot keep up with ionisation. Gas in regions far outside the bubbles would remain

neutral. Ionised gas and neutral gas can co-exist in a transition region between the

H II bubble and the ambient neutral medium. The ionisation state of the gas in these

three regions can be described in terms of a parameter, the ionisation fraction Gi,

with Gi = 0 for neutral gas and and Gi = 1 for fully ionised gas.

In this demonstrative study, the detailed structures and the cosmological evolu-

tion of these three regions are not considered. Instead, the cosmological evolution
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of the ionisation state of the line-of-sight medium is parameterised by a volume-

averaged value for the ionisation fraction, i.e. Gi(I). In other words, the transfer of

21-cm line photons in the H II bubble, the neutral medium and the transition regions

are not explicitly distinguished. Without losing generality, the values of Gi(I) are

adopted directly from model C given in Pritchard and Loeb (2008). Fig. 4.27 shows

the ionisation fraction Gi(I), the mean neutral hydrogen number density =HI(I) and

the spin temperature )s(I)16 in the adopted evolution model.

With Gi(I) specified, the amount of H I gas and the relative population of neutral

hydrogen atoms in the two hyperfine states can be computed from a cosmological

model, with the procedures described as follows. The density of hydrogen is approx-

imately 75% of the baryon density by mass, i.e. dH = 3db/4, and the remaining 25%

is mainly contributed by helium, especially before the mass production of metals

in stars. Assuming a two-species (H-He) description of the baryonic content, the

cosmological number density of hydrogen is then

=H(I) =
(
Ωb(I)/<p

)
dcrit (1 − .He)

≈
(
Ωb,0/<p

)
(1 + I)3dcrit (1 − .He)

= =H,0(1 + I)3 . (4.68)

In the calculations, the mass fraction of helium is set to be .He = 1/4. The present

baryonic density db,0 = 4.18977 × 10−31 g cm−3, deduced from Ωb,0 = db,0/dcrit,

where Ωb,0ℎ
2 = 0.02230 (Planck Collaboration XIII 2016), dcrit = 3�0/(8c�) =

16The spin temperature was first equal to the CMB temperature, i.e.)s = )r = )CMB, during the Dark Ages
(I & 210) after recombination, because of strong thermal couplings between the hyperfine state transition and
the CMB. This thermal coupling became less effective as the Universe expanded. The gas kinetic, and hence,
the hyperfine transition, eventually decoupled. A faster adiabatic cooling of the gas compared to the radiation
led to )k < )CMB. This occurred during the redshifts 210 & I > 40, which was before the first luminous
sources began to appear. When the gas pressure was sufficiently high, collisional coupling would set )s ≈ )k.
The expansion of Universe lowered the rate of collisions and hence, weakened the collisional coupling. The
competition between radiative coupling with the CMB and the collisional coupling leads to )CMB & )s > )k.
This state continued to proceed until the appearance of the first luminous sources. These sources released UV
radiation and X-rays, which caused ionisation and heating of the H I gas. More importantly, the UV radiation
would give rise to LyU pumping process, and the hyperfine states of the H I gas were no longer determined
solely by the thermal and collision coupling processes. The LyU radiation boosted the relative populations of
H I atoms in the upper (triplet) hyperfine state, while the heating by UV radiation and X-rays of the H I gas
resulted in )k > )r. The ionisation and the heating of the H I gas by the emergence of the luminous sources also
ushered the Universe into the cosmological reionisation epoch.



178

Fig. 4.27: Panels from top to bottom show the plots of the cosmological evolution of )s(I)
(along with )CMB(I) in dark red dashed line), Gi(I) and =HI(I) against (1 + I). Models of
)s(I) and Gi(I) (in blue dots) are constructed by extrapolating the model C of Pritchard and
Loeb (2008) (in orange dotted line). For I & 210 (rightward to the vertical brown dotted
line), when a strong coupling between the gas temperature and the CMB temperature is
established by Compton scattering, it is assumed that )s = )CMB = )k. The ionisation
fraction underwent major transition from I = 18.8 to I = 11.7 (in vertical green dotted
lines), marking the beginning and the end of cosmological reionisation, respectively.
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1.87882 × 10−29ℎ2 g cm−3 (with ℎ = 0.6774), and hence, the present hydrogen

number density =H,0 = 1.87745 × 10−7 cm−3. It follows that

=HI(I) = =H(I) GHI(I) = =H(I) (1 − Gi(I)) . (4.69)

Note that a major neutral-ionisation phase transition occurred from I = 18.8 to

I = 11.7, as indicated in the ionisation fraction against redshift plot in Fig. 4.27. After

the completion of the cosmological reionisation, only the self-shielded surviving

dense clumps of neutral hydrogen would contribute to the cosmological 21-cm line

signals. The observational imprints caused by convolution of these dense neutral

hydrogen structures in the post-reionisation era and the ionised bubbles developed

in the Epoch of Reionisation have not been thoroughly investigated. Although these

complex issues would not be addressed in this demonstrative calculation, they can

been studied explicitly and their observational consequences can be quantified using

the C21LRT formulation presented in this chapter.

Each ray is marked by a celestial coordinate (\, q), and the propagation of the

radiation along the ray is stamped by the redshift I. The number density of the H I

atoms in the lower (singlet) hyperfine state along a ray is given by

=l(I)
��
(\,q) =

=HI(I)
1 + 3 exp(−)★/)s(I))

����
(\,q)

≈ =HI(I)
4 − 3()★/)s(I))

����
(\,q)

=
=H(I)GHI(I) (1 + Xb(I))

4 − 3)★/)s(I)

����
(\,q)

, (4.70)

for )s � )★, where the baryonic matter overdensity is Xb ≡ (db/db − 1), with db

being the mean density. The corresponding number density of the H I atoms in the

upper (triplet) hyperfine state is given by =u(I) = =HI(I) − =l(I). Therefore,

=u(I)
��
(\,q) ≈

3 =H(I)GHI(I) (1 + Xb(I)) (1 − )★/)s(I))
4 − 3)★/)s(I)

����
(\,q)

. (4.71)

The above parameterisation of the relative population of H I atoms in the two
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hyperfine states, (=u/=l), using the spin temperature )s has imposed a constant

3 : 1 (= 6u : 6l) ratio for the relative populations. This parameterisation will be

invalid, if there is a strong UV radiation field. The LyU pumping will allow a higher

number of H I atoms in the upper hyperfine state through the Wouthuysen-Field

mechanism. In this situation, an additional local radiative transfer calculation will

be required so to determine =u and =l.

The spread of the 21-cm line is caused by the velocity dispersion of theH I atoms,

whose velocities have a Maxwellian distribution, due to turbulence and thermal

motion. This gives a Gaussian profile function of the 21-cm line for the local

emission and absorption coefficients. Without losing generality, line broadening

caused by thermal motion is assumed to be insignificant in this demonstrative study.

The line broadening is, therefore, caused only by turbulent motion characterised by

a root-mean-square velocity ({2
turb)

1/2. Furthermore, the root-mean-square velocity

is uniform along the line-of-sight, whose value is set to be either 1000 km s−1 or

100 km s−1. The effective width of the broadened line is specified by a Doppler

parameter, which is now given by 1D = {turb.

4.5.2 Continuum radiation field

The CMB photons provides a radiation background and causes local line-continuum

interaction. Its presence and evolution is determined self-consistently as in the cal-

culations shown in Sec. 4.4.1. Without further complicating the 21-cm emission and

absorption, other continuum radiative processes, such as thermal and non-thermal

free-free process and synchrotron radiation, are ignored, although the C21LRT al-

gorithm can easily account for their contribution if they are present (see Sec. 4.3.2).

4.5.3 Results and discussion

The strength of the 21-cm line signal at a given redshift I′ observed at the present

epoch (I = 0) is determined by the integrated optical depth of the line from the

present I = 0 to the redshift I = I′. At a given I, the variation of the transfer

coefficients across the line frequency a follows the line profile function qa. Thus,

the broadening of the line will modify the transfer coefficients and hence, the line
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Fig. 4.28: (Top two panels): The absorption and emission coefficients of the H I hyperfine
line at the line-centre frequency a = a21cm evaluated in the comoving frame at I for the case
with 1D = 1000 km s−1. (Bottom two panels): The absorption and emission coefficients of
the cases with 1D = 100 km s−1 and 1D = 1 km s−1 normalised by the respective coefficients
of the casewith 1D = 1000km s−1. The top auxiliary G-axes indicate the redshifted frequency
that would be observed at I = 0 (given by aobs = a21cm/(1 + I)).
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optical depth. For a Gaussian line profile, this will lead to a reduction of the optical

depth at the line centre frequency, hence, suppressing the line signal with respect

to the neighbouring continuum. Fig. 4.28 shows the transfer coefficients of the H I

hyperfine line (without a continuum) at the line-centre frequency, evaluated in the

comoving I frames for the case with 1D = {turb = 1000 km s−1 and the comparison

with the cases with 100 km s−1 and 1 km s−1. The narrower the line width, the larger

the transfer coefficient at the line centre. The values of the transfer coefficients

scale with (1D
√
c)−1, which is a consequence of the assumed Gaussian form of the

line profile function. It follows that the suppression of the 21-cm line signal would

be subject to the same scaling factor, if other frequency modification processes

(e.g. cosmological redshifting) are insignificant or absent.

This study demonstrates the radiative transfer of the 21-cm hyperfine line from

I = Idecouple = 210 (the redshift at and above which )s = )CMB = )k) to I = I0 = 0

(the present epoch) using a ray-tracing approach for two values of line broadening:

1D = 1000 km s−1 and 100 km s−1. Figs. 4.29 and 4.30 show the comoving 21-cm

spectra at different redshifts obtained from the C21LRT calculations for the two

cases of line broadening, respectively. The spectra in both cases are characterised

by two absorption troughs and an emission crest which is located at a lower redshift.

These structures are the consequences of the cosmological evolution of the spin

temperature of the electrons in the H I gas and the ionisation fraction of hydrogen.

These featureswill remain in the 21-cm line spectrawhen observed at I = 0, although

their relative strengths will be modified because of the cosmological redshifting in

the line frequencies and the suppression of the line intensities. This effect can be

seen in the line spectra at I = 0 for the two cases, shown in Fig. 4.31, with the first

and third panels in terms of the specific intensity (�L,a − �C,a), and the second and

fourth panels in terms of the differential brightness temperature X)b, respectively.

For an optically thin emission, the specific intensity is the product of the specific

optical depth and the source function, i.e. �a ∝ ga(a, where the source function (a
of a thermal process is the Planck function, �a, which is uniquely determined and is

specified by a thermal temperature when the system is in a local thermal equilibrium.
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Fig. 4.29: Spectra of the 21-cm line in the comoving frames obtained from the C21LRT
calculations for redshifts from I = 25.2 to I = 9 for the case with 1D = {turb = 1000 km s−1.
In each spectrum, the local CMB continuum is subtracted. The redshift range has covered
the cosmic dawn and the epoch of reionisation.
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Fig. 4.30: Spectra of the 21-cm line in the comoving frames obtained from the C21LRT
calculations for redshifts from I = 25.2 to I = 0.9 for the case with 1D = {turb = 100 km s−1.
In each spectrum, the local CMB continuum is subtracted. The redshift range has covered
the cosmic dawn and the epoch of reionisation.
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Fig. 4.31: Spectra of the 21-cm line observed at I = 0 obtained from the C21LRT cal-
culations. Spectra in the top two and the bottom two panels correspond to the cases
with 1D = 1000 km s−1 and 100 km s−1, respectively. In each case, the spectra are
shown in terms of specific intensity (�L,a − �C,a) and differential brightness temperature
X)b(= (�L,a − �C,a) (2/a)2/(2:B)). The top auxiliary G-axes indicates a cosmological red-
shift I′ given by aobs = a21cm/(1 + I′). The brown dotted line indicates the frequency
corresponding to the decoupling redshift Idec = 210; and the two green dotted lines mark
the frequencies corresponding to the beginning and the end of the epoch of reionisation.



186

Fig. 4.32: Spectra showing the effect of line broadening convolved with cosmological
radiative transfer. The local broadening of the 21-cm line is assumed to be caused by
turbulence, which gives 1D = {turb = 1000 km s−1. The redshift-frequency grids in the very
high redshift, with )s < )CMB, are shown for an illustrative purpose (i.e. not the true physical
condition at I > Idec). The spectra in the comoving frames are shown in the top panel, and
the corresponding spectra to be observed at I = 0 are shown in the bottom panel. As shown,
the redshifted intensity contributions and the local intensity contribution superposed, which
gives a series of absorption troughs. The grey dash lines indicate where the local 21-cm
absorption and emission begin to contribute. In all cases, there is a small emission bump
at the low frequency wing of the line, making the line appear to have a P Cygni profile, as
those seen in the line from an expanding stellar atmosphere.
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Thus, we may expect that �L,a ∝ gL,a�a ∝ ^L,a�a at a given I would roughly hold

in the 21-cm line calculations as the H I gas is not in a state far from a thermal

equilibrium. As shown in Fig. 4.28, the values of the transfer coefficients at the line

peak scale with 1D
−1, implying that gL,a at the line peak also scales with 1D

−1. This

scaling is indeed manifested in the 21-cm line spectra at I = 0 (in terms of either

(�L,a − �C,a) or X)b), as the strength of the first absorption trough located at the low

frequencies, of the case with 1D = 1000 km s−1 is 10 times weaker that the strength

of the tough of the case with 1D = 100 km s−1 (see Fig. 4.31).

The scaling implies that the strength of the low-frequency trough for 1D =

1 km s−1 would be about 1000 times stronger than that for 1D = 1000 km s−1. This

gives an amplitude of X)b ≈ 36 mK at I = 0, a value consistent with those obtained

in the previous work (see e.g.Fig.1, third panel, in Pritchard and Loeb (2008), which

showed the 21-cm signal, in X)b, across the cosmological redshift, in (1 + I)).

However, the scaling factor of 10 is not uniform across all redshifts. Comparing

between the spectra of the two cases with different amounts of line broadening in

Fig. 4.31, the scaling factor is about 5 for the amplitude of the second absorption

trough that is associated with the cosmic dawn, and the scaling factor is about 6 for

the amplitude of the emission bump that is formed at the epoch of reionisation.

The differences among the scaling factors for the three prominent features in the

21-cm line spectra are due to a number of factors. Among them is the convolution

of the radiative transfer of the 21-cm line and the continuum with the differential

frequency shifts of the radiation when the Universe expands. This factor is more

effective at lower redshifts. Thus, the high-frequency trough and the emission crest

are expected to bemore affected than the low-frequency trough. This phenomenon is

counter-intuitive, but it can be understood in a qualitative manner with the following

consideration. The variation of the specific optical depth ga over a may be expressed

as

dga
da

=
mga

ma
+ mga
m{∗

(
da
d{∗

)−1
+ mga
mI

(
da
dI

)−1
. (4.72)
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Here, {∗ is the velocity spread among of gas/particles that contribute to the opacity,

(and hence, participate in the radiative transfer process). At a fixed I, the first two

terms, which correspond to the spectral variation in the local absorption coefficient

and to the local velocity-induced frequency spread, respectively, are not explicit

functions of the redshift I. The third term, in contrast, depends on I explicitly. As

dga = ^adB, where dB is the distance increment of the radiation propagation,

mga

mI

����
I

= ^a

(
dB
dI

) ����
I

=
2 ^a

(1 + I)�0

[
Ωr,0(1 + I)4 +Ωm,0(1 + I)3 +ΩΛ,0

]− 1
2 (4.73)

for the FRW cosmology adopted in this study. Note that (ma/mI) is independent of

I, since a/a0 = (1+ I)/(1+ I0). Note also that here (mga/mI) |I ≠ (dga/dI) |a, where

the former specifies the contribution to the variation of ga across the frequency a

at a specific redshift I whereas the latter denotes the change in the specific optical

depth ga at a given frequency a over a distance scale, in terms of the cosmological

redshift I.

At the centre of the 21-cm line, where the opacity is the largest, the first term

in the right side of Eqn. (4.72) vanishes, because of the symmetry of the line profile

function (in frequency) about the line centre. The variations in the optical depth ga

is, therefore, contributed by the second term, which specifies how the line opacity

changes when the line is broadened, and by the third term, which concerns the

cosmological effects on the local spectral variation. As the significance of the third

term increases when I decreases, which is indicated in Eqn. (4.73), the scaling

relation that holds for the first absorption trough formed at high redshifts before the

onset of reionisation would eventually break down in the later epochs.

There is a subtlety in the cosmological radiative transfer, which also contributes

to the distortion in the scaling of the amplitude of spectral feature with (1D
√
c)−1

across the line spectra. The non-uniformity of the scaling of the features with the

reciprocal of the local line broadening is caused by the interplay between absorption

and emission of the line and the continuum when the radiation propagates from

high I to low I in an expanding Universe. Fig. 4.32 illustrates the convolution of
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radiative transfer and line broadening in the presence of a continuum for the 21-cm

line originating at redshifts ranging from I = 995 to I = 975. The CMB temperature

is set to be higher than the spin temperature of the electrons in the H I atom, thus the

21-cm line is expected to be predominantly in absorption. However, there is a small

emission bump at all redshifts (top panel, Fig. 4.32), making the 21-cm line profile

as a P Cygni profile, as those seen in the line originating from an expanding stellar

atmosphere with the negative temperature gradient in a radially outward direction.

This structure in the 21-cm line is a consequence of the relative recession velocities

between H I gas at different redshifts in the presence of a continuum emission.

When the radiation propagates from a high I to a low I, it encounters a negative

temperature gradient in the CMB, a situation analogous to thermal structure of

an expanding stellar envelope that gives rise to the P Cygni type lines. Although

the P Cygni lines in stars are in general emission in nature, the cosmological 21-

cm hyperfine line considered here in this illustration is absorption in nature. The

successive presence of a small emission red bump in the line along the propagation

of the ray from high I to low I will reduce the amplitude of the 21-cm trough in the

observed line spectrum at the present epoch (bottom panel, Fig. 4.32).

The C21LRT formulation presented here has properly accounted for (i) the rel-

evant radiation processes, in particular, the absorption and emission of the hyperfine

21-cm line arising from the spin flip of electrons in the H I gas, (ii) the effect of

line broadening, due to various kinetic and dynamical processes on the line opacity,

and (iii) the subtle convolution of the 21-cm line radiative transfer (in the presence

of a continuum) with the cosmological effects in the expanding Universe. All-sky

21-cm line spectra can be computed by solving C21LRT equation along rays across

the sky, as in the all-sky cosmological polarised radiative transfer calculations (see

Sec. 3.2.3). These spectra contain tomographic signals across redshift I, crucial

for our understanding of how the Universe underwent a transition from a neutral

gaseous atomic phase to an ionised plasma phase.
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4.6 Conclusions and Remarks

In this chapter, an all-sky cosmological 21-cm line radiative transfer (C21LRT)

formalism appropriate for the studies of cosmological reionisation is devised, im-

plemented, and verified.

TheC21LRT formulation is derived, from a general relativistic radiative transfer

formulation that stems from the first principles of conservation of phase-space

volume and photon number. It is fully covariant and explicitly treats local radiation

processes (via the absorption and emission coefficients of the line and the continuum

radiation) and line broadening (via the line profile function in the line transfer

coefficients) along a ray transported in a cosmologically evolving universe. The

C21LRT formulation provides a solid theoretical foundation upon which 21-cm

line signals arising from both the local and distant Universe can be calculated

from first principles, with the relevant radiation processes, the relativistic and the

cosmological effects self-consistently accounted for. Without loss of generality, the

covariant cosmological 21-cm line radiative transfer equation suitable for the FRW

universe is derived (Eqn. (4.58)). An efficient computational algorithm that adopts

a ray-tracing method and solves the C21LRT equation is constructed (Sec. 4.3.2).

The abilities of the C21LRT algorithm and its code implementation in dealing

with (i) the cosmological evolution effects, and (ii) the local effects on the line

shifting and broadening and on the line-continuum interaction, are verified by a

number of numerical experiments presented in Sec. 4.4. The calculations of the

cosmological transfer of the CMB continuum radiation and the transfer of a generic

21-cm line radiation give correct evolution of the radiative properties. The galactic

rotation experiment yields a correct combination of the line spectra of multiple rays

and validates the code in handling the effects on the line spectrum arising locally

from an astrophysical system with differential velocity and density structures, in the

presence of the CMB continuum radiation.

The validated C21LRT code is then applied to calculate the cosmological evo-

lution of the redshifted 21-cm signals (Sec. 4.5), demonstrating the ability of direct,
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quantitative tracking of the development of spectral features in the 21-cm line spec-

tra. C21LRT calculations are conducted in two cases with different amounts of line

broadening; comparisons with the previous work are drawn. It is shown that the

strength of the absorption trough located at the low observed frequencies (origi-

nating from the dark ages) is subject to the scaling of the reciprocal of the local

line broadening 1D
−1, and the result in previous work (e.g. in Pritchard and Loeb

(2008)) can be recovered when 1D = 1 km s−1. At the same time, different scaling

factors for the strengths of the high-frequency absorption trough (originating from

the cosmic dawn) and the emission crest (originating from the epoch of reionisation)

are obtained. These differences signify the importance of a proper account for (i)

the convolution of the radiative transfer of the 21-cm line and the continuum with

the differential frequency shifts of the radiation, and (ii) the interplay between ab-

sorption and emission of the line and the continuum when the radiation travels from

high to low I in an expanding Universe.

Using ray-tracing C21LRT calculations all-sky 21-cm line spectra can be com-

puted, thus providing a reliable means to predict the theoretical signals for the 21-cm

tomographic study of cosmological reionisation.
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Chapter 5

Curvelets on a Sphere

This chapter is based on J. Y. H. Chan, B. Leistedt, T. D. Kitching and

J. D. McEwen, "Second-Generation curvelets on the sphere" in IEEE Trans-

actions on Signal Processing, vol. 65, no. 1, pp. 5-14, Jan 2017,

doi: https://doi.org/10.1109/TSP.2016.2600506 ©IEEE 2016.

In this chapter, a new-generation of curvelets on a sphere that I developed

is presented. These curvelets are constructed directly on a sphere. They can

simultaneously extract the position-scale-orientation information in images, and

provide an efficient representation of the curvilinear features within signals. They

also exhibit a variety of desirable properties, well-suited for the inference purposes

in sciences as listed in Sec. 2.4.2 and for applications in a range of other disciplines

(see examples in Cai et al. 2020, and related papers).

5.1 Introduction

Spherical wavelets (e.g. Antoine and Vandergheynst 1998, 1999; Wiaux et al. 2005;

McEwen et al. 2006a; Narcowich et al. 2006; Sanz et al. 2006; Starck et al. 2006b;

Wiaux et al. 2008b; Geller et al. 2008; Marinucci et al. 2008; McEwen and Scaife

2008; Baldi et al. 2009; Geller and Marinucci 2010, 2011; Michailovich and Rathi

2010; McEwen et al. 2011; Leistedt et al. 2013; McEwen et al. 2013, 2015b;

McEwen and Price 2015;McEwen et al. 2018) are capable of extracting both spectral

and spatial (or temporal) information simultaneously, thus making them a natural

and powerful tool for the analyses of spherical systems with multiple spatial scales

and complex structures. In addition to scale-dependent and localised characteristics,

signals often contain directional and geometrical features, such as linear or curvi-

https://doi.org/10.1109/TSP.2016.2600506
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linear structures in 2D images (e.g. edges), or sheet-like and filamentary structures

in 3D space. Extraction of these features can, in turn, provide insightful informa-

tion about the origin of signals or play crucial roles in diagnostic uses. Traditional

wavelets, however, fall short of capturing this signal content effectively, which has

motivated the development of a variety of directional or geometric wavelets.

Ridgelet (e.g. Candès and Donoho 1999) and curvelet (e.g. Candes et al. 1999;

Candès and Donoho 2004, 2005a,b) transforms are of substantial interest since they

provide efficient representations of line-type structures and exploit the anisotropic

content of signals. Among the two, ridgelets are limited to applications to signals

with global straight-line features only. In order to analyse local linear or curvilinear

structures, which are dominant in nature, a block ridgelet-based transform, namely

the first-generation curvelet transform, has been proposed. In Euclidean space, such

a curvelet transform consists of applying an isotropic wavelet transform, followed

by a special partitioning of the image and the application of the ridgelet transform

to local overlapping blocks (Candes et al. 1999). The overlapping blocks, which

are used to mitigate blocking artefacts, increase the redundancy, hence, increasing

the computational storage and timing costs. The same authors proposed second-

generation Euclidean curvelets, rectifying these issues, where the discrete frequency

domain is tiled and a ridgelet transform is no longer required (Candès and Donoho

2004, 2005a,b). The second-generation curvelet construction is conceptually more

natural and enables faster algorithms, thus opening up a wider and more successful

applicability of curvelets, particularly in the fields of image processing, seismic

image recovery and scientific computing (for reviews of the planar ridgelet and

curvelet transforms, see Ma and Plonka 2010; Fadili and Starck 2012).

Recently, a new generation of ridgelets on the sphere was constructed in

McEwen and Price (2019), which is applicable to study antipodal signals on the

sphere and is capable to handle both scalar and spin signals. First-generation

curvelets have also been constructed on the sphere (Starck et al. 2006a), where

the healpix (Górski et al. 2005) scheme of partitioning of the sphere is employed

and a discrete planar ridgelet transform is performed on each block indepen-
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dently. First-generation spherical curvelets are, therefore, not defined natively on

the sphere (but rather by stitching together planar patches). Furthermore, unlike

the approach of the first-generation planar curvelets, the twelve base-resolution

faces of the healpix pixelisation do not overlap. This unavoidably leads to block-

ing artefacts (Starck et al. 2006a,b). In addition, in this framework, curvelets

larger than the scale of the base-resolution face cannot be constructed and first-

generation spherical curvelets only satisfy the typical curvelet parabolic scaling

relation (i.e. width ≈ length2) in the Euclidean limit.

In this work, a second-generation curvelet transform is constructed, which is

not built on a ridgelet transform, following a similar motivation to the development

of the second-generation planar curvelets. Second-generation curvelets live natively

on a sphere (i.e. are not reliant on a specific pixelisation such as healpix), are free

from any blocking artefacts, satisfy the typical curvelet parabolic scaling relation,

and support the exact synthesis of a band-limited signal from its curvelet coefficients

(i.e. capture all of the information content of the signal of interest without loss).

It is possible to construct spherical curvelets through the inverse stereographic

projection of planar wavelets (Antoine and Vandergheynst 1998, 1999; Wiaux et al.

2005), but the continuous scales required for the continuous analysis prevents exact

reconstruction of the signals in practice. Scale-discretised curvelets are therefore

constructed using the general spin scale-discretised wavelet framework presented in

McEwen et al. (2015b), where the dilations of the curvelets are directly defined in

harmonic space and exact synthesis can be performed in practice. This framework

also enables a straightforward generalisation of the curvelet transform to spin signals,

where the spin value of the curvelets is a free parameter. Depending on the desired

applications, different spin values can be chosen: spin-0 for analysing scalar signals,

spin-1 for vector fields and spin-2 for polarisation studies, for example. Furthermore,

it can be shown explicitly how the parabolic scaling relation is rendered in (spin)

spherical polar coordinates by setting the absolute value of the azimuthal frequency

index of spin spherical harmonic functions equal to the angular frequency index.

Curvelets constructed in this manner exhibit many desirable properties, as listed
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earlier, which are lacking in alternative constructions (e.g. Starck et al. 2006a).

Having constructed scale-discretised curvelets applicable to transform signals

of arbitrary spin on the sphere, a fast algorithm to compute the curvelet transform

exactly and efficiently is then presented. Optimisation is achieved by working

in a rotated coordinate system that renders the harmonic representation of many

curvelets coefficients zero; only a relatively small number of non-zero terms need

then be computed. This fast algorithm leverages novel sampling theorems on the

sphere (Driscoll and Healy 1994; McEwen and Wiaux 2011) and on the rotation

group (McEwen et al. 2015a), where the latter is further optimised for curvelets.

These curvelet algorithms are implemented in the existing s2let code1 (Leistedt

et al. 2013) – an implementation of the scale-discretised wavelet transform on the

sphere – and are publicly available.

The remainder of this chapter is organised as follows. In Section 5.2, curvelets

that live natively on a sphere are constructed. The properties of curvelets and their

differences to axisymmetric and directional wavelets on the sphere are highlighted.

In Section 5.3, the exact and efficient algorithms for the numerical implementation

of the curvelet transform are derived. Numerical accuracy and computational-time

scaling for a complete forward and inverse transform are evaluated. In Section 5.4,

an illustrative application is presented, where a spherical image of a natural scene

is analysed and the performance of curvelets and directional wavelets is compared.

Section 5.5 outlines the possible applications of the spherical curvelet transform and

the future extensions of this work.

5.2 Scale-Discretised Curvelets on a Sphere

In this section, curvelets that are defined on a sphere are constructed. They exhibit

the standard curvelet parabolic scaling relation, are well-localised in both spatial

and harmonic domains, and support the exact analysis and synthesis of both scalar

and spin signals. The construction follows closely to that of spin scale-discretised

wavelets (McEwen et al. 2015b), and their analogous scalar forms (Wiaux et al.

1www.s2let.org

www.s2let.org
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2008b; Leistedt et al. 2013; McEwen et al. 2013, 2018), except that the direc-

tionality component of curvelets is designed differently. For further details of the

scale-discretised wavelet framework, including a review of harmonic analysis of

(spin) functions on the sphere, interested readers are referred to Sec. 2.5 or the

aforementioned papers. This section is concluded by noting some properties of

curvelets, comparing them to axisymmetric and directional wavelets.

All the transforms throughout this work are formulated for the general spin

setting, where the scalar setting can be simply rendered by setting the spin value

B ∈ Z to zero. Also, signals on the sphere band-limited at ! are considered

throughout, i.e. B 5 ℓ< = 0, ∀ℓ ≥ !, where B 5 ℓ<, with integer ℓ, < ∈ Z, |< | ≤ ℓ, are

the spin spherical harmonic coefficients of a spin signal of interest B 5 ∈ L2(S2), and

are given by the usual projection onto each spin spherical harmonic (basis) function

B.ℓ< ∈ L2(S2): B 5 ℓ< = 〈B 5 , B.ℓ<〉.

5.2.1 Curvelet construction

Scale-discretised curvelets Bk
( 9) ∈ L2(S2) are constructed in harmonic space in

factorised form

Bk
( 9)
ℓ<
≡

√
2ℓ + 1
8c2 ^ ( 9) (ℓ) BBℓ< , (5.1)

where Bk
( 9)
ℓ<

= 〈Bk ( 9) , B.ℓ<〉 are the spin spherical harmonic coefficients of the

curvelets with B.ℓ< ∈ L2(S2) denoting the spin spherical harmonic functions, for

B ∈ Z, ℓ ∈ N and < ∈ Z such that |< | ≤ ℓ, |B | ≤ ℓ. The angular localisation of the

9-th scale curvelet is characterised by the kernel ^ ( 9) ∈ L2(R+) whose construction

follows exactly the same as that of the spin directional scale-discretised wavelets

given in McEwen et al. (2015b). On the other hand, the directional localisation of

curvelets is controlled by the directional component BB, with harmonic components

BBℓ< = 〈BB, B.ℓ<〉. It is this directional component that is defined in such a way that

the parabolic scaling relation typical of curvelets is satisfied.

The standard curvelet parabolic scaling relation can be rendered in spherical

coordinates by considering spin spherical harmonics with the absolute value of

the azimuthal frequency index equal to the angular frequency index, i.e. |< | = ℓ.
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Specifically, the full-width-half-maximum (FWHM) of the colatitude \ ∈ [0, c]

part of B.ℓℓ is shown to be approximately the square of that of the longitude q ∈

[0, 2c) part. Such a parabolic scaling also applies to curvelets since their harmonic

coefficients are constucted from a windowed sum of spherical harmonics, with a

central dominant angular frequency.

The FWHM, which characterises the width about the peak of a function, is

defined as the difference between \ (or q) at which the real or imaginary part of the

function B.ℓℓ is equal to half of its maximum value. It is then straightforward to

show that

FWHMq = 2q0 =
2
ℓ

cos−1
(1
2

)
=

2c
3ℓ

, (5.2)

where q0 is the angle at the half maximum of the q-part of B.ℓℓ (i.e. real or imaginary

part of eiℓq) within the interval 0 < q0 < c/2. The \-dependence of B.ℓℓ is

determined by the Wigner small-3-function

3ℓ
ℓ (−B) (\) = (−1)ℓ+B

√
(2ℓ)!

(ℓ − B)!(ℓ + B)! sinℓ+B
\

2
cosℓ−B

\

2
, (5.3)

which attains its maximum at

\max = cos−1
(−B
ℓ

)
, (5.4)

for |B | ≤ ℓ. As B varies from 0 to ℓ, \max takes the value from c/2 to c (indicating a

change of the colatitude position at which spin-curvelets are centred, as will become

explicit in the complete curvelet construction that follows). Furthermore, note that

for the scalar setting B = 0 and also for B � ℓ, Eqn. (5.3) reduces to the form of

�ℓ sinℓ \, where �ℓ is a function of ℓ contributing to the overall magnitude of B.ℓℓ

only (and thus can be ignored in the evaluation of FWHM\). It follows that

FWHM\ = 2
(c

2
− \0

)
= c − 2 sin−1

( 1
21/ℓ

)
, (5.5)
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where \0 is the angle at the half maximum of the \-part of B.ℓℓ within the interval

of 0 < \0 < c/2. Eqn. (5.5) can be further rearranged to

sin
(c − FWHM\

2

)
= 2−D , (5.6)

where D = 1/ℓ. In the limit ℓ → ∞, D and FWHM\ both approach to zero. Hence,

by taking Taylor’s expansion at both sides of Eqn. (5.6), one obtains

1 − 1
8

FWHM\
2 ≈ 1 − (ln 2)1

ℓ
, (5.7)

which implies the important curvelet parabolic scaling relation

FWHM\
2 ≈ FWHMq . (5.8)

The cases of spin value B = 0 or B � ℓ, for which the parabolic scaling relation

has been shown to hold, are common in real-life applications since physical signals

are often scalar or have a low spin value. Furthermore, low-ℓ information is often

not probed by curvelets but rather by a scaling function, which will be discussed

subsequently. Nevertheless, for completeness and clarity, In the extreme cases when

B = ℓ, the approximate parabolic scaling relation still holds, with the value of

FWHM2
\
double that in the scalar setting. Note that the parabolic scaling relation

may start to deteriorate as B→ (ℓ − 1) due to the asymmetry of 3ℓ
ℓ −B (\) about \max.

However, for at least B ' bℓ/2c (a very conservative limit), empirical numerical

findings show that any deviation from the scalar setting is insignificant, so the

parabolic scaling relation remains to hold. (Here and hereafter, b·c and d·e denote

the floor and ceiling functions respectively.) Readers are referred to Appendix I for

further details.

Apart from setting |< | = ℓ, the directionality component of curvelets BBℓ<,

without loss of generality, is defined to satisfy the condition

ℓ∑
<=−ℓ
|BBℓ< |2 = 1 , (5.9)
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for all values of ℓ for which BBℓ< are non-zero for at least one value of <. Conse-

quently, the directionality component reads

B B̃ℓ< =
1
√

2

{
(−1)< Xℓ<, < < 0

Xℓ<, < ≥ 0
, (5.10)

for all ℓ of interest (with largest possible domain 0 < ℓ < !) and |< | < !. Here, X

denotes the Kronecker delta, and the symbol ·̃ denotes that the quantity is associated

to unrotated curvelets offset from the North pole (see Eqn. (5.4)). It is desirable to

centre curvelets on the North pole, so that the Euler angles parameterising curvelet

coefficients have their standard interpretation, and their directionality components

are given by the harmonic rotation

BBℓ< =

ℓ∑
==−ℓ

�ℓ
<= (d★)B B̃ℓ=, (5.11)

where d★ is the Euler angle describing the rotation to the North pole and is specified

subsequently.

As in McEwen et al. (2015b), Wiaux et al. (2008b), Leistedt et al. (2013),

McEwen et al. (2013), and McEwen et al. (2018), the scale-discretised curvelet

kernel for scale 9 is constructed by

^ ( 9) (ℓ) ≡ ^_ (_− 9ℓ) . (5.12)

The curvelet kernel reaches a peak of unity at ℓ = _ 9 and has a compact support on

ℓ ∈
[
b_ 9−1c, d_ 9+1e

]
. It is generated from ^_ (C) ≡

√
:_ (_−1C) − :_ (C). The function

:_ is defined as

:_ (C) ≡
∫ 1
C

dC ′
C ′ B

2
_
(C′)∫ 1

_−1
dC ′
C ′ B

2
_
(C′)

, (5.13)

which is unity for C < _−1, zero for C > 1, and smoothly decreasing from unity to

zero for C ∈ [_−1, 1]. It is defined through the infinitely differentiable Schwartz
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function

B_ (C) ≡ B
(

2_
_ − 1

(C − _−1) − 1
)
, (5.14)

where

B(C) ≡


e−(1−C2)−1
C ∈ [−1, 1]

0 C ∉ [−1, 1]
, (5.15)

which has compact support C ∈ [_−1, 1], for dilation parameter _ ∈ R+∗ , _ > 1. Note

that _ = 2 corresponds to a common dyadic transform (i.e. the mother curvelet is

dilated by powers of two).

As noted earlier, without applying any rotation the constructed spin-B curvelets

Bk̃
( 9)
ℓ<

are not centred on the North pole but at colatitude

o 9 = cos−1
(−B
_ 9

)
, (5.16)

cf. Eqn. (5.4), which lies in the range [c/2, c]. Explicitly, spin-0 curvelets are

centred along the equator (−G-axis), and for higher-B curvelets up to B = ℓ, curvelets

effectively move down to be centred around the South pole. Curvelets are, therefore,

rotated to the North pole by a rotation with Euler angle d★ = (0, o 9 , 0).

Scaling functions BΦ ∈ L2(S2), which are required to probe the low-frequency

content (approximation-information) of the signal not probed by curvelets, are de-

fined explicitly in McEwen et al. (2015b); Leistedt et al. (2013); McEwen et al.

(2013, 2018). They are chosen to be axisymmetric since directional structure of the

approximation-information of signal is typically not of interest. Their definition is

repeated here for completeness:

BΦℓ< ≡
√

2ℓ + 1
4c

√
:_ (_−�0ℓ) X<0 , (5.17)

where �0 is the minimum scale to be probed by curvelets.

5.2.2 Curvelet tiling and properties

Examples of spin-0 (scalar) and spin-2 curvelets rotated to the North pole of the

sphere are plotted in Fig. 5.1 and Fig. 5.2, respectively. Note that the spin value is a
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free parameter, allowing easy construction of curvelets of any spin B ∈ Z. Note also

that as the scale 9 increases, curvelets become increasingly elongated and exhibit

increasingly higher directional sensitivity and anisotropic features (for spin curvelets,

notice their absolute value is directional). This feature, which is warranted by the

satisfaction of the parabolic scaling relation, is absent in directional scale-discretised

wavelets.

(i) 0k
( 9=1) (ii) 0k

( 9=2) (iii) 0k
( 9=3)

(iv) 0k
( 9=4) (v) 0k

( 9=5) (vi) 0k
( 9=6)

Fig. 5.1: Scalar scale-discretised curvelets on the sphere (! = 256, _ = 2). Cuvelets are
rotated to be centred on the North pole. Notice that the characteristic curvelet parabolic
scaling (i.e. width ≈ length2) makes them highly anisotropic and directionally sensitive.

The harmonic tiling of scale-discretised curvelets is schematically depicted

in the right-most panel of Fig. 5.3, along with the tilings of the axisymmetric

scale-discretised wavelets (Leistedt et al. 2013) (left-most panel) and the directional

scale-discretised wavelets (McEwen et al. 2015b, 2013, 2018) (middle panel) for

comparison purposes. Axisymmetric wavelets probe signals in scale and position,

but not in orientation, by tiling the line < = 0 only. Directional wavelets are capable

of probing the directional features of signals, but do not exploit the geometric proper-

ties of structures in signals. Tiling therefore occurs up to a low azimuthal band-limit

# < ! (typically only even or odd < are non-zero to enforce various azimuthal
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(i) Re
{

2k
( 9=1)} (ii) Im

{
2k
( 9=1)} (iii) Abs

{
2k
( 9=1)}

(iv) Re
{

2k
( 9=2)} (v) Im

{
2k
( 9=2)} (vi) Abs

{
2k
( 9=2)}

Fig. 5.2: Spin-2 scale-discretised curvelets on the sphere (! = 256, _ = 2). Cuvelets are
rotated to be centred on the North pole. Notice that the absolute value of the spin-curvelet
is directional and the characteristic curvelet parabolic scaling (i.e. width ≈ length2) makes
them highly anisotropic and directionally sensitive.

symmetries). In contrast to axisymmetric and directional wavelets, curvelets probe

not only spatial and spectral information, but also both directional and geometric

contents of a signal. Such an ability is afforded by their specific design to render the

parabolic scaling relation. This standard curvelet scaling relation is imposed by the

tiling of curvelets along the corresponding lines.

5.2.3 Curvelet transform

The curvelet transform is built upon the spin scale-discretised wavelet framework

presented in McEwen et al. (2015b). The discrete nature of the analysis scales

(i.e. 9 ∈ N0) allows the exact reconstruction of band-limited signals from their

curvelet coefficients. This is ensured by the satisfaction of the admissibility condition

4c
2ℓ + 1

��
BΦℓ0

��2 + 8c2

2ℓ + 1

�∑
9=�0

ℓ∑
==−ℓ

��
Bk
( 9)
ℓ=

��2 = 1 , ∀ℓ (5.18)
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ℓ

<
< = ℓ

< = −ℓ

(i) Axisymmetric

ℓ

<
< = ℓ

< = −ℓ

(ii) Directional

ℓ

<
< = ℓ

< = −ℓ

Bk
( 9)
Bk
( 9+1)

Bk
( 9−1)

(iii) Curvelets

Fig. 5.3: Tiling of different types of wavelets. Notice in particular that by tiling curvelets
along the diagonal, an approximate parabolic scaling relationship is imposed.

(McEwen et al. 2015b, and reference therein). Curvelet analysis and synthesis

operations (i.e. forward and inverse transform) are defined subsequently. Curvelets

are rotated to the North pole in the following description.

Curvelet analysis

The scale-discretised curvelet transform of a function B 5 ∈ L2(S2) is defined by

its directional convolution with the curvelets Bk
( 9) ∈ L2(S2), where the curvelet

coefficients are given by

, Bk
( 9) (d) ≡ 〈B 5 , Rd Bk ( 9)〉

=

∫
S2

dΩ(ω) B 5 (ω) (Rd Bk ( 9))∗(ω) . (5.19)

The rotation operatorRd is parameterised by the Euler angles d = (U, V, W) ∈ SO(3),

with U ∈ [0, 2c), V ∈ [0, c] and W ∈ [0, 2c). Eqn. (5.19) may also be re-written as

, Bk
( 9) (d) =

∞∑
ℓ=0

ℓ∑
<=−ℓ

ℓ∑
==−ℓ

B 5ℓ< Bk
( 9)∗
ℓ=

�ℓ∗
<= (d) , (5.20)

where B 5 ℓ< = 〈B 5 , B.ℓ<〉 and Bk
( 9)
ℓ<
= 〈Bk ( 9) , B.ℓ<〉 are the spin spherical harmonic

coefficients of the function of interest and of the curvelets, respectively.

The Wigner coefficients of the wavelet coefficients defined on SO(3)are given
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by
(
, Bk

( 9) )ℓ
<=
= 〈, Bk

( 9)
, �ℓ∗

<=〉, which can be reduced to

(
, Bk

( 9) )ℓ
<=
=

8c2

2ℓ + 1 B 5ℓ< Bk
( 9)∗
ℓ=

. (5.21)

As such, the forward curvelet transform may be computed via an inverse Wigner

transform.

The low-frequency content of the signal is captured by the scaling coefficients

BΦ ∈ L2(S2), which are given by the axisymmetric convolution

, BΦ(ω) ≡ 〈B 5 , Rl BΦ〉

=

∫
S2

dΩ(ω′) B 5 (ω′) (Rl BΦ)∗(ω′) , (5.22)

where Rl = R(q,\,0) . Since the scaling function is, by design, axisymmetric,

its harmonic coefficients are non-zero for < = 0 only: BΦℓ0X<0 = 〈BΦ, B.ℓ<〉.

Decomposing the scaling coefficients into their harmonic expansion yields

, BΦ(ω) =
∞∑
ℓ=0

ℓ∑
<=−ℓ

√
4c

2ℓ + 1 B 5ℓ< BΦ
∗
ℓ0 0.ℓ< (ω) , (5.23)

whose spherical harmonic coefficient is simply given by

(
, BΦ

)
ℓ<
= 〈, BΦ, 0.ℓ<〉 =

√
4c

2ℓ + 1 B 5ℓ< BΦ
∗
ℓ0 . (5.24)

Curvelet synthesis

Provided that the admissibility condition in Eqn. (5.18) is satisfied, the signal B 5 can

be reconstructed exactly from its curvelet and scaling coefficients by

B 5 (ω) =
∫
S2

dΩ(ω′), BΦ(ω′) (Rω′ BΦ) (ω)

+
�∑
9=�0

∫
SO(3)

dr(d), Bk
9 (d) (Rd Bk 9 ) (ω) , (5.25)
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where the invariant measure on SO(3) is dr(d) = sin V dU dV dW, and �0 and � are,

respectively, the minimum and maximum analysis depths considered, i.e. �0 ≤ 9 ≤

�. Eqn. (5.25) may be re-written as

B 5 (ω) =
∞∑
ℓ=0

ℓ∑
<=−ℓ

[√
4c

2ℓ + 1
(
, BΦ

)
ℓ< BΦℓ0 +

�∑
9=�0

ℓ∑
==−ℓ

(
, Bk

( 9) )ℓ
<= B

k
( 9)
ℓ=

]
B.ℓ< (ω) ,

(5.26)

(McEwen et al. 2015b). As such, the inverse curvelet transform of Eqn. (5.25) may

be computed via a forward Wigner transform.

5.3 Exact and Efficient Computation

In this section, a fast algorithm is devised to compute the curvelet transform, which

is theoretically exact by appealing to sampling theorems on the sphere (McEwen and

Wiaux 2011) and rotation group (McEwen et al. 2015a). The computational com-

plexity of the algorithm attains O(!3 log2 !), compared to a naive scaling of O(!5).

I then discuss the implementation of this algorithm and evaluate its performance in

terms of both numerical accuracy and computation time via simulations of random

test signals on the sphere.

5.3.1 Fast algorithm

Wigner transforms can be computed efficiently using the fast algorithm of McEwen

et al. (2015a) which reduces the complexity from O(!6) to O(!4). For (steerable)

directional wavelet transforms, for which the wavelets have an azimuthal band-limit

# , the complexity is reduced to O(#!3) and since typically # � !, the overall

complexity of O(!3) is recovered. However, there is no azimuthal band-limit for

curvelets so fast Wigner transforms can only yield O(!4). Here, an algorithm that

attains O(!3 log2 !) is developed. This is achieved by first rotating the Wigner

coefficients of curvelet coefficients (rather than the curvelets themselves) and by

optimising the fast Wigner transform for curvelets. I present these algorithmic

details next, followed by a description of additional optimisation that are exploited

to further speed up the code implementation.
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Rotating Wigner coefficients

Ashighlighted in Sec. 5.2.3, curvelets are centred on theNorth pole in the constructed

scale-discretised curvelet transform so that the Euler angles parameterising curvelet

coefficients have their standard interpretation. However, the directly constructed

curvelet Bk̃ is naturally centred at a different position. A rotation is, therefore,

needed: either by rotating the curvelets directly or by rotating theWigner coefficients

of the curvelet coefficients. By exploiting the unrotated curvelet’s property that

Bk̃ℓ= = Bk̃ℓℓXℓ=, and hence,

(
,̃ Bk̃

( 9) )ℓ
<=
=

(
,̃ Bk̃

( 9) )ℓ
<=
X |=|ℓ , (5.27)

i.e. unrotated Wigner coefficients are non-zero for |=| = ℓ only. In the following,

an additional optimisation achieved by rotating Wigner coefficients (rather than

curvelets) is shown.

The rotation of the Wigner coefficients for the forward transform proceeds as

follows. The Wigner coefficients of unrotated curvelets (offset from the North pole)

can be computed by ,̃ Bk̃
( 9) (d) ≡ 〈B 5 , Rd Bk̃ ( 9)〉, but we require

, Bk
( 9) (d) ≡ 〈B 5 , Rd Bk ( 9)〉 = 〈B 5 , RdRd★ k̃ ( 9)〉 , (5.28)

where Bk
( 9) (d) = Rd★Bk̃ ( 9) (d) denotes curvelets centred on the North pole, and

d★ = (0, o 9 , 0) is the Euler angle defining rotation to the North pole. It follows that

, Bk
( 9) (d) = ,̃ Bk̃

( 9) (d′) , (5.29)

where d′ describes the rotation formed by compositing the rotations described by d

and d★, i.e.Rd′ = Rd Rd★ . Eqn. (5.29) then can be computed by

(
, Bk

( 9) )ℓ
<:
=
∑
=

(
,̃ Bk̃

( 9) )ℓ
<=
�ℓ
:=
∗(d★) (5.30)

=
(
,̃ Bk̃

( 9) )ℓ
<ℓ
�ℓ
:ℓ
∗(d★) +

(
,̃ Bk̃

( 9) )ℓ
<(−ℓ) �

ℓ
: (−ℓ)

∗(d★) , (5.31)
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where the additive property of the Wigner �-functions and Eqn. (5.27) have been

exploited; see Appendix H for full details.

For the inverse transform, unrotated Wigner coefficients, which are non-zero

for |: | = ℓ only, are computed by

(
,̃ Bk

( 9) )ℓ
<:
=

ℓ∑
==−ℓ

(
, Bk

( 9) )ℓ
<=
�ℓ
:=
∗(d★′) , (5.32)

where inverse rotation described by the Euler angle d★′ = (0,−o 9 , 0) is performed,

i.e.Rd★′ = R−1
d★
.

Notice from Eqn. (5.30) and Eqn. (5.32) that the computational complexity of

the rotation isO(!3) only. In contrast, if one chooses to rotate curvelets directly, non-

zero rotated curvelet coefficients would span across the domain of = < !, prohibiting

additional optimisation enabled by computing only the non-zero coefficients.

Optimising Wigner transform

It is not possible to directly optimise the fast algorithm to compute the Wigner

transform presented in McEwen et al. (2015a), where fast spin spherical harmonic

transforms are used for intermediate calculations, even with minor modifications,

since the order of summations needs to be altered. Instead, this approach is adapted

by interchanging the order of summations and performing all computations explicitly.

An equi-angular sampling of the rotation group is adopted, and the sample

positions are given by

U0 =
2c0

2" − 1
(0 ∈ {0, 1, . . . , 2" − 2}) , (5.33)

V1 =
c(21 + 1)

2! − 1
(1 ∈ {0, 1, . . . , ! − 1}) , (5.34)

and

W6 =
2c6

2# − 1
(6 ∈ {0, 1, . . . , 2# − 2}) (5.35)

(McEwen et al. 2015a). The forward Wigner transform, optimised for curvelets,

proceeds as follows. First, a Fourier transform is performed over Euler angles U



208

and W:

X<= (V1) =
"−1∑

0=−("−1)

#−1∑
6=−(#−1)

,̃ Bk
( 9) (U0, V1, W6)

(2" − 1) (2# − 1) e−i(<U0+=W6) (5.36)

for 1 ∈ {0, . . . , ! − 1}, |< |, |=| ≤ ℓ. The computational demand can then be

reduced from O(!5) to O(!3 log2 !) using a fast Fourier transform (FFT), where

O(!) = O(") = O(#). Next, a trick considered in McEwen and Wiaux (2011);

McEwen et al. (2015a) is employed, which extends X<= (V1) to the domain [0, 2c)

through the construction of

X<= (V1) =


(−1)<+=X<= (−V1) (1 ∈ {!, ...2! − 2})

X<= (V1) (1 ∈ {0, ...! − 1})
. (5.37)

The computational complexity to calculateX<= (V1) for all the arguments and indices

is O(!3). The Fourier transform of X<= (V1) in V is

X<=<′ =
1

(2! − 1)

!−1∑
1=−(!−1)

X<= (V1) e−i<′V1 . (5.38)

Calculations of X<=<′ for all indices using FFTs have a computational complexity

in O(!3 log2 !). Then, an exact quadrature for integration over V follows as

Y<=<′ = (2c)2
!−1∑

<′′=−(!−1)
X<=<′′ |(<′′ − <′) , (5.39)

where the weights are given by |(<′) =
∫ c

0 dV sin V ei<′V, which can be evaluated

analytically (McEwen and Wiaux 2011). Eqn. (5.39) can be computed directly at

O(!4) or through its dual Fourier representation at O(!3 log2 !), noting that it is

essentially a discrete convolution (see McEwen and Wiaux 2011). With these and

the relation in Eqn. (5.27), the Wigner coefficients are readily computed, which
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gives

(
,̃ Bk

( 9) )ℓ
<ℓ
= i<−ℓ

!−1∑
<′=−(!−1)

Δℓ<′< Δ
ℓ
<′ℓ Y<ℓ<′ (5.40)

(atO(!3)) , whereΔℓ<= ≡ 3ℓ<= (c/2) for |< |, |=| ≤ ℓ. The computation of the forward

transform is dominated by those associated with Eqn. (5.36) or Eqn. (5.38). Thus,

the overall efficiency in the computation scales as O(!3 log2 !).

The inverse Wigner transform, optimised for curvelets, proceeds as follows.

First, the Fourier coefficients of the Wigner coefficients are computed by

X<=<′ = i=−<
2|=| + 1

8c2 Δ
|=|
<′< Δ

|=|
<′=

(
,̃ Bk

( 9) ) |=|
<=
, (5.41)

at O(!3), where Eqn. (5.27) have been exploited . Then, the curvelet coefficients

are computed from the Fourier representation of their Wigner representation by

,̃ Bk
( 9) (U0, V1, W6) =

"−1∑
<=−("−1)

#−1∑
==−(#−1)

!−1∑
<′=−(!−1)

X<=<′

× ei(<U0+<′V1+=W6) (5.42)

for which the computation can be reduced from O(!6) to O(!3 log2 !) by FFTs.

The samples of ,̃ Bk
( 9) computed over V ∈ (c, 2c) are discarded. The overall

inverse transform is dominated by the computation of Eqn. (5.42) and thus scales as

O(!3 log2 !).

Additional optimisations

A multi-resolution algorithm is constructed, exploiting the reduced band-limit

! 9 = _ 9+1 of the curvelets for scales 9 < � − 1 such that the minimal number

of samples on the sphere is used to reconstruct curvelet coefficients for each scale

(see also Leistedt et al. 2013; McEwen et al. 2015b). Consequently, only the finest

curvelet scales at the largest 9 ∈ {� − 1, �} are computed at maximal resolution (cor-

responding to the band-limit of the signal) and thereby dominating the computation.

The overall complexity of computing both forward and inverse wavelet transforms,
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including all scales, is thus O(!3 log2 !). In addition, for real signals, I exploit

their conjugate symmetry which leads to a further reduction of computational and

memory requirements by a factor of two.

5.3.2 Implementation

I have implemented the spherical curvelet transform in the existing s2let code2. The

s2let package, which currently supports scale-discretised scalar and spin axisym-

metric wavelet (Leistedt et al. 2013), directional wavelet (McEwen et al. 2013, 2018,

2015b) and ridgelet (McEwen and Price 2015) transforms, relies on the ssht code3

(McEwen andWiaux 2011) to compute spherical harmonic transforms, the so3 code

(McEwen et al. 2015a)4 to compute Wigner transforms (optimised for curvelets),

and the fftw code5 (Frigo and Johnson 2005) to compute fast Fourier transforms.

Its core algorithms are implemented in C, with also Matlab, Python, IDL and JAVA

interfaces provided, and healpixmaps are also supported.

5.3.3 Numerical experiments

The numerical accuracy and computation time of the scale-discretised curvelet

transform implemented in the s2let code are evaluated as follows. First, random

band-limited test signals are simulated on the sphere through the inverse spherical

harmonic transform of their spherical harmonic coefficients B 5 ℓ< with real and

imaginary parts uniformly distributed in the interval [−1, 1]. A forward curvelet

transform is then performed, followed by an inverse transform to reconstruct the

original signals from their curvelet coefficients. Three repeats of the complete

transform are conducted for each !, where ! = {4, 8, 16, 32, 64, 128}. All numerical

experiments are carried out on a workstation with 2×12 core 1.8 GHz Intel(R)

Xeon(R) processors and 256 GB of RAM (but parallelisation of the code has not

been performed to fully exploit the multi-core architecture).

2http://www.s2let.org
3http://www.spinsht.org
4http://www.sothree.org
5http://www.fftw.org

http://www.s2let.org
http://www.spinsht.org
http://www.sothree.org
http://www.fftw.org
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Fig. 5.4: Numerical accuracy and computation time of the spherical curvelet transform,
averaged over three round-trip transforms of random test signals. Numerical accuracy
attains close to machine precision and is found empirically (shown by the dashed green line)
to scale as O(!2) (shown by the solid red line). Computation time is found empirically
to scale closely to the theoretical prediction of O(!3 log2 !). Plots showing the empirical
results for spherical axisymmetric and directional wavelets can be found in Leistedt et al.
(2013); McEwen et al. (2015b) respectively.
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Numerical accuracy

Numerical accuracy of a round-trip curvelet transform is measured by the maximum

absolute error between the spherical harmonic coefficients of the original test signal

B 5
o
ℓ<

and the recomputed values B 5
r
ℓ<
, i.e. n = maxℓ,<

��
B 5

r
ℓ<
− B 5

o
ℓ<

��. Results of

the numerical accuracy tests, averaged over three random test signals, are plotted in

Fig. 5.4i. Results for a scalar signal are presented, although the accuracy for spin

signals is identical since the spin number is simply a parameter of the transform.

The numerical accuracy of the round-trip transform is close to machine precision

and found empirically to scale as O(!2).

Computation time

Computation time is measured by the round-trip computation time taken to perform

a forward and inverse curvelet transform. Results of the computation time tests,

averaged over three random test signals, are plotted in Fig. 5.4ii. Results for a scalar

signal are presented, although the computation time for signals of different spin

numbers is identical. The computational complexity of the curvelet transform is

found empirically to scale closely to the theoretical prediction of O(!3 log2 !).

5.4 Illustration

In this section, I present a simple application and analyse a spherical image of

a natural scene with scale-discretised curvelets. It is shown that the spherical

curvelet decomposition is sparse, with few large curvelet coefficients and many

small coefficients. The ability of curvelets to represent natural spherical images

efficiently is demonstrated using the light probe image of the Uffizi Gallery in

Florence (Debevec 1998)6, which contains substantial line and curvilinear structures.

For simple illustrative purposes, the image is band-limited to ! = 256 and the image

intensity is clipped and rescaled before the curvelet transform is performed. Plots of

the scaling coefficients and curvelet coefficients are shown in Fig. 5.5. These plots

show clearly that curvelets extract oriented, spatially localised, scale-dependent

features in the image and are highly sensitive to edge-like features.

6http://www.pauldebevec.com/Probes/

http://www.pauldebevec.com/Probes/
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Fig. 5.5: Plots of the scaling coefficients and the curvelet coefficients at various scales and
orientations obtained from analysing the light probe image of the Uffizi Gallery. Notice the
ability of curvelets to extract oriented, spatially localised, scale-dependent features in the
light probe images and their very high sensitivity to line and curvilinear structures.
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Fig. 5.6: Histogram showing the probability of the coefficients of directional wavelets (in
blue) and curvelets (in red) obtained from analysing the light probe image plotted in Fig. 5.5
for scale 9 = 6 against the normalised coefficient magnitudes. The vertical axis shows the
number of the wavelet or curvelet coefficients at each magnitude interval divided by the
total count of the coefficients. The horizontal axis is normalised to unity by the maximum
binned magnitude of the coefficients for comparison purposes. Curvelets yield a sparser
representation than directional wavelets: there are many small curvelet coefficients and only
few large coefficients.

To compare the performance of curvelets and directional wavelets, both trans-

forms are applied with the same parameters and the directional wavelets have az-

imuthal limit set to # = ! for fair comparison with curvelets. The histogram of

curvelet and directional wavelet coefficients for scale 9 = 6 of the Uffizi image are

shown in Fig. 5.6. It is apparent that curvelets yield a sparser representation than

directional wavelets, where not only are there many small curvelet coefficients and

few large coefficients, but the decay in number of coefficients is much faster than that

of directional wavelets. This sparseness of curvelet representations of natural spher-

ical image can be exploited in practical applications such as denoising, inpainting,

and data compression, for example.

5.5 Summary

The second-generation curvelet transform that lives natively on the sphere is con-

structed. This curvelet transform exhibits the typical curvelet parabolic scaling

relation for efficient representation of highly anisotropic signal content. It does not
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exhibit blocking artefacts due to special partitioning, does not rely on ridgelet trans-

forms, and admits exact inversion for signals defined on the sphere. Scale-discretised

curvelets are constructed based on a general spin scale-discretised wavelet frame-

work, which supports both scalar and spin settings. Fast algorithms to compute the

exact forward and inverse curvelet transform are devised and are implemented in

the existing s2let code package, which leverages a novel sampling theorem on the

rotation group whose implementation is further optimised for curvelets. Through

simulations, it is demonstrated that the numerical accuracy of curvelet transforms

is close to machine precision and the computational speed scales as O(!3 log2 !),

compared to a naive scaling ofO(!5). The implementation of the curvelet transform

is made publicly available.

The effectiveness of spherical curvelets for decomposing images with substan-

tial line and curvilinear structures are illustrated using an example natural spherical

image. The curvelet decomposition is found to be sparser than the directional

wavelet analysis in this case. This sparseness can be exploited in applications to

data compression and signal processing (e.g. to mitigate noise or handle incomplete

data-sets). More generally, the curvelets developed in this work may find wide appli-

cations to transform scalar or spin signals acquired on the sphere where anisotropic

and geometric structures in the signal content are of interest. For example, curvelets

could be applied to identify and characterise (granules and) sunspots of the Sun

and to study all-sky polarisation signals, which are crucial in understanding the

structures of large-scale cosmic magnetic fields.

In addition, for data-sets where different signal characteristics are targeted at

different scales, a hybrid use of curvelets and the other type of wavelets, where

curvelets are tiled at some scales and the axisymmetric or directional wavelets

are tiled at others, can be considered. Applications of this hybrid transform to

segment spherical images are presented in Cai et al. (2020), which I have co-

authored. Furthermore, this hybrid transform, or the curvelet transform, may also

be extended to the three-dimensional ball, i.e. solid sphere formed by augmenting

the sphere with radial line (Leistedt andMcEwen 2012;McEwen and Leistedt 2013).
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Such tools could be used to study a diverse range of data-sets defined on the ball,

such as cosmological 21-cm tomographic data-sets, which is an important probe to

understand what happened when the first stars and first black holes formed and how

the Universe transformed from almost featureless to a structure-filled state as seen

today. They are also important for weak gravitational lensing studies, in which the

signal is a spin-2 field on the ball, which can be used to test the nature of dark energy

and dark matter.
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Chapter 6

Conclusions

The overarching theme of this thesis is to probe cosmic magnetism and cosmological

reionisation of hydrogen gas in the Universe on the largest possible scales. These

two thematic sciences have a close tie to the structure formation and evolution in the

cosmos. They are also deeply linked to the fundamental questions of why the present

Universe is filled with brightly-lit ionised plasma threaded by well-organised, large-

scale magnetic fields. Substantial observational efforts targeting the two sciences

are underway, where the current (e.g. LOFAR, GMRT, MWA, HERA, ASKAP and

MeerKAT) and next-generation (e.g. SKA) radio telescopeswould collect awealth of

wide-sky (up to all-sky) polarisation and cosmological 21-cm line data. These data

have an underlying spherical geometry on the celestial sphere and contain complex

physical signals imparted by multiple processes over the cosmological transport of

the radio wave. Extracting the sciences from these data is a frontier challenge.

This thesis contributed to addressing this challenge in two main aspects. It has

developed solid theoretical formalisms and appropriate all-sky methodologies that

enable (i) unambiguous predictions of polarisation and cosmological 21-cm signals

from complex physical models using the cosmological transport of electromagnetic

radiation, and (ii) efficient characterisation of directional, structural features within

all-sky data using a curvelet transform on the sphere. These developments are

threefold, and as follows.

(1) An all-sky cosmological polarised radiative transfer (CPRT) formalism

and numerical implementation have been constructed.

The CPRT formulation provides a reliable theoretical framework that accounts

for the development of magnetic fields over cosmic history, the relevant radiation

processes, and the cosmological effects self-consistently. Its code implementation
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calculates, from first principles, the polarisation of the continuum radio emission as-

sociated with magnetic fields (and electron number density distribution) co-evolving

with the structure formation and evolution of the Universe. This fills the existing

gaps between theoretical and observational studies of cosmicmagnetism. Up to now,

the former has been mostly focused on weak, large-scale magnetic fields generated

in the early Universe, whereas the latter on strong, small-scale magnetic fields in the

late Universe. To this end, the all-sky CPRT framework can be applied to investigate

both.

A collection of demonstrative calculations with applications in different phys-

ical scenarios has been performed, including (i) the tracing of an individual ray

that is influenced by the presence of a radio-bright point source or not, (ii) the

pencil-beam calculations for a bundle of rays that traverses through a simulated

galaxy cluster, and (iii) the computation of an entire polarised sky of a magnetised

universe. It has been shown that the changes of polarisation along the radiation

propagation can be directly tracked. This has an advantage of naturally resolving the

=c-ambiguity issue that concerns the number of 180◦ rotations of the polarisation

angle unknown to an observer. It also enables detailed investigations of depolari-

sation and repolarisation of radiation caused by Faraday effects along the radiation

path. Furthermore, the multiple-ray calculations have demonstrated the viability to

account for post-processed cosmological MHD simulation results in CPRT calcu-

lations, thereby generating maps of the observables (e.g. the 4-Stokes parameters,

polarisation angles, and degree of polarisation) at any arbitrary redshift. Statistical

properties of the observables in these maps can then be determined for drawing

physical interpretations of observations. The data products of CPRT calculations

can also be used as testbeds for assessing the robustness of existing methods, such as

rotation measure fluctuation analyses for probing the structure of large-scale mag-

netic fields. Such work has been presented in On et al. (2019) and summarised in

Appendices D and E. The all-sky CPRT calculations have demonstrated the compu-

tation of unambiguous point-to-point theoretical predictions of the polarisation, in

both the direction along the ray and across the sky plane, with the frequency range
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and sky coverage matching to observations. This is critical to meet the science goals

of current and next-generation radio observations of cosmic magnetism.

(2) A covariant formulation for cosmological 21-cm line radiative transfer

(C21LRT) has been derived and a ray-tracing numerical scheme to compute

the line signals (in intensity and line shape) has been developed.

TheC21LRT formulation derived in Chapter 4 shares the same root as the CPRT

formulation: both are constructed from a covariant general relativistic radiative

transfer (GRRT) formulation derived from the first principles of conservation of

phase-space volume and photon number. It takes full account of (i) the relevant

radiation processes, in particular, the absorption and emission of the hyperfine 21-

cm line arising from the spin flip of electrons in H I gas, (ii) the effect of line

broadening caused by various kinetic and dynamical processes, (iii) the general-

relativistic effects, and (iv) the cosmological effects, along a ray in an expanding and

evolving Universe. As such, the C21LRT formulation provides a solid theoretical

framework to compute the 21-cm line signals arising from both early and late

Universe.

An all-sky C21LRT algorithm that adopts a ray-tracing method and solves the

C21LRT equation along the ray has been devised and implemented. The ability of

the C21LRT code to properly account for various cosmological and astrophysical

effects has been validated by a collection of numerical experiments. The calculations

of the cosmological transfer of the CMB continuum radiation and the transfer of a

generic 21-cm line radiation have shown correct evolution of the radiative properties

(i.e. thermal temperature for the former and the line shifting, broadening and intensity

reduction for the latter). The galactic rotation experiment has given a correct

combination of the line spectra of multiple rays and validated the power of the

C21LRT code in properly handling the line-continuum interaction and the effects on

the line spectrum arising locally from a system with differential velocity and density

structures.

In the demonstrative study, the validated C21LRT code is applied to compute

the cosmological 21-cm spectra with different amounts of line broadening, specified
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by a Doppler parameter 1D. Two cases with 1D = 100 km s−1 and 1D = 1000 km s−1

are considered. It has shown that comoving line spectra at any arbitrary redshift

can be directly generated from C21LRT calculation and the development of spec-

tral signatures can be directly tracked. Moreover, the resulting 21-cm spectra are

characterised by two absorption troughs and an emission crest, which is consistent

with the previous work (e.g. Pritchard and Loeb 2008). Comparison between the

spectra of the two cases with different amounts of line broadening have shown non-

uniform scaling of the signal strength across the three prominent spectral features

arising from different redshifts (thus located at different observed frequencies). The

strength of the low-frequency absorption trough scales with the reciprocal of the

local line broadening, i.e. (1D
√
c)−1. This is a consequence of the effect of line

broadening on the line opacity, and hence, the amplitude of the line peak. Using

such a scaling, the strength of the low-frequency trough in the previous work (e.g.

Pritchard and Loeb 2008) can be recovered with 1D = 1 km s−1. The strengths of

the high-frequency absorption trough and the emission crest are found to be scaled

by factors smaller than (1D
√
c)−1. This is due to the effects of (i) the convolution

of the radiative transfer of the 21-cm line (in the presence of a continuum) with

the differential frequency shifts when the Universe expands, and (ii) the interplay

between absorption and emission of the line and the continuum when the radiation

propagates down the redshift in an expanding Universe. The C21LRT formulation

has properly accounted for these effects, thus providing a reliable means to compute

the theoretical predictions of the tomographic 21-cm line spectra.

(3) A second-generation spin curvelet transform on a sphere has been built.

The newly constructed curvelets are defined natively on the sphere, and do

not suffer from blocking artefacts that the first-generation spherical curvelets had.

They allow for efficient representation of oriented, elongated structures in the data

defined on a sphere, applicable (but not restricted) to the all-sky and wide-sky

observational survey data that may carry spin information (e.g. polarisation). The

curvelet transform is theoretically exact, meaning that the total information content

of signals can be fully captured in analyses and reconstruction. Its algorithm is
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also optimised, making it computationally efficient to handle large data sets. The

efficacy of the curvelet transform to characterise signal contents in positions, scales,

and orientations, and to extract structural information encoded in the data, has been

demonstrated using a natural spherical light-probe image. This also illustrates the

wide applications of the tool outside of astrophysics and cosmology.

With the culmination of observational data and the advent of the world’s most

powerful radio telescope, the SKA, our understanding of the two largely uncharted

fields of cosmic magnetism and cosmological reionisation are set be revolutionised.

Some fundamental questions on the first magnetic fields, and on the first luminous

structures and their impacts on the reionisation of gas, which previously could not be

studied (due to insufficient sensitivities and resolutions), can finally be addressed,

if scientific information encoded in the data can be accurately extracted and cor-

rectly understood. The covariant cosmological radiative transfer and spin spherical

curvelet formalisms presented in this thesis establish a solid theoretical platform

upon which theories and models of cosmic magnetism or cosmological reionisation

can intersect and be meaningfully compared with observations. Much exciting re-

search can be built upon and branched out from these developments for the physical

interpretation of astrophysical and cosmological observations to study fundamental

physics and beyond.

This thesis research represents one of the many research efforts aiming to

uncover the astrophysical and cosmological information accessible to us from ob-

serving the Universe, in particular, using “light” (electromagnetic radiation) to probe

the invisible magnetic fields and the impact of the first lights of the Universe (the

first stars, the first galaxies, and the first quasars) on their surroundings. As a final

remark, which echos the preface of this thesis, two questions are posed. To what

extent will our missing knowledge about the evolution of magnetic fields and the

proceeding of the cosmological reionisation change our views of the Universe? Are

we closing in on the answers of our cosmic origins, or are we opening up more

unexplored new territories? These are still open questions, but knowledge gathered

in our cosmic exploration will illuminate the way.
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Appendix A

Adopted Coordinate Systems

A right-handed coordinate system is adopted, as depicted in Fig. A.1, in this work,

following Huang and Shcherbakov (2011). The magnetic field B is directed along

the Ĩ-axis, making an angle \ clockwise to the direction of the propagation of

the radiation k. An orthonormal (G, H, I) basis is defined such that z ‖ k, and

x = � (B × k), where � is a scalar that can be positive or negative, and x ‖ x̃, and

y = (k × x). Here x is perpendicular to the plane of (B,k), and B, k, and y are

coplanar. The electric field of an electromagnetic wave propagating in the direction

k ‖ z oscillates in the (x, y)-plane. By such a choice of configuration (or by the

choice of y ‖ ỹ in the systems defined in Sazonov (1969); Pacholczyk (1977)), the

absorption coefficient Da, conversion coefficient 6a and emission coefficient n*,a are

zeros.

The transfer matrices are often derived by adopting the “magnetic-field" system,

i.e. first in the (G̃, H̃, Ĩ) basis, and then projecting them onto (G, H) for k ‖ z, and

cos \ = (k ·B)/(|k| |B |) (see e.g. Sazonov 1969; Pacholczyk 1970, 1977; Jones and

H̃

G̃

Ĩ

B

k

\

I

H

1

G

0
j

j

Fig. A.1: The coordinate systems and the geometry of the magnetic field adopted in this
work.
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O’Dell 1977a; Huang and Shcherbakov 2011). The transformation between the

coordinate systems 4̃8 = (G̃, H̃, Ĩ) and 4 9 = (G, H, I) is given by 4 9 = 4̃8"8 9 , where

"8 9 =

©­­­­«
1 0 0

0 cos \ sin \

0 − sin \ cos \

ª®®®®¬
, (A.1)

i.e.

©­­­­«
G

H

I

ª®®®®¬
=

©­­­­«
1 0 0

0 cos \ − sin \

0 sin \ cos \

ª®®®®¬
©­­­­«
G̃

H̃

Ĩ

ª®®®®¬
. (A.2)

It follows that the rotation of vectors is given by �8 = ("T)8 9 �̃ 9 , and the rotation

of tensors is given by f8 9 = ("T)8: f̃:< (")< 9 (Huang and Shcherbakov 2011). In

future studies where observational data are confronted with theoretical predictions

obtained by CPRT calculations, it is also useful to introduce the “observer’s" (or

polarimeter’s) system (a, b), which is defined by rotating the (x, y)-plane about

the k-direction. The transformation is between the local system (given by the local

projection of the magnetic field) in the comoving frame and the frame in which

polarimetric data are measured. It invokes the use of rotational matrix R(j), which

follows the definition given in Eqns. (50) and (51) in Huang and Shcherbakov (2011),

where the angle j relates a and b to the magnetic field components perpendicular to

k, i.e. B⊥ = B−k(k·B)/:2, by sin j = (a·B⊥)/|B⊥ | and cos j = −(b·B⊥)/|B⊥ |

respectively.
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Appendix B

Polarisation and Magnetic Field Conventions

Stokes parameters �a, &a,and*a are defined unambiguously once the (G, H) coordi-

nate system is specified. The different definitions of polarisation angle adopted in

the cosmic microwave background community and the International Astronomical

Union (IAU) can be reconciled by a sign change of *a. However, interpretation

of the sign of +a (and consequently the signs for the corresponding transfer coef-

ficients n+,a, {a and ℎa) in the literature is often ambiguous. This is because the

sign of +a depends not only on the definition of the senses of circular polarisation

(which also depends on the handedness of the coordinate systems used) and the

definition of +a, but also on the choice of sign in the time-dependent description

of the electromagnetic wave, as well as the definition of the relative phase between

the G and H-components of the electric vector of the wave. Much variation in these

dependences exist in the literature, or sometimes this information is inexplicitly

assumed or left unstated. Another source of variation comes from the choice of the

attachment of the sense of circular polarisation to the helicity of the photon. Any

confusion and ambiguity can easily cause a slip in the interpretation of +a.

Here, the circular polarisation sense defined by the Institute of Electrical and

Electronics Engineers (IEEE) (IEEE 1998) is first described. Such a convention

is commonly adopted by radio astronomers (but opposite to classical physicists

and optical astronomers’ common practice1), and the International Astronomical

Union (IAU) convention of Stokes +a (Reid 2007). Then, the intricacies to test

the conformity to the IEEE/IAU polarisation convention are discussed. Finally, I

remark on the magnetic field direction of the system and state explicitly the Stokes

1The right-handed circular polarisation convention by the IEEE corresponds to the left-handed circular
polarisation convention in the classical sense, i.e. IEEE-RCP = classical-LCP.
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H (East)

I (Observer)

G (North)
E

i

Fig. B.1: A right-handed circularly polarised wave, as defined by the IEEE, in the adopted
right-handed coordinate system (cf. Fig. 1 in van Straten et al. (2010) with the angle and
electric field notations made consistent to the notations used in this work). The electric
vector rotates counter-clockwise as seen by the observer, i.e. at a fixed position as time
advances (note that at fixed time, the electric vector along the line-of-sight rotates clockwise
i.e. forms a left-handed screw in space).

+ convention used in this thesis.

B.1 IEEE/IAU polarisation Convention

The exact quote of the IEEE (1998)’s definition2 of a right-handed polarised wave

reads “a circularly or an elliptically polarised electromagnetic wave for which the

electric field vector, when viewed with the wave approaching the observer, rotates

counter-clockwise in space". As pointed out by Hamaker and Bregman (1996), such

a definition stipulates that the position angle i of the electric vector of the wave

at any point increases with time, implying that the H-component of the field, EH,

to lag behind the G-component, EG . In other words, the electric field traces out a

counter-clockwise helix (right-hand screw) in time at a fixed position, whereas in

space at any instant in time, it forms a clock-wise helix (left-hand screw) (see e.g.

Rochford 2001). The IAU endorses the sense of circular polarisation defined by

IEEE and defines +a = (RCP − LCP), i.e.+a is positive for RCP (Reid 2007). The

G- and H- axes of a right-hand triad align with the North and astronomical East, and

the I- axis points towards the observer following the standard IAU convention.

2The same definition was first introduced in 1942 when the IEEE was still known as the Institute of Radio
Engineers (IRE).
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B.2 Conformity to the IEEE/IAU Convention

It is important to note that even when the Stokes parameters are uniquely defined

when combined the IEEE/IAU definitionwith the standard formulae for �a = 〈|�G |2+

|�H |2〉, &a = 〈|�G |2 − |�H |2〉, and *a = 2〈|�G | |�H | cos X〉, two similar but distinct

mathematical representations are allowed for the same physics of the problem, as is

shown by Hamaker and Bregman (1996). One can choose3 of the sign of the time

dependence of the electromagnetic wave, i.e. e+ilC or e−ilC , for l > 0. Both choices

are equally valid, but once the sign is chosen for

E (I, C) = E0 e±i(lC−:I) =
©­«
�G (I, C)

�H (I, C)
ª®¬ =

©­«
�G0 e±i(lC−:I+qG)

�H0 e±i(lC−:I+qH)
ª®¬ , (B.1)

the following quantities must have the sign adjustments such thatEH lags behindEG

for a (unit amplitude) RCP wave:

ERCP =
1
√

2
©­«

1

∓i
ª®¬ , (B.2)

(B.3)

and

+a = 2 〈|�G | |�H | sin X〉 (B.4)

= ∓ i 〈�G�∗H − �H�∗G 〉 (B.5)

Hamaker and Bregman (1996). This ensures a positive+ for the RCP, i.e. IEEE/IAU

compliant. The sign adjustment in Eqn. (B.5) is equivalent to defining the sign of

X = ±(qH−qG) in Eqn. (B.4) for X ∈ (0, c), where time delays correspond to negative

(positive) values of the phases qG and qH for e±i(lC−:I) according to Eqn. (B.1). It is

3Another choice is related to the attachment of the RCP and LCP to positive and negative helicity (see also
Appendix III in Simmons and Guttmann (1970) for a complete table of different conventions of RCP, including
those that do not comply to the IEEE/IAU convention).
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apparent that a differing convention in any of the above would lead to a sign reversal.

An unambiguous interpretation of the circular polarisation from +a will require a

clear specification of the handedness of the coordinate systems, the convention of

circular polarisation, and the definition of Stokes +a, as well as a properly chosen

mathematical representation of the travelling wave (radiation).

B.3 Remark on the B-field Convention

Given the coordinate systems and the geometry of the problem presented in Fig. A.1,

let’s consider a simple case where a uniformmagnetic fieldB aligns with k such that

\ = 0. An electron would then precess aboutB in the (x̃, ỹ)-plane, moving counter-

clockwise as viewed along k ‖ B. The electric vector of the electromagnetic wave

follows the electron motion, thus also rotating counter-clockwise as viewed by the

observer. This results in IEEE-RCP, and according to the IAU convention, +a > 0.

In this work, I adopt the conventions conforming to the IEEE/IAU standard

and stick to the magnetic field convention where the magnetic field is positive when

pointing towards the observer4. The same coordinate systems as in Huang and

Shcherbakov (2011) is adopted and used, as the main reference paper, to check

against the signs of the Stokes parameters and their corresponding transfer coeffi-

cients. The transfer coefficients, therefore, all have positive signs in their expressions.

4This is opposite to the astronomical convention that traditionally defines magnetic field direction as positive
when pointing away from the observer (i.e. \ = 0 corresponds to a negative field while \ = c corresponds to a
positive field).
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Appendix C

Transfer Coefficients

In this Appendix, the transfer coefficients for both thermal bremsstrahlung and non-

thermal synchrotron radiation processes are presented. The non-thermal relativistic

electrons gyrating around magnetic field lines have a power-law energy spectrum.

The expressions given in Pacholczyk (1977) and Jones and O’Dell (1977a) are

adopted respectively, but the sign of the circular polarisation described by Stokes

+ are made to be consistent and compliant to the IEEE/IAU convention, given the

coordinate system explicitly shown in Appendix A. The emission coefficients have

units of erg s−1 cm−3 Hz−1 str−1 and the absorption and Faraday coefficients have

units of cm−1.

C.1 Thermal Bremsstrahlung Radiation

Transfer coefficients of thermal bremsstrahlung have been presented in Pacholczyk

(1977); Meggitt andWickramasinghe (1982); Wickramasinghe and Meggitt (1985);

Rybicki and Lightman (1986). In this work, I adopt the expressions given in

Pacholczyk (1977) and make certain changes such that the set of coefficients would

follow the same conventions of polarisation that have been specified in Sec. 1.5 and

Appendix B.

For a magnetised thermal plasma, the coefficients of Faraday rotation and

Faraday conversion are respectively,

5th =

(
l2

p/2 lB

)
cos \(

l2/l2
B
)
− 1

; (C.1)

ℎth =

(
l2

p/2 lB

)
sin2 \

2
(
l3/l3

B − l/lB
) (C.2)
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(Pacholczyk 1977), where l (= 2ca) is the angular frequency of the radiation,

lp = (4c=e,th4
2/<e)1/2 is the plasma frequency, lB = (4�/<e2) is the electron

gyrofrequency, and \ is the angle between the radiation propagation direction and

the magnetic field vector. The absorption coefficients of the thermal bremsstrahlung

component are given by

^th =
l2

p
(
2l4 + 2l2l2

B − 3l2l2
B sin2 \ + l4

B sin2 \
)

2 2 l2 (
l2 − l2

B
)2 ac ; (C.3)

@th =
l2

p l
2
B sin2 \

(
3l2 − l2

B
)

2 2 l2 (
l2 − l2

B
)2 ac ; (C.4)

{th =
2l2

p llB cos \

2
(
l2 − l2

B
)2 ac (C.5)

(Pacholczyk 1977), with the collisional frequency

ac =
4
√

2c44=e
3√<e (:B)e)3/2

lnΛ ≈ 3.64 =e )
−3/2
e lnΛ . (C.6)

Here, :B is the Boltzmann constant and )e is the temperature of the electrons in

thermal equilibrium, and the Coulomb logarithm factor is given by

Λ =


(

2
1.781

)5/2 (
:B)e
<e

)1/2 (
:B)e
42l

)
()e ≤ 3.16 × 105 K)

8c:B)e
1.781ℎl ()e > 3.16 × 105 K)

, (C.7)

for l � lp (see e.g. Lang 1974). The emission coefficients in �, & and + can be

computed via the Kirchoff’s law:

n�,th = ^th �l , n&,th = @th �l , and n+,th = {th �l , (C.8)

where the Planck function at the low frequencies is the Rayleigh-Jeans intensity,

i.e. �l = :B)el
2/(2c222).

It is interesting to note that both the frequency dependence and the dependence

on the magnetic field are different for Faraday rotation and Faraday conversion. The

strength of the Faraday rotation effect is proportional to a−2 =e,th |B‖ | XB, and the
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strength of Faraday conversion is proportional to a−3 =e,th |B⊥ |2XB, where |B‖ | =

|B | cos \, |B⊥ | = |B | sin \, and XB is the photon propagation length.

Another remark concerns the use of rotation measure (RM) in the literature for

quantifying the strength of Faraday rotation. RM is defined as R ≡ Δi 22/a2, where

i = 0.5 arctan(*/&), and the formula

R(B) = 0.812
∫ B

B0

dB′

pc
=4 (B′)
cm−3

|B‖ (B′) |
`G

rad m−2 (C.9)

is widely used in RM analyses. This formula can be derived directly from the

polarised radiative transfer equation (Eqn. 2.4), under the assumptions that the

effects of emission, absorption, Faraday conversion and contribution from non-

thermal electrons are negligible, see Appendix D and On et al. (2019) for details.

In a realistic situation, however, these assumptions do not hold. The magnitudes of

& and * of the observed polarised light are not solely dictated by Faraday rotation

process. An accurate inference of magnetic field properties from the polarisation

signatures of observed light, therefore, demands a full polarised radiative transfer

treatment.

C.2 Non-thermal Synchrotron Radiation

The expressions of the transfer coefficients for cosmic synchrotron sources from

Jones and O’Dell (1977a) are adopted, where sign changes for the transfer coeffi-

cients at +a are appropriately adopted to keep a self-consistent polarisation conven-

tion defined explicitly in this thesis. For relativistic electrons following a power-law

energy distribution with an index ?,

d= = [=WW?]W−?Θ(W − W8)6(Ψ) dW dΩΨ , (C.10)

whereΘ(W−W8) is the step function, W8 is the low-energy cutoff of electrons, and 6(Ψ)

is the pitch-angle distribution, normalised to
∫

dΩΨ 6(Ψ) = 1. The corresponding
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electron number density is

=W =

∫ ∞

W8

dW [=WW?]W−? =
[=WW?] W−(?−1)

8

? − 1
(for ? > 1) . (C.11)

The normalisation factor [=WW?] and the index ? are related to the spectral index of

the radiation by U = (?−1)/2. The transfer coefficients for non-thermal synchrotron

radiation are

5nt = 5U^⊥
(l�⊥
l

)2
(ln W8) W−2(U+1)

8
cot \

×
[
1 + U + 2

2U + 3
d (ln 6(\))

d (ln (sin \))

]
; (C.12)

ℎnt = ℎU^⊥
(l�⊥
l

)3
W
−(2U−1)
8

[
1 − (l8/l)U−1/2

U − 1/2

]
; (C.13)

^nt = ^U^⊥
(l�⊥
l

)U+5/2
; (C.14)

@nt = @U^⊥
(l�⊥
l

)U+5/2
; (C.15)

{nt = {U^⊥
(l�⊥
l

)U+3
cot \

[
1 + 1

2U + 3
d (ln 6(\))

d (ln (sin \))

]
; (C.16)

n�,nt = n �U n⊥
(l�⊥
l

)U
; (C.17)

n&,nt = n
&
U n⊥

(l�⊥
l

)U
; (C.18)

n+,nt = n +U n⊥
(l�⊥
l

)U+1/2
cot \

[
1 + 1

2U + 3
d (ln 6(\))

d (ln (sin \))

]
, (C.19)

for U > 1/2 (Jones and O’Dell 1977a), where ^⊥ = (2cAe2) l −1
�⊥
[4c6(\)] [=WW?],

n⊥ = (<e2
2) (Ae/2c2) l�⊥ [4c6(\)] [=WW?], Ae = 42/<e2

2, l�⊥ = lB sin \, and

l8 = W
2
8
l�⊥ (which is the fiducial frequency). The dimensionless functions in the
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transfer coefficients are
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(U + 3/2)
U + 1

; (C.20)

ℎU = 1 ; (C.21)
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n
&
U =
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�
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Γ

(
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12
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. (C.27)

The transfer coefficients are derived from a nearly isotropic dielectric tensor, ap-

propriate for an astrophysical plasma with low electron number densities and weak

magnetic fields, for which l > l8 and both l and l8 are above the gyro-frequency

lB. The condition W2
8
> cot2 \ also has to be satisfied. In addition, dielectric

suppression is assumed to be negligible. This assumption generally holds for astro-

physical media (see Jones et al. 1974; Melrose and McPhedran 1991, for details). In

this work, isotropic electron distribution is assumed, so 6(\) = 1/4c. Comparing

to the expression for the thermal bremsstrahlung process in the high-frequency limit

(l � lB), the non-thermal synchrotron Faraday rotation coefficient has an extra

factor

Z (?, W8) =
(? − 1) (? + 2)
(? + 1)

( ln Wi

W2
i

)
, (C.28)

implying that Faraday rotationweakens with increasing electron energy (seeMelrose

1997; Huang and Shcherbakov 2011).
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Appendix D

Derivation of Rotation Measure Formula

from CPRT

This Appendix shows how the thewidely-used formula in RManalysis ofmagnetised

astrophysical media can be derived from the general covariant CPRT equation. The

derivation can also be found in On et al. (2019).

In a local frame, the covariant CPRT equation in Eqn. (2.24) reduces to the

standard polarised radiative transfer (PRT) equation, Eqn. (2.4):

d
dB
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. (D.1)

In the situations where

1. absorption and emission are absent

i.e. (^ = @ = D = { = 0) and ([ n� , n& , n* , n+ ] = 0), which imposes d�/dB = 0

and

d
dB
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+
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+


, (D.2)

2. circular polarisation is insignificant (+ → 0), and

3. inter-conversion between linear and circular polarisation is negligible

(6 → 0, ℎ→ 0),
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one may consider only the two linearly polarised Stokes components (& and *) in

the PRT calculation. In that case, the PRT equation is simplified to

d
dB


&

*

 = −
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0 5

− 5 0



&

*

 , (D.3)

leaving the Faraday rotation coefficient 5 as the sole parameter. It follows that the

change in the linear polarisation angle along the line-of-sight is

di
dB

=
1
2

(
1

*2 +&2

) (
&

d*
dB
−* d&

dB

)
=
5

2
. (D.4)

An astrophysical plasma may contain both thermal and non-thermal electrons.

The expressions for Faraday rotation due to thermal electrons and non-thermal

electrons are given in Eqn. (C.1) and Eqn. (C.13) in Appendix C, respectively. Note

that the polarised radiative transfer equations (D.1), (D.2) and (D.3) are linear, thus

the contributions to the Faraday rotation coefficient by a collection of thermal and

non-thermal electrons are additive: i.e. 5 = 5th + 5nt.

In the high-frequency limit (i.e. l � lB), the thermal Faraday rotation

coefficient, Eqn. (C.1), can be expressed as,

5th =
1
π

(
43

<2
e2

4

)
=e,th �‖ _

2 , (D.5)

and the corresponding expression for non-thermal Faraday rotation, Eqn. (C.13), is

5nt =
1
π

(
43

<2
e2

4

)
Z (?, Wi) =e,nt �‖ _

2 , (D.6)

assuming an isotropic distribution of non-thermal electrons with a power-law energy

spectrum of index ? (Jones and O’Dell 1977a). Provided that neither =e,nt nor

=e,th correlates or anti-correlates significantly with �‖ , the relative strength of their
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contributions to the Faraday rotation is1.

5nt
5th
≈ Z (?, Wi)

(
=e,nt

=e,th

)
, (D.7)

where the factor

Z (?, Wi) =
(? − 1) (? + 2)
(? + 1)

(
ln Wi

Wi2

)
(for ? > 1) . (D.8)

In a plasma consisting of only thermal electrons in a sufficiently weak magnetic

field, where lB � l, a direct integration of equation (D.4) with 5 = 5th yields

i(B) = i0 +
2π43

<2
e (2 l)2

∫ B

B0

dB′ =e,th(B′) �‖ (B′) . (D.9)

Recall that rotation measure (RM) is defined as

R = (Δi)_−2 = (i − i0) _−2 . (D.10)

Hence, for a magnetised plasma consisting of both thermal and non-thermal electron

populations, the RM for radiation traversing through such a medium between an

interval B0 and B is

R(B) = 43

2π<2
e2

4

∫ B

B0

dB′ =e,tot(B′) Θ(B′) �‖ (B′) , (D.11)

where =e,tot is the total electron number density, andΘ(B) = 1−Fnt(B) [1−Z (?, Wi)]
��
B

is the weighting factor of =e,tot contributing to the total Faraday rotation effect, with

Fnt(B) the local fraction of non-thermal electrons.

If only thermal electrons are present, Fnt(B) = 0 such thatΘ(B) = 1. Eqn. (D.11)

1A similar relation was given in Jones and O’Dell (1977a) for the relative contributions of relativistic and
thermal electrons to the Faraday rotation. Their relation is expressed in terms of the spectral index U of the
optically thin power-law synchrotron spectrum. The relation (D.7) here is expressed in terms of the power-
law index ? of the electron energy distribution, which is intrinsic to the magneto-ionic medium. Note that
U = (? − 1)/2.
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then reduces to

R(B) = 0.812
∫ B

B0

dB′

pc

(
=e,th(B′)

cm−3

) (
�‖ (B′)
`G

)
radm−2 , (D.12)

hence recovering the widely-used formula in RM analysis of magnetised astrophys-

ical media (see e.g. Carilli and Taylor 2002).
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Appendix E

Main Findings of On et al. (2019)

On et al. (2019) conducted a study on the radiative transfer theory behind the analysis

of large-scale magnetic field using rotation measures (RM) and its fluctuations

(RMF) in the observed polarised radio emissions, testing the validity of theRM/RMF

analysis in various astrophysical situations. Here, threemain aspects of their findings

are summarised.

E.1 Theoretical Foundation of RMF Analysis as a Diagnostics of

the Structure of Large-scale Magnetic Fields

Characteristic length-scales for the variation of large-scale magnetic fields in diffuse

astrophysical media are often inferred from the statistical properties of polarised

radiation. One particular technique is using the correlation lengths of the observed

RM. In most of the observational and numerical studies, the correlation length of the

magnetic fields inferred from the standard deviation of RM, fR , use the following

expression (see e.g. Sokoloff et al. 1998; Blasi et al. 1999; Govoni and Feretti 2004;

Subramanian et al. 2006; Cho and Ryu 2009; Dolag et al. 2011; Sur 2019):

fR =
43

2π<2
e2

4

√
!

ΔB
ΔB =e,totΘ

[〈
�‖

2〉
B

]1/2
, (E.1)

where ΔB is the propagation path interval segments of equal length, and =eΘ is the

mean value of (=e,totΘ). The other symbols have the same meanings as given in
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Appendix D. The alternative expression used in some of the studies is

fR =
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2π<2
e2

4

√
!

ΔB
ΔB =e,th �‖rms
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√
!
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(
ΔB
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) (
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rad m−2 . (E.2)

The two expressions above can be derived from radiative transfer theory, assum-

ing the change in the magnetic field and the plasma density along the line-of-sight

can be modelled by an unbiased random walk process. On et al. (2019) have shown

that there are additional conditions that have to be satisfied in order to validate the

above expressions for the analysis of large-scale magnetic fields in astrophysical

systems. These conditions are: (i) Faraday rotation is caused by the variations in

the magnetic fields with field strength distributions (e.g. uniform or Gaussian dis-

tributed strengths, where the first moment of their statistics are well defined); (ii) the

magnetic fields have unbiased random orientations such that �‖ have a symmetric

probability distribution, i.e. Pr(�‖) = Pr(−�‖); (iii) there exists a characteristic elec-

tron number density with a well-defined mean value; and (iv) there is no correlation

between the electron number density and the magnetic fields locally or globally.

Eqn. (E.2) further assumes the presence of only thermal electrons and an electron

contribution weighting factor Θ = 1.

Condition (iii) breaks down for astrophysical environments with electron num-

ber densities that have a fractal or a log-normal spatial distribution. In reality,

electron number density and magnetic field strength are often related. Hence, con-

dition (iv) does not usually hold.

Note that the fluctuations of polarisation properties along individual rays are not

directly observable. Observations map the polarised sky over the celestial sphere,

but the polarisation signatures that are obtained are the collection of the end-point

results of the path-integrated polarised rays. This is compounded by the fact that the

spatial correlations of electron number density or magnetic fields are not the same

in the line-of-sight longitudinal direction and in the directions across sky plane.
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This can be understood as follows. Without losing generality, consider that

the observable, G ∈ {&, *, +, Δi, or R }, has two independent orthogonal com-

ponents, whose fluctuations are designated by fG |⊥ and fG |‖ , corresponding to

perpendicular and parallel with respect to to the line-of-sight (which is specified

by the radiation propagation unit vector k̂). Obviously, there is no guarantee that

fG |⊥ = fG |‖ , in a general situation. Thus, we cannot simply take the value fR |⊥
derived from the polarisation data on the sky-plane to infer the structure of cos-

mic magnetic fields, without clarifying the physical contexts of the model and its

assumptions.

The polarisation observed at a location on the sky plane is an outcome of a

radiative transfer process operating along the line-of-sight. It is determined by the

magneto-ionic properties of the line-of-sight plasmas and the astrophysical systems.

It is also determined by the large-scale (&Mpc) magnetic fields, which evolve with

the cosmological structures (see e.g. Ryu et al. 2008; Cho and Ryu 2009; Ryu

et al. 2012; Barnes et al. 2012, 2018; Marinacci et al. 2015; Katz et al. 2019). For

cosmological-scale structures, the transfer of radiation is not only a propagation in

space but also a propagation from a distant past to the present.

The statistical properties of the observed polarisation signatures across a sky-

plane, therefore, depend on the spatial variations of themagneto-ionic plasma proper-

ties at different cosmological epochs over the transport of radiation, and the temporal

variations of the magneto-ionic plasma properties over cosmological evolution. The

convolution of these two factors determines (i) the variations of the observable vari-

ables along the ray as it propagates (i.e. in the direction along k̂, denoted by ‖) and

(ii) the variations of the observable variables among the collection of rays reaching

the sky plane (i.e. in directions ⊥ to k̂). There is no guarantee that the fluctuations

in (i) and in (ii) are statistically identical.

In the astrophysical settings where cosmological effects can be neglected, the

time evolution of the magnetic field is insignificant. However, there are also com-

plex and subtle issues in the interpretation of what RMF means for the observed

astrophysical systems. The fluctuations in the the local polarisation along a ray are
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jointly determined by the fluctuations in the energy distribution as well as number

density of the electrons, and the fluctuations of the parallel magnetic field com-

ponent, i.e. |B‖ | = |B | cos(k̂ · B), where the exact magnitude and orientation of

the magnetic field is actually undetermined in observation. If the rays reaching

the celestial sky are independent, the variations in the polarisation that we observe,

such as the RM fluctuations, are due to the convolution of the fluctuations in |B‖ |

and =e. Even if the electron number density and its energy spectrum are uniform

in the entire astrophysical system of interest, there are ambiguities when inferring

the structure of the magnetic field in the system. These ambiguities arise from the

degeneracy in the fluctuations in the field strength and the field orientation, because

of the vectorial nature of the local magnetic fieldB.

Furthermore, even without degeneracy between the signals from density and

field fluctuations, radiative processes such as absorption, emission, and Faraday

conversion may confuse and ambiguate the interpretation of the observed RM.

Moreover, in addition to the thermal electrons, non-thermal electrons can also

contribute to the Faraday rotation and conversion processes.

E.2 Quantitative Assessment of the Robustness of the RMF

Methods in Determining the Magnetic-field Correlation

Lengths

Numerical experiments are conducted to assess when (and the degree to which)

the widely-used formula Eqn. (E.2) is valid, and when cautions are needed in the

interpretations of the resulting fR statistics. RM maps are generated from the

simulated cubes of Mpc side-length with thermal electron number density (d) and

magnetic field strength (b) following either a uniform (U), Gaussian (G), fractal

(F) and log-normal (L) distribution. Another set of calculations are performed in a

fractal medium with two density phases, mimicking the typical environment in the

ICM/ISM (referred to as cloudy models). RMF statistics (using standard deviation

in RM) are then calculated in longitudinal direction (‖-direction), eR , and across

sky-transverse direction (⊥-direction), fR , by performing PRT calculations under
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the restrictive conditions that match to the underlying assumptions of Eqn. (E.2). As

PRT calculations account for all the geometrical and transfer effects, they provide

accurate results against which the sky-transverse standard deviations obtained from

Eqn. (E.2) can be compared.

The main results of the numerical experiments are summarised as follows:

(1) fR depend on both the electron number density and magnetic field fluctuations.

It is difficult to disentangle the signals from these two types of fluctuations based on

the value of fR itself.

(2) fR cannot distinguish between a range of different clumpy (or smooth) config-

urations of density and magnetic fields and are unable to tell the cloudy features

apart. Density fluctuations could, therefore, confuse the correlation length of the

magnetic fields inferred from the conventional RMF analyses.

(3) fR < eR , by tens of percents or by factors of a few (if there is unrecognised

cloudiness). Hence, different statistical indicators can potentially mislead the phys-

ical interpretations.

(4) The fR statistics obtained from the widely-used RMF formula would be inade-

quate for the interpretation of the magnetic field properties when one or some of the

following criteria is not met: (i) cosmic medium with an ill-defined characteristic

density, e.g. in cases of log-normal distributed and fractal-like density structures,

(ii) magnetic field orientation are not random along the line-of-sight, (iii) magnetic

field strengths follows a non-uniform or non-Gaussian distribution (i.e. losing the

symmetry in its probability distribution), (iv) the field is non-isotropic, and (v) the

density and the magnetic field are correlated.

E.3 Some Guidelines for Magnetic Field Inference from the Po-

larisation Observations

There are separate correlation lengths, ℓ‖ and ℓ⊥, for each plasma quantity, e.g. the

electron number density, =e, and the magnetic field,B, when a ray (line-of-sight) is

specified. Inference of ℓ‖ of the magneto-ionic properties of a medium (or media)

along the line-of-sight from the observed polarisation signatures in the traverse
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sky-plane requires proper radiative transfer considerations.

It is important to distinguish between the Faraday rotation, as well as Faraday

conversion, contributed by multiple sources along the line-of-sight. It is also impor-

tant to take into consideration of the propagation effects in multi-phase media along

the line-of-sight. To properly interpret the observed polarised sky (or RM/RMF

statistics) and to identify the polarisation signatures of large-scale magnetic fields

which co-evolved with the cosmological structures, it is also essential to account

for all the magneto-ionic plasma effects throughout the evolutionary history of the

Universe. For the analysis of cosmological-scale magnetic fields, the effects due

to cosmic expansion, such as shifting of wavelength and stretching of wavebands,

in addition to the astrophysical effects, such as structural evolution of the Universe,

must be properly and simultaneously accounted for. RM/RMF analysis is generally

inadequate for an accurate extraction of information from the observed polarisation

signals imprinted by the large-scale cosmological magnetic fields. In this situation,

a proper treatment with covariant cosmological polarised radiative transfer becomes

essential.

A polarised radiative transfer treatment is also essential in situations where

depolarisation effects are not negligible. Depolarisation due to differential Faraday

rotation (see e.g. Sokoloff et al. 1998; Beck 1999; Shukurov and Berkhuijsen 2003;

Fletcher and Shukurov 2006) in an emissive, Faraday-rotatingmedium is particularly

important for very extended sources. An example of such sources is the emitting

filaments in the cosmic web. Obviously, models using a simple Faraday screen

with a bright source behind a (non-emitting) Faraday-rotating medium are unable

to capture the essence of magnetism of an extended system. For the analysis of

cosmological scale structures, such as the cosmic web filaments, a proper covariant

polarised radiative transfer calculation is necessary to determine the line-of-sight

depolarisation effects from all processes operating at different redshifts.

The power spectrum of the observed polarised intensitymay be contaminated by

emissions from the medium and the embedded sources along the line-of-sight. This

will cause an apparent higher power in the fluctuations at the small scales. Special
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attention is required so to discern the signals due to spatially separated sources

from those truly imprinted by the structures of magnetic fields. The observed

power spectrum is the sum of the contributions from all redshifts. While the local

power spectrum at a particular redshift, %(:) |I, generally is not contaminated by

the contributions from the higher redshifts, different components at higher : can be

picked up at aobs observationally. When interpreting the observed power spectrum,

one must keep in mind the possible complications caused by the convolution of the

contributions from different cosmological redshifts. A proper covariant polarised

radiative transfer treatment will provide a means to resolve some of this complex

and subtle issues.
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Appendix F

Calculation of the Total Electron Number

Density at the Present Epoch

The Universe is neutral as a whole and the most common atoms in it are hydrogen

and helium. The simplification that =e,tot ≈ =p,tot = =p,He + =p,H is, therefore,

adopted. Here, “p" stands for proton, “H" for hydrogen and “He" for helium,

=p,He ≈ dHe/<He, and =p,H ≈ dH/<H. By approximating the density of hydrogen

taking up 75 % of the density of baryons (i.e. dH = 3db/4), and the density of

helium taking up the remainder, it gives =e = 7db/8<p. The value of db,0 can be

calculated from Ωb,0 = db,0/dcrit, with Ωb,0ℎ
2 = 0.02230 (Planck Collaboration

XIII 2016), and dcrit = 3�0/(8c�) = 1.87882 × 10−29ℎ2 g cm−3. This gives

=e,0 = 2.1918 × 10−7 cm−3.
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Appendix G

Remarks on Finding an Appropriate Scale

Length

Table G.1 summarises the numerical values of the absorption, emission, Faraday

rotation, and Faraday conversion coefficients used in the calculations presented

in Sec. 3.1.3. The very different conditions in the cosmic media give rise to a

wide range of values for the absorption, emission, Faraday rotation , and Faraday

conversion coefficients. As these coefficients span many orders of magnitude, the

CPRT equation is stiff. It is, therefore, essential and important to test the capability

of the equation solver and the stability of the numerical solution (see Sec. 3.1.3).

Finding an appropriate scale length is crucial to overcoming the stiffness issue.

In the work presented in Chapter 3, the very small order of magnitude of the

transfer coefficients computed using parameters typical to an IGM and an ICM

at aobs = 1.42 GHz suggests a scale length of a few Mpc when determining the

I-sampling scheme.

In addition, note that all the CPRT calculations for the situations discussed in

this work are optically thin (i.e. g � 1). While the media are optically thin, they can

be Faraday thick at the same time, such as in the cases of ICM-like environments.

Numerical values of the optical depths and Faraday conversion coefficients obtained

using the IGM-like model A-I and the ICM-like model B-I are included in Table

G.1. Note also that the effect of Faraday conversion is usually much weaker than

that of Faraday rotation.
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IGM-like model A-I ICM-like model B-I
n� ,tot n� ,th + n� ,nt n� ,th + n� ,nt

(erg s−1 cm−3 Hz−1 str−1) = 2.59 × 10−53 + 2.62 × 10−55 = 6.91 × 10−47 + 1.25 × 10−38

= 2.62 × 10−53 = 1.25 × 10−38

^tot ^th + ^nt ^th + ^nt
(cm−1) = 2.23 × 10−38 + 8.64 × 10−52 = 2.23 × 10−34 + 7.11 × 10−34

= 2.23 × 10−38 = 9.34 × 10−34

g =
∫ 0.0
Iinit

^tot(I) · dB 2.72 × 10−13 1.14 × 10−8

5tot 5th + 5nt 5th + 5nt
(cm−1) = 2.54 × 10−30 + 1.52 × 10−33 = 1.16 × 10−23 + 8.54 × 10−28

= 2.54 × 10−30 = 1.16 × 10−23

ℎtot ℎth + ℎnt ℎth + ℎnt
(cm−1) = 3.76 × 10−42 + 8.12 × 10−43 = 1.72 × 10−32 + 3.01 × 10−32

= 4.57 × 10−42 = 4.72 × 10−32

Table G.1: Values of the transfer coefficients and optical depths computed using parameters
of models A-I and B-I at the radiation frequency a = 1.4 GHz. The transfer coefficients
have a very small order of magnitude, suggesting a scale length of a few Mpc.
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Appendix H

Rotating Wigner Coefficients

Sec. 5.3.1 shows how the Wigner coefficients offset from the North pole can be

rotated to be centred on the North pole. Here, I present the detailed mathematical

steps, which is also general to arbitrary rotation of Wigner coefficients.

The additive property of the Wigner �-functions is given by

�ℓ
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ℓ
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★) (H.1)

Marinucci and Peccati (2011). Using this, Eqn. (5.29) can be rewritten as
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It follows that the Wigner coefficients may be rotated by

(
, Bk

( 9) )ℓ
<:
=

ℓ∑
==−ℓ

(
,̃ Bk̃

( 9) )ℓ
<=
�ℓ
:=
∗(d★) . (H.3)

This related is used in Eqn. (5.30).
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Appendix I

Parabolic Scaling of Spin Curvelets

As noted in Sec. 5.2.1, due to the asymmetric property of 3ℓ
ℓ(−B) (\) about \max as

B → (ℓ − 1), the parabolic scaling relation which has been shown to hold for cases

B = 0 and B � ℓ may start to break down. To investigate at which B the offset from

parabolic scaling becomes important, the absolute percentage differences between

FWHMB>0
\

and FWHMB=0
\

at a set of test values ℓ = 2? are evaluated, where ? runs

from 1 to 8. The empirical results are plotted in Fig. I.1, from which one can see

that for up to B ' ℓ/2 in all test-ℓ cases, FWHMB>0
\

(i.e. the spin setting) remains

very close to FWHMB=0
\

, with a percentage error < 0.05%. Hence, B ' bℓ/2c can

serve as a very conservative limit for which the typical curvelet parabolic scaling

relation remains to hold. Nevertheless, even for B approaching ℓ, the parabolic

scaling relation holds to a good approximation.
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Fig. I.1: Numerical accuracy (i.e. 100 minus the absolute percentage difference between
FWHMB>0

\
and FWHMB=0

\
) against the spin value B of curvelets. Different curves (from

left to right) correspond to different fixed ℓ = 2? cases, where integer ? runs from 1 to
8. The results show that FWHMB>0

\
(i.e. the spin setting) remains very close to FWHMB=0

\

(i.e. the scalar setting, for which typical curvelet parabolic scaling relation has been shown
to hold). This suggests that the parabolic scaling relation should hold for at least B ' bℓ/2c,
conservatively speaking. For B approaching ℓ, the parabolic scaling relation still holds to
a good approximation. Even in the worst case when B = ℓ − 1, the error may be tolerable
(e.g. the error is within 5% at ℓ = 256).
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