
1 
 

Geometric analysis and formability of the cubic A2BX6 vacancy ordered double 

perovskite structure 

Warda Rahim,a,b Anjie Cheng,a Chenyang Lyu,a Tianyi Shi,a Ziheng Wang,a David O. 

Scanlon,a,b,c Robert G. Palgravea* 

a) Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 

0AJ 

b) Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, 

United Kingdom 

c) Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, 

Didcot, Oxfordshire OX11 0DE, United Kingdom 

*corresponding author email: r.palgrave@ucl.ac.uk 

Abstract 

A geometric analysis of the cubic A2BX6 structure commonly formed by metal halides is 

presented. Using the ‘hard sphere’ approximation, where the ions are represented by spheres 

of a fixed radius, we derive four limiting models that each constrain the distances between 

constituent ions in different ways. We compare the lattice parameters predicted by these four 

models with experimental data from the Inorganic Crystal Structure Database (ICSD). For the 

fluorides, the maintenance of the AX bond length at the sum of the A and X radii gives the 

best approximation of the lattice parameter, leading to structures with widely separated BX6 

octahedra. For the heavier halides, a balance between forming an A site cavity of the correct 

size, and maintaining suitable anion-anion distances determines the lattice parameter. It is 

found that in many A2BX6 compounds of heavier halides, the neighbouring octahedra show 

very significant anion-anion overlap. We use these models to predict a compound with A site 

rattling and use DFT to confirm this prediction. Lastly, we use the geometric models to derive 

formability criteria for vacancy ordered double perovskites.  
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Introduction 

Metal halide chemistry has undergone a renaissance in the past decade, led by the discovery 

and development of the halide perovskite solar cell absorbers. This class of materials, 

exemplified by CH3NH3PbI3, possess some exceptional properties such as high optical 

absorption and efficient ambipolar charge transport and solution processability, which make 

them potentially transformative materials in the field of solar energy.1-4 The intense interest in 

these perovskite metal halides has led to many related structures being revisited by 

researchers, both in search of similar functionality,5-8 and to further develop the understanding 

of fundamental features of the crystal chemistry of metal halide materials.9-11 The vacancy 

ordered double perovskite structure, also known as the defect perovskite or K2PtCl6 structure, 

is a structure type formed by many compounds. Bearing a close similarity to the cubic 

perovskite structure, this cubic structure with general formula A2BX6 can be described as an 

ABX3 perovskite with half of the B sites removed in an ordered fashion. A remarkable feature 

of this structure is its adoption by a very wide range of compositions, from fluorides to iodides, 

with no static tilting or reduction in symmetry as is seen very commonly in the ABX3 

perovskites. The vacancy ordered double perovskite structure is often described as consisting 

of isolated [BX6]2- octahedra12 with monovalent A site cations to balance charge, more in the 

fashion of a molecular crystal than an extended solid state structure. Despite this, some cubic 

A2BX6 compounds have been known for many years to be electronically conducting,13 and 

have recently been studied as solar cell absorbers themselves,8, 10, 14, 15 demonstrating good 

charge transport properties. This can be understood on the basis of electronic dimensionality, 

as opposed to structural dimensionality.16  

Understanding the crystal chemistry of the ABX3 perovskites has been the catalyst for the 

great number of applications and properties of that structure type.17 It may be that better 

understanding of the cubic A2BX6 likewise opens up new possibilities for building functional 

materials. Several authors have recently addressed fundamental crystal chemistry of this 

class of materials. For example, prediction of the lattice parameter of cubic A2BX6 structures 

from a given set of ions has been undertaken by several groups using a range of 

methodologies. Brik and Kityk used multiple linear regression to model the lattice parameter 

in terms of the ionic radii of each of the ions and the difference in electronegativity between 

the B and X ions.18 Sidey later simplified this approach, producing a linear model using only 

the ionic radii of each ion.19 Subsequently, Alade et al. used a support vector regression 

method to determine a model for the lattice parameter of cubic A2BX6, which used as inputs 

the ionic radii and the electronegativities of all of the ions.20 These approaches seek to find 

the best mathematical relationship between the lattice parameter and properties of the 



3 
 

constituent ions. They do not, however, take into account the geometric properties of the cubic 

A2BX6 structure itself, nor can they predict formability of the structure from a given set of ions. 

The tolerance factor, t, for the ABX3 perovskites is derived from a consideration of the 

geometry of the atoms in the ideal ABX3 perovskite structure,17 given by: 

𝑡 =  
𝑟𝐴 + 𝑟𝑋

√2(𝑟𝐵 + 𝑟𝑋)
 

The main structural difference between the ABX3 perovskite and the cubic A2BX6 structure is 

that the latter has 50% of the B cations missing compared with the perovskite. The remaining 

B site cations form an ordered fcc arrangement, meaning that the BX6 octahedra in the cubic 

A2BX6 structure are not connected by alternating B-X bonds; each anion is coordinated to only 

one B metal. For the cubic A2BX6 structure there is an additional degree of freedom compared 

with the perovskite, which can be expressed as the crystallographic x coordinate of the anion 

position. This represents the ability of the A2BX6 structure to vary to distance between BX6 

octahedra independently of their size. We have previously used an equation derived by 

Brown21 to understand the formation of Cs2SnX6 compounds (X = halide), and have shown 

that the tolerance factor is in fact a special case of Brown’s equation.22 However, Brown’s 

equation is in fact an approximation, since it assumes that in the coordination shell of the A 

site cation, the AX distance is always equal to the mean interanion distance, i.e. that the A site 

sits inside a perfect cuboctahedron of anions. This is not the case for most A2BX6 compounds. 

Here we consider the geometry of the cubic A2BX6 structure in general, and highlight important 

differences compared with the ABX3 perovskites. We define four limiting models, and by 

comparing the lattice parameters calculated with the experimental values from the Inorganic 

Crystal Structure Database (ICSD) we identify structural trends that occur across the range of 

compositions that form A2BX6 structures. We use these models to predict rattling in some 

cubic A2BX6 compounds, and use DFT calculations to test those predictions. We also propose 

a set of formability rules based on the geometric models we derive. Lastly we compare our 

approach with that of others, and discuss implications for materials design.  

Methods 

Structural data was obtained from the Inorganic Crystal Structure Database (ICSD). First 

principles calculations were carried out with the aim of understanding the rattling behaviour of 

selected materials. These were performed using pseudopotential plane-wave density 

functional theory23 as implemented in the Vienna Ab initio Simulation Package (VASP).24-27 

Interactions between core and valence electrons were described using the projector-

augmented wave (PAW) method.28 The PBEsol functional,29 a variation of the Perdew-Burke-
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Ernzerhof (PBE) generalised-gradient approximation (GGA) functional revised for solids,30 

was used for geometry optimisations and lattice dynamics calculations. Full details of 

computational methodology can be found in the Supporting Information. 

Results 

The first aim is to find an equation for the lattice parameter of cubic A2BX6 compounds in terms 

of the ionic radii, which is based on the geometry of the structure rather than a mathematical 

regression analysis. We also aim to produce a method to assess the formability of a cubic 

A2BX6 structure from a given set of A B and X ions. We will consider four limiting cases, and 

assess how each corresponds to the observed experimental lattice parameters of cubic A2BX6 

compounds. In each case the distances between two pairs of ions is fixed at the sum of their 

ionic radii. We consider four relevant interatomic distances: AX, BX, XX and XX’. The latter 

two refer to the shortest distance between X anions coordinated to the same B site metal, and 

the shortest distance between X ions coordinated to different B metals, respectively.  

 

Figure 1. Left, unit cell of cubic A2BX6 structure showing A cations as green spheres and BX6 

octahedra. Right: One eighth of the cubic A2BX6 unit cell, showing the geometrical construction 

used to calculate the lattice parameter from the ion radii in Models 1 and 2, described in the 

text and Supplementary Information. Points A and B correspond to the centres of the A and B 

cation respectively. X corresponds to the three equivalent halide ions coordinated to both A 

and B. Point C is the centroid of the triangle XXX. 

A useful way to think of this structure is as comprised of A and X ions that together form a 

cubic close packed arrangement. The B cations then sit in one quarter of the octahedral holes. 

If A and X are the same size, then their arrangement can, if we ignore the effect of the B site 

cation for now, be truly close packed, i.e. the distance AX being equal to XX, both being equal 
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to the sum of the ionic radii of A and X. In this case the X and A ions would just touch: each A 

ion being surrounded by a cuboctahedron of 12 X anions, and each X anion being surrounded 

by a cuboctahedron of 4 A cations and 8 X anions.  

We now discuss four models, beginning with model 1. In this arrangement, the AX and BX 

bond lengths are set to be equal to the sum of the ionic radii, i.e. 𝑟𝑋  + 𝑟𝐴 and 𝑟𝑋  + 𝑟𝐵 

respectively. The anions are either separated or overlapping as required to maintain the 

cation-anion bond lengths at the sum of the radii. We describe this model as the No Rattling 

(NR) model, as both the A and B cations fit exactly in their respective coordination shells. X 

anions are allowed to overlap with each other or be separated as required by maintenance of 

the AX and BX bond lengths at the sum of their radii. The lattice parameter can be calculated 

for model 1 as (derivation in the supporting information). 

𝑎 =  
4

√3
[√(𝑟𝐴 + 𝑟𝑋)2 −

2

3
(𝑟𝐵 + 𝑟𝑋)2 +

(𝑟𝐵 + 𝑟𝑋)

√3
] 

 

Model 2 is similar to model 1, except the BX distance is not fixed. Instead, the XX distance, 

that is, the distance between X anions coordinated to the same B site, is fixed at 2𝑟𝑋.  

𝑋𝑋 = 2𝑟𝑋 

This means the size of each [BX6] octahedron is determined only by the size of the anions, 

and the B site cation either rattles inside the cage if it is too small, or overlaps with the anions 

if too large. Utilising the other equations from model 1, the lattice parameter in model 2 is given 

by: 

𝑎 =  
4

√3
[√(𝑟𝐴 + 𝑟𝑋)2 −

4

3
𝑟𝑋

2 + √
2

3
𝑟𝑋] 

It is notable that the lattice parameter calculated form model 2 is independent of 𝑟𝐵. 

Model 3 fixes the BX bond length at 𝑟𝐵 + 𝑟𝑋, meaning that the length XX is √2(𝑟𝐵 + 𝑟𝑋) as in 

model 1. The XX’ distance is fixed at 2𝑟𝑋, meaning that anions from neighbouring octahedra 

are just touching. The AX bond length unconstrained, potentially allowing the A site cation to 

rattle within its cage, or to overlap with the X anions in the coordination sphere. 

The lattice parameter, which in model 3 is independent of 𝑟𝐴, can be derived from Figure S1 

(Supplementary information) as: 
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𝑎 =  2(𝑟𝐵 + 𝑟𝑋) + 2√2𝑟𝑋  

Lastly, in model 4 both AX and BX are unconstrained by the ionic radii, meaning both cations 

can potentially rattle. Instead, XX and XX’ are both set to the sum of the anionic radii. In this 

arrangement, the anions remain in their positions in the ideal close packed arrangement – all 

the anion nearest neighbour distances are the same and are equal to the sum of the anion 

radii; the anions just touch. If the A cation is smaller than the anion, it will rattle in its 

coordination cage. If the B site cation is smaller than the size of the octahedral hole, which is 

equal to (√2 − 1)𝑟𝑋, it too will rattle. If the A and B site cations are larger than these limits they 

will overlap with the anions. We will name this model the Anion Packing (AP) limit, and use 

this limit later to assess formability of cubic A2BX6 structures. In the AP limit, the equation for 

the lattice parameter is very simple and only dependent on 𝑟𝑋:  

𝑎 =  4√2𝑟𝑋 

We now assess the accuracy of the lattice parameters predicted by the four models for the 

110 unique cubic A2BX6 compounds in the ICSD. Firstly it should be noted that models 1 and 

2, which both constrain the AX distance at 𝑟𝐴 +  𝑟𝑋, produce very similar results for the 

compounds in Table 1, with an average difference between the predicted lattice parameter 

from models 1 and 2 for the same compound of 0.1%. Since the uncertainty of the ionic radii 

is likely larger than this value, we will not seek to differentiate between models 1 and 2, and 

will consider them together in comparison with models 3 and 4.   

Model Distances fixed at 
sum of ionic radii 

Equation for lattice parameter 

AX BX XX 
 

XX’ 

1 
‘No 

Rattling’ 

(NR) 

Yes Yes No No 𝑎 =  
4

√3
[√(𝑟𝐴 + 𝑟𝑋)2 −

2

3
(𝑟𝐵 + 𝑟𝑋)2 +

(𝑟𝐵 + 𝑟𝑋)

√3
] 

2 Yes No Yes No 𝑎 =  
4

√3
[√(𝑟𝐴 + 𝑟𝑋)2 −

4

3
𝑟𝑋

2 + √
2

3
𝑟𝑋] 

3 
 

No Yes No Yes 𝑎 =  2(𝑟𝐵 + 𝑟𝑋) + 2√2𝑟𝑋 

4 
‘Anion 

Packing’ 

(AP) 

No No Yes Yes 𝑎 =  4√2𝑟𝑋 

Table 1. Equations for lattice parameters derived from the four models defined in the text. 
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The error for each compound is defined as 
|𝑎𝑒𝑥𝑝−𝑎𝑐𝑎𝑙𝑐|

𝑎𝑒𝑥𝑝
 , where acalc is the calculated lattice 

parameter and aexp is the experimental lattice parameter. Considering overall accuracy for the 

whole dataset, model 1 gives the best fit, with average error of 1.40% across all 110 

compounds. This is larger than the error that can be achieved by a multiple linear regression 

model on a similar dataset (0.9%).19 However, there are significant variations across the 

dataset, and unlike the case of a purely mathematical regression model, we hope to show that 

comparing the various geometrical models with the experimental data gives insight into the 

structural diversity that exists within this set of compounds.   

 

Figure 2. Experimental lattice parameters of the cubic A2BX6 compounds listed in the ICSD 

plotted against the prediction of the models described in the text. The dotted black line 

represents the experimental lattice parameters. 

For the fluorides, the anion radius is significantly smaller than any of the A site cations that 

appear on the A site in Table S1. Thus if the AX distance is to be maintained at the sum of the 

ionic radii, then the anions on neighbouring octahedra must be well separated. This is in fact 

what is observed. Models 3 and 4 both assume the fluoride ions from different octahedra are 

separated by 2𝑟𝑋, i.e. the anions on neighbouring octahedra touch, and both models greatly 

underestimate the lattice parameter, by an average of 12.5% and 13.3% respectively. The 

large underestimate by models 3 and 4 of the lattice parameter show that the assumption of 

touching octahedra is incorrect, and in fact the separation between neighbouring octahedra is 
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much greater.  Model 1 replicates the fluoride lattice parameters of the fluorides well, with 

average error of 1.05%. In this model, the A site fits exactly in the coordination sphere. 

Comparison with the models suggest that in all the A2BF6 compounds reported, the A site fits 

exactly within its coordination environment, which defines the lattice parameter, while the [BF6] 

octahedra are well separated.  

Turning to the chlorides, a more complex picture emerges. In these compounds, 𝑟𝑋 = 1.81 Å 

and 𝑟𝐴 can be slightly greater than this, in the case of A = Cs+ (𝑟𝐴 = 1.88 Å) or smaller, for 

example in the case of Rb+, K+ (𝑟𝐴 = 1.72, 1.64 Å respectively). The lattice parameters of these, 

and the predictions from models 1-4 are shown in Figure 3. It is notable that in model 4, the 

Anion Packing model, the lattice parameter is independent of  𝑟𝐴  and 𝑟𝑋, which means the 

predicted value of a is constant for all chloride compounds (indicated by the red line in Figure 

3). Model 4 predicts 𝑎 =  4√2𝑟𝑋 = 10.239 Å for 𝑟𝑋 = 1.81 Å. Chloride compounds with lattice 

parameters above this value must have some or all of the Cl anions separated, and 

conversely, those with lattice parameters below this value must have some or all of the Cl ions 

overlapping to some extent.  

We will discuss compounds with the smaller cations, A = Rb+, K+ first. Because 𝑟𝐴 <  𝑟𝑋,  the 

largest lattice parameter that might be expected corresponds to model 4, with the largest ions, 

the chloride anions, touching and the smaller A and B sites allowed to rattle; all other models 

predict lower lattice parameters (for realistic values of 𝑟𝐵). Indeed, no experimental lattice 

parameter for the rubidium, potassium or ammonium chloride compounds listed in Table 1 

exceeds that derived from model 4. It is found experimentally, however, that the lattice 

parameter in these compounds increases with increasing 𝑟𝐵, and this suggests that the B site 

cation does not rattle in these compounds, as otherwise its radius would have little or no impact 

on the lattice parameter. Indeed, model 3, which allows rattling A sites and non-rattling B sites, 

and has the anions of neighbouring octahedra touching, fits the data well for A2BCl6 with A = 

Rb+ (figure 3, central panel). For these compounds, model 3 has smaller BX6 octahedra than 

model 4, as model 3 allows anions within an octahedra to overlap in order to coordinate the 

small B site cation. For A = K+, (Figure 3), model 3 reproduces the gradient of lattice parameter 

change with increasing 𝑟𝐵, but the actual experimental values of a are smaller than the model 

predicts. This may indicate that the anions of neighbouring octahedra in fact overlap, rather 

than just touch, or that some of the ionic radii concerned are incorrect, a point discussed 

below. We can conclude that of the models proposed, the best for A2BCl6 with A = K+, Rb+ is 

model 3 whereby the A site coordination environment is free to vary and BX bond length is 

fixed at the sum of the ionic radii. Note, that this latter condition means that chloride ions bound 

to the same B site metal overlap to some extent when 𝑟𝐵 <  (√2 − 1)𝑟𝑋, which is the case for 
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almost all chloride compounds in Table 1. For A = K+, there also seems to be overlap between 

anions on neighbouring octahedra as well. 

In contrast, the Cs2BCl6 compounds follow an altogether different pattern. Several compounds 

show lattice parameters very close to that predicted by model 4 (𝑎 =  4√2𝑟𝑋 = 10.239 Å for 

𝑟𝑋 = 1.81 Å). For example, Cs2WCl6 (a = 10.245 Å),31 Cs2GeCl6 (a = 10.21 Å),32 Cs2TiCl6 (a = 

10.219 Å)33 all closely conform to model 4, despite their 𝑟𝐵 values ranging from 0.53 - 0.66 Å. 

In some Cs2BCl6 compounds, those with 𝑟𝐵 greater than approximately 0.68 Å, the lattice 

parameter exceeds that predicted by model 4, and in fact moves with increasing 𝑟𝐵 toward the 

prediction of model 1 (Figure 3).  

 

 

Figure 3. Experimental lattice parameter (green points) plotted against B site ionic radius (rB) 

for cubic A2BX6 X = Cl and the A sites indicated, taken from the ICSD. Red lines indicate the 

prediction of model 4, the Anion Packing model, i.e. all the anions just touching. This model is 

independent of the A and B radii, hence gives the same prediction for all chloride compounds, 

and so these lines are horizontal. The black line indicates that prediction of model 3, in which 

anions within the same octahedron can overlap but those on different octahedra are separated 

by 2rX. The blue line shows the prediction from model 1, the No Rattling model, in which the 

AX and BX bond lengths are maintained at the sum of the relevant ionic radii. 

There are fewer bromides in our dataset in Table S1, making general conclusions harder to 

draw. All of the A site ions we consider are smaller than bromide, and all of the B site cations 

are smaller than the size of the octahedral cavity formed by six bromide anions. Together this 

means that if the A-Br distance is set at the sum of the ionic radii (model 1), then the Br ions 

must overlap with each other. The corollary of course is that if the bromide anions are made 

to just touch (model 3 or 4), then the A site will rattle. The compounds of the smaller A site 

cations, ammonium and potassium, in fact fall between these two limits, with lattice 
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parameters almost midway between those predicted by models 1 and 3. This may indicate a 

situation with a degree of A site rattling, and some overlap of bromide anions on neighbouring 

octahedra. For compounds with Cs on the A site, the lattice parameters show dependence on 

𝑟𝐵, and match closely with the predictions of model 3. 

The iodides again have only a few examples in Table S1, which again makes general 

statements more difficult. For each compound listed, the anions are now much larger than 

either of the cations. These are likely to also be the most covalent compounds, due to the low 

electronegativity of iodide, and so we expect the Shannon ionic radii from the metal will be the 

most inaccurate. It is clear that the experimental lattice parameters are all very much smaller 

than predicted by model 4, the Anion Packing model, which would have all the iodide anions 

just touching (𝑎 =  4√2𝑟𝑋 = 12.45 Å for 𝑟𝑋 = 2.20 Å), and also model 3, which has the iodide 

anions on neighbouring octahedra just touching. Therefore, it seems certain that the anions 

are overlapping to a good degree in all the iodide compounds listed in Table 1, as may be 

expected for such soft and electropositive anion as iodide. 

Model Mean percentage error in predicted lattice parameter 

Fluorides Chlorides Bromides Iodides Overall 

1 and 2 1.05% 1.25% 2.18% 1.93% 1.40% 

3 13.3% 1.57% 1.96% 4.45% 4.97% 

4 12.5% 2.58% 4.82% 8.88% 6.03% 

Table 2. Average accuracy of the lattice parameters of cubic A2BX6 derived from models 1-4. 

models 1 and 2 produce results that are very similar for all compounds considered, so are 

listed together. 

Testing predictions of rattling ions 

Rattling is an important property that can lead to low thermal conductivity or other phenomena, 

in perovskite oxides and halides and other structures.34-37 It arises when an ion is confined in 

a coordination environment larger than its radius. To assess the usefulness of these models 

in predicting real properties, not only lattice parameters, we consider which compounds are 

predicted to have rattling ions, according to the models presented here.  Some series of 

compounds discussed above correspond well with the predictions of one or other of the 

models. The fluorides all generally align with model 1. The Rb2BCl6 compounds all match well 

with model 3, and the Cs2BCl6 compounds match with either model 1 or model 4. Since model 

1 predicts no rattling, we move to models 3 and 4. Model 3 may have rattling A site cations, 

as the AX distance is not constrained. Model 4 may have either rattling A or B site cations, as 

neither metal halide distance is constrained. The Rb2BCl6 compounds all follow model 3 

predictions of lattice parameter closely (Figure 3). Thus we can consider which of these 
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compounds is likely to have rattling A site. The AX distance predicted by model 3 for the 

Rb2BCl6 compounds can be compared with the sum of the ionic radii. If the predicted AX 

distance is larger than 𝑟𝐴 + 𝑟𝑋, then we can predict the A site will rattle. Figure S2 shows the 

how the predicted AX values compare with 𝑟𝐴 + 𝑟𝑋 for the Rb2BCl6 series. We choose two 

compounds for theoretical investigation: Rb2GeCl6 is predicted to have an AX distance of 3.45 

Å, less than the sum of the radii which is 3.53 Å, suggesting the A site will not rattle, while 

Rb2SnCl6 has a predicted AX distance of 3.58 Å, which is greater than the sum of the radii. 

Thus we may expect Rb2SnCl6 to have a rattling A site. The phonon dispersion curves and 

the projected phonon density of states of the four compounds are shown in Figure 4. The 

vibrations of rattling atoms produce low-frequency optic modes in the phonon spectrum which 

undergo avoided crossing with the acoustic modes, modifying their dispersion and leading to 

low group velocities. This also results in increased phonon-phonon scattering and is 

responsible for low lattice thermal conductivity.38-40 The phonon dispersions in Figure 4 

indicate this avoided crossing behaviour of the low-frequency optic modes with the acoustic 

modes. For both Rb2GeCl6 and Rb2SnCl6, the low-frequency optic modes are dominated by 

Rb and Cl atom vibrations with very little mixing from Ge/Sn atom vibrations. At higher 

frequency it is predominantly Cl atom vibrations with small contributions from B-site cations 

(Ge/Sn). The average frequencies and average spring constants are listed in Table 3. The 

table also lists the ratio between minimum to maximum vibrational frequencies and spring 

constants. A small ratio of kmin to kmax connects with the idea of rattling, as it would indicate 

one of the atoms is much more weakly bonded compared to the rest and the decoupling of its 

motion from the other atoms would result in low-frequency optic phonon branches (Einstein 

modes).41 Weak chemical bonding is responsible for low phonon group velocities and 

therefore, low lattice thermal conductivity. In all cases, the A-site cations are acting as rattlers, 

and the lower spring constant for the Rb ion and smaller kmin/kmax in Rb2SnCl6 indicates that 

the Rb in this material rattles more compared to the A-site cations in Rb2GeCl6 and other 

compounds which will be discussed below. This agrees with the prediction of model 3, that 

Rb2SnCl6 has a larger A site cavity than Rb2GeCl6. We also compare the calculated inter ionic 

distances with those predicted by model 3 for the two compounds, Table S3, and find good 

agreement: for example the AX distance matches within 0.029 Å for Rb2GeCl6 and 0.013 Å 

for Rb2SnCl6. 
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Figure 4. Figure 1: Phonon dispersions and projected density of states for (a) Rb2GeCl6, 

(b)Rb2SnCl6 (c) Cs2GeCl6 and (d) Cs2SnCl6. 

We can carry out a similar analysis on the Cs2BCl6 compounds, which conform well to the 

lattice parameters of model 4, for smaller B site cations, and model 1 for larger ones. Model 

4, the anion packing model, predicts a BX distance of 1.41rX, this is equal to 2.55 Å. Thus any 

B site with a radius below 2.55 – 1.81 = 0.74 Å would be predicted by model 4 to be rattling. 

Cs2GeCl6 is such an example, with rB = 0.53 Å. We calculate the vibrational modes of 

Cs2GeCl6, and Cs2SnCl6 for comparison, which conforms most closely to the no rattling model 

(Figure 4). The projected density of states plots indicate that in case of Cs2GeCl6 and 

Cs2SnCl6, the lowest frequency optic phonon branches are dominated by Cs atom vibrations, 

with the next highest having contributions from all 3 atoms, and in the higher frequency region 

it is predominantly Cl atom vibrations with very little contribution from Ge/Sn. Thus in contrast 

to the successful prediction of A site rattling from model 3, the prediction of B site rattling in 

Cs2GeCl6 is not born out by calculations. To see why this is, we can examine the inter ionic 

distances predicted by model 4 compared with those calculated by DFT (Table S3). While 

model 4 supposes that the anions are just touching (XX = XX’ = 3.62 Å), in fact DFT reveals 

the anion sublattice is distorted, with XX = 3.262 Å and XX’ = 3.728 Å. The DFT calculated BX 
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distance corresponds closely with the sum of the radii, showing that the B site cation does not 

rattle within the octahedron, instead, the anions within one octahedron overlap to a large 

extent. Thus the agreement of the experimental lattice parameter of Cs2GeCl6 with the 

prediction of model 4 appears coincidental, and in fact the arrangement of ions is very close 

to that of model 1 (no rattling model), except that the AX distance is considerably shorter than 

the sum of the radii (3.613 Å vs 3.69 Å). This may be because of incorrect ionic radii, a theme 

discussed below, but also shows the disadvantage of using only lattice parameters to judge 

the models. A more robust approach would be to compare the experimental interionic 

distances with those predicted, but this is beyond the scope of this paper.  

From the examples examined, we speculate that the Rb2BCl6 compounds may be a good 

series to explore for A site rattling. They seem to conform to model 3, and the larger B sites, 

with rB > 0.63 Å, are all predicted to have an AX distance greater than the sum of the ionic 

radii. The known compounds this includes are Rb2WCl6, Rb2SnCl6, Rb2TeCl6, Rb2ZrCl6, 

Rb2PbCl6. 

Compound 1 2 3 avg min/max k1 k2 k3 kavg kmin/kmax 

Rb2GeCl6 1.77 5.95 4.94 4.37 0.30 4.44 42.70 14.34 20.50 0.10 

Rb2SnCl6 1.50 4.58 4.38 3.72 0.33 3.21 41.35 11.28 18.61 0.08 

Cs2GeCl6 1.48 5.92 5.50 4.84 0.25 4.80 42.24 17.83 21.62 0.11 

Cs2SnCl6 1.37 4.47 4.44 3.73 0.31 4.17 39.42 11.59 18.39 0.11 

Table 3. Average vibrational frequencies  (THz), average spring constant k (N/m) for each 

atom, the ratio between minimum to maximum phonon frequency and spring constant in 

Rb2GeCl6, Rb2SnCl6, Cs2GeCl6, and Cs2SnCl6 (Atom 1 corresponds to the A-site cation, atom 

2 to the B-site cation, and atom 3 to the halide anion) 

Formability of cubic A2BX6 structures  

We turn now to the conditions for formability of cubic A2BX6 structures from a given set of A, 

B and X ions. As shown above, consideration of limiting models for the geometrical 

arrangement of the ions is a useful basis for understanding these structures, and so we follow 

this path in attempting to come up with criteria to predict formability of cubic A2BX6 structures. 

For ABX3 perovskites, typically plots of tolerance factor vs the octahedral factor, µ, being the 

ratio 
𝑟𝐵

𝑟𝑋
 have been successful42, 43 As we state above, the tolerance factor  was devised to 

describe perovskites and the structural differences between cubic A2BX6 compounds and 

perovskites mean that caution must be used if applying the tolerance factor to non perovskite 

structures. 

The criteria for formability we propose are linked to the limiting models described above. For 

each proposed A2BX6 composition, we calculate two geometric ratios. Firstly, using the ‘No 

Rattling’ (NR) model, model 1, which assumes that the AX bond length is set as 𝑟𝐴 +  𝑟𝑋  and 
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the bond length BX is set at 𝑟𝐵 + 𝑟𝑋, we calculate the distance between X anions of different 

octahedra, referred to as the XX’. We then express this distance as a proportion of the sum of 

the X ionic radii. Therefore on the horizontal axis we plot: 

𝑋𝑋′

2𝑟𝑋
 

A value above 1 for this ratio means that when the A and B ions is fit exactly in their 

coordination sphere, the anions on neighbouring octahedra are not touching. When this ratio 

is below one, it means that for the A and B site cations fit exactly in their coordination sphere, 

the anions on neighbouring octahedra overlap. So on the horizontal axis we are asking the 

question – assuming the structure is optimised for the cation anion bond lengths, how 

separated are the anions from neighbouring octahedra, as a proportion of their radii? 

As the second ratio we take the Anion Packing (AP) model (model 3) of a sublattice of anions 

that are just touching, meaning that all nearest neighbour anion-anion distances are equal to 

2𝑟𝑋. Given this assumption, we can calculate how well the A site cation can fit into its 

coordination environment, expressed as the AX distance divided by the sum of the A and X 

radii: 

𝐴𝑋

𝑟𝐴 + 𝑟𝑋
 

A value of above 1 for this ratio means the A site is rattling inside its cavity when the anion 

sublattice is just touching. A value below one means that the A site cation overlaps with the 

surrounding anions when the X sublattice is just touching. A value equal to one means that 

the A cation and X anions together form a close packed arrangement. Therefore on the vertical 

axis we are asking the question – assuming the structure is optimised for the anions to be in 

their close packed positions, how well does the A site cation fit into the resulting cavity? 

Plotting the table of known cubic A2BX6 compounds on these two axes leads to the structure 

map shown in Figure 5. Known cubic compounds fall almost exclusively into two quadrants of 

this diagram. The top left quadrant represents compounds where the anions are larger than 

the A site, and satisfying the A cation coordination distance causes the anions to overlap. The 

further to the left a compound sits, the more the anions must overlap in order to maintain the 

AX bond length. In the bottom right quadrant, when the A site cation is fitted exactly into its 

coordination sphere, there is separation between the neighbouring octahedra. This separation 

increases on moving to the right.  All the fluorides and also the Cs2BCl6 compounds fall into 

this quadrant. Representative compounds, and visualisations of the A site coordination 

environment, are shown in Figure 5. The bottom left quadrant, where both ratios are below 1, 
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would represent compounds where the A cation is too large for its cavity in the AP model and 

the X anions are overlapping in the NR model. This may seem paradoxical, but it is possible 

to have combinations of ions that end up in this quadrant if the B site cation is large, since the 

B site cation size affects the XX’ distance in the NR model.   The top right quadrant would 

conversely represent structures where the A site cation is too big to fit in the packed 

arrangement of anions, and the anions are too large to coordinate the A site without 

overlapping in the NR model. Again, this is possible where the B site is very small 

Lines of constant octahedral factor (µ) are shown in Figure 5. All known cubic A2BX6 

compounds fall between the lines for µ = 0.45 and µ = 0.28. As discussed above, when   𝜇 <

(√2 − 1) ≈ 0.41, then the B site cation is too small to fit inside the octahedron of anions around 

it, and either rattles in its cage or the surrounding anions must overlap. Interestingly, for the 

ABX3 perovskites, with X = O2-, F-, Cl-, Br-, I- there is very close adherence to the criterion 𝜇 >

√2 − 1 for formability of a perovskite. Li et al. found that of 186 halide ABX3 compounds 

surveyed, only 3 with 𝜇 < √2 − 1  formed perovskites.43 It was also found of that 197 ABO3 

compounds, none with 𝜇 < √2 − 1  formed perovskites.42 Thus it is perhaps surprising that for 

the cubic A2BX6, in fact the upper limit for µ is 0.45, and most compounds have µ values 

significantly below the limit of √2 − 1. A demonstration of the difference in formability between 

cubic ABX3 and A2BX6 compounds is that CaSiO3 does not form a cubic perovskite, whereas 

Cs2SiF6 does form a cubic K2PtCl6 structure. In both these examples the cubic structure 

requires the Si4+ ion to sit within a regular octahedron of anions that are a similar size (rF- = 

1.33 Å, roxide = 1.40 Å). The explanation for this difference in formability is probably that in the 

cubic A2BX6 structure, each anion coordinates to only one B site cation, i.e. is only part of one 

BX6 octahedron. This allows the six anions of an octahedron to overlap with each other in 

order to coordinate a small B site cation without affecting the coordination of the neighbouring 

B site. In the ABX3 perovskites, each anion forms bonds to two B site cations, so cannot move 

to coordinate a smaller B site without lengthening the bond to the other B site cation to which 

it coordinates. Thus it appears that the reason for adherence to the rule of 𝜇 > √2 − 1 for ABX3 

perovskites is not that the anions are forbidden from overlapping, but that they must each 

bond to two B site cations. The lifting of the latter requirement in the cubic A2BX6 compounds 

allows µ values considerably less than √2 − 1. 

It should also be considered why so few cubic A2BX6 structures, but so many cubic ABX3 

structures, are known with µ above √2 − 1. The fact that µ = 0.46 seems to be an upper limit 

for compounds that are described best by different geometric models may indicate that this 

limit is somehow fundamental to the cubic A2BX6 structure and not related to whichever model 
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best describes an particular compound. The answer to this is not apparent to us and may rest 

on other considerations than just the ion sizes. 

We also find that a bounding line at 
𝑋𝑋′

2𝑟𝑋
= 0.85 contains all of the known compounds in the top 

left quadrant. No examples of cubic A2BX6 compounds are known with  
𝑋𝑋′

2𝑟𝑋
 value below 0.85, 

so this represents the limit of the anion overlap that is possible in this structure. Together with 

the lines for µ = 0.46 and µ = 0.28 we find this bounds all the known cubic A2BX6 structures. 

 

Figure 5. Structure map for cubic A2BX6 compounds. The horizontal axis plots the separation 

between anions on neighbouring octahedra when both A and B cations are perfectly 

coordinated (meaning that AX and BX bond lengths are set at the sum of the relevant ionic 

radii – this is the ‘No Rattling’ model). The vertical axis plots the separation between A and X 

ions when the anions are arranged in a close packed fashion (‘Anion Packing’ model). On the 

left hand plot, blue points represent known cubic compounds from ICSD (Table S1). Red lines 

represent the limits described in the text. Representations of the coordination around the A 

site viewed along a (111) direction for three compounds is shown, right (A site: green, B site: 

orange, X site: red) The right hand plot shows as red crosses the A2BX6 componds from the 

ICSD that do not form a cubic structure (Table S2). 

Also shown in the right hand panel of Figure 5 are points that correspond to all of the non-

cubic compounds with A2BX6 composition in the ICSD; these are also listed in Table S2 in the 

supplementary information. Most of these points fall outside the marked area, but some do fall 

inside. For example, in the bottom right quadrant, some fluoride compounds have µ < 0.46 yet 

are not cubic. Several Na2BF6 compounds are found within the marked region, yet none of 

these are cubic either. Only three heavier halide compounds are found within the marked area 

and yet are not cubic. These are K2SnBr6, Tl2TeBr6 and Rb2PdI6. Sidey et al. rationalise the 
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tetragonal distortion of Tl2TeBr6 in terms of the difficulty in packing the AX3 sublattice, 

analogous to our models here.44 It may be that the particular uncertainty in the Te ionic radius, 

discussed below, which might be corrected with further measurements, leads to this 

miscategorisation.  Thus the prediction of formability gives few false positives for heavier 

halides, and more false positives for fluorides. It seems that fitting the fluorides into a scheme 

that also accounts for all the other halides is difficult. We have assessed numerous other 

structure mapping schemes, including taking into account electronegativity as Brik and Kityk 

have,18 yet we have found no better solution that is still based on geometry. Further discussion 

of some series of compounds and their relationship to these formability criteria is in the 

Supporting Information (Figure S3) 

Discussion 

As we have shown above, compounds that adopt the cubic A2BX6 structures show more 

structural diversity than might be expected for ‘simple’ cubic materials. All the fluorides adopt 

structures with well separated BX6 octahedra, where the lattice parameter is determined by 

the maintenance of the AX bond length. For the fluorides, it is fair to describe the BX6 

octahedra as isolated molecular anions, given their large separation. In contrast, for the 

heavier halides, structures can be well described by anions from neighbouring octahedra just 

touching, leading the rattling A sites in some circumstances. All bromides and iodides 

considered here show smaller lattice parameters than the Anion Packing model predicts, 

showing that there must be considerable anion overlap in these materials. We conclude that, 

as has been previously asserted on electronic grounds,16 this means the description of these 

as having ‘isolated octahedra’ is less tenable than for the fluorides.  

It has become popular to apply the Goldschmidt tolerance factor to structures related to the 

perovskites. For example, it has been applied to cubic A2BX6 structures by several authors in 

an effort to explain patterns of formability.45, 46 Of course, the tolerance factor was derived from 

geometric considerations of the perovskite structure, and whilst the cubic A2BX6 structure is 

similar, it has important differences, notably the possibility of the octahedra to change their 

separation independently of their size. In fact we have previously shown that in some 

compounds, the cubic A2BX6 structure does in fact distort in this way to preserve the AX 

distance at close to the sum of the radii, which clearly is impossible for the ABX3 perovskite. 

We recently adapted the equation derived by Brown that describes the cavity size of the A site 

cation21 to show that the tolerance factor is in fact a special case of Brown’s equation that can 

be generalised for A2BX6 structures.22 However, even our adaptation of Brown’s radius ratio 

is an approximation, for it assumes that the AX bond length is always equal to the XX’ distance, 

which is only true when the anion crystallographic coordinate x = 0.25 (i.e. when the A site 
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cation is coordinated by a perfect cuboctahedron). This assumption is approximately true for 

most compounds except the fluorides, where x typically deviates quite far from 0.25.  

There are also two approaches to predicting lattice parameters or formability from ionic radii. 

The first is the geometric approach where relationships based on the ideal arrangement of 

atoms within the structure are derived. This is of course exemplified by the tolerance factor,47, 

48 and it is the approach we have tried to take here. An alternative is to carry out mathematical 

regression to relate the lattice parameter or formability to the ionic radii of the ions. We have 

already mentioned examples of such methods for the A2BX6 structure,20, 49, 50 but  another 

important example is the recent derivation of a ‘new tolerance factor’ for ABX3 perovskites.51 

This type of approach can be very accurate in calculating lattice parameters, or predicting 

formability, but comes with several drawbacks. Firstly, while some chemical principles can be 

inferred, nothing is learned directly from mathematical regression analysis about why the ionic 

radii influence the lattice parameter or formability in the way they do. A second serious problem 

that arises is to do with the set of ionic radii that are used. The Shannon radii have become 

ubiquitous for inorganic solid state chemistry, but a point sometimes overlooked is that the 

cation radii were derived from measurements of only oxides and fluorides.52 It is questionable 

how well they apply to metals bound to heavier, more electropositive, softer anions such as 

bromide and iodide, where assumptions of ions as hard spheres participating only in ionic 

bonding become tenuous to say the least. Shannon recognised this issue,53 but it has still 

become common to use the unadjusted Shannon radii for all compounds, regardless of the 

chemical softness of the anion. We have previously calculated anion dependent ionic radii for 

a small selection of divalent metals relevant to ABX3 perovskites using the same methodology 

as Shannon: calculating mean experimental bond lengths and fixing the anion radius to 

calculate the radius of the metal.54 We found that some metals show large deviations from the 

Shannon radii when bound to heavy halides. For example Pb(II) has a much smaller radii 

when bound to iodide (1.03 Å) compared with when bound to oxide (1.19 Å), or put another 

way, the bond length of a Pb-I bond will be greatly overestimated if taken as the sum of the 

unadjusted Shannon radii. Input of such incorrect bond lengths, in the form of the unadjusted 

Shannon radii, into mathematical regression does not seem the best course. Another issue 

with mathematical regression analysis now emerges: equations derived from mathematical 

models trained with the unadjusted Shannon radii may appear to work well, but the value of 

any inference drawn from the form of the equations will be diminished, since the equations 

are the result of inaccurate inputs.  

We attempted to replicate Shannon’s method to derive anion adjusted radii values for the M4+ 

ions relevant to A2BX6 compounds. However, we encountered two problems, firstly, that not 

many examples of octahedrally coordinated M4+ chlorides, bromides and iodides are present 
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in the ICSD. Secondly, most of those which are present in the database are in fact cubic A2BX6 

compounds. Furthermore, many older and some newer database entries are not characterised 

sufficiently (i.e. the anion crystallographic coordinate is not experimentally determined, and is 

typically set to 0.2500, and so the BX bond length cannot be determined), and even if they 

are, there is some uncertainty about whether the BX distance can always be taken as the sum 

of the ionic radii as we discuss above. Thus we have used the Shannon radii in this work, with 

only one exception (infra) but with the acknowledgement that future improvements in our 

knowledge of ionic radii of M4+ ions bound to heavy halides may change some of the 

conclusions here. The exception mentioned is with the radius of Te4+, given by Shannon in an 

octahedral geometry as 0.97 Å. We find that this is clearly a large overestimate for halide 

compounds. In TeI4 the Te-I mean bond length is 2.81Å,55 yielding a rTe = 0.61 Å. In TeCl4 the 

Te-Cl distance is 2.62 Å,56 yielding rTe = 0.81 Å. Without having enough accurately measured 

Te(IV) halide compounds in the ICSD, we are not able to calculate an exact value, but for this 

work have used rTe(IV) = 0.70 Å for all compounds, but acknowledge this is a placeholder value 

until a more accurate radius can be measured. We anticipate that new, more accurate anion 

dependent radii for Te4+ and all the metals listed here will improve the understanding of A2BX6 

and other halide structures. However, since we have used geometrical relationships rather 

than a mathematical regression, it should be possible to fit any newly derived radii into the 

models we introduce here.  

Conclusion 

We have derived geometrical models of the cubic A2BX6, the vacancy ordered double 

perovskites. Whilst all the compounds considered here share the same space group, there is 

considerable diversity in their structures, which can be understood in terms for the four limiting 

models we introduce here. Whilst some compounds have isolated octahedra, in others, 

especially the bromides and iodides, there is significant overlap between anions. Geometric 

predictions of rattling A sites in Rb2SnCl6 was confirmed by DFT calculations. In terms of 

formability, it is interesting to note that the octahedral factor requirement for the cubic A2BX6 

compounds is quite different from the ABX3 perovskites. For ABX3 perovskites it is a 

requirement to have an octahedral factor above 0.41, and this is often interpreted as avoid B 

site cation rattle or preventing anion overlap. However, it is very common for A2BX6 

compounds to have an octahedral factor below 0.41, which challenges this explanation.  
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