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Abstract 

This thesis pioneers the development of non-empirical anisotropic atom-atom force-fields for organic molecules, 

and their use as state-of-the-art intermolecular potentials for modelling the solid-state. The long-range electrostatic, 

polarization and dispersion terms have been derived directly from the molecular charge density, while the short-

range terms are obtained through fitting to the symmetry-adapted perturbation theory (SAPT(DFT)) intermolecular 

interaction energies of a large number of different dimer configurations. This study aims to establish how far this 

approach, previously used for small molecules, could be applied to specialty molecules, and whether these 

potentials improve on the current empirical force-fields FIT and WILLIAMS01. The scaling of the underlying 

electronic structure calculations with system size means many adaptions have been made. This project aims to 

generate force-fields suitable for use in Crystal Structure Prediction (CSP) and for modelling possible polymorphs, 

particularly high-pressure polymorphs. By accurately modelling the repulsive wall of the potential energy surface, 

the high pressure/temperature conditions typically sampled by explosive materials could be studied reliably, as 

shown in a CSP study of pyridine using a non-empirical potential. This thesis also investigates the transferability 

of these potentials from the gas to condensed-phase, as well as the transferability and importance of the 

intermolecular interactions of flexible functional groups, in particular NO2 groups. The charge distribution was 

found to be strongly influenced by variations in the observed NO2 torsion angle and the conformation of the rest 

of the molecule. This conformation dependence coupled with the novelty of the methods and size of the molecules 

has made developing non-empirical models for flexible nitro-energetic materials very challenging. The thesis 

culminates in the development of a bespoke non-empirical force-field for rigid trinitrobenzene and its use in a CSP 

study.  
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Impact statement 

Computer simulations of the properties of molecular organic materials requires an accurate modelling of the 

intermolecular interactions (interactions between neighbouring molecules) in the crystal. The potential energy 

surface of the molecules needs to be concisely modelled by a force-field that can be used in Molecular dynamics, 

Crystal structure prediction and other computer simulations, which correctly describes the interactions between 

molecules. This thesis is of greatest relevance in the development of computational studies of pharmaceutical and 

energetic materials. For energetic materials, it is critical that the repulsive wall is well represented by the force-

field, in order to model the effects of high pressures and temperatures, which is a region that cannot be reliably 

extrapolated to or determined by force-fields fit to experimental data.  

This thesis uses a comprehensive theory of intermolecular forces, as implemented in the code CAMCASP, to derive 

state-of-the-art non-empirical force-fields, in an anisotropic atom-atom analytical form, from the charge density 

of the isolated molecules. These force-fields are tested for their ability to predict the gas-phase two-molecule 

interactions of small molecules and the solid-state behaviour of these molecules in their crystal structures. 

Thus this thesis:  

i. identifies a suitable workflow (software and parameters) for the generation of accurate atomistic force-

fields,  

ii. uses these accurate atomistic force-fields for the prediction of the crystal structures of pyridine and 

trinitrobenzene, 

iii. validates the force-field and modelling by comparing the predictions to the known solid-state structures 

and properties of pyridine and trinitrobenzene,   

iv. investigates the effects of the changes in conformation of nitro-groups on the charge density and 

intermolecular forces of a range of small energetic molecules.  

This thesis shows that these non-empirical force-fields describe the experimental crystal structures as accurately 

as empirically fitted force-fields. In both cases, the differences are comparable to the changes in crystal structure 

with temperature, pressure or neglect of quantum effects. Crystal structure prediction studies generate the observed 

polymorphs and hypothetical thermodynamically competitive crystal structures.  The non-empirical potential was 

able to predict a high-pressure phase of pyridine.  

It is hoped that this approach to developing force-fields will be applied to other small organic molecules, and used 

to predict their properties in condensed phases.  
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Abbreviations 

AC, Asymptotic correction; 

AI, artificial intelligence; 

anarot, multipole moments analytically rotated from 

the optimized structure’s local axis into the local axis 

of the experimental conformation; 

BSSE, basis set superposition error; 

BS-ISA, Basis-space Iterated Stockholder Atoms; 

CCDC, Cambridge Crystallographic Data Centre; 

CCSD(T), Coupled Cluster Theory; 

CSD, Cambridge Structural Database; 

CSP, Crystal Structure Prediction; 

CHELP, CHarges from Electrostatic Potentials using 

a Grid-based method; 

DC, dimer centred basis set; 

DFT, Density Functional Theory; 

DFT-D, DFT including a dispersion correction; 

DFT-TB, DFT Tight-binding; 

DIFF, Distributed intermolecular force-field; 

DMA, Distributed Multipole Analysis;  

FOX-7, 1,1-diamino-2,2-dinitroethene (DADNE); 

GDMA, Gaussian distributed multipole analysis; 

GTO, Gaussian-type orbital; 

ℎ50%, impact sensitivity; 

HF, Hartree-Fock; 

HI, Hirshfeld-iterative stockholder approach; 

HNB, hexanitrobenezene; 

HNIW, Hexanitrohexaazaisowurtzitane (CL-20); 

HOMO, Highest Occupied Molecular Orbital 

IHE, Insensitive high explosives; 

IP, Ionization Potential; 

ISA, Iterated Stockholder Atoms; 

KDE, Gaussian Kernel Density Estimate 

MBD, many-body dispersion correction; 

MC, monomer centred basis set; 

MD, Molecular Dynamics; 

Model0, non-empirical model fit to 1st order TNB 

dimer interaction energies; 

MP, Møller-Plesset; 

MPA, Mulliken Point Analysis; 

NPT, Isothermal-isobaric; 

NN, Neural Network; 

optexptNO2, multipole moments calculated in for the 

optimized structure with all nitro-groups in their 

experimentally observed torsion angles; 

PCM, Polarizable continuum model; 

PBE, Perdew-Burke-Ernzerhof general gradient 

approximation 

PBE0, PBE combined with a portion of the exact HF 

exchange-correlation 

PES, potential energy surface; 
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pyr#, CSP generated, putative, mechanically stable 

crystal structure of pyridine; 

RDX, 1,3,5-trinitroperhydro-1,3,5-triazine; 

RMSDn, the root mean square deviation, the optimum 

overlay of n molecules in two crystal structures 

excluding the hydrogen atoms. 

R.T.P, room temperature and pressure; 

RS Perturbation Theory, Raleigh-Schrodinger 

Perturbation Theory; 

SAPT, Symmetry-Adapted Perturbation Theory 

SAPT(DFT), Symmetry-Adapted Perturbation Theory 

based on a coupled Kohn-Sham Treatment of 

monomers 

TNB, 1-3-5 trinitrobenzene; 

TNB#, CSP generated, putative, mechanically stable 

crystal structure of TNB; 

TNT, trinitrotoluene; 

TS, Tkatchenko-Scheffler method; 

vdW, van der Waals 

𝑉𝑚𝑎𝑥, electrostatic potential surface maximum; 

𝑉𝑚𝑖𝑑 , trigger-bond (NO2) polarity; 

𝑉𝑚𝑖𝑛, electrostatic potential surface minimum; 

wRMSD, weighted root mean square deviation; 

WSM, William-Stone-Misquitta method; 

xminexpt, a lattice energy minimization, where the 

monomers are in their experimentally observed 

conformations; 

xminopt, a lattice energy minimization, where the 

monomers are held in their isolated optimized 

molecular conformations; 

𝑍′, number of independent molecules in the 

asymmetric unit cell.
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Mathematical symbols 

𝑅𝑖𝑘, inter-atomic distance between interacting atoms 𝑖 

and 𝑘; 

Ψ, wavefunction; 

𝜌𝑀(𝑟), the charge distribution of molecule 𝑀; 

𝜈, electrostatic interaction operator; 

ℋ′, intermolecular interaction operator; 

ℋ𝑀
0 , Hamiltonian of the unperturbed ground state of 

molecule 𝑀; 

𝐸𝑀
0  is the unperturbed ground state energy of the 

unperturbed wave-function Ψ𝑀
0  of molecule 𝑀; 

r, Cartesian vector r = (

𝑟𝑥

𝑟𝑦

𝑟𝑧

); 

Ttu
ik(Rik, Ωik), orientation and distance transformation 

tensor; 

𝑄𝑡
𝑖 , multipole moment on atomic site 𝑖 of rank 𝑡; 

𝐶2𝑛+6, computed or empirically fit dispersion 

coefficients; 

𝜌𝜄𝜅(𝛺𝑖𝑘), shape function of the pair of atom types 𝜄 and 

𝜅; 

𝛺𝑖𝑘, relative orientation of atoms 𝑖 and 𝑘; 

𝐸𝑙𝑎𝑡𝑡, the lattice energy; 

𝐸𝑖𝑛𝑡 , the intermolecular energy; 

𝐸𝑖𝑛𝑡𝑟𝑎, the intramolecular energy; 

𝐺𝑓𝑟𝑒𝑒(𝑇), Gibbs free energy; 

𝐴𝑓𝑟𝑒𝑒(𝑇), Helmholtz free energy; 

𝑃𝑉, Pressure-Volume term 

𝑇𝑆, energy contribution due to the entropy of the 

system; 

𝑍𝑃𝐸, zero-point energy; 

𝑈𝑡ℎ𝑒𝑟𝑚(𝑇), internal energy of the system due to 

thermal effects 

𝐻𝑙𝑎𝑡𝑡, lattice enthalpy; 

𝐹𝑣𝑖𝑏(𝑇), free energy thermal correction; 

𝐸𝐿𝑅, long-range energy; 

𝐸𝑆𝑅, short-range energy; 

𝐸𝑒𝑙𝑠𝑡
(1)

, 1st order electrostatic energy; 

𝐸𝑝𝑒𝑛
(1)

, 1st order penetration energy; 

𝐸𝑒𝑥𝑐ℎ−𝑟𝑒𝑝
(1)

, 1st order exchange-repulsion energy, the 

subscript ‘𝑟𝑒𝑠𝑝’ is included to indicate that coupled 

perturbation is used. 𝐸𝑒𝑥𝑐ℎ
(1)

 is also used in this thesis to 

indicate the exchange-repulsion energy; 

𝐸𝐼𝑁𝐷
(2)

, total 2nd order induction energy; 

𝐸𝐼𝑁𝐷
(2)

(𝑅𝑒𝑔), 2nd order regularized induction energy 

(polarization energy); 

𝐸𝑒𝑥𝑐ℎ−𝑖𝑛𝑑
(2)

, the electron exchange portion of the 

induction energy, the subscript ‘𝑟𝑒𝑠𝑝’ is included to 

indicate that coupled perturbation is used; 

𝐸𝑃𝑂𝐿
(2)

, 2nd order polarization energy, a component of the 

induction energy; 

𝐸𝐶𝐷
(2)

, 2nd order charge-delocalization energy, also 

referred to as the charge-transfer energy; 
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𝐸𝐷𝐼𝑆𝑃
(2)

, total 2nd order dispersion energy; 

𝐸𝑑𝑖𝑠𝑝
(2)

, 2nd order dispersion energy, the subscript ‘resp’ 

is included to indicate that coupled perturbation is 

used; 

𝐸𝑒𝑥𝑐ℎ−𝑑𝑖𝑠𝑝
(2)

, the electron exchange portion of the 

dispersion energy; 

𝛿𝑖𝑛𝑡
𝐻𝐹, higher-order induction correction; 

𝐸𝑖𝑛𝑡
(1)[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)], 1st order SAPT(DFT) dimer 

interaction energies 

𝐸𝑖𝑛𝑡
(2)[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)], 2nd order SAPT(DFT) dimer 

interaction energies 

𝑉𝑖𝑛𝑡
𝑀𝑁(𝑅𝑖𝑘), intermolecular interaction potential energy 

between bodies 𝑀 and 𝑁;  

𝑉𝐿𝑅
𝑀𝑁, long-range potential energy between molecules 

𝑀 and 𝑁; 

𝑉𝑆𝑅
𝑀𝑁, short-range potential energy between molecules 

𝑀 and 𝑁; 

𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀], long-range multipolar electrostatic 

potential energy; 

𝑉𝑑𝑖𝑠𝑝
(2) [𝐷𝑀], long-range multipolar dispersion energy; 

𝑉𝑃𝑂𝐿
(2−∞)

[𝐷𝑀], long-range iterated multipolar 

polarization energy; 

Δ𝑄𝑡
𝜄 , the induced moment on atom 𝑖 depends on its 

atomic polarizability (𝛼𝑡𝑡′
𝜄𝜄′ ) and the net electric field 

(𝑉𝑡
𝜄); 

𝛽𝑑𝑖𝑠𝑝, dispersion model damping parameter; 

𝛽𝑝𝑜𝑙, polarization model damping parameter; 

𝑆𝑀𝑁(𝑹) = ∫ 𝜌𝑀(𝑅)𝜌𝑁(𝑅) 𝑑𝑅, density overlap 

integral between molecules 𝑀 and N; 

𝐵2(𝑇)), 2nd virial coefficients;
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1 Introduction 

1.1 Polymorphs & Crystal Structure Prediction (CSP) 

1.1.1 Polymorphism 

Crystallography will forever play a defining role in many areas of chemistry; through a solid comprehension of a 

species’ crystal make-up one could forecast most physical and chemical behaviours of the material. From 

solubility, melting point, morphology, shock and mechanical stress responses, surface chemistry, reactivity and 

phase transformations, many characteristics of a species are often governed by its lattice structure. In industries 

like pharmaceuticals, organic photovoltaics and energetics,1, 2 a great attraction is the ability to fully comprehend 

the behaviour of the organic molecular crystal under all probable conditions, reducing the likelihood of producing 

products that change forms while on the shelf or in use.3-5 Over the past few decades, computational methods have 

been combined with experimental approaches in the determination of crystalline morphology and behaviour. With 

the ever increasing development of quantum chemistry and improvement of computing power, computational 

treatments are becoming progressively more powerful. Improving the accuracy and reliability of computational 

methods employed is of uttermost importance, especially in polymorphism studies due to the close relative 

energies of polymorphs, which is on the order of 2-5 kJ mol-1.6, 7 Accuracy and reliability is also important for 

specialty materials like energetics and pharmaceuticals, where experimental analysis can be difficult, due to the 

inherent dangers and costs.  

A single chemical species can adopt a number of stable crystal structures depending on the crystallisation 

conditions.6-8 These chemically equivalent structures are known as polymorphs and have become a hot topic of 

discussion over the past few decades. While there are a number of descriptions of polymorphism in literature,6 this 

thesis defines polymorphism as “Chemically-equivalent lattices with different crystal packing motifs of the 

molecule but identical liquid/vapour phases”.  The condensed phases of organic molecules are an area of increasing 

interest, with the ability to simulate the differences in material properties between polymorphs being highly 

desirable for the specialty chemical industries.9-11 With over 50% of materials suspected to exhibit polymorphism,7 

there are many examples of polymorphism in well-known substances, for instance the desired form of popular 

food additive L-glutamic acid is the 𝛼 polymorph, however, the 𝛽 polymorph can form if the conditions vary.6 

Infamous examples of polymorphism in pharmaceuticals include the patent litigation of the drug Zantac6, 12, 13 and 

the temporary removal of the drug Ritonavir from production due to the discovery that it could transform into 
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another polymorph while on the shelf.4, 5, 14 It is easy to see the benefits of polymorph prediction for new materials, 

like not spending resources synthesising a molecule whose crystals do not exhibit the desired functional properties. 

In the energetic materials industry there has always been a drive to improve safety. The sensitivity of an energetic 

material is not determined solely by the density but is related to a number of properties such as the composition, 

structure and the applied stimulus. A comprehensive knowledge of the sensitivity of each polymorph to different 

stimuli could reduce the risk posed by these materials. By reducing the sensitivity of energetic materials there is a 

reduced risk of accidental detonation from thermal or pressure shocks. Crystal Structure Prediction (CSP) is 

particularly important for energetic materials. CSP could in principle be used to develop new high performance 

materials with low sensitivity as structural properties like density influence characteristics such as sensitivity to 

mechanical and thermal shock, the evolution of hot spots and the detonation pressure and velocity.15-17  

1.1.2 Crystal structure Prediction (CSP) studies & methodologies 

1.1.2.1 Introduction 

Crystal Structure Prediction (CSP) has emerged in the past decade or so, as a method of generating all probable, 

mechanically stable crystal structures of a molecule and ranking them in order of thermodynamic stability, using 

only the chemical diagram of the molecule that defines its atoms and covalent bonding.18-20 In general, to calculate 

many crystal properties, accurate descriptions of the intermolecular and intramolecular interactions are required, 

and electronic structure methods (1.3) or atomistic potential energy functions also known as force-fields (1.2) are 

normally utilized. Unfortunately, the widely available transferable force-fields for organic molecules are usually 

not accurate enough for realistic crystal structure prediction.21 Being able to generate custom force-fields for 

organic molecules is one of the main pursuits of CSP, and one of the most comprehensive tests of a newly generated 

force-field is its ability to predict the structures of the molecule’s polymorphs and their correct stability ranking.  

One could say the zenith of crystal structure prediction studies would be reached if for any chemical species it was 

possible to: 

 generate all probable, mechanically stable crystal structures,  

 predict kinetically favoured structures or conditions under which one might be preferentially formed, 

 calculate the intrinsic/extrinsic properties of the species, 

 and subsequently simulate their physical behaviour under all conditions, 
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using solely its molecular formula and computational methods. As the world becomes progressively conscious of 

its finite resources, reducing the degree of experimentation in the development of novel materials is now vital and 

becoming a priority of many organisations in the field of science and technology.  

1.1.2.2 The CSP treatment in this thesis 

The CSP study in this thesis is based on total lattice energy 𝐸𝑙𝑎𝑡𝑡, which is the difference between the internal 

energy of the system and the infinitely separated molecules in their lowest energy configuration. The total lattice 

energy can be separated into atom-atom intermolecular (𝐸𝑖𝑛𝑡) interactions and intramolecular (geometry distortion, 

Δ𝐸𝑖𝑛𝑡𝑟𝑎
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒) energies of the molecules (𝐸𝑙𝑎𝑡𝑡 = 𝐸𝑖𝑛𝑡 + Δ𝐸𝑖𝑛𝑡𝑟𝑎

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒). If the molecular structures are held rigid, 

∆𝐸𝑖𝑛𝑡𝑟𝑎
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 = 0 and the lattice energy composed solely of the intermolecular interaction energy.  There are a 

number of methodologies for conducting CSP studies on unit cells (the smallest repeating unit in a crystal 

structure), as shown by the numerous blind tests,22-27 such as using electronic structure methods, force-fields or a 

combination of both to explore the multidimensional, intermolecular interaction potential energy surface (PES) of 

a crystalline lattice. The number of dimensions (cell length and angles) depends on whether the molecule is held 

rigid or kept flexible, and the complexity of the search can increase dramatically for flexible molecules.28, 29 The 

broad nature of CSP and the stringent requirement for accurate yet reliable methods is what makes it such a 

challenging field. Obtaining the true lattice energy is no easy feat and complexity, issues with implementation and 

computational cost means that a dependable CSP study on very large molecules is not yet possible.30 Some 

approximations can be used to circumvent some of these challenges, like holding the molecule rigid and conducting 

a 𝑍′ = 1 search. It should be noted that in this thesis for systems where the molecule is held rigid, the terms 

potential, force-field and model refer to mathematical descriptions of the intermolecular potential energy surface 

and are interchangeable. 
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Figure 1: An overview of the workflow for the pyridine CSP study in Chapter 3. Python31 and Bash scripting was 

used to develop this example workflow and automate the generation of suitable input files and directories for each 

structure, and then the mass-minimization, analysis, sorting, clustering, and ranking of the generated structures. 

1.1.2.3 Conformational flexibility 

The effects of conformation on the intramolecular energy, the molecular charge distribution, the intermolecular 

interactions within the lattice, and ultimately the potential energy landscape are explored in detail in Chapter 4. 

An initial assessment of the conformational flexibility is a vital first step when performing a CSP search.22 It gives 

insight into the dimensionality of the PES and also permits us to make approximations, which can greatly speed 
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up the study without hindering accuracy. The dimensionality and cost of a search dramatically increases with the 

number of molecular conformations that might occur in the crystal structure.29 Knowledge of which are the most 

important can greatly optimize the search (Chapter 4). Pyridine (Chapter 3) is a small molecule with no flexible 

functional groups, whose optimized structure is virtually planar and can be held rigid in its CSP study. Thus, the 

effects of conformational variation do not have to be investigated in as much detail as with the nitro-group 

energetics (Chapter 4).  

It is important to understand the flexibility of functional groups within the molecule prior to the CSP search, and 

this is typically done by either calculating the relative intramolecular energies of a range of conformations of the 

isolated molecule using ab initio treatments, or by studying observed crystal structures within the Cambridge 

Structural Database (CSD).32 The best treatments use both as this prevents biasing the study towards experimental 

data and allows access to possible unique structures.33 The quantum chemical code NWCHEM was used to do so in 

Chapter 4 to conclude that for the flexible energetic molecule TNB, it would be possible hold its molecular 

structure in its rigid planar conformation and still conduct a meaningful CSP search.  

1.1.2.4 Crystal structure generation 

For a rigid CSP study in the Price group,19, 34 the program CrystalPredictor35, 36 is used to generate a large number 

of putative  Z′ = 1 crystal structures (generally, on the order of a million) within a given energy range of the global 

minimum. This is typically done within the most probable space groups, but is dependent on the molecular crystal 

being studied (e.g. a sample of one enantiomer of a chiral molecule can only crystallise in a smaller number of 

chiral space groups). The structure generation method is tailored to the molecule. CrystalPredictor uses a quasi-

random low-discrepancy Sobol Sequence37, and Shoemake’s algorithm38 to initially search the input molecule’s 

potential energy surface efficiently, as a function of cell lengths and angles. This method uses quaternion space to 

guarantee a uniform yet random sampling when generating initial structures.35 For a flexible search, bond lengths 

and angles can also  be explored by using the conformation searching program CrystalOptimizer.29, 39 The density 

functional theory (DFT) (1.3.1 & 2.2) optimized isolated molecular structure is used as the starting structure to 

generate putative crystal structures. The energies of these crystal structures are initially calculated using a cheap 

but approximate force-field like the FIT potential (1.2.2.1) and Iterated Stockholder Atoms (ISA) (2.5.1.7) point 

charges, and then clustered based on their intermolecular distances, resulting in a subset of unique structures, in 

the case of pyridine this was around 10000 unique structures, that are then refined with more accurate methods. 

1.1.2.5 Refinement 

Typically, the subset of unique structures is minimized and re-ranked using a more elaborate force-field, i.e. the 

FIT potential with ISA distributed multipoles instead of just a point charge model. The resultant structures are 
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subsequently re-analysed and further clustered based on intermolecular lattice energies, densities per asymmetric 

unit, simulated powder x-ray diffraction (PXRD) patterns, co-ordinated environments. Normally if negative 

eigenvalues of the energy were observed these structures would be re-minimised removing a symmetry element 

to find their true minima as higher 𝑍′ structures. However, due to limitations when using these new non-empirical 

models, the CSP searches in this thesis are all 𝑍′ = 1.  These final set of structures are used as the core structures 

for searching the potential energy landscapes of the empirical and non-empirical intermolecular potentials using 

the more complete higher-order distributed multipole moments. Many other CSP workflows will use a hierarchical 

approach, doing lattice energy minimizations with increasingly accurate force-fields, and then finally using 

electronic structure methods, like DFTB3-D3 for the final stages of refinement of a small number of the most 

stable structures to optimize the lattice energy.40-44 However, in this thesis, the crystal structures are minimized 

using solely intermolecular force-fields as a test of the state-of-the-art anisotropic atom-atom non-empirical 

potentials (Chapters 3 & 6). The most stable structures within a given energy range are then analysed in detail for 

their similarities to each other and gas-phase dimers.    

1.2 Force-field development 

1.2.1 Introduction 

A sufficiently accurate analytical pair potential to account for all the physical properties of the inert gases was 

achieved in the 1980’s.45 These potentials also included the three-body dispersion term for the condensed phases. 

Water and other small polyatomic molecules now have very accurate potentials available, though these are often 

not used in Molecular Dynamics (MD) simulations because of the need to compromise between accuracy, speed 

of evaluation and the functional forms assumed in suitable MD codes.46-56 In many atomistic force-fields, the 

interaction energy (𝐸𝑖𝑛𝑡) is commonly given as an approximated sum of “pairwise” potentials, which only include 

two-body terms and ignore all many-body contributions to the lattice energy. The pairwise construction of the 

interaction energy is elaborated in Chapter 2, however, it is briefly discussed here as it is required for a proper 

discussion of force-fields and their use in crystal structure prediction (CSP). 

The interaction energy between a pair of molecules 𝑀 and 𝑁 can be expressed approximately as sum over each 

atom-atom interaction between the two. The resultant intermolecular interaction potential energy (𝑉𝑖𝑛𝑡
𝑀𝑁(𝑅𝑖𝑘)) is 

given by the sum of all pairs of atoms 𝑖 in molecule 𝑀 with atoms 𝑘 in molecule 𝑁, which have an inter-atomic 

distance of 𝑅𝑖𝑘. Higher order contributions arising from 3-molecule, 4-molecule or larger interactions can be 

included as corrections, where ∆𝑉𝑀𝑁𝑂 + ∆𝑉𝑀𝑁𝑂𝑃 are the approximated triple-molecule and quadruple-molecule 

contributions for molecules 𝑀, 𝑁, 𝑂 & 𝑃. These non-pairwise terms are generally absorbed as an average into the 
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potential through empirically-fitted parameters, and often produce satisfactory results. Higher-order contributions 

have been found to contribute to approximately 30% of the interaction energy for water molecules in clusters.52, 

57, 58 Polarisation is the main contribution to the higher-order terms, and it is now possible to explicitly include the 

intermolecular polarisation energy in modelling organic crystal structures.40, 59-61 A few studies suggest that the 

polarisation energy may be important to obtain the accuracies and reliability required for polymorph studies.61-63  

1.2.2 Empirical force-fields 

There are a number of empirical force-fields for organic molecular crystals,19, 64-66 parameterised to describe 

various types of organic functional groups. In this thesis the FIT potential67, 68 is the main empirical potential of 

choice, however, in Chapter 3, the Williams’ potential69, 70 is also employed. It is a force-field based on fitting 

experimental data with atomic types for the same atom in different hybridisation states (1.2.2.2). These empirical 

models utilize a fully isotropic short-range repulsion-dispersion description known as the exp-6 Buckingham 

potential,71 which also includes an electrostatic model (normally GDMA (2.5.1.3)) to obtain the intermolecular 

interaction energy of two molecules 𝑀 and 𝑁, from the summation of the atoms 𝑖 in 𝑀 and 𝑘 in 𝑁 of types 𝜄 and 

𝜅 respectively. 

𝑉𝑖𝑛𝑡
𝑀𝑁(𝑅𝑖𝑘) = ∑ 𝐴𝜄𝜅exp(−𝐵𝜄𝜅𝑅𝑖𝑘)

𝑖∈𝑀,   𝑘∈𝑁

−
𝐶6

𝜄𝜅

𝑅𝑖𝑘
6 +  electrostatic (𝑄𝑙,𝑚

𝑖𝑘  𝑙 ≤ 4,GDMA, 𝛹) 

1 

where 𝐴𝜄𝜅, 𝐵𝜄𝜅  and 𝐶6
𝜄𝜅 are empirically derived parameters that are element/environment specific, with units of 

𝑒𝑉, Å−1 and 𝑒𝑉Å6 respectively. 𝑅𝑖𝑘 is the intermolecular inter-atomic distance between the two interacting atoms 

in Å. This Buckingham potential does not damp the dispersion and so may have an unphysical maximum at very 

short range. In addition, the polarization is not explicitly calculated and so absorbed in the empirical 

parameterisation of the repulsion-dispersion terms. 

1.2.2.1 The FIT potential 

The empirical FIT force-field67, 68 does not foreshorten the hydrogen interaction sites and is a revision of Williams’ 

W84 force-field,72 which had each element in combination with C and H only. It is not clear whether Williams 

corrected for the X-ray foreshortening during the deriving of the FIT potential. Unsurprisingly, these empirically 

based force-fields produce the best results for crystal structures closely related to the parameterization set. These 

models were also tested in CSP studies using both a point charge model and a distributed multipole model and 

were found to be sensitive to the quality of electrostatic model used and likely to perform poorly for atypical short 

contacts e.g. high-pressure studies.73, 74 The absorption of errors, approximations and assumptions in the 
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experiments, simplifies the functional form of the potential but also simplifies the description of the interactions. 

It should be noted that the intermolecular force-fields that have been most widely used in simulating organic 

condensed phases have been derived by empirical fitting to crystal structures and properties75, 76 with increasing 

sophistication being used for the challenge of modelling crystal structures11, 70, 77 to the extent that they rival popular 

periodic DFT calculations in accuracy.11 However, the assumed functional form and neglect of thermal effects 

among other quantum effects can result in these models performing poorly for more complex systems or when 

sampling regions of the potential energy surface not sampled by the fitted data. 

1.2.2.2 The Williams potential 

The FIT potential uses many of the earliest potential parameters suggested by the Williams’ group.67, 68 These were 

first developed to be transferable between hydrocarbon compounds then extended to aza-hydrocarbons, oxy-

hydrocarbons, etc., but not used for molecules capable of forming hydrogen bonds.69, 70 The W99 force-field, which 

describes interactions for organic crystals containing 𝐻, 𝐶 and 𝑂 was adapted to include N as well producing the 

WILL01 developed specifically for molecules containing nitrogen atoms.69, 70 In WILL01, nitrogen environments 

in a system are divided into four groups dependent on the presence on hydrogen: 𝑁(1) – for systems with triple 

bonded nitrogen e.g.𝑁2, 𝑁(2) – to describe environments with nitrogen bonded to no hydrogens (excluded the 

triply bonded nitrogen), 𝑁(3) – for nitrogen bonded to a singular hydrogen, and 𝑁(4) – to describe nitrogen 

bonded to two or more hydrogens. 

The potential also contains parameters for various carbon and hydrogen atoms, for  example, the 𝐻(4) type is for 

hydrogen bonded to nitrogen. Another defining feature of this potential is that the potential was parameterised 

with foreshortened hydrogen positions; that is, the hydrogen interaction sites are shifted by 0.1Å from their neutron 

or ab initio optimized positions in towards the heavier atom it is bonded to in an H-X bond. The lattice 

minimization code used in this thesis, DMACRYS, can perform this foreshortening. The electrostatic model must 

also be foreshortened. Williams found that foreshortening improved the performance of the potential in 

comparison to the FIT model.69, 70 This can be explained by the shifting of the electron density in the bonds to 

hydrogen, which has no core electrons. However, it should be noted that depending on the partitioning method 

used and the quality of the electrostatic model, hydrogen bond lengths could be underestimated using WILL01, 

this was probably due to the fact that distributed multipoles can result in stronger electrostatic forces than the point 

charge model used in William’s parameterisation. This problem was profound for carboxylate (𝑂 … 𝐻𝑂 and 

𝑁 … 𝐻𝑂) hydrogen bonds but this was not an issue for the pyridine study in Chapter 3. 

WILL01 was derived via fitting to the experimental data set of 76 aza-hydrocarbon crystal structures, many of 

which were 𝑍′ = 1, and 11 heats of sublimation. Even though the parameterisation data set included a range of 
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structures determined at temperatures extending from below liquid nitrogen to room temperature, a large portion 

of these experimental structures were observed at conditions very close to ambient. So one can expect the force-

field to not have accommodated for a number of temperature and pressure effects. Likewise, a significant number 

of crystal structures that were determined at low temperature are liquid or gas at R.T.P. and it is unlikely that this 

empirical force-field could extend to predict their behaviour in the solid-phase. The WILL01 force-field has been 

tested on each aza-hydrocarbon used in the training data-set, predicting the unit cell lengths to 3% or less. It was 

then tested on a number of peptide and nucleoside structures, including 8 common nucleosides in DNA and RNA, 

15 dipeptides four tripeptides, two tetra-peptides and a 𝑍′ = 2 pentapeptide.70 While none of these molecules were 

included in the parameterization sets for the potential, the calculated crystal structures were in very good agreement 

with experiment, predicting most unit cell lengths within 2%.70 This force-field was primarily constructed for use 

in biochemical studies, thus it may also prove to be apt in a pyridine study (Chapter 3) as pyridine appears as a 

precursor to a number of biological structures.78  

1.2.3 Non-empirical Force-fields 

1.2.3.1 Calculating intermolecular contributions 

The problems with selecting experimental data and the assumptions used in fitting a potential to the data can be 

avoided by fitting a force-field to ab initio calculations.79 This approach of using ab initio derived analytical 

potential energy surfaces (PESs) for spectra of gas-phase clusters, has been extensively applied to water,46, 80-83 

other small molecule complexes, 84 85, 86 and various ab initio astrophysics applications.87-90 The development of 

suitable ab initio methods to generate a potential energy surface for dimers, trimers and other clusters of molecules 

to be used for fitting pair potentials, and higher-order corrections is an active area of research.91 Ab initio treatments 

can be divided into two categories. Supermolecular methods, which aim to get the most accurate total energy for 

a cluster and subtract the energy of the isolated molecule contributions, and perturbation methods, which evaluate 

the different contributions to the intermolecular energy.  The supermolecule (total energy) approach of aiming for 

the best (approximate) solution to the Schrodinger equation is essentially the same, whether applied to a cluster, 

or using periodic codes, to a lattice of molecules (1.3.1). The perturbation approach using symmetry adapted 

perturbation theory (SAPT) is the most practical for systems larger than water and small polyatomic molecules 

(2.3.2). The use of SAPT(DFT) calculations to produce anisotropic atom-atom intermolecular potentials is central 

to this thesis (Chapters 3, 5 & 6).  
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1.2.3.2 Novel force-fields 

 

Figure 2: The force-field development workflow that was used for trinitrobenzene and detailed in Chapter 5. It 

has been adapted from the workflow used on pyridine38 and could be further adapted for other organic crystals. 

The workflow uses much of the theory discussed in Chapter 2. 

Pioneering studies of the organic solid-state using analytical fits to SAPT(DFT) interaction energy calculations 

have mainly concentrated on energetic molecules,92, 93 where predictive modelling requires reliable extrapolation 
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into the repulsive region (regions of high temperature/pressure) that is not sampled in fitting empirical potentials. 

A non-empirical potential based on an early variant of the Distributed Intermolecular Force-Field (DIFF) approach 

for C6Br2ClFH2,60 was successful in predicting its crystal structure in the fourth Blind Test. It is therefore timely 

to assess the barriers to producing a sufficiently realistic model intermolecular potential from dimer calculations 

that can be used to predict the properties of a molecule in all phases, and assess the extent to which the exclusion 

of many-body terms is a limitation. Considerable advances have been made in the ability to calculate 

intermolecular pair potential energy surfaces accurately.38, 79, 94-98 Computing sufficient number of points to define 

the PES leads to two challenges: 

(1) the computational cost incurred, particularly for large molecules, and 

(2) the need for sufficient accuracy.  

Both needs can be satisfied by the SAPT(DFT)77, 99-102 (2.3.2.2), which has now become the method of choice for 

many applications involving weakly-bound molecular interactions.38, 60, 103-106 However, errors are introduced by 

the choice of analytical functional form and in the fitting process. Recently a method of automatically generating 

analytical intermolecular potential energy surfaces in an isotropic atom-atom functional form, to SAPT(DFT) 

numerical points reported a typical fit error of about 0.8 kJ mol-1 in the negative energy region.79 Furthermore, the 

newly developed Slater-type Force-Field (Slater-FF) models exhibits average errors of 0.2 kJ mol-1  in the attractive 

region for wide range of interacting dimers.96  

In this thesis, the alternative approach of using anisotropic atom-atom model potentials is explored, which are 

generated from distributed monomer properties and advanced fitting to the components of SAPT(DFT) dimer 

intermolecular interaction energies. This approach, using the suite of codes CAMCASP has been described in detail 

and applied to the pyridine dimer.38 This type of non-empirical distributed intermolecular force-field (DIFF) uses 

distributed multipolar models to describe the electrostatic, polarization and dispersion interactions, while the 

anisotropic atom-atom exponential short range terms are derived by fitting to SAPT(DFT) interaction energies.  

While all these models represent considerable progress in accurate force-fields for dimers, it is important to 

determine how well they perform for the crystalline state. There are two issues that arise here, the first is that the 

lattice energy differences between 80% of polymorph pairs,7 is less than 4 kJ mol-1, with many observed polymorph 

energy differences being close to the reported errors in the above dimer potentials. The second issue is that so far 

these models have only been strenuously tested on gas-phase and calculated dimer properties, and there are many-

body effects in condensed phases. A non-empirical model for the pyridine gas-phase, developed by Dr. Alston 

Misquitta,38 is extended to the solid-state in Chapter 3, and the force-field functional form, a workflow (Figure 
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2) and treatments for developing the non-empirical distributed intermolecular force-fields (DIFFs) for the larger 

molecule trinitrobenzene are detailed in Chapter 5.  

1.2.4 Computational chemistry software used in this thesis 

A number of codes and interfaces are used in novel ways to generate the force-fields within this thesis. This has 

only been possible through careful debugging and a significant amount of Python31 coding to process and reformat 

outputs, and also scale up processes that had previously been reserved for single-point calculations.  

CAMCASP107 is an intricate interface of a suite of programs created for computing interaction energies between 

gas-phase dimers, and the molecular properties (multipoles and frequency dependent atomic polarizabilities) of a 

material in single-site and distributed form to develop analytical intermolecular potentials. CAMCASP is used to 

derive and fit the non-empirical force-fields alongside the program ORIENT,108 which is a program also developed 

to carry out various calculations on assembles of interacting molecules. NWCHEM is a quantum chemical software 

that is used alongside CAMCASP to computer the molecular properties of isolated molecules using quantum 

mechanical descriptions of molecular charge density. It is used in the force-field development process to obtain 

the electrostatic model and the subsequent long-range terms. It is also used in Chapter 4 for the conformational 

analysis of energetic crystals. DMACRYS59 is a program that uses atom-atom potentials, which include distributed 

multipoles, and other anisotropic terms, to calculate atomic contributions to the intermolecular lattice energies of 

organic crystal structures. Currently, the polarization module in DMACRYS can only do single-point polarization 

energy calculations and cannot calculate the forces due to polarization (2.6.1.3). This thesis pioneers developing 

and transferring the DIFF model using these codes to the solid-state phases of organic crystals. We seek to explore 

the issues involved in defining and using analytical force-fields that can transfer between phases.  

1.3 Electronic structure methods 

A variety of electronic structure methods are used in CSP studies. Electron density (𝜌(𝑟)) methods are typically 

less expensive than those that directly use the wave-function Ψ. Consequently, Periodic Density Functional Theory 

(DFT) methods, which had been traditionally reserved for small molecules, are becoming increasing prevalent in 

contemporary CSP. They have shown to be able to handle the subtleties found in intramolecular and intermolecular 

interactions with approaches like DFT-D109 proving successful in the 6th Blind Test, where a record 12 groups used 

Periodic DFT methods.22 The advantages of these methods are described next (1.3.1), and some detail on the theory 

of DFT is given in Chapter 2.  However, the quality of DFT functionals that can be afforded, or even are available 

in periodic codes, is rather limited. Recent work110-113 demonstrates that more expensive functionals such as PBE0 

are needed as a refinement step. Hence, periodic calculations are done with a far worse molecular charge density 
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description than that which can be used in developing intermolecular potentials or evaluating the conformational 

energy penalty (𝐸𝑖𝑛𝑡𝑟𝑎). Even when periodic electronic structure calculations become more accurate, electronic 

structure methods will have the disadvantage that they cannot be cheaply used for Molecular Dynamics (MD). 

1.3.1 Density Functional Theory (DFT) 

There are many examples of Periodic Kohn-Sham Density Functional Theory (Periodic DFT) being used in 

CSP.114-117 With the optimization of codes and improvement in hardware, the computational cost is dropping at an 

astounding rate. Its growing popularity is due to the ability to calculate the intermolecular contributions like the 

induction and electrostatics without any need for parametrisation, experimental data or approximations of 

functional forms that can plague force-fields. That is not to say some DFT approaches do not use some 

corrections118-120 to improve results.  

The main drawbacks of DFT lie in it still being more expensive than current force-fields and its approximation of 

the exchange-correlation functional, 𝐸𝑋𝐶 . For organic molecular crystals correlation effects are important in 

capturing van der Waals dispersion interactions caused by associated fluxes between various regions of electron 

density, forming a long-range intermolecular interaction. In Chapters 3 & 6 it is found that dispersive interactions 

can account for a large portion of the lattice energy. Standard DFT with its semi-local density functional 

approximations fails to properly describe these long range, non-local interactions. In response many functionals 

and corrections have been developed that use various approximations.  

Dispersion corrected DFT (DFT-D)22, 121 has become a popular solution as it includes a dispersion correction 

energy Δ𝐸𝐷𝐼𝑆𝑃  to 𝐸𝐷𝐹𝑇  in order to account for 𝐸𝑋𝐶 . There are a few types of DFT-D non local functionals that 

include van der Waals dispersions (like vdW-DF1 & vdW-DF2) built-in and post-hoc corrections (like TS, MBD, 

and AC).118-120 Some DFT-D corrections have been empirically fit to observed data,119, 122 while more novel ones 

have been developed that are conformation dependent or derived from molecular polarizabilities.123-125 There are 

also hybrid functionals available, which use part of the exact Hartree-Fock exchange to capture the missing 

exchange-correlation effects. Some hybrid functionals have been used to study energetic materials like B3LYP 

and B3LYP-BSSE (corrected for the basis set superposition error).126, 127 For example, B3LYP and B3LYP-BSSE 

have been used to predict lattice energies of −83.6 𝑘𝐽 𝑚𝑜𝑙−1 𝑎𝑛𝑑 − 44.4 𝑘𝐽 𝑚𝑜𝑙−1 respectively, in comparison 

to the experimental value of −130.2 𝑘𝐽 𝑚𝑜𝑙−1  for the energetic crystal RDX.128 The Wb97xd hybrid functional, 

which uses an empirically derived dispersion model (Grimme’s Dispersion),122, 129 has also been used and was 

found to perform well once corrected for BSSE. 128 Even with these corrections there is no systematic way of 

improving DFT, thus, treatments do not extend directly between systems. One that works amazingly for one system 
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may fall flat on another. The contemporary goal is the development an accurate, transferable but computationally 

affordable depiction of all the intermolecular contributions in a system.  

The scaling of DFT is ok, but the applied functionals are approximated and can result in a very poor description 

of the long-range correlations required to describe van der Waals dispersive interactions in crystal lattices like 

those found in energetic materials. There are methods available that contain an exact exchange-correlation, 

however, these are very expensive and cannot be used in periodic calculations but can be used as fragment based 

methods of evaluating the lattice energy.130 Hartree-Fock itself has issues with electron-correlation131, 132 but some 

post-Hartree-Fock methods are also worth note as they can circumvent the exchange-correlation issues found in 

DFT.  

1.3.2 Post-Hartree-Fock methods 

Møller-Plesset is a post-Hartree Fock, ab initio perturbation theory treatment that improves on some of the 

correlation issues found in common DFT. It is a relatively cheap perturbation method, and has been used in 

periodic calculations of energetic materials. However, it failed to deal with the long-range van der Waals dispersion 

interactions that were prominent in the RDX and HNIW.133, 134 Revealing large errors in the computed cell 

parameters and the predicted densities. Correlated electronic structure methods like Coupled Cluster theory 

(CCSD(T)) work very well in quantitatively describing many-body systems and capturing intermolecular van der 

Waals dispersion to a very good accuracy.135 CCSD(T) is a post-Hartree-Fock method that employs a many-body 

model, which scales sharply when applied to larger molecules or molecules with a sizeable number of heavier 

atoms. Even for dimer and trimer calculations quantifying the intermolecular interaction is an expensive challenge. 

1.3.3 Summary 

To summarise, there are many ways to utilize electronic structure methods in computational chemistry. One can 

carry out high quality molecular calculations using CCSD(T) as a fragment based method of computing the lattice 

energy or periodic intermolecular energy calculations can be carried out on the crystal structures of small molecular 

crystals. These periodic calculations can also require high-level, computationally exhaustive treatments like 

CCSD(T), large basis sets or a fine tweaking of dispersion corrections to obtain accurate results. Both CCSD(T) 

and MP methods struggle to decompose the total interaction energy into physically relevant contributions 

compared to SAPT (2.3.2). DFT-D and DFT-Tight-binding methods are becoming routine methods in CSP but are 

not yet methods cheaply accessible in Molecular Dynamics (MD) Simulations.41, 136 On the other hand, 

SAPT(DFT) can be used to develop potentials with functional forms that can be readily used in standard MD 
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codes.38, 60, 103-106 Consequently, in this thesis we shall be using SAPT in the development of a truthful non-

empirical intermolecular potential. In order to delve into the advantages of SAPT some background on its origins 

and theory must be given. These are detailed in Chapter 2 but in the next section we shall examine some of its 

uses for predicting the crystal structures of some energetic materials. 

1.4 Energetic materials  

1.4.1 Energetics and polymorphism 

Energetic materials can be defined as compounds that can react chemically to produce heat and gas, and also emit 

light in an explosion. Classes of energetic materials include explosives, pyrotechnics, propellants and fuels, 

however, energetic materials are commonly referred to as explosives. Explosives have a range of different 

classifications.17 The main two categories are high explosives and low explosives. Chemicals that cannot readily 

detonate i.e. pyrotechnics or propellants are known as “low explosives” while chemicals that can detonate are 

“high explosives”. The ease of detonation is ranked in descending order as primary, secondary and tertiary 

explosives. Tertiary explosives are also known as insensitive high explosives (IHEs).17 In the design of energetic 

materials, there are two very important properties the industry would like to have complete control and 

understanding of:  

 The detonation performance – the detonation velocity and pressures within the material, which dictate 

the power of the explosive compound. 

 The sensitivity – the sensitivity of the compound to external stimulus, to initiate the reaction. 

The energetics industry desire low sensitivity but high detonation performance materials and these properties 

experimentally appear to be closely related.137, 138 There has been research into developing energetic co-crystals, 

combining two energetic molecules, which has produced materials that are still powerful but less sensitive to 

impact and thermal decomposition than their pure forms.139 Both sensitivity and detonation properties depend on 

the physical properties of the solid, which usually vary with polymorph. The effects of the conformational 

differences between polymorphs on their impact sensitivity is explored in detail in Chapter 4. Polymorphism is 

certainly prevalent in energetic materials, some of the most popular energetic materials (RDX and TNT) show a 

range of polymorphs (Table 1).  
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RDX Orthorhombic 140 Orthorhombic α141 Orthorhombic β142 Orthorhombic 143 

REFCODE CTMTNA03 CTMTNA04 CTMTNA02 CTMTNA06 

Notes 90K, 1.858 g 𝑐𝑚−3 150K, 1.82 g 𝑐𝑚−3 
5.2GPa, 293K, 
2.267 g 𝑐𝑚−3 

5.7GPa, 293K, 
2.266 g 𝑐𝑚−3 

Lattice Energy 

(kJ mol-1) 
-118.6 -106.2 -118.7 -118.0 

 
 

 

TNT Monoclinic α144 Orthorhombic β144 

REFCODE ZZZMUC08 ZZZMUC09 

Notes 100K, 1.713 g cm-3 123K, 1.704 g cm-3 

Lattice Energy (kJ 
mol-1) 

-230.3 -230.1 

Table 1: The polymorphs of RDX and TNT with estimates of their intermolecular lattice energies. This was 

calculated using the empirical FIT potential and GDMA electrostatic model derived from the molecular charge 

density computed at PBE0/6-31G(d, p) quality on the experimental conformations with the hydrogen atoms 

corrected. These calculations ignore the effects of both pressure (PV) and temperature. The conformations used 

and their corresponding REFCODEs were obtained from the experimental Cambridge Structural Database 

entries.32 The visual representations of the structures constructed using CCDC Mercury 3.6.145 

RDX is a widely used military explosive, that is often compounded with mineral jelly or polymers to form plastic 

explosives like C4 or PBX.17, 146 RDX exhibits conformational polymorphism,147 and there are two conformations 

(AAA and AAE) observed in experimental crystal structures.140-143 These conformations refer to the positions of 

the NO2 groups in the 6 membered ring, equatorial (E) and axial (A). The switching of the positions of these groups 

has an associated energy barrier as the ring has to go through a boat conformation. The 𝛽 form is metastable at 
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ambient temperatures and only the thermodynamically stable polymorph at pressures 𝑃 > 3.8 𝐺𝑃𝑎.142 The 𝛼 form 

of RDX is the experimentally most stable polymorph at ambient conditions, however, the empirical FIT model, 

finds it to be the least stable in comparison to the three other high pressure forms. Its 𝛽 form shows very large 

anisotropic displacement parameters associated with the first molecule’s nitro groups and ring atoms,142 this means 

there is significant libration about its position in the lattice. This suggests that it can readily transform into the 

more stable 𝛼 form but also suggests a flexible study is more appropriate. Whereas, these lattice energy estimates 

are very rough as they also hold the molecular conformations rigid. The transition of 𝛽 → 𝛼 could lead to 

deterioration of crystal, shear stresses and/or crystal defects affecting the creation of “hot-spots”, hence, 

influencing performance and increasing sensitivity to detonation. It is clear a molecule like RDX could not be held 

rigid in a CSP study. It is also likely that within these AAE and AAA forms the rotation of the NO2 groups around 

the N-N bond could also result in more conformational polymorphs.  

TNT is another widely used, well known energetic material, with a metastable orthorhombic 𝛽 form. More TNT 

is manufactured than any other military-grade explosive due to its low melting point and relatively low 

sensitivity.148 During both the processes of casting TNT from the melt and growth in solution, the meta-stable 

orthorhombic form can be produced, which then transforms in the more stable monoclinic 𝛼 form.144 This change 

is problematic as it can lead to the development of defects (cracks and voids), and increased sensitivity to 

detonation. Another added complication is that the orthorhombic form can remain stable for over 12 months at 

ambient conditions without transforming, meaning that the transformations could happen in storage and be a safety 

risk. The empirical model also struggles to distinguish between the two polymorphs of TNT. As one can see in 

Table 1 the two forms of TNT look virtually identical. This is because they are orientational polymorphs,144 it is 

the relative packing that generates two polymorphs. TNT is a relatively rigid molecule meaning its conformation 

is unlikely to differ between polymorphs especially at ambient temperatures. It’s the differences in packing that 

make this structure a large scale polytype. Polytypism is where the crystal structures differ in one dimension only 

(𝑐 axis for TNT), and is typically common to long chain molecules.149-151 Chapter 4 investigates the effects of 

conformation on lattice energies and molecular properties and determines the limits of the rigid model with regards 

to modelling the intermolecular interactions of nitro-groups in energetic materials. 
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1.4.2 Current methods of modelling energetic crystal structures 

1.4.2.1 Density Functional Theory  

 B3LYP 
B3LYP 
(BSSE) 

B3LYP-D 
(BSSE) 

PBE-D 
(cluster) 

PBE-D 
(cell) 

Wb97xd 
Wb97xd 
(BSSE) 

Experiment 

 Lattice Energy (𝑘𝐽 𝑚𝑜𝑙−1) 

RDX -83.6 -44.4 -151.4 -164.6 -154.4 -172.0 -127.9 -130.2 

HNIW -130.0 -29.1 -190.2 -192.7 -181.0 -227.3 -147.2 -168.7 

FOX-7 -119.9 -90.2 -188.3 -209.2 -185.6 -205.9 -172.9 -108.7 

TNT -134.4 -18.2 -118.3 -129.5 -133.8 -127.7 -94.3 -104.6 

Table 2: The lattice energy (𝑘𝐽 𝑚𝑜𝑙−1) for four energetic molecular crystals (RDX, HNIW, FOX-7 & TNT) 

obtained from experiments and calculations using various functionals. Data obtained from ref. 128 

Table 2 compares periodic DFT calculations with cluster based methods, the effects of including dispersion 

corrections, accounting for the basis set superposition error (BSSE126, 127) and the influence of different hybrid 

functionals on calculating the lattice energy of different energetic crystal structures. The study fails to clearly 

specify the basis sets used in each calculation, and the choice of basis set and basis set convergence (or method of 

estimating this by a BSSE correction) has a major influence on the computed DFT energy. As mentioned before 

(1.3.1) there is no way to systematically improve DFT so trialling different functionals is often the solution. 

Whereas one can systematically improve on a force-field’s functional form and parameterisation to better model 

intermolecular interactions, certain functionals simply fail to capture intermolecular interactions when extended 

to other molecules.  

B3LYP with a BSSE correction predicts the 2nd closest lattice energy to the observed energy for the energetic 

material FOX-7, but performs horrendously for the other energetic molecules. The Wb97xd functional122, 129 does 

reasonably well once corrected for BSSE, and including a dispersion correction to the B3LYP functional only 

helps improve its TNT and RDX prediction. Considering the energy differences between related polymorphs,7 

these treatments could not be used for reliable CSP. The study in Table 2 did not specify what polymorphs of the 

energetic molecular crystals were used and does not show whether variations in method affects the relative 

energies. Additionally, care should be taken in comparing predicted lattice energies (taken at 0𝐾, 0𝐺𝑃𝑎 pressure) 

to the room temperature properties of crystal structures. This is because thermal effects will mean that there is a 

significant difference between lattice energies and enthalpies at practical temperatures. In Chapter 3, the effects 

of this type of approximation on the calculated properties of pyridine polymorphs are also examined. 
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1.4.2.2 Rigid force-fields using SAPT(DFT)  

Symmetry Adapted Perturbation Theory (SAPT) based on the Kohn-Sham density functional theory (DFT) of 

monomers (SAPT(DFT)) has been a popular tool in the development of non-empirical force-fields for 

energetics.104 This section discusses examples but the theory and implementation behind SAPT(DFT) and non-

empirical potential development is investigated in Chapters 2 & 5.  

1.4.2.2.1 RDX 

Over 1000 SAPT(DFT) dimer interaction energy (up to the 2nd order SAPT(DFT) energy) calculations using an 

aug-cc-pVDZ basis152 were used to derive an non-empirical isotropic atom-atom intermolecular force-field to 

model the potential energy surface of RDX.104 The study aimed to develop force-fields to be later used for rigid 

MD simulations in order to examine the thermal and pressure response of RDX. This study uses an isotropic short-

range description to enable the use of the force-field in current MD codes, however, it should be noted that codes 

for doing MD with anisotropic potentials are being developed.153 The force-field used a damped 𝐶6 isotropic 

dispersion term to model the long-range portion of the dispersion contribution alongside a point-charge 

electrostatic model. The main non-additive contribution, the polarization energy, a long-range component of the 

induction energy (2.6.1), was also absorbed into the 𝐶6 dispersion coefficients. The 𝐶6 dispersion coefficients were 

fit to the SAPT(DFT) polarization and dispersion energies of the interacting two-molecule configurations.104 The 

other 2nd order induction and dispersion effects (the charge delocalization and the exchange-dispersion energies) 

were included by adjusting the short-range parameters to fit the total 2nd order SAPT(DFT) dimer energies. Higher 

order energy calculations were not carried out thus non-additive many-body contributions to the lattice energy 

calculations were not included, due to their computational expense outweighing their percentage contributions to 

the total energy. Coupled cluster (CCSD(T)) calculations on the RDX dimer, found the higher order induction 

contributions from the 𝛿𝑖𝑛𝑡
𝐻𝐹 energy (2.6.3) to be negligible.104 In addition, the force-field does not include an 

intramolecular model for RDX and keeps its conformation fixed.  

The RDX potential was used to carry out lattice energy minimizations, finding the dispersion energy to be 

comparable between all RDX polymorphs. Consequently, it was assumed that the relative energies would not 

significantly differ even if many-body contributions were included. The predicted crystal densities, lattice 

parameters and bulk moduli showed good agreement with observed experimental data. Though the potential had 

not been corrected for quantum effects like zero-point energy vibrations,104 the treatment was accurate and efficient 

enough to predict the correct polymorph ranking and structure of RDX in a CSP study. The 𝛼 form was found to 

be 4.7 𝑘𝐽 𝑚𝑜𝑙−1 lower than the next most stable structure, and the crystallographic parameters corresponded well 

with experiment (Table 3). This study also compared its non-empirical model was with a bespoke empirical least 
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squares (SRT) fitted model, which was created specifically for MD studies of RDX by fitting to the experimentally 

observed cell geometries and lattice energies of RDX.154 A marked improvement in accuracy was observed when 

the non-empirical model was used. A key aspect of the non-empirical force-fieldfor RDX104 was its simplified 

functional form. The simplification reduces the ability to identify the physical relationship between contributions. 

This simplified functional form did enable the potential to be used in an isothermal-isobaric Molecular Dynamics 

(NPT MD)155 study to compare potential predicted lattice vectors with observed values.  

 
Energy 

(𝑘𝐽 𝑚𝑜𝑙−1) 

Density 
(𝑔 𝑐𝑚−3) 

a (Å) b (Å) c (Å) 

Non-empirical -128.95 1.778 13.259 11.634 10.754 

Empirical 
(SRT) 

-121.88 1.738 13.403 11.800 10.732 

Experiment -130.1 1.796 13.200 11.609 10.724 

Table 3: The empirical and non-empirical computed properties for 𝛼-RDX extracted from104, 154. Experimental 

energy of sublimations obtained from 156 at 327-373 K. Experimental lattice vectors/density obtained from Ref.157 

The dispersion energy was found to be the most important attractive contribution to the dimer interaction energy, 

further reinforcing the idea that effective modelling of van der Waals dispersions is key. There are many cases 

where polarization/electrostatic interactions are the most important component of the lattice energy (heavily ionic 

or hydrogen-bonded structures) but even in these cases the dispersive forces are always important, neglecting 

dispersion would otherwise result in structures that were too weakly bound or not bound at all. 

1.4.2.2.2 FOX-7 

 

Figure 3: The network of short-contacts greater than the sum of van der Waals radii for the 𝛼 polymorph of FOX-

7.158 These networks differ between polymorphs. Intramolecular interactions are given in blue while 

intermolecular interactions are in red. This visual representation was constructed using CCDC Mercury 3.6.145 
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FOX-7 is a good example of an energetic material with very limited experimental data, accordingly, empirically 

fitting a potential for the crystal is very difficult, thus developing a non-empirical potential is the right direction. 

Conversely, due to the very limited experimental data results cannot be properly validated. FOX-7 is a promising 

energetic material as it has a high shock insensitivity and thermal stability, not decomposing till temperatures 

above 500K.159, 160 The crystal structures of the FOX-7 polymorphs contain an extensive weak hydrogen-bonding 

network in the plane of the layers and weaker dispersive forces between layers, resulting in a unique balance of 

intermolecular forces. 

Another good example of employing SAPT(DFT) to develop a non-empirical intermolecular force-field from first 

principles was presented for the organic energetic molecule FOX-7.158, 159, 161 Over 1000 random 

𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] dimer interaction energies (of aug-cc-pVDZ quality152) were used to derive and fit a non-

empirical pairwise potential. The force-field used an isotropic exp-6 Buckingham repulsion-dispersion definition 

that absorbed polarization effects coupled with a point-charge electrostatic model. The model for FOX-7 does 

attempt to include higher order induction contributions by including the 𝛿𝑖𝑛𝑡
𝐻𝐹 energy in the total energy used to fit 

the short-range parameters. This was because FOX-7 is a reasonably polar molecule and thus higher order 

induction contributions should be important. The contributions were included through the fitting of the short-range 

components, however, many-body dispersion effects were not included. The potential was used in an isothermal-

isobaric (NPT) rigid MD simulation study to also compute the thermal and pressure dependent properties of the 

crystal.  

FOX-7’s nitro groups are known to rotate as temperature is increased, weakening intermolecular hydrogen 

bonds.159 While SAPT(DFT) manages to correctly capture the long-range dispersion interactions and the close-

range hydrogen bonding, the MD simulations in this study assumed a rigid molecule, meaning that this 

conformational change was not modelled. Hence, as the temperature increases the hydrogen bond network is 

unbroken, resulting in a stiffer material/bulk modulus. FOX-7 clearly needs a flexible force-field to better describe 

changes in geometry with external pressure or thermal change, and in turn improving the predicted thermal 

response. This is certainly the trajectory of current modelling, and the challenges faced in incorporating 

conformational flexibility of nitro groups are discussed in Chapters 4, 6 & 7.  

1.4.2.3 Flexible force-fields using SAPT(DFT)  

The development of a suitable work-flow for the easy generation and use of representative, tailor made force-fields 

for all molecules let alone energetic molecules is a goal within many research groups. A number of groups have 

been looking at strategies to automate and optimize the parameterisation and construction of tailor-made force-

fields. A recent study of 𝛼-RDX162 attempts to do so by developing a so-called self-consistent iterative force field 
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(SCFF) optimization technique. The resultant force-fields aim to model the total lattice energy by employing 

various electronic structure methods for parametrisation. The hybrid DFT functional B3LYP/6-31G* was used to 

optimize many monomer and dimer conformations of RDX, in order to generate a conformer training set to fit the 

intramolecular portion of the force-field. The point-charge electrostatic model was also fitted at the B3LYP/6-

31G* level using the CHELPG scheme163 (2.5.1.2). 1000 second-order and 2000 first-order SAPT(DFT) dimer 

interaction energies (this time at the PBE0/aug-Sadlej level of theory) were used, in conjunction with the overlap 

model methodology used by Misquitta,38, 60 to fit an isotropic short-range potential with a damped isotropic 𝐶6 

dispersion model. In this study the polarization contribution is also absorbed into the dispersion coefficients, which 

were obtained through fitting to the induction and dispersion contributions of the 2nd order SAPT(DFT) dimer 

interaction energy and the short-range parameters were then scaled to the total energy curves. Assuming the 

polarization can be described using the same functional form as the dispersion 𝐶6/𝑅6, is definitely an 

approximation one should avoid, as the polarization term is non-additive and should not be included with an 

approximately pairwise additive term like the dispersion (Chapter 2).164 Furthermore, fitting the dispersion 

coefficients (a correlated property) directly to two molecule interaction energies will remove from the physicality 

of the model, as the dispersion coefficients can be derived directly from 𝜌(𝑟) and should be closely related to the 

electrostatic model (Chapters 2 & 5). The iterative aspect of the workflow occurred during the inclusion of the 

many-body dispersion correction using periodic DFT-D calculations. This is done by weighting the short-range, 

dispersion and intramolecular parameters and fitting the force-field computed energies to periodic DFT-D 

calculations using a minimization algorithm.162 The force-field was then used to predict some crystalline properties 

of 𝛼-RDX, reproducing all the correct geometries for the remaining RDX polymorphs with good agreement with 

literature. Vibrational analysis from data generated by the force-field was then employed to categorise transition 

states. The force-field was then integrated into NPT MD simulations to predict the densities and lattice parameters 

of 𝛼-RDX under thermal and pressure conditions similar to those that explosives are subjected to. As seen with 

other force-fields,161 the force-field struggled to describe some of the intramolecular configurations seen in 𝛼-

RDX. The out-of-plane bending angle of the equatorial NO2 group in the molecule was defined poorly in 

comparison to the axial groups. This is likely to be due to the potentials approximate representation of 

intramolecular forces and possibly its parameterisation process. 

Nonetheless, the ability of this potential to maintain its functionality at these more “extreme” conditions suggests 

that the SCFF optimisation is a very valuable strategy for parameterisation. While the use of a point-charge 

electrostatic model, the functional form of the potential (absorbing the polarization), and the fitting process for the 

some of the core parameters (like the dispersion coefficients) was certainly questionable, the workflow was novel 

and the development process in this study was ambitious and one to learn from. 
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1.4.2.4 Summary of SAPT(DFT) derived force-fields for energetic molecules and crystals 

The above non-empirical force-fields derived for energetic crystals were notable examples of atomistic potentials, 

obtained using ab-initio methods, which were capable of quantitatively determining crystal structures containing 

fairly sized molecules with a sizeable number of heavier atoms. The examples for FOX-7 and RDX use non-

empirical potentials with simplified functional forms, which have an isotropic short-range description and no 

explicit polarization model, they instead absorb the effects of polarization into the dispersion coefficients. This 

description works well for small molecules, which are relatively rigid, like benzene.103, 165 However, these models 

are unlikely to be extendable to larger more anisotropic systems like trinitrobenzene.166 The dimensionality of a 

potential energy surface grows extensively with the degrees of freedom, and as such many potentials are limited 

to relatively small, rigid molecules with a few flexible groups. Accurately modelling conformational flexibility 

through including an intramolecular model is certainly a challenge.  

1.5 Thesis overview 

With all this in mind, this thesis aims to design a novel non-empirical atom-atom intermolecular force-field that 

outperforms contemporary empirical methods and develop a workflow that can be extended to larger more 

complex systems. The following chapters of this thesis aim to describe the theory of intermolecular forces and 

show how this leads to the development and use of ab initio force-fields (Chapter 2). The theory of intermolecular 

forces is applied to the pyridine crystalline lattice in a non-empirical potential, initially derived for the gas-phase38 

by Dr. Alston Misquitta, and then used for CSP (Chapter 3). The distributed intermolecular force-field (DIFF) 

for pyridine was the 2nd ever non-empirical anisotropic atom-atom potential developed for CSP. The only previous 

example being C6Br2ClFH2, which neglected polarization effects.60 Chapter 3 is published work167 that not only 

investigates the effects of polarization but pressure and free energy in a novel manner with unexpected results.167 

The thesis then progresses on to look at the influence of molecular geometry on the electrostatic properties of the 

crystal, and attempts to address the problem of flexible nitro-groups that one faces with energetic materials 

(Chapter 4). The published investigation168 examines how conformation affects the molecular charge 

distributions, and in turn energetic properties and intermolecular interactions. It is determined whether or not one 

can hold trinitrobenzene (TNB) rigid and still obtain its genuine potential energy surface.168 In the final chapters 

an ab initio non-empirical anisotropic atom-atom intermolecular force-field for TNB shall be derived (Chapter 5) 

and applied in a CSP study (Chapter 6) to determine whether one can extend this workflow to larger more 

challenging systems. 
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2 The development and implementation of the theory 

of intermolecular forces  

2.1 Introduction 

2.1.1 Fundamental notions within the theory of intermolecular forces 

The notion that matter is composed of atoms and molecules is an idea that has existed for millennia, but the theory 

that the properties of matter are governed by forces and can even be predicted is relatively young in comparison.164 

The intermolecular forces determine many experimental properties of gases such as, second virial coefficient,169 

viscosity170 and diffusion constants. In addition, modern spectroscopic techniques at low temperature provide 

detailed information about the potential energy surface (PES) around the global minimum, which can include 

information on barriers between equivalent minima and possible transformation pathways.171-174 Furthermore, 

theoretical methods like intermolecular perturbation theory can give the components of the intermolecular 

interaction energy and allow for a detailed and accurate study of the intermolecular forces in a system.  

It’s safe to say these are concepts and methodologies, which a non-scientist would be forgiven for not being 

familiar with. However, some evidence for molecular interactions and intermolecular forces is very readily 

available. The cup of water on your desk, the ice in your fridge, the vapour that forms when you shower in the 

morning (if you shower in the morning) all show the different phases of water in a textbook illustration of 

intermolecular forces at work. Intermolecular forces play an important role in the physical properties of molecular 

solids and liquids, crystal and liquid structures (polymorphs, liquid crystals, amorphous phases etc.), being 

responsible for molecules condensing from the gas, temperature dependence, pressure, and properties such as 

viscosity and diffusion etc. Consequently, a profound understanding of intermolecular forces is crucial in a range 

of industries, such as the pharmaceutical industry for drug design and discovery methods. 

H2O is a definitive, open example of the nuances and importance of intermolecular forces. Ice, water and water 

vapour have differing structures and dynamics that result in different physical properties. The properties of every 

state of H2O differs from that of hydrogen sulphide (H2S) or the iso-electronic methane (CH4) due to the differences 

in the intermolecular interactions between these systems. The strong hydrogen-bonds that form between the 

oxygen and hydrogen atoms of neighbouring water molecules dominates its physical properties resulting in a 

unique phase diagram, with over 15 phases.48, 175 The directionality of the strong hydrogen bonds in water cause 

its crystal structure to exhibit a more open structure, hence it is less dense than its liquid phase, which has a 

substantially higher boiling point than its iso-electronic counterparts NH3 or CH4. The diversity of phases of water 
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and their physical properties originates from a subtle balance of electrostatic, polarization, charge-delocalization 

and dispersion intermolecular interactions. For hydrocarbons like methane, van der Waals dispersive forces 

influences its behaviour more heavily, and for NH3, which forms weaker hydrogen bonds than water due to 

nitrogen being less electronegative than oxygen. Consequently, its intermolecular interactions and phase diagram 

differs too. 

In all states the distances between molecules are not equal, thus the effects of forces and interactions between 

neighbours will differ within co-ordination spheres. For each pair of rigid polyatomic molecules, the 

intermolecular energy and forces will depend on 𝑅, the centre of mass separation, and the orientation Ω. Generally, 

when describing interactions as a function of 𝑅 we find there is a range where attractive forces, like hydrogen-

bonding or van der Waals forces, dominate and a region at smaller 𝑅 dominated by repulsive forces. The balance 

between attractive and repulsive forces will determine the equilibrium distance between two molecules, and in 

turn govern the overall thermodynamically stable configuration of an array of molecules like a crystal lattice 

structure. If one thinks of repulsive and attractive forces as compressing and stretching a foam ball, we know that 

if we squeeze it, the ball will naturally expand to its equilibrium shape and if the ball is stretched it will eventually 

contract (unless you rip it, then you’ll need a new ball). This basic example illustrates the effects of deformation 

on a system and how a system will react to changes and move to its most stable state. 

Varying external influences like temperature or pressure will sample different portions of the repulsive or attractive 

regions of the intermolecular PES, changing the interactions between molecules and thus the energy of the system, 

which are important in determining the properties.  Due to the repulsive forces arising from the Pauli exclusion 

principle, two electronic charge distributions cannot reside on top of each other, therefore, the energy increases 

exponentially as 𝑅 → 0. This accounts for the low compressibility of condensed phases. Consequently, repulsion 

is active in the short-range and attractive forces are usually prevalent in the long-range, though as 𝑅 → ∞, the 

potential energy 𝑉 of the system always tends to 0. This establishes a qualitative description of the potential energy 

𝑉(𝑅) of a system, due to its intermolecular forces, as a function of 𝑅. Figure 4 further illustrates this for the two 

TNB molecules in the S4 configuration, one of the most stable gas-phase dimer structures (5.5.3.1.3). 
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Figure 4: The intermolecular potential energy (𝑉𝑖𝑛𝑡
(2)

) of a S4 gas-phase dimer configuration of trinitrobenzene 

(5.5.3.1.3) as a function of 𝑅, broken down into its energy components. The 1st-order exchange-repulsion and 

electrostatic potential energies are shown together as 𝑉𝑒𝑙𝑠𝑡+𝑒𝑥𝑐ℎ−𝑟𝑒𝑝
(1)

, while the polarization and dispersion 

energies are indicated as 𝑉𝑃𝑂𝐿
(2)

 and 𝑉𝐷𝐼𝑆𝑃
(2)

 respectively. These components of the intermolecular potential energy 

are defined in (2.3.3). 𝑅𝑒𝑞 indicates the equilibrium distance between the two TNB monomers. 

In Figure 4 we see that different components of the intermolecular interaction energy govern the stability of a 

system. There is a point of equilibrium (the equilibrium distance (𝑅𝑒𝑞)) where the PES describing the 

intermolecular interactions is at a minimum. Having a precise form of 𝑉(𝑅) is crucial to getting the point of 

equilibrium correct and in turn obtaining the general features of the intermolecular PES. The importance of 

different energy components will change the overall potential energy surface, therefore, one can expect the PES 

of H2O and CH4 to differ significantly. The PES is very dependent on the orientations of the two interacting 

molecules, more so for water and TNB than for methane, thus, Figure 4 is the description of 𝑉(𝑅) only for a 

specific orientation of two rigid TNB molecules. The different contributions vary in their orientation dependence, 

with the polarization and dispersion contributions always being attractive, whereas the electrostatic contribution 

can vary strongly in sign and magnitude. The intermolecular interaction in some orientations can be totally 

repulsive, when the electrostatic contribution is repulsive and larger than the attractive dispersive contribution. So 

if intermolecular forces can vary considerably between molecules, with different phases sampling different regions 

of the intermolecular potential energy surfaces, how we do accurately model it? 
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2.1.1.1 The pairwise additive approximation 

The simplest model of the total interaction energy 𝐸 of a system is one where 𝐸 is composed only of one-body 

and two-body terms. In this thesis, the term “body” refers to an interacting unit. Internal geometric changes in the 

molecule lead to the one-body term, and this energy penalty may be compensated for by the intermolecular 

interaction energy stabilization within the dimer or crystal. Close-contacts between neighbouring molecules in 

crystals and liquids correspond to intermolecular interactions that can be stabilizing or destabilizing depending on 

orientation and separation. This intermolecular energy can be approximated as a pairwise summation between 

neighbouring molecules. Assuming pairwise additivity, the total energy 𝐸 of a system is composed of the 

summation of all the intramolecular (or conformational) energies (𝐸𝑀
𝑖𝑛𝑡𝑟𝑎) of the isolated molecules 𝑀 in the system 

and all pairwise intermolecular interaction potential energies (𝑉𝑀𝑁) between molecules 𝑀 and 𝑁. One must avoid 

double counting as 𝑀 … 𝑁 = 𝑁 … 𝑀, thus we write the sum over pairs to avoid doing so. 

𝐸𝑙𝑎𝑡𝑡 = ∑ 𝐸𝑀
𝑖𝑛𝑡𝑟𝑎

𝑀

+ ∑ 𝑉𝑀𝑁

𝑀>𝑁

 

2 

This pairwise model, however, is an initial approximation. Equation 2 has yet to include many-body (i.e. 3-body 

𝑉𝑀𝑁𝑂 or 4-body 𝑉𝑀𝑁𝑂𝑃 .) effects. The most important non-pairwise terms that are considered in this thesis are the 

many-body dispersion and polarization contributions. 

𝐸𝑙𝑎𝑡𝑡 = ∑ 𝐸𝑀
𝑖𝑛𝑡𝑟𝑎

𝑀

+ ∑ 𝑉𝑀𝑁

𝑀>𝑁

+ ∑ Δ𝑉𝑀𝑁𝑂

𝑀>𝑁>𝑂

+ ∑ Δ𝑉𝑀𝑁𝑂𝑃

𝑀>𝑁>𝑂>𝑃

+ ⋯ 

3 

Typically, analytically including many-body terms drastically increases the dimensionality of the model and these 

contributions can diminish with increasing number of bodies.176-179 Accordingly, they are usually included as 

approximate corrections to the energy or neglected completely. Conversely, there are many instances when these 

terms, especially the three-body terms, cannot be completely neglected180-182 (3.4.5.2). For example, polarization 

effects depend on the symmetry of the environment and so effects can be cancelled out or compounded depending 

on crystal configurations. As we further develop the intermolecular model we will discuss this more but for now 

we will neglect the many-body terms and set aside the conformational energy of a system by holding it rigid, 

focusing on the pairwise intermolecular energy.  
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A rigid pairwise model can be used to approximate the intermolecular lattice energy of a crystal structure as a 

pairwise summation of the intermolecular interactions between monomers within the lattice. 

𝐸𝑙𝑎𝑡𝑡 = ∑ 𝑉𝑀𝑁

𝑀>𝑁

[𝑟𝑖𝑔𝑖𝑑 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛] 

4 

2.1.1.2 Free energies 

2.1.1.2.1 Background 

The relative stability of a static crystalline lattice and the experimentally observed stability can differ significantly 

as the real crystal is not static and the molecules move even at 0 𝐾, and this motion increases with temperature. 

The resultant phonon effects will certainly influence the crystal structure properties.183, 184 Phonon and isotope 

effects can expand crystal structures, change relative stabilities and consequently result in polymorphic phase 

changes.183, 185, 186 The energy difference between the hypothetical static crystal at 0𝐾 and a real crystal can be 

estimated by lattice dynamics within the rigid-molecule harmonic approximation.11, 183, 185 The Gibbs free energy 

of a crystalline lattice 𝐺𝑓𝑟𝑒𝑒(𝑇), gives the thermodynamic stability of the crystal structure at a given pressure and 

temperature 

𝐺𝑓𝑟𝑒𝑒(𝑇) = 𝐻𝑙𝑎𝑡𝑡 −  𝑇𝑆 

𝐻𝑙𝑎𝑡𝑡 = 𝑈 + 𝑃𝑉 

𝑈 = 𝐸𝑙𝑎𝑡𝑡 + 𝑍𝑃𝐸 + 𝑈𝑡ℎ𝑒𝑟𝑚(𝑇) 

5 

where 𝑇 is the temperature of the system, 𝑃 the applied external pressure, 𝑉 the volume, 𝑆 the entropy, 𝐸𝑙𝑎𝑡𝑡  the 

lattice energy, 𝑍𝑃𝐸 the zero-point energy, the energy due to the inherent lattice vibrations that occur at 0𝐾, 

𝑈𝑡ℎ𝑒𝑟𝑚(𝑇) the internal energy of the system due to thermal effects and 𝐻𝑙𝑎𝑡𝑡 the lattice enthalpy.183 The summation 

of the energy due to thermal effects, and the lattice and zero-point energies gives us the total internal energy of the 

system 𝑈. The energy contribution due to the entropy of the system 𝑇𝑆, can be added to the 𝑍𝑃𝐸 and 𝑈𝑡ℎ𝑒𝑟𝑚(𝑇) 

to give the free energy thermal correction 𝐹𝑣𝑖𝑏(𝑇). The pressure term (𝑃𝑉) is usually dropped in CSP studies as 

its contribution is only significant at high pressure but in Chapter 3 one shall see how it can lead to new 

polymorphic forms.167, 187 Keeping the pressure of the system constant gives the Helmholtz free energy of a system  

𝐴𝑓𝑟𝑒𝑒(𝑇) = 𝐸𝑙𝑎𝑡𝑡 + 𝐹𝑣𝑖𝑏(𝑇) 

𝐹𝑣𝑖𝑏(𝑇) = −𝑇𝑆 + 𝑍𝑃𝐸 + 𝑈𝑡ℎ𝑒𝑟𝑚(𝑇) 
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6 

This treatment of obtaining the free energy correction 𝐹𝑣𝑖𝑏(𝑇) requires the crystal structure to be a lattice energy 

minimum, with respect to the lattice parameters, including angles. It is good practice to evaluate 𝐴𝑓𝑟𝑒𝑒(𝑇) only at 

temperatures well below the crystal melting point as the harmonic approximation begins to lose its validity close 

to phase transitions. Methods for evaluating free energies of crystals from a MD simulation that samples the 

anharmonicity of the molecular motions require a very accurate intermolecular potential, and so very few of these 

kind of studies have been performed.188 

2.1.1.2.2 Implementation in DMACRYS 

DMACRYS59 (originally DMAREL189) is a computational chemistry code, which models infinite lattices of rigid 

organic molecules, and can use anisotropic atom-atom intermolecular potentials. It was originally written to 

include the energies, forces, torques and some second derivatives arising from a distributed multipole electrostatic 

model.190 The capability to accept anisotropic repulsion models was added later,191, 192 and isotropic 𝐶8, 𝐶10 

dispersion terms in order to be able to use non-empirical dispersion coefficients instead of just an effective 𝐶6 

value.40 The ability to use distributed dipolar polarizability tensors and model the polarizability explicitly was also 

implemented40 with limited testing. DMACRYS can also calculate the effects of the 𝑃𝑉 pressure term,40 the elastic 

constants193 and 𝑘 = 0 phonons within the rigid molecular harmonic approximation.194 In Chapter 3, the effects 

of pressure are calculated by minimizing the cell geometry including the 𝑃𝑉 contribution to the energy with 

DMACRYS in order to obtain the lattice enthalpy.  

The Helmholtz free energies of the polymorphs of pyridine are calculated in Chapter 3 by sampling a number of 

𝑘-points in reciprocal space. This is done by computing the phonons frequencies195 and elastic stiffness tensors194 

for a number of linearly elongated supercells of crystal to sample the first Brillouin zone. The supercells are 

generated by selecting a default 0.12 Å1 distance, in reciprocal space, between each 𝑘-point in each direction11, 

183 which samples about 26 𝑘-points.  If the isolated molecule is small one does not require very large supercells. 

This was the case with pyridine (Chapter 3). The Debye frequency contribution to the acoustic phonons and a 

Gaussian Kernel Density Estimate (KDE) of the optical density of states (the default bandwidth is 3 cm-1) are 

calculated from the elastic tensors and phonons respectively, and then used to calculate the free energy thermal 

correction 𝐹𝑣𝑖𝑏 , as the sum of the vibrational zero-point energy and the thermal energy at various temperatures. A 

quasi-harmonic approximation could be used to calculate the thermal expansion due to the free energy. The 

pioneering work using this approximation to estimate thermal expansion suggested that the calculations are very 

computationally expensive yet may have a negligible effect on the relative free energies in comparison to the 

computational expense.185, 196, 197  
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For a properties calculation in DMACRYS to include the phonons and an accurate elastic tensor, the second 

derivatives have to refer to the moment of inertia axes. All second derivatives are calculated numerically, while 

the first derivatives are calculated analytically in testing that the starting point is at a minimum. The 1st and 2nd 

derivatives are needed for structure minimization, but an estimate of the second derivative matrix with respect to 

the molecule fixed-axis is built up during the minimization process.  

The polarization term has to be numerically iterated to consistency (2.6.1.1). Thus there are no analytical first 

derivatives, let alone second derivatives of the polarization energy, and numerically calculating the second 

derivatives of the polarization term is very expensive. Hence, crystal structures cannot be routinely optimized 

when the intermolecular potential includes an explicit, distributed polarizability model. 

Splines were introduced in DMACRYS to reduce the numerical noise in energies and first derivatives due to the 

cut-off in the direct lattice summations. They result in continuous forces and allow better optimization with smaller 

lattice sums. Splines are used throughout this thesis to allow a much smaller direct lattice summation cut-off. The 

details of the changes to the methods of summing electrostatic and polarization contributions using Ewald 

summations and splines can be found in the DMACRYS manual.59 However, some properties calculations have 

been found to give poor results when splines are included, presumed due to the splines not giving continuous 

second derivatives. Thus splines are not used for phonon calculations. Subsequently, with so much likely numerical 

noise, phonon (and hence free energy) calculations in this thesis do not include the polarization term. 

2.1.2 Intermolecular interactions: A delicate balance of contributions 

The theory of intermolecular forces allows us to decompose the total intermolecular interaction energy of a system 

into various contributions, that one can then use to derive a non-empirical intermolecular force-field. The most 

important contributions to the intermolecular energy arise from a few physical contributions. The most dominant 

interactions for most organic molecules containing heteroatoms are the electrostatic, the universal exchange-

repulsion and dispersion interactions. The leading (and often most important) term is the electrostatic interaction, 

the Coulombic interaction between the unperturbed molecular charge densities (𝜌(𝑟)) of molecules 𝑀 and 𝑁. The 

exchange-repulsion term arises from the Pauli exclusion principle, while at higher orders there are additional 

contributions from charge-delocalization and dispersion (and mixed) terms. The intermolecular interactions can 

be either attractive or repulsive depending on their origin, orientation and distance and can be partitioned and 

classified as long-range (𝑉(𝑹)~𝑅−𝑛) and short-range (𝑉(𝑹)~𝑒−𝛼𝑅) contributions, depending on whether there is 

overlap of the molecular charge densities. A number of factors and terms like hydrogen-bonding, 𝜋 … 𝜋 

interactions, resonance (2.1.2.1) or van der Waals forces (generically termed) are used to qualitatively describe the 
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intermolecular forces for specific types of organic molecules, giving intermolecular potential energy surfaces as 

diverse and rich as the range of organic molecules themselves. The intermolecular forces in organic solids are 

sufficiently weak (in comparison to metallic, ionic or covalent bonding) that one can treat it as a perturbation on 

the isolated molecular charge distribution (2.3). The gravitational and magnetic effects can be excluded, as can 

resonance forces if only closed shell molecules are considered. We will not attempt to list and explain every single 

one in detail but we will touch on the most prominent long-range and short-range terms and then investigate the 

most important terms when developing intermolecular force-fields for weakly bound organic materials. 

2.1.2.1 Long-range terms 

Long-range contributions refer to terms that survive at large separations, when there is negligible overlap of charge 

distributions, with the largest long-range terms for organic materials being the electrostatic, induction and 

dispersion contributions. These terms also have short-range contributions, however, the long-range and short-range 

expressions are modelled quite differently. The electrostatic energy (𝐸𝑒𝑙𝑠𝑡) is the simplest to understand. It is a 1st 

order energy that arises from classical interactions between the static charge density of molecules 𝑀 and 𝑁, when 

𝜌𝑀(𝑟) interacts with 𝜌𝑁(𝑟). It is orientation (Ω) dependent and strictly additive, however, it can be both attractive 

and repulsive depending on the orientation and separation. The induction energy (𝐸𝐼𝑁𝐷) is a 2nd and higher order 

energy that arises from the distortion of the molecular charge density (𝜌𝑀(𝑟)) due to the electric field created by 

neighbouring molecules. The response to the electric field means the interaction is always attractive, however, as 

the field of neighbouring molecules can cancel it out or reinforce it, it is strongly non-additive. Therefore, the 

induction contribution within a gas-phase dimer interaction is very different from the induction in the condensed 

phase and can be very difficult to calculate as it requires numerical iteration (2.6.1.3). The dispersion energy 

(𝐸𝐷𝐼𝑆𝑃) is also a 2nd and higher order energy that cannot be explained classically as it arises from correlated 

fluctuations in electron density (𝜌𝑀(𝑟) and 𝜌𝑁(𝑟)) as the electron moves. It is non-additive but in systems bound 

by the electrostatic/induction energies, the dispersion can be approximated as being additive. The way the 

dispersion coefficients (𝐶𝑛) are computed ensures that the intramolecular non-additivity is included, thus all that 

is left is the intermolecular non-additivity from many-body terms. The two-body dispersion energy is always 

present and attractive. Consequently, the average effect is a lowering of energy and strengthening of the correlation 

effect as molecules move closer together.  

Resonance & magnetic interactions can also result in long-range effects. Resonance is a non-additive contribution 

that occurs when either one of more of the interacting molecules are in a degenerate state or when molecules 𝑀 

and 𝑁 are identical and one is in an excited state. Therefore, resonance does not occur in the closed shell systems 

in this study. Magnetic interactions are additive and involve electron or nuclei. With regards to electrons, magnetic 
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interactions typically occur when both molecules have unpaired spins. This typically results in a small but non-

negligible energy contribution. Magnetic effects for closed-shell systems198 can also occur when nuclei have non-

zero spin (𝐼 ≠ 0), which is frequent but the resultant energy contribution is many orders of magnitude smaller than 

the electron case so is negligible. For example, a recent study found that even for coronene, the thermodynamic 

effects of magnetic interactions were very small, too small to be included in intermolecular pair potentials.198 

Long-range terms are also present at shorter ranges. For instance, the multipolar expansion electrostatic 

contribution remains finite until nuclei make contact. The difference between the total electrostatic energy and the 

multipolar electrostatic energy is the penetration energy, the electrostatic short-range term when Ψ overlap. Long-

range contributions are typically described as a power series in 1/𝑅, which begin to diverge as 𝑅 tends to zero. 

Thus, the expansion is only valid for large 𝑅. Furthermore, 𝑅 assumes a distance between two points, thus, even 

where the expansion converges, because each molecule is treated as a single point rather than extended in space it 

may still be in error. When the expansion is then distributed between atomic sites this error remains and is known 

as the penetration error. We shall avoid this by absorbing the penetration term into the short-range portion of our 

non-empirical potential. 

2.1.2.2 Short-range terms 

The long-range components can be derived without the need for full anti-symmetrization of the dimer wave-

function (2.3.1). The influence of anti-symmetrization becomes very important when the molecular wave-

functions (Ψ𝑀) overlap is significant, which leads to exchange energies.164 In practice the main region of interest 

is the start of overlap, around van der Waals contact distances. At small 𝑅 the perturbation (2.3) of the Hamiltonian 

becomes complex and non-trivial to compute analytically because the exchange of electrons between the two 

molecules means you can no longer identify an electron within a molecule. We remedy this through fitting the 

short-range energy contributions (2.9 & Chapter 5). Two effects come into play at short-range, the orbital overlap 

needs to be accounted for and the 1/𝑅 expansions need to be damped (2.8) to make them well-behaved. At short-

range the exchange-repulsion interaction is the most dominant contribution. The exchange-repulsion (𝐸𝑒𝑥𝑐ℎ−𝑟𝑒𝑝
(1)

) 

is a 1st order energy, which is exactly additive at 1st order.164 There is an attractive portion of the exchange-

repulsion, which is the exchange due to electron delocalization between molecules, which increases the uncertainty 

in the position of electron. Due to the uncertainty principle  

Δ𝑥Δ𝑝 ≥
ℏ

2
 

7 
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the uncertainty in the momentum decreases, and subsequently, the energy decreases.164 There is also a repulsive 

effect which is more dominant. This is due to the molecular wave-functions 𝜓 wanting to maintain Pauli 

antisymmetry. This costs energy, and the energy cost increases as 𝑅 → 0. We group these two phenomena together 

as the exchange-repulsion energy 𝐸𝑒𝑥𝑐ℎ−𝑟𝑒𝑝
(1)

, and the combined term is always repulsive for closed shell systems. 

There are other exchange terms that come into play when the molecular wave-functions overlap, like the exchange-

induction and exchange-dispersion but the other notable short-range effect is charge-delocalization (𝐸𝐶𝐷). Charge-

delocalization is a non-additive attractive term, which describes the electron delocalization between the high 

energy occupied orbitals in donors and the lower energy unoccupied orbitals in acceptors (2.6.2). For an accurate 

representation of the genuine intermolecular potential energy surface, getting the balance between the short-range 

and long-range terms is crucial. Moreover, not all terms are as important depending on the molecule, for instance, 

the polarization contribution to the intermolecular interaction energy for water clusters will be more significant 

than in methane clusters. However, accurately modelling these terms in a molecule is vital.22, 47, 60, 199, 200 

2.2 Supermolecular methods: Density Functional Theory (DFT) 

To summarise, contributions to the intermolecular interaction energy can be analytically calculated at long-range 

using the molecular properties, however, this is non-trivial at short-range. The intermolecular interactions at short-

range can be calculated ab initio using either supermolecular methods or intermolecular perturbation theory. 

The supermolecule method is a concept that says the intermolecular energy between bodies 𝑀 and 𝑁 is simply the 

internal energies 𝐸𝑖𝑛𝑡𝑟𝑎 of the two subtracted from the total energy. 

𝐸𝑖𝑛𝑡
𝑀𝑁 = 𝐸𝑡𝑜𝑡

𝑀𝑁 − 𝐸𝑖𝑛𝑡𝑟𝑎
𝑀 − 𝐸𝑖𝑛𝑡𝑟𝑎

𝑁  

8 

There are some notable disadvantages to this method. There is no variational principle as the result is a difference 

of energies, and the intermolecular interaction energy has no components, thus no physical interpretation. 

Moreover, for a dimer interaction calculation, each monomer’s basis functions are used to improve the description 

of the other, which means the basis set localized on one monomer can behave as diffuse functions for the other 

monomer leading to a lowering of the computed energy. This is known as the basis superposition error (BSSE).126, 

127 The BSSE can be addressed either using a larger basis set which can be very expensive or using the counterpoise 

(CP) correction. The CP treatment tries to counteract this lowering in energy by performing all calculations in 

identical basis sets, and using additional ‘ghost’ centres to place basis functions at points corresponding to the 

nuclei of the two interacting monomers in a dimer calculation.201 The supermolecular method with Density 
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Functional Theory (DFT) can be fast, however, BSSE remains an issue, reliable calculations require dispersion 

corrections121 (1.4.2.1) and the intermolecular interaction energy still has no physically meaningful components. 

2.2.1 The DFT energy 

Kohn and Sham202 computed the DFT energy 𝐸[𝜌] of a system as a functional of its electron density 𝜌(𝑟). Kohn 

proved that the DFT energy is exact if the exchange-correlation energy 𝐸𝑋𝐶  (which describes non-classical 

interactions between electrons, like dispersive interactions) is exact. 

𝐸[𝜌] = 𝐸𝑒𝑥𝑡[𝜌] + 𝑇𝑠[𝜌] + 𝐽𝑒𝑒[𝜌] + 𝐸𝑋𝐶[𝜌] 

9 

𝐸𝑒𝑥𝑡[𝜌] is the interaction energy between nuclei and electrons, 𝑇𝑠[𝜌] is the kinetic energy of electrons (the kinetic 

energy of the nuclei is zero as its position is fixed) and 𝐽𝑒𝑒[𝜌] is the Coulomb energy due to the interaction between 

electrons. All functionals in Equation 9 are exact except for 𝐸𝑋𝐶[𝜌], in principle it can be exactly calculated from 

the density, but this exact functional is unknown, thus it is approximated.  

2.2.2 The exchange-correlation 

While DFT is comparatively inexpensive, the approximate nature of its exchange functionals result in an intrinsic 

inaccuracy in calculations. Most DFT functionals are local (LDA) or semi-local (GGAs) in form, and can struggle 

to exactly define the long-range correlations required to encompass all important dispersion interactions. An 

erroneous treatment of the van der Waals forces can cause an underestimation in the attractive forces between the 

molecules in these crystals and thus an overestimation in the overall cell lengths. This has resulted in a number of 

functionals that use different approximations of 𝐸𝑋𝐶[𝜌] to be applied on various systems. Local Density 

Approximation (LDA) and Generalised Gradient Approximation (GGA) are two groups of common functionals. 

In GGAs, 𝐸𝑋𝐶[𝜌] is a functional of 𝜌 and the density gradient.203 Hybrid functionals that include different 

proportions of the Hartree-Fock exchange term are also used. In this thesis, and generally for computing molecular 

charge densities in CSP, the hybrid functional PBE0 is used.204, 205 

2.2.3 Common Corrections 

The most common problems with local and semi-local functionals are the self-interaction error206 and its inability 

to describe the dispersion contribution at long-range. As there is no systematic way to improve the quality of 

DFT,207 it is common to use system dependent corrections. The self-interaction error can be partially amended 
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using an asymptotic correction (AC), which uses marginal additional computational resource. Tozer and Casida208, 

209 proposed to merge a −1/𝑅 asymptotic tail to an exchange-correlation potential that does not display the 

appropriate asymptotic behaviour to correct it. The inexpensive asymptotic correction demonstrates considerable 

reductions in the average errors in excitation energies for molecules210 by aiding in fixing the single electron self-

interaction error, while the remaining error can be reduced by range-seperation.208, 209 

The errors in the long-range dispersion can be partially addressed using a dispersion correction appropriate to the 

system studied. The simplest of these corrections is the Grimme 2006 correction.122 There are also more complex 

models41, 121, 211 and some post-hoc dispersion corrections like the Tkatchenko-Scheffler (TS) method212 that 

includes pairwise interactions between atoms into the DFT functional. There is also the Many-Body Dispersion 

(MBD) correction; a marked improvement on the TS correction.213 

Density Functional Theory (DFT) is not used to directly calculate the lattice energy in this thesis but it is used in 

the force-field development process. This thesis is not an electronic structure methods study so we shall not delve 

too deeply into the theory behind DFT and its contemporaries. While it is not as cheap as force-fields, its growing 

popularity22 means that currently one cannot mention Crystal Structure Prediction without the mention of periodic 

DFT-D (Chapter 1). We use DFT chiefly to optimize isolated molecular structures (Chapter 3 & 5), calculate 

relative conformational energies (Chapter 4) and obtain the molecular orbitals to be used to construct our 

electrostatic model (2.5). 

2.2.4 A note on basis-sets 

The quality of the basis set is very important as the interaction energies are heavily dependent on the outer regions 

of the wave-function. There is a zeta ‘𝜁’ hierarchy for the Gaussian basis sets typically used in electronic structure 

calculations. For instance, a triple-𝜁 (TZ) basis set is when three contracted sets of basis functions are used to 

describe each atomic occupied shell.214 Often the virtual (unoccupied) orbitals are described using progressively 

smaller basis functions. The most commonly used high-quality basis sets are valence-only indicated by a ‘V’, and 

‘correlation-consistent polarization’ basis sets indicated by a ‘cc-p’. This means they include increasingly larger 

shells (𝑑, 𝑓, 𝑔 𝑒𝑡𝑐.) of polarized correlating functions. Augmentations to basis sets have also been developed to 

include additional, diffuse functions to better represent the polarizability of molecules and describe weak 

interactions. 

Different basis set types, like monomer-centred (MC) and dimer-centred (DC) basis sets, can be used in calculating 

intermolecular interactions. In a MC basis set, each molecule in an interaction is described in the same basis used 
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for the isolated molecule. Consequently, MC basis sets exclude excited states that describe charge-delocalization 

(2.6.2).215 DC type basis sets are needed to accurately describe charge-delocalization states. In dimer-centred basis 

types, the Hessians and molecular orbitals (MOs) of each monomer in the dimer are made in the entire dimer basis. 

Functions between covalent bonds are sometimes included in DC basis sets (known as DC+) as they are very 

important for obtaining basis converged dispersion energies.215 In monomer-centred basis types, the Hessians and 

MOs of each monomer are made in the basis of the monomer but often mid-bond and “far-bond” functions are 

included between two monomers (MC+), these can be smaller but near equivalent to DC basis types,215 thus 

cheaper. 

2.3 Perturbation theory 

2.3.1 Raleigh-Schrodinger (RS) Perturbation Theory 

The distortion of charge densities due to the intermolecular interactions between molecules is relatively small for 

organic molecules, thus the intermolecular interactions can be treated as perturbations of the unperturbed isolated 

molecular charge density.164 Rayleigh-Schrodinger (RS) perturbation theory216 uses this concept to derive the 

contributions to the interaction energy from the perturbation for the intermolecular interaction operator, ℋ′. RS 

perturbation theory approximates a solution to a non-trivial problem using the exact solution of another.217 The 

Hamiltonian for the two interacting molecules can be given as 

ℋ𝑀𝑁 = ℋ𝑀 + ℋ𝑁 + 𝜆𝜈 

10 

where the Hamiltonians for molecules 𝑀 and 𝑁 are ℋ𝑀 and ℋ𝑁, and 𝜈 is the interaction operator that defines the 

interaction between the electrons and nuclei of the two molecules. 

𝜈 =
1

4𝜋𝜖0

∑ ∑
𝑞𝑖𝑞𝑘

𝑅𝑖𝑘
𝑘∈𝑁𝑖∈𝑀

 

11 

𝜖0 is the permittivity in vacuum, the charges of the particles 𝑖 and 𝑘 in 𝑀 and 𝑁 are 𝑞𝑖 and 𝑞𝑘, with a separation 

of 𝑅𝑖𝑘. If the eigenfunctions and eigenvalues of the unperturbed Hamiltonians are known then, for two independent 

non-interacting molecules 𝑀 and 𝑁 in their unperturbed ground states, their time independent Schrödinger’s 

equations is 

ℋ𝑀
0 Ψ𝑀

0 = 𝐸𝑀
0 Ψ𝑀

0  
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12 

ℋ𝑀
0  is the Hamiltonian of the unperturbed ground state, while 𝐸𝑀

0  is the unperturbed ground state energy of the 

unperturbed wave-function Ψ𝑀
0 . For non-interacting two molecules, where 𝜆 = 0, the wave-function of the system 

is Ψ𝑀𝑁
0 = Ψ𝑀

0 Ψ𝑁
0, thus the resultant time independent Schrödinger’s equation is 

ℋ𝑀𝑁
0 Ψ𝑀𝑁

0 = 𝐸𝑀𝑁
0 Ψ𝑀𝑁

0  

𝐸𝑀𝑁
0 = 𝐸𝑀

0 + 𝐸𝑁
0  

13 

The interactions between the electrons and nuclei of the two molecules result in the perturbation of the ground 

state (𝜆 ≠ 0). Thus, a perturbation expansion for the wave-function can be written as 

Ψ = Ψ𝑀𝑁
0 + 𝜆Ψ𝑀𝑁

′ + 𝜆′′Ψ𝑀𝑁
′′ + ⋯, 

14 

and the perturbed Hamiltonian (up to first order) for the molecules is 

ℋ𝑀𝑁 = ℋ𝑀𝑁
0 + ℋ′ = ℋ𝑀

0 + ℋ𝑁
0 + ℋ′ 

15 

where ℋ′ is the 1st order perturbation due to interactions between the two molecules. From RS perturbation 

theory216 the total intermolecular interaction energy, going from 0th order to infinity, between two bodies 𝑀 and 𝑁 

can be written as 

𝐸 = 𝐸𝑀𝑁
0 + 𝐸𝑀𝑁

′ + 𝐸𝑀𝑁
′′ + ⋯ 

16 

At first order the interaction energy can be given in terms of unperturbed densities 𝜌(𝑟), 

𝐸𝑀𝑁
′ = ⟨Ψ𝑀

0 Ψ𝑁
0|𝜈|Ψ𝑀

0 Ψ𝑁
0⟩ 

= ∬ 𝜌𝑀(𝑟𝑖) 𝜈(𝑟𝑖 , 𝑟𝑘)𝜌𝑁(𝑟𝑘)𝑑𝑟𝑖𝑑𝑟𝑘 

17 
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This is the 1st order electrostatic interaction energy 𝐸𝑒𝑙𝑠𝑡
(1)

.The higher order perturbations give the other contributions 

to the intermolecular interaction energy, for example, the 2nd order energy 𝐸𝑀𝑁
′′  describes the induction and 

dispersion contributions, however, the influence of higher order terms above 2nd order greatly diminishes.164, 216 

The second-order energy 𝐸′′ can be given by  

𝐸′′ = − ∑
⟨Ψ𝑀

0 Ψ𝑁
0|𝜈|Ψ𝑀

𝑚Ψ𝑁
𝑛⟩2

𝐸𝑚
𝑀 + 𝐸𝑛

𝑁 − 𝐸0
𝑀 − 𝐸0

𝑁

𝑚𝑛≠00

 

18 

where Ψ0 is the ground state wave-function, and Ψ𝑚 and Ψ𝑛 are the excited state wave-functions of quantum 

numbers 𝑚 and 𝑛.  Both 𝑚 and 𝑛 cannot equal 0. Excluding the term where both interacting molecules 𝑀 and 𝑁 

are in the ground state, gives three terms to the 2nd order energy, which are the induction and dispersion energies 

𝐸′′ = 𝐸𝑖𝑛𝑑
𝑀 + 𝐸𝑖𝑛𝑑

𝑁 + 𝐸𝑑𝑖𝑠𝑝 

19 

The induction energy for 𝑀 (𝐸𝑖𝑛𝑑
𝑀 ) describes the change in the energy of the 𝑀 in response to the electric field of 

𝑁, and thus is when the change in the charge distribution of 𝑀 is expanded in terms of its excited states and 𝑁 is 

in the ground state, likewise 𝐸𝑖𝑛𝑑
𝑁  is when molecule 𝑁 is polarized and 𝑀 is in its ground state. The dispersion 

energy 𝐸𝑑𝑖𝑠𝑝 is when both densities are distorted. 

𝐸𝑖𝑛𝑑
𝑀 = − ∑

⟨Ψ𝑀
0 Ψ𝑁

0|𝜈|Ψ𝑀
𝑚Ψ𝑁

0⟩2

𝐸𝑚
𝑀 − 𝐸0

𝑀

𝑚≠0

 

𝐸𝑑𝑖𝑠𝑝 = − ∑ ∑
⟨Ψ𝑀

0 Ψ𝑁
0|𝜈|Ψ𝑀

𝑚Ψ𝑁
𝑛⟩2

𝐸𝑚
𝑀 + 𝐸𝑛

𝑁 − 𝐸0
𝑀 − 𝐸0

𝑁

𝑛≠0𝑚≠0

 

20 

The dispersion energy (2.7) and the polarization portion of the induction energy (2.6.1) can be derived from the 

polarizabilities defined in the second order energy, using the frequency-dependent density susceptibility function 

and expressed with the multipole expansion.164  

The underlying issue with this treatment is that the unperturbed wave-function Ψ𝑀𝑁
0  and the perturbed wave-

function Ψ𝑀𝑁
′  are not anti-symmetric under the permutation of electrons. They do not obey the Pauli exclusion 

principle as 𝑅 → 0. Including an anti-symmetrizer operator Α̂ for Ψ𝑀𝑁
0 , results in product states that are 

antisymmetric and satisfy the Pauli principle, however, an intermolecular exchange of electrons between 𝑀 and 𝑁 

then results in wave-functions that are no longer eigenfunctions of the ground state Hamiltonian ℋ0.218  This can 
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be remedied with symmetry-adapted-perturbation theories (SAPT) that can use Α̂Ψ𝑀𝑁
0  in its perturbation equations, 

and can reliably give intermolecular energy contributions up the third order.218  

2.3.2 Symmetry-adapted perturbation theory (SAPT) 

Symmetry Adapted Perturbation Theory (SAPT) is a framework for directly computing the interaction energy 

using intermolecular perturbation theory.  Here “symmetry” refers to the anti-symmetrisation between the 

interacting molecules. The most commonly used SAPT is based on symmetrized Raleigh-Schrodinger (SRS) 

perturbation theory.219  

2.3.2.1 SAPT  

When Symmetry Adapted Perturbation Theory is based on Hartree-Fock (HF) orbitals as the starting point for the 

perturbation theory we get what is commonly known as “SAPT”. In this theory both intramolecular (2.3) and 

intermolecular correlations need to be included using perturbation theory. The Hamiltonian of two interacting 

molecules is given as 

ℋ𝑀𝑁 = ℱ𝑀 + ℱ𝑁 + 𝜉𝑊𝑀 + 𝜂𝑊𝑁 + 𝜆𝜈 

21 

where ℱ are the Fock operators,  𝑊 the Møller-Plesset (MP) operators, and 𝜈 the intermolecular interaction 

operator.164, 218 The Fock and MP decomposition of the Hamiltonian makes SAPT a triple perturbation theory. 

SAPT assigns a 0th order state to the wave-functions of isolated molecules and models the interactions between 

each molecule as perturbations in the system; therefore, the interaction energy between two molecules can be 

computed directly, avoiding the basis set superposition error (BSSE) inherent to electronic structure methods that 

exploit a cumulative supermolecular approach such as regular DFT. It does not need to compute the total energy 

of monomers or dimers (Equation 8).  An advantage of this is that one only has to carry out correlation corrections 

to the order required by each individual term in the interaction energy. 

2.3.2.2 SAPT(DFT) 

SAPT(DFT) is Symmetry Adapted Perturbation Theory (SAPT) based on the Kohn-Sham density functional 

theory (DFT) of monomers.100, 102 Kohn-Sham orbitals and orbital energies are used in the Hamiltonian to reduce 

the scaling of SAPT as intramolecular correlation effects on the interaction energy can be better described by 

DFT.220 A few of the computationally demanding intra-monomer electron correlation terms found in SAPT do not 

have to be included when it is coupled with DFT to form SAPT(DFT). This is because the 0th-order monomer 
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states, and hence the molecular orbitals, are computed at the DFT level, accordingly, the intramolecular correlation 

is included intrinsically.104 The 1st order components of the SAPT(DFT) intermolecular energy, 𝐸𝑒𝑙𝑠𝑡
(1)

 and 𝐸𝑒𝑥𝑐ℎ
(1)

, 

can be computed using the following Hamiltonian 

ℋ𝑀𝑁 = Κ𝑀 + Κ𝑁 + 𝜆𝜈 

22 

where Κ are the Kohn-Sham operators, and 𝜈 is the intermolecular perturbation. The above Hamiltonian as written 

is only approximate, however, SAPT(DFT) is formally exact (at second order). The SAPT(DFT) Hamiltonian can 

use the same terms as those used for RS perturbation theory in Equation 10. Subsequently, each term can then be 

expressed as properties that can be computed by DFT (i.e. density, density matrix, response functions etc.) and 

these are used to obtain exact SAPT(DFT) interaction energies. The second-order contributions to the 

intermolecular energy, 𝐸𝐼𝑁𝐷
(2)

 and 𝐸𝐷𝐼𝑆𝑃
(2)

, can be computed using Kohn-Sham linear response theory as they are 

response energies (2.6.1 & 2.7). 

Typically, SAPT(DFT) is faster than pure SAPT,161 as the treatment of the electron correlation within the SAPT 

method using the triple perturbation theory can be expensive when developing potentials. Therefore, employing 

SAPT(DFT) offers a way to include intramolecular correlation effects cheaply and simply.99, 221, 222 However, it is 

vital to use the appropriate asymptotically corrected function to account for the 1-electron self-interaction error 

that leads to overly diffuse densities, and a HOMO-LUMO gap that is too small, which results in errors in the 

derived intermolecular contributions. In this thesis, SAPT(DFT) is used to concisely describe the intermolecular 

interactions in the dimers of weakly-bound organic molecules, and the components of the SAPT(DFT) 

intermolecular interaction energy (Table 4) are used in force-field parameterisation.  

In the force-field construction/parameterisation, SAPT(DFT) is used to generate numerical values for the short-

range interaction terms, which can then be used in the fitting of an intermolecular force-field. Misquitta and Stone 

have shown how SAPT(DFT) can be combined with methods for distributed molecular properties to derive most 

of the terms in the intermolecular model, yielding accurate many-body models with a small number of SAPT(DFT) 

evaluations.223, 224 Accordingly, SAPT(DFT) has been central to the derivation of our long-range terms and the 

generation of the short-range portion of the non-empirical force-fields we have created in this study. With 

SAPT(DFT) we have greatly increased the accuracy and sense of realism of our models. 

  



 57 

 Contribution  

𝐸𝑒𝑙𝑠𝑡
(1)

 Electrostatic  

1st order electrostatic interaction 
energy classically derived from the 
unperturbed Kohn-Sham molecular 

charge distributed 

𝐸𝑒𝑥𝑐ℎ
(1)

 Exchange-Repulsion 

1st order short-range interaction 
energy arising from closed-shell 
repulsion and electron exchange 

between overlapping 𝜓 

𝐸𝑖𝑛𝑑,𝑟𝑒𝑠𝑝
(2)

 Induction 

2nd order energy arising from changes 
in molecular charge distribution due to 
the field from the unperturbed Kohn-

Sham charge distribution of its 
neighbours 

𝐸𝑒𝑥𝑐ℎ−𝑖𝑛𝑑,𝑟𝑒𝑠𝑝
(2)

 Exchange Induction 
The electron exchange portion of the 

induction energy 

𝐸𝑑𝑖𝑠𝑝,𝑟𝑒𝑠𝑝
(2)

 Dispersion 

A quantum mechanical energy arising 
from correlated fluctuations in the 
Kohn-Sham charge distributions of 

neighbours 

𝐸𝑒𝑥𝑐ℎ−𝑑𝑖𝑠𝑝
(2)

 Exchange Dispersion 
The electron exchange portion of the 

dispersion energy 

𝛿𝑖𝑛𝑡
𝐻𝐹 

Higher-order Induction 
Correction 

An approximation of the 3rd to infinite 
order induction terms 

Table 4: Analysis and summary of the components of the intermolecular interaction energy calculated in 

SAPT(DFT).164 The subscript ‘resp’ indicates that coupled perturbation is used, and is omitted elsewhere in this 

thesis. 

2.3.3 The SAPT(DFT) intermolecular interaction energy and its components 

Typically, the most important contributions to the total interaction energy are first and second-order terms, with 

the higher order terms being very computationally expensive to compute accurately with almost negligible energy 

contributions.167 For reasons described in detail in Chapter 5, the 3rd to infinite-order terms can be carefully 

omitted for a molecule like trinitrobenzene (TNB). Consequently, the SAPT(DFT) intermolecular interaction 

energy, is the interaction energy components summed to 2nd order. On the right hand side of Equation 23, 

“(𝑛)” indicates the order of the contribution, however, on the left hand side “(2)” indicates the components of the 

interaction energy have been summed up to 2nd order. Thus, in this thesis, 𝐸𝑖𝑛𝑡
(1)

 & 𝐸𝑖𝑛𝑡
(2)

 (or any contribution on the 

LHS) indicates that the energy has been summed up to 1st or 2nd order. 
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𝐸𝑖𝑛𝑡
(2)

= 𝐸𝑒𝑙𝑠𝑡
(1)

+ 𝐸𝑒𝑥𝑐ℎ−𝑟𝑒𝑝
(1)

+ 𝐸𝐼𝑁𝐷
(2)

+ 𝐸𝐷𝐼𝑆𝑃
(2)

 

23 

where 𝐸𝑒𝑙𝑠𝑡
(1)

 and 𝐸𝑒𝑥𝑐ℎ
(1)

 are the 1st order electrostatic and exchange-repulsion energies respectively, while 𝐸𝐼𝑁𝐷
(2)

 is 

the total 2nd order induction energy, which includes the exchange-induction energy, and 𝐸𝐷𝐼𝑆𝑃
(2)

 the total 2nd order 

dispersion energy, which includes the exchange-dispersion energy. 

𝐸𝐼𝑁𝐷
(2)

= 𝐸𝑖𝑛𝑑
(2)

+ 𝐸𝑒𝑥𝑐ℎ−𝑖𝑛𝑑
(2)

 and 𝐸𝐷𝐼𝑆𝑃
(2)

= 𝐸𝑑𝑖𝑠𝑝
(2)

+ 𝐸𝑒𝑥𝑐ℎ−𝑑𝑖𝑠𝑝
(2)
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The SAPT(DFT) energy components benefit from having well-defined multipole expansions (2.4), and are usually 

employed in the distributed sense.99, 164, 225, 226 This allows one to determine the long-range forms of these terms 

analytically from these expansions. That leaves only the damping and the short-range penetration and exchange 

terms to be derived through fitting. The long-range multipolar electrostatic potential energy 𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀] can be given 

as ∑ 𝑄𝑡
𝑖𝑇𝑡𝑢

𝑖𝑘𝑄𝑢
𝑘

𝑖∈𝑀,𝑘∈𝑁  where 𝑄𝑡
𝑖  is a multipole moment on atomic site 𝑖 of rank 𝑡, using the angular momentum 

notation 𝑡 = 00,10,11𝑐, … to describe the multipole moment and its related axis (2.4.1).164  𝑇𝑡𝑢
𝑖𝑘 is the interaction 

tensor164 determined by our axes definitions (Figure 6). The same spherical tensor notation (𝑡𝑢) used for multipole 

components is used for the polarizabilities and transformation tensors. The long-range multipolar dispersion 

energy 𝑉𝑑𝑖𝑠𝑝
(2) [𝐷𝑀] is determined exactly by a sum of isotropic, orientation independent atom-atom dispersion 

coefficients − ∑
𝐶2𝑛+6

𝜄𝜅

𝑅𝑖𝑘
2𝑛+6

2
𝑛=0  and a damping parameter 𝛽𝑑𝑖𝑠𝑝 fit from 𝐸𝐷𝐼𝑆𝑃

(2)
 calculations (5.5.4). The final long-range 

term, the iterated multipolar polarization energy, is the long-range portion of the induction energy, which is 

dependent on the atomic multipole moments and atomic polarizabilities. This is the only many-body term in the 

potential, although it is written in a two-body form, many-body polarization effects are included when the 

polarization model is iterated.47, 164 

𝑉𝑃𝑂𝐿
(2−∞)

[𝐷𝑀] = ∑ 𝑓𝑛(𝛽𝑝𝑜𝑙 , 𝑅𝑖𝑘)(Δ𝑄𝑡
𝜄𝑇𝑡𝑢

𝜄𝜅𝑄𝑢
𝜅 + Δ𝑄𝑡

𝜅𝑇𝑡𝑢
𝜅𝜄𝑄𝑢

𝜄 )/2

𝑖∈𝑀,𝑘∈𝑁

 

Δ𝑄𝑡
𝜄 = − ∑ 𝛼𝑡𝑡′

𝜄𝜄′

𝑓𝑛(𝛽𝑝𝑜𝑙 , 𝑅𝑖𝑘)

𝑖∈𝑀,𝑘∈𝑁

𝑇𝑡′𝑢
𝜄′𝜅(𝑄𝑢

𝜅 + Δ𝑄𝑢
𝜅) 

25 

This term is damped using a damping function that is independent of orientation, and a damping parameter 𝛽𝑝𝑜𝑙, 

which is determined using regularized induction energies 𝐸𝐼𝑁𝐷
(2)

(𝑅𝑒𝑔). The induced moment Δ𝑄𝑡
𝜄  on atom-type 𝜄 



 59 

depends on the distributed polarizability (𝛼𝑡𝑡′
𝜄𝜄′ ) for sites 𝜄 and 𝜄′. 𝛼𝑡𝑡′

𝜄𝜄′  describes the response of 𝑄𝑡
𝜄  to the 𝑡′-

component of the field at 𝜄′, and in order to obtain the induced moment on 𝜄 we must solve Equation 25 iteratively 

(2.6.1.1). As written Equation 25 uses the non-local polarizability 𝛼𝑡𝑡′
𝜄𝜄′ , however, in this thesis the polarizability is 

localized and 𝛼𝑡𝑡′
𝜄𝜄′  is replaced with 𝛼𝑡𝑡′

𝜄 𝛿𝜄𝜄′, where 𝛼𝑡𝑡′
𝜄  is the localized polarizability tensor and 𝛿𝜄𝜄′ is the Kronecker 

delta (2.6.1.1).165, 227With this in mind, using the axis definitions and atomic types in Figure 6, and a combination 

of programs: CAMCASP,107 Psi4,228 DMACRYS59 and ORIENT108 (1.2.4), the total interaction energy can be 

represented as non-empirical potential, whose long-range components are represented using the distributed 

multipole expansion164 and the short-range components represented as an exponential with the following functional 

form 

𝑈𝑀,𝑁(𝑅𝑀𝑁, Ω𝑀𝑁) = ∑ 𝑈𝐼𝑁𝑇
𝑖𝑘 (𝑅𝑖𝑘 , Ω𝑖𝑘)

𝑖∈𝑀,𝑘∈𝑁

= 𝐺exp[−𝛼𝜄𝜅(𝑅𝑖𝑘 − 𝜌𝜄𝜅(Ω𝑖𝑘))] + 𝑄𝑡
𝑖𝑇𝑡𝑢

𝑖𝑘𝑄𝑢
𝑘 − ∑ 𝑓2𝑛+6(𝛽𝑑𝑖𝑠𝑝, 𝑅𝑖𝑘)

𝐶2𝑛+6
𝜄𝜅

𝑅𝑖𝑘
2𝑛+6

2

𝑛=0

 

+𝑓𝑛(𝛽𝑝𝑜𝑙 , 𝑅𝑖𝑘)(Δ𝑄𝑡
𝜄𝑇𝑡𝑢

𝜄𝜅𝑄𝑢
𝜅 + Δ𝑄𝑡

𝜅𝑇𝑡𝑢
𝜅𝜄𝑄𝑢

𝜄 )/2 
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2.4 Multipole moments 

2.4.1 Defining molecular multipole moments 

The molecular charge density can be represented as multipole moments (charge, dipole, quadrupole (𝑄𝑙𝑚) etc.), 

which are defined relative to a central position in the molecule. The first non-zero moment is independent of centre, 

so for example, the dipole moment of carbon monoxide and the quadrupole moment of carbon dioxide are 

independent of centre. The lowest ranked molecular multipole moment, the total molecular charge (𝑞𝑀), can be 

written as the integral of the molecular charge density 𝜌𝑀(𝑟) with respect to position 𝑟. 

𝑞𝑀 = ∫ 𝜌𝑀(𝒓) 𝑑𝒓 

27 

The dipole moment, is a rank 1 tensor (a vector quantity) in the 𝑥, 𝑦, 𝑧 directions and the total dipole moment is 

composed of three components 

𝝁 = (𝜇𝑥, 𝜇𝑦, 𝜇𝑧) 

28 
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For either of the three components 𝛼, to obtain the value of the dipole moment in the ground-state wave-function, 

|Ψ0⟩, one can take the expectation value of the dipole moment operator �̂�𝛼 

𝜇𝛼 = ⟨Ψ0|�̂�𝛼|Ψ0⟩ 

29 

This can also be expressed as an integral of the molecular charge density 𝜌𝑀(𝑟) over electronic co-ordinates to 

give the dipole moment for a fixed nuclear configuration, where 𝑧 component of the dipole moment is expressed 

as  

𝜇𝑧 = ∫ 𝜌𝑀(𝒓)𝑧 𝑑𝒓 

30 

The subsequent multipole moment is the quadrupole moment. A quadrupolar charge distribution contains four 

charges of equal magnitude (two positive and two negative). It is a rank 2 tensor (a 3 × 3 matrix) with 9 

components (Θ𝑥𝑥 , Θ𝑦𝑦 , Θ𝑧𝑧 , Θ𝑥𝑦 …) and is traceless (Θ𝑥𝑥 + Θ𝑦𝑦 + Θ𝑧𝑧 = 0). In Cartesian tensor notation for 

molecule 𝑀 in position 𝑅 with charge 𝑞𝑀 the operator of the quadrupole moment can be defined as 

Θ̂𝛼𝛽 = ∑ 𝑞𝑀(
3

2
𝑅𝛼𝑅𝛽 −

1

2
𝑅2𝛿𝛼𝛽)

𝑀
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𝛼 and 𝛽 are the 𝑥, 𝑦 or 𝑧 components and 𝛿𝛼𝛽 is the Kronecker delta, where 𝛿𝛼𝛽 = 0 if 𝛼 ≠ 𝛽 and 1 if 𝛼 = 𝛽. The 

tensor notation is very useful as it makes manipulating multipole moments much easier. We see that the quadrupole 

moment is not only traceless but also symmetric as Θ𝛼𝛽 = Θ𝛽𝛼 . Hence there are only 5 independent non-zero 

components of the quadrupolar moment of an asymmetrical molecule. For a multipole moment of 𝑅𝑎𝑛𝑘 = 𝑙 there 

are 2𝑙 + 1 independent moments, which is also the number of Rank 𝑙 spherical harmonics. They are directly 

proportional.229 Defining multipole moments in terms of spherical harmonics makes advanced applications of them 

easier.164 In spherical tensor notation, a multipole moment operator can be defined as 

Q̂𝑙𝜅 = ∑ 𝑞𝑀𝑅𝑙𝜅(r)

𝑀
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𝑙 denotes tensor rank, 𝜅 the component (a member of the series 0, 1𝑐, 1𝑠, 2𝑐, 2𝑠 …) and 𝑅𝑙𝜅(r) are the spherical 

harmonics, and the ground state expectation value is 

𝑄𝑙𝜅
𝑀 = ∫ 𝜌𝑀(r) 𝑅𝑙𝜅(r) 𝑑3 r 
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2.4.2 The validity of the multipole expansion 

 

Figure 5: An illustration of the interacting molecular charge densities of molecules M and N in a space fixed axis 

system with origin 𝑂. Molecules M and N contain atoms 𝑖 and 𝑘 respectively. The positions of atoms 𝑖 and 𝑘 is 

given by the position vectors 𝑟1 and 𝑟2. The distributed contributions to the molecular charge density of M and N 

by atoms 𝑖 and 𝑘 at these positions can be given as 𝜌𝑖(𝑟1) and 𝜌𝑘(𝑟2) respectively. It is also important to specify 

whether the directionality of the interaction is MN or NM as this changes our definition of R.  

Consider molecule 𝑀 with a centre of mass in a position M from the origin 𝑂, and the atomic-centres 𝑖 in the 

molecule at positions i relative to M (Figure 5). The potential at the position N can be calculated by the integration 

over all contributions to the total molecular charge density (𝜌𝑀(𝒓)) of the molecule 𝑀 at position M over all-

space. 

𝑉𝑀(N) = ∫ 𝜌𝑀(𝒓)
1

4𝜋𝜖0|𝒓 − 𝑵|
𝑑3 𝒓 
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34 

The electrostatic energy from the total ground-state charge densities of the two interacting molecules 𝑀 and 𝑁 is 

hence given as 

𝐸𝑒𝑙𝑠𝑡 = ∫
𝜌𝑀(𝑟1)𝜌𝑁(𝑟2)

4𝜋𝜖0|𝑟1 − 𝑟2|
𝑑𝟑 𝑟1 𝑑3 𝑟2 
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Equation 35 uses the molecular charge densities of 𝑀 and 𝑁, but one can partition the electrostatic potential into 

its atom-atom contributions by partitioning the total charge density into regions centred on atoms 𝑖 and 𝑘. We use 

distributed multipole partitioning methods like GDMA230 or ISA231-233 to do so (2.5.1). The distributed multipole 

expansion is an improvement on central multipole expansions as it converges better at short range (small 𝑅).164 

The standard multipole expansion of the electrostatic potential about the centre (𝑀) typically converges at 

distances that are much further from the origin than the furthest point of the charge distribution itself, depending 

on the order of the first non-zero multipole moment.234 This is not so much a problem in gas-phase studies as 

neighbouring molecules are separated by large distances, however, it is a major issue in the condensed phases of 

non-spherical molecules, where neighbours are in van der Waals contact, and the multipole expansion is not valid, 

let alone convergent, giving an unrealistic representation of the potential outside of the charge distribution. Hence, 

it is necessary to split the molecular charge distribution 𝜌𝑀(𝑟1) into atomic contributions 𝜌𝑖(𝑟1). The electrostatic 

interaction can hence be written as 

𝐸𝑒𝑙𝑠𝑡 = ∑ ∑ ∫
𝜌𝑖(𝑟1)𝜌𝑘(𝑟2)

4𝜋𝜖0|𝑟1 − 𝑟2|
𝑑𝟑 𝑟1 𝑑3 𝑟2

𝑘∈𝑁𝑖∈𝑀
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where the sum of the atomic electron densities is the total molecular electron density ∑ 𝜌𝑖𝑖 (𝑟) = 𝜌𝑀(𝑟). Once 

partitioned, the multipolar moments can be written in terms of the atomic positions. For example, the potential of 

𝑀 can be written as a sum of 𝑅𝑎𝑛𝑘 = 0 atomic-moments (charges) of 𝑖 in position i in molecule 𝑀, which can 

then be expanded as a Taylor series about 𝑅 to include the higher multipole moments. Expanding the Taylor series 

allows us to define the potential as distributed multipole moments and their respective interaction tensors (𝑅𝑎𝑛𝑘 =

0 (𝑄00) = charge, Rank 1 (𝑄1𝜅) = dipole, Rank 2 (𝑄2𝜅) = quadrupole etc.). For instance, the charge (𝑙 = 0), dipole 

(𝑙 = 1) and quadrupole (𝑙 = 2) moment contributions to the electrostatic potential at N due to molecule 𝑀 can be 

written as 
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𝑉𝑀(N) = 𝑇𝑞𝑀 − 𝑇𝛼�̂�𝛼
𝑀 +

1

3
𝑇𝛼𝛽Θ̂𝛼𝛽

𝑀 … 
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where �̂�𝛼
𝑀 ,  Θ̂𝛼𝛽

𝑀  are the dipole and quadrupole moment operators, and the multipole moment interaction tensors, 

𝑇 = 1 4𝜋𝜖0𝑅⁄ , 𝑇𝛼 = − 𝑅𝛼 4𝜋𝜖0𝑅3⁄  and 𝑇𝛼𝛽 = (3𝑅𝛼𝑅𝛽 − 𝑅2𝛿𝛼𝛽) 4𝜋𝜖0𝑅5⁄ .164 Knowing the potential 𝑉𝑀 at point 

N due to molecule 𝑀, one can evaluate the electrostatic interaction operator (𝜈) between 𝑀 and say a point charge 

𝑁 is at position N. In Cartesian form this can be written as 

𝜈 = 𝑞𝑁𝑉𝑀(N) 
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Expanding the electrostatic potential of 𝑀 for the higher order multipole moments gives 

𝜈 = 𝑞𝑁[𝑇𝑞𝑀 − 𝑇𝛼�̂�𝛼
𝑀 +

1

3
𝑇𝛼𝛽Θ̂𝛼𝛽

𝑀 − ⋯ ] 
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The electrostatic interaction energy 𝐸𝑒𝑙𝑠𝑡  of two bodies in non-degenerate states is the expectation value of 𝜈 and 

is obtained by replacing each multipole operator (�̂�𝛼
𝑀,  Θ̂𝛼𝛽

𝑀 ) by its expectation value, 𝜇𝛼
𝑀 , Θ𝛼𝛽

𝑀 . One can write these 

expressions for an assembly of molecules (a crystal) by summing over the distinct atom pairs, and the explicit 

formula for the interaction between the multipole moments of 𝑁 with those of 𝑀 would be a more elaborate 

equation than that shown above. The multipole moments of a molecule can be described in either a Cartesian or 

Spherical tensor formulation. Using the spherical tensor formulation and indexing the molecular multipole 

moments by angular momentum labels the interaction operator can be written as 

𝜈 = �̂�𝑡
𝑀𝑇𝑡 𝑢

𝑀𝑁�̂�𝑢
𝑁 
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𝑇𝑡 𝑢
𝑀𝑁 is the interaction tensor function between the moments of 𝑀 and 𝑁 and depends solely on the relative 

positions of their molecular axis systems and their separation 𝑅, varying with the ranks of the two multipoles 𝑙1 

and 𝑙2 as 𝑅−(𝑙1+𝑙1+1)164. It is the spherical tensor formation (𝑄𝑙𝜅) that we use in DMACRYS. For manipulation and 

many other purposes using the spherical tensor form for the electrostatic interaction is more useful. Considering 

the induction energy of molecule 𝑀 from Equation 20 
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𝐸𝑖𝑛𝑑
𝑀 = − ∑

⟨Ψ𝑀
0 Ψ𝑁

0|𝜈|Ψ𝑀
𝑚Ψ𝑁

0⟩2

𝐸𝑚
𝑀 − 𝐸0

𝑀

𝑚≠0

 

= − ∑
⟨Ψ𝑀

0 |𝜈[𝜌𝑁]|Ψ𝑀
𝑚⟩2

𝐸𝑚
𝑀 − 𝐸0

𝑀

𝑚≠0
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The induction energy is the 2nd order energy response of 𝑀 to the electrostatic field of its neighbour 𝑁. The 

neighbour does not necessarily have to be another molecule but could be replaced with the electrostatic potential 

of the environment. Using the multipole expansion in long-range (only up to the dipole-dipole moment), 

intermolecular interaction operator 𝜈 is  

𝜈 = 𝑇𝑞𝑀𝑞𝑁 + 𝑇𝛼(𝑞𝑀�̂�𝛼
𝑁 − �̂�𝛼

𝑀𝑞𝑁) − 𝑇𝛼𝛽�̂�𝛼
𝑀�̂�𝛽

𝑁 + ⋯ 
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Substituting 𝜈 into Equation 20 yields the polarizability, also known as the charge-density susceptibility, 𝛼𝛼𝛼′  

𝐸𝑖𝑛𝑑
𝑁 = −

1

2
(𝑞𝑀𝑇𝛼 − �̂�𝛽

𝑀𝑇𝛼𝛽 + ⋯ )𝛼𝛼𝛼′
𝑁 (𝑞𝑀𝑇𝛼′ − �̂�𝛽′

𝑀 𝑇𝛼′𝛽′ + ⋯ ) 

𝛼𝛼𝛼′
𝑁 = ∑

⟨0|�̂�𝛼
𝑁|𝑛⟩⟨𝑛|�̂�𝛼′

𝑁 |0⟩

𝐸𝑛
𝑁 − 𝐸0

𝑁

𝑛≠0
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and integrating over the coordinates of 𝑀 will yield the expectation values of the multiple moment operators. 𝛼𝛼𝛼′ 

is distributed among atomic sites in the molecule fixed axis frame to give the distributed polarizability model. The 

multipolar expansion of the intermolecular interaction operator, ℋ′, is only valid outside the charge distribution 

of the molecule. For most molecules, the charge density is far from spherical (Figure 6) and formally extends to 

infinity with the exponential decay of the charge distribution with radius (Figure 8).  

2.4.3 Co-ordinate systems 

There is an an orientation dependence to the intermolecular atom-atom interactions. In Chapters 3 & 5 we see 

that atomic shape (anisotropy) is crucial to accurately describe interactions, differences in crystal 

structures/polymorphs and their associated properties. Therefore, it is important to define the co-ordinate systems 

used as to define our orientations. It is vital to define these precisely and consistently to enable replication of results 

and the transfer of the non-empirical force-fields. In this study, we will use atom fixed, molecule fixed and space 

fixed axes. The atom fixed axis is on each atomic site and is also referred to as the local axis in this thesis. It is 

attached to the distributed atomic sites within our molecule. There is a molecule fixed axis with an origin at the 
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centre of mass of the molecule. It is molecule fixed as it moves with the molecule and within the force-field 

development process and the lattice energy minimization process the same molecule fixed axis will be used. The 

direction of both the local and molecule-fixed axis is referenced by atom positions and one should aim to set axes 

to simplify symmetry terms within the potential. The axes determine the Ttu
ik(Rik, Ωik) tensors in the theory of 

intermolecular forces and help define anisotropic terms, which are used to represent the non-sphericity of atoms. 

The space fixed axis is defined by 𝑥, 𝑦, 𝑧 Cartesian axes, and its direction defined in reference to macroscopic 

features such as the electric field.  

 

  

Figure 6: (Top) The molecule-fixed axis (red) and local axis (atom fixed, blue) definitions used for the energetic 

organic crystal trinitrobenzene (TNB) to derive the atomic multipoles and polarizabilities. The axes are defined 

by the atoms involved for use in DMACRYS. Some programs use other axis systems by default, such as the inertia 

axes,235 which change with conformation. The atomic properties must be transformed to the correct axis system 

(see Chapter 3 for pyridine example). (Bottom) The charge density and shape of TNB, in the molecule-fixed axis. 

Figure 6 is an example co-ordinate system that is used in Chapter 5 & 6. Setting a reproducible co-ordinate 

system allows us to now progress onto the development of our non-empirical intermolecular force-fields. 
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2.5 The electrostatic model 

The electrostatic potential around a molecule can be calculated from the charge density distribution of a molecule. 

It can be evaluated by considering the potential of the molecule at a point M in a global co-ordinate system, outside 

an iso-density surface of surface of 10-3
 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑏𝑜ℎ𝑟3⁄  around the static isolated molecule. The electrostatic 

potential is evaluated on a surface of this size for the sake of comparison to previous studies.137, 138, 236-239 The 

charge distribution within the molecule 𝜌𝑀(𝐫) can be partitioned into atom-centred electron densities 𝜌𝑖(𝐫) whose 

atomic multipole moments can be used in an electrostatic model to describe the electrostatic interactions between 

neighbouring molecules in a crystal.164 

2.5.1 Methods of partitioning 

Distributed Multipole Analysis (DMA) is a description of the molecular charge density for calculating the 

electrostatic potential of a molecule at points outside (long-range) the charge density itself. Using a distributed 

multipole expansion assumes that the potential is being evaluated outside the charge density of the molecule and 

requires a suitable partitioning of the computed molecular charge density into atomic densities. The method of 

partitioning is vital to properly describing the behaviour of a system, and there are many methods of doing so. 

2.5.1.1 Mulliken Population Analysis (Point Charges)  

Mulliken Point Analysis (MPA)240 was historically used in approximating the atomic partial charges, however, in 

comparison to other methods, the use of Mulliken charges for estimating the charge at a given atom is notoriously 

dependent on basis set and conformational changes.241-243 MPA partitions the molecular density to obtain solely 

atom-centred point charges240, 244 to model the entire charge distribution of a molecule, which does not capture 

spatial contribution of the charge distribution at all. MPA’s estimation of higher order molecular moments like 

dipoles or quadrupoles has been found to be erroronous,244 and higher order multipole moments are crucial to 

describing the bonding behaviour seen in weakly bound organic materials.  

2.5.1.2 Charges from Electrostatic Potentials using a Grid-based method (CHELPG)  

The Charges from Electrostatic Potentials using a Grid-based method (CHELPG) is an empirical approach 

developed by Breneman and Wiberg,163 in which the partial atomic charges are obtained via fitting to a grid of 

points from an ab initio derived electrostatic potential of the isolated molecule. CHELPG aims to give the best 

reproduction of the electrostatic potential around the molecule,236, 245 however, these charges are not directly linked 

to the charge distribution around the atom and are less physically interpretable. Modelling the atomic charge 

density simply as spherical atomic point charges completely neglects penetration effects. Moreover, the resultant 



 67 

atomic charges will be most accurate and heavily dependent on the grid of points to which they have been fitted, 

and lack transferability between molecules and even conformers.236, 245 The molecular charge distribution is known 

to greatly change with conformation, thus charges fitted to one conformer transfer very poorly to others. This is 

less of an issue with the atomic charges calculated from the Iterated Stockholder Atoms (ISA) approach used in 

this thesis (Chapter 4, Figure 25).233 The best approach for a model is to obtain multipole moments from the 

distributed multipole analysis of a high quality wave-function rather than to fit to molecular electrostatic potential 

surfaces. Additionally, CHELPG does not work well in reproducing the atomic charges of internal atoms in large 

systems that are not close to the points outside the molecule where the electrostatic potential surface is calculated. 

2.5.1.3 Gaussian Distributed Multipole Analysis (GDMA): GDMA1 & GDMA2 

The first Gaussian type orbital (GTO) treatment of distributed multipole analysis was by Lavery et al,246 however, 

Gaussian Distributed Multipole Analysis (GDMA) was one of the first electrostatic models to include higher order 

multipole moments, and GDMA1 (then known as DMA) was used to investigate dipole and up to hexadecapole 

terms in hydrogen fluoride.234 These additional terms allowed one to investigate how the atomic charge distribution 

changes with bond formation. GDMA electrostatic models are classically coupled with empirical potentials, which 

absorb the effects of penetration. In GDMA, the charge density is expressed as a density matrix containing the 

product of two GTOs, 𝜙𝑖(𝑟) and 𝜙𝑘(𝑟), with an expansion coefficient 𝐶𝑖𝑘. The product of the Gaussian orbitals is 

used to construct the atomic wave-function. 

𝜌𝑀(𝒓) = ∑ 𝐶𝑖𝑘𝜙𝑖(𝒓)𝜙𝑘(𝒓) 
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Each atom is the logical centre of its own multipole contributions but what about the centres for the bond 

contributions? When 𝜙𝑖 and 𝜙𝑘 are not on the same atoms, a complete atomic multipole expansion could be created 

by moving the bond contributions from the distributed expansion to neighbouring atoms, which may not 

necessarily be the atoms at the end of the bond. With GDMA one can shift some bond multipoles to neighbouring 

atoms (based on the molecular chemistry) or have mid-bond multipoles.234 Atomic terms (when both orbitals 𝜙𝑖 

and 𝜙𝑘 are on the same atom) remain centred at the atoms and all contributions to bonding are collected into a 

single multipole expansion about the centre of the bond. By using just 𝑠 and 𝑝-type Gaussian functions higher 

order multipole moments (octupole, hexadecapole etc.) will be created by the shifting, and their magnitudes depend 

on the how far from the atom centre the contributions are moved. In principle, this results in a more accurate 

representation of the electrostatic potential outside the charge distribution that relates to the atom.  
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GDMA1 gives a more complete generalization of Mulliken Population Analysis (MPA). For instance, lone pairs 

can be represented by a dipole or quadrupole moment on an atom, which is more physical/intuitive, compared to 

contributing to the atomic point charge, which results in the misrepresentation of higher multipoles. While it is a 

relatively modest representation of charge distribution, it can be evaluated quickly, effectively and provide a great 

foundation to build new methods of multipole analysis. However, there was the caveat that higher terms were very 

sensitive to small errors in the wave-function and fluctuated heavily with basis set.247 Calculated moments changed 

significantly with basis set quality even though the computed electrostatic potential did not.247 In the newer 

approach of GDMA, GDMA2, the more compact functions are handled in the same way as in GDMA1. However, 

GDMA2 stabilizes fluctuations in higher multipole moments due errors in the wave-function and changing basis 

sets by integrating the more diffuse contributions to the molecular electron density using a grid-based 

quadrature.247  

2.5.1.4 Hirshfeld (Stockholder approach) 

The Hirshfeld scheme248 is a straightforward one that yields atomic charge densities that are closely related to 

those in the isolated molecule.249 The Hirshfeld scheme uses a weighting function 𝑤𝑖  on the molecular charge 

density 𝜌𝑀(𝑟) to partition it into an atomic density 𝜌𝑖(𝑟). It does not iterate these weighting functions. Instead it 

uses reference charge densities in its partitioning. 

𝜌𝑖(𝑟) = 𝑤𝑖(𝑟)𝜌𝑀(𝑟) =
𝜌𝑖

0(𝑟)

𝜌𝑚𝑜𝑙
0 (𝑟)

𝜌𝑚𝑜𝑙(𝑟) 
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𝜌𝑖
0(𝑟) is the ground state atomic density, and the reference charge density for atom 𝑖, which is usually the free 

atomic density. 𝜌𝑚𝑜𝑙
0 (𝑟) is the promolecular density, the sum of the 𝜌𝑖

0(𝑟), and 𝜌𝑚𝑜𝑙(𝑟) is the true molecular 

density. This results in two key disadvantages: 

 The Hirshfeld approach requires pre-calculated shape functions, which are obtained from free atom 

calculations i.e. free carbon or free oxygen and are consequently spherical. 

 Thus, it cannot describe well the changes in atomic electron densities that occurs with chemical bonding. 

For example, the electron densities of free carbon and oxygen atoms are very different from the 𝑂 and 𝐶 in carbon 

monoxide (Figure 7). 
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(a) (b) 

Figure 7: (a) the charge distribution around a free carbon atom and, the more electronegative, free oxygen atom. 

(b) the charge distribution around a carbon monoxide molecule. One can see that the electronegative O pulls 

charge density towards it. The spherical averaging in the Iterated Stockholder Atoms (ISA) approach231 addresses 

this issue by trying to find the optimum atomic density shapes to best represent the molecular charge density. 

The more electronegative oxygen free atom has a less diffuse electron density 𝜌, however in carbon monoxide, the 

more electron-withdrawing oxygen pulls more electron density around itself so the 𝜌 is more diffuse (Figure 7). 

The Hirshfeld approach fails to capture this, and raises other questions. The computed charges tend to be very 

close to 0, and seemingly unphysical. It can be debated that this is possible as the exact charges of atoms are 

unknown in reality (charges don’t really exist), however other models (HI, ISA, GISA, GDMA2, BS-ISA) show 

larger atomic charges.231, 233 This issue stems from the fact that the pre-calculated Hirshfeld weighting factors are 

derived from the isolated atom. Furthermore, the atomic charges are only available for neutral molecules as 

choosing a promolecular density 𝜌𝑚𝑜𝑙
0 (𝑟) for charged systems is non-trivial.250, 251 The method of weighting the 

atomic charge densities was made iterative to combat this in the HI stockholder scheme.243, 252 

2.5.1.5 Iterated Hirshfeld (HI) Stockholder approach 

The Iterated Hirshfeld (HI) approach, dubbed Hirshfeld-I (HI), modifies the Hirshfeld approach using by iterating 

the weight functions using a simple iterative method,252 where 𝑤𝑖  is a weighted average of the neutral atom 𝑖 and 

ionic densities.252  

𝑤𝑖(𝑟) =
𝜌𝑖

0(𝑟)

𝜌𝑚𝑜𝑙
0 (𝑟)
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In the HI approach the atomic electronic population 𝐴𝑖 (number of electrons per atom), dubbed the Hirshfeld 

population is calculated from the molecular density 𝜌𝑖(𝑟). 
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𝐴𝑖 = ∫ 𝜌𝑖 (𝒓)𝑑𝒓 
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The isolated atomic density is then constructed by calculating the weighted average of atomic density from the 

reference promolecular density. These new isolated atomic densities are summed to create a new promolecular 

density that is then used to re-compute new atomic weighting functions. This procedure is iterated until the atomic 

electronic population is identical to the isolated atomic density for each atom. This works well generating large 

atomic charges but requires previous knowledge of neutral atomic densities and ionic densities. A principal benefit 

of this methodology, as with ISA, is that this does not depend explicitly on the basis set.253 Furthermore, the number 

of ionic densities required depends on the number of ionic states required to describe the majority of the atom’s 

ionic density.243 The spherical averaging of the stockholder atomic density around each nucleus (Equation 48) and 

the fact the ISA does not use reference densities at all makes it an improvement on the HI approach. 

2.5.1.6 Iterated Stockholder Atoms (ISA) Approach 

The Iterated Stockholder Atoms (ISA) approach is another impressively simple yet effective method for obtaining 

an atomic electron density 𝜌𝑖(𝑟) that is capable of reproducing the molecular electron density.231, 233 The ISA 

method partitions the molecular density according to spherically symmetric weighting functions centred at the 

atomic nuclei within a given molecule. 

𝜌𝑖(𝑟) = 𝜌𝑀(𝑟)
𝑤𝑖(𝑟)

∑ 𝑤𝑘(𝑟)𝑘
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where 𝜌𝑖(𝑟) is the atomic electron density of atom 𝑖 at position 𝑟, 𝜌𝑀(𝑟) is the molecular electron density, and 

𝑤𝑖(𝑟) is the spherically symmetrical weighting function around the nucleus of atom 𝑖, also referred to as the shape 

function.233 The sum ∑ 𝑤𝑘(𝑟)𝑘  includes shape functions of all the other atoms in the molecule. The 𝑤𝑘 shape 

function is obtained by calculating the electron density of the free atom 𝑘 in the gas-phase, and subsequent 

spherical averaging about the nucleus to mimic the spherical atom shapes. This spherical averaging requires either 

an extra calculation on each atom or a pre-calculated table of electron densities. This methodology is similar to the 

Hirshfeld approach,252 however, the shape functions in the ISA method are defined by iterating the stockholder 

procedure from an initial guess, any initial guess in fact. In the subsequent iteration the shape functions are taken 

to be the spherical average of the stockholder atoms around each nucleus, thus 

𝑤𝑖(𝑟) = 〈𝜌𝑖(𝑟)〉𝑠𝑝ℎ 

49 
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The only requirement for the ISA approach to work is that the shape function, 𝑤𝑖(𝑟), is positive and can be 

integrated over all space. Accordingly, the atomic electron densities are positive everywhere as long as the initial 

shape functions are positive. The angular brackets “〈 〉𝑠𝑝ℎ”, represent the spherical averaging around the centre 

of atom 𝑖. These new weighting functions are inserted into Equation 46 to give a new set of stockholder atoms, to 

be spherically averaged again using Equation 48. This process is repeated until both equations can be solved 

simultaneously, indicating convergence. The conventional ISA approach is found to converge within 30-50 

iterations for most small molecules.231 

The principal benefits of the ISA method, and other iterated stockholder approaches, are that computed atomic 

electron densities, 𝜌𝑖(𝑟), are typically reasonable:231, 233 

 They generate approximately spherical atoms, so that the higher atomic multipole moments are less 

important. 

 A better distribution scheme, with electron densities that decrease smoothly away from the atomic centre. 

o The ISA-computed atomic electron densities display radial behaviour, near-exponential decay 

(Figure 8). 

 They produce more natural, physical atomic charges than Mulliken Population Analysis and DMA 

methods,233 which can be obtained by subtracting the integral of the atomic electron density over all space 

from the nuclear charge 𝑁𝑖 

𝑞𝑖 = 𝑁𝑖 − ∫ 𝜌𝑖(𝑟) 𝑑𝑟 

50 

o Electronegative atoms have negative charges, making the ISA charges more realistic than MPA 

or DMA charges 

 The ISA partitioned atomic densities can also be used to obtain distributed 2nd order quantities like the 

frequency dependent atomic polarizabilities, in a methodology referred to as the ISA-Pol (2.6.1.1).200  
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Figure 8: The atomic electron density modelled by ISA. By using a separate and large basis set for better density 

tails combined with iterative spherical averaging helps capture the exponential decay of the charge distribution 

better. 

2.5.1.7 Basis-Space ISA (BS-ISA) 

For small molecules like water, hydrogen sulphide or nitrogen, the conventional ISA converges within 30-50 

iterations, however the number of iterations before convergence grows quickly with molecule size.233, 243 The rate 

of convergence can be improved by using basis set expansions for all the quantities in Equation 46. Though charge 

conservation is not an issue if the partitioning of the atomic densities is done in real space, convergence is 

substantially faster in basis space, taking just 10 iterations in some cases.233 This is due to the spherical (𝑠-shaped) 

averaging of the stockholder atoms. This does add some basis dependence to the method, but this converges 

quickly with basis-set, and only using a small unbalanced basis set could lead to poor convergence. 

�̃�(𝑟) = ∑ 𝑑𝑘Χ𝑘(𝑟)

𝑘
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where �̃�(𝑟) is the molecular density expanded in basis space, and 𝑑𝑘 is the expansion coefficient of the auxiliary 

basis set Χ𝑘(𝑟). The expansion of the atomic electron density can thus be given by 

𝜌𝑖(𝑟) = ∑ 𝑐𝑘
𝑖 𝜀𝑘

𝑖 (𝑟)

𝑘
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Since the atomic density is expanded in a basis of spherical Gaussian Type Orbitals (GTOs), the atom shape 

function 𝑤𝑖  is inherently spherical as it is the 𝑠-function part of 𝜌𝑖(𝑟). 𝑐𝑘
𝑖  is the expansion coefficient determined 
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by minimizing the appropriate ISA functional and 𝜀𝑘
𝑖 (𝑟) is the basis function (typical GTO). The shape function 

is hence 

𝑤𝑖(𝑟) = ∑ 𝑐𝑘
𝑖 𝜀𝑘,𝑠

𝑖 (𝑟)

𝑘∈𝑠−𝑓𝑢𝑛𝑐
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The s subscript in 𝜀𝑘,𝑠
𝑖  denotes the 𝑠-character of the expansion. Spherical averaging becomes substantially easier 

when using basis expansions as the atomic functions. This methodology is comparable to the Gaussian Iterated 

Stockholder Atoms (GISA) approach,254 which employs a series of 𝑠-function expansions to define the shape 

function but there are many differences between GISA and Misquitta’s BS-ISA approach. These differences are 

vital to obtaining well-converged atomic density tails in the BS-ISA approach. The BS-ISA uses an additional 

auxiliary basis set for the fitting step of the atomic density tails, because the s-functions used for 𝜌𝑖(𝑟) are not 

flexible enough to describe the density tails well, and these need to be described well for the ISA solution to 

converge reliably.233 The BS-ISA method also minimizes a different functional, employs larger basis sets, includes 

an exponential tail requirement and the ability to add off-atomic sites.200, 233 

Using large diffuse basis sets in the density-fitting step results in well-defined density tails and accurate high order 

multipole moments, outperforming GDMA1 and GDMA2 methods in calculating the higher ranked multipole 

moments for formaldehyde.233 Moreover, conventional ISA charges have been found to be very sensitive to 

conformation. Although in that study the multipole expansion was truncated at 𝑅𝑎𝑛𝑘 𝑙 = 0, using only the atomic 

charges, ISA was deemed not robust enough to accommodate for changes in conformation of penta-alanine.243 The 

BS-ISA charges on the other hand were. The form of BS-ISA used in this thesis uses three separate basis sets, a 

main basis, an auxiliary basis and an atom-auxiliary basis.233 The BS-ISA method of obtaining distributed 

multipoles has been extended to generate the distributed polarizabilities and dispersion coefficients for both 

pyridine (Chapter 3) and trinitrobenzene (Chapter 5). 

2.6 The induction model from atomic polarizabilities 

A molecule in a crystal experiences an external potential 𝑉(𝑅) due to the potentials of its neighbours. This external 

potential has an associated electric field 𝐹 =  −𝜕𝑉 𝜕𝑅⁄ . If molecule 𝑀 is in an external electric field 𝐹, the 

electrons experience opposite forces to the nuclei and the electron distribution of the molecule distorts. The results 

in an induced dipole moment Δ𝜇.  The induced moment can be expressed in terms of the applied field and the 

polarizability tensor 𝛼 from Equation 43 as  

Δ𝜇 = 𝛼𝐹 
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2.6.1 The polarization energy 

Semi-empirically using Regularized SAPT(DFT),255, 256 the 2nd order induction energy 𝐸𝐼𝑁𝐷
(2)

 (Equation 24) can also 

be partitioned into two components, contributions associated with delocalization of charge between molecules 

(2.6.2), the charge-delocalization energy 𝐸𝐶𝐷
(2)

, and those not associated with charge delocalization, the polarization 

energy 𝐸𝑃𝑂𝐿
(2)

. The polarization contribution here is the same interaction as the polarization in inorganic materials, 

however, in inorganic crystals the polarization energy is dominated by ion induced dipole-ion interactions which 

are rarely observed in organic molecular crystals. The polarization energy in organic crystals like pyridine is 

dominated by induced dipole moments arising from much weaker fields around the molecules. Note that the term 

polarization is sometimes used to describe changes of charge distribution within the isolated molecule caused by 

electronegativity differences, but not in this thesis.  

The strength of the polarization contribution is dependent on the molecular charge density’s ability to distort under 

the external field. The change in the distribution of charge density within a molecule at a point r, due to an external 

field caused by other molecules at r', is known as the charge-density susceptibility 𝛼(r,r') (Equation 43). 

Moreover, the response to the external field can be non-uniform across the molecule creating a field gradient. 

Distributed multipolar polarizabilities tensors are needed to describe this effect, as the field polarizes the atoms in 

the molecule, and its charge distribution is distorted inducing a multipole moment.61, 164 This effect is non-

additive,164 and consequently, the polarization term is a truly many-body term. It is the only many-body term in 

the non-empirical force-fields created in this thesis.  

2.6.1.1 The atomic polarizabilities model 

The total and distributed frequency dependent polarizabilities are calculated using a constrained density fitting 

algorithm (like the multipole moments). The ISA-Pol method200 within CAMCASP, which follows on from the 

ISA-DMA method of deriving the multipole moments, can be utilized to derive the non-pairwise additive 

distributed polarizabilities models. This method is flexible and can be used to obtain an accurate polarizability 

model using constraints imposed by the user. The flexibility comes in the form of the ability to break down the 

models into different ranks, such as, an 𝐿1 (anisotropic dipole-dipole) polarization model, an 𝐿2 (anisotropic 

dipole-quadrupole & quadrupole-quadrupole) polarization model or a fully isotropic description of 𝐿1. Fully 

anisotropic or isotropic models up to 𝑅𝑎𝑛𝑘 𝑙 = 4 can be derived and truncated using the ISA-Pol method. 
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The distributed polarizabilities from CAMCASP also include non-local contributions. ORIENT can be used to 

transform these contributions away via its localization module, if the recipient molecular mechanics code can only 

take localized polarizabilities (which is the case with DMACRYS). Furthermore, point-to-point polarizabilities, 

responses to frequency-dependent point-charge perturbation can be calculated within CAMCASP. We do not use 

these within this thesis as their added complexity makes them less accessible to available codes like DMACRYS. 

2.6.1.2 Rotation of the atomic polarizabilities 

CAMCASP computes the atomic polarizabilities in the local axis (Figure 6), however, DMACRYS is only capable 

of using atomic polarizabilities in the molecule-fixed axis. The ISA-Pol localized atomic polarizabilities must be 

appropriately transformed and transferred for use in the lattice energy minimization calculations. The method of 

obtaining the localized atom polarizabilities has been detailed in a previous study.200 The anisotropic 

polarizabilities are first computed and localized using the LW method257 and weighting scheme number 3 (2.9.5.2) 

with an arbitrary weighting coefficient of 10−3. The final weighted static polarizabilities must then be rotated into 

the molecule-fixed axis using ORIENT and re-formatted to be used as a DMACRYS input. The rotated 

DMACRYS polarizability input files can be found in Appendix 3.A and the Appendix CD. 

2.6.1.3 Minimizing with Polarization 

Computing the polarization energy (Equation 25) and the forces due to polarization contributions is an iterative 

process and generally very expensive especially for many-body systems. Currently, DMACRYS is capable of 

calculating the analytical first derivatives for all energy terms except polarization, which needs to be converged 

by iteration to a tolerance (𝛿𝑝𝑜𝑙) of around 10−8 𝑘𝐽 𝑚𝑜𝑙−1. DMACRYS also has some analytical second 

derivatives, but not all the cross terms for the all energy terms, like the polarization. Normally, minimizations 

within DMACRYS do a quasi-Newton Raphson optimization, building up an approximate Hessian that is used to 

detect whether a valid minimisation (zero strain matrix, so no forces or torques) corresponds to a true lattice energy 

minimum, and then estimates the elastic tensor.  When the polarization is explicitly included in the force-field, the 

numerical first derivatives of the polarization energy are included in the forces. Since the numerical derivatives of 

an iterated quantity are expensive to calculate, a structure should be first minimized without polarization and then, 

ideally, minimized again using this structure as a starting point. The induced moments must also be fixed along 

the same search direction in order for the energy to converge well. Consequently, in all but two (Chapter 3) lattice 

energy minimization calculations in this thesis we do not calculate the forces due to polarization. 
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2.6.1.4 The Polarizable Continuum Model 

Is it reasonable to approximate the effects of polarization using the polarizable continuum model? As the 

polarization term is derived from the charge distribution it is most appropriate to have this term absorbed into the 

electrostatic model. The long-range effects of polarization can be absorbed into the electrostatic model by 

recalculating the multipole moments in a dielectric polarizable continuum solvation model (PCM), where the 

electric field due to neighbouring molecules is approximated as a polarizable continuum. An enhanced version of 

the COSMO Solvation model aka the “Conductor-like Screening Model” in NWCHEM
258, 259 was used to calculate 

the Restricted Kohn-Sham DFT (DFT) energies of the isolated TNB molecule under a specific dielectric by 

determining the solvent reaction field self-consistently with the solute charge distribution (6.2.2). 

2.6.2 Charge-delocalization 

The charge-delocalization term is a stabilizing energy that describes the delocalization of charge density between 

two molecules in close proximity. While the charge-delocalization effect occurs at the ground-state, for two 

interacting monomers it can be described as partly localized excitations on the neighbouring molecule, hence it is 

a 2nd order term. The charge-delocalization energy has been previously described as the difference between the 2nd 

order SAPT(DFT) induction energy (𝐸𝐼𝑁𝐷
(2)

) calculated in a dimer centred (DC) basis and a monomer centred (MC) 

basis.  

𝐸𝐶𝐷
(2)

= 𝐸𝐼𝑁𝐷
(2) [𝐷𝐶] − 𝐸𝐼𝑁𝐷

(2)
[𝑀𝐶] 
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This presumes that charge-delocalization effects are not allowed using MC basis types as the MC basis is smaller, 

incomplete and centred on each individual monomer with no sharing of charge density, whereas the larger DC 

basis functions are diffused between the two monomers (2.2.4).264 This treatment, however, has its pitfalls as the 

charge-delocalization term here is clearly basis dependent. As the MC basis becomes larger and more complete 

𝐸𝐼𝑁𝐷
(2)

[𝑀𝐶] converges towards 𝐸𝐼𝑁𝐷
(2)

[𝐷𝐶]; reducing the apparent 𝐸𝐶𝐷
(2)

. Thus, the symmetry adapted perturbation 

theory methods SAPT and SAPT(DFT) face major roadblocks due to the basis-set dependence of the charge 

delocalisation term at small 𝑅. They do not describe a true 2nd order polarization energy but instead the total 2nd 

order induction energy 𝐸𝐼𝑁𝐷
(2)

, which is the SAPT(DFT) polarization and charge-delocalization energy combined.255 

Nonetheless, it has been suggested that SAPT(DFT) can be semi-empirically regularized in order to obtain the 

components of 𝐸𝐼𝑁𝐷
(2)

.255 Under this treatment the 2nd order polarization energy is the regularized second-order 
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induction energy, which can then be used to damp the distributed polarization model to best mimic the regularized 

SAPT(DFT) induction energy 𝐸𝐼𝑁𝐷
(2)

(𝑅𝑒𝑔).38, 167 Subtracting 𝐸𝐼𝑁𝐷
(2) (𝑅𝑒𝑔) from the 2nd order induction energy would 

also give the charge-delocalization contributions to the induction energy 𝐸𝐶𝐷
(2)

  

𝐸𝑃𝑂𝐿
(2)

= 𝐸𝐼𝑁𝐷
(2) (𝑅𝑒𝑔) 

𝐸𝐶𝐷
(2)

= 𝐸𝐼𝑁𝐷
(2)

− 𝐸𝐼𝑁𝐷
(2)

(𝑅𝑒𝑔) 
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2.6.3 Estimating the higher-order induction terms 

In SAPT(DFT) the complete total two-body interaction energy (including all higher up to infinite order 

perturbation terms) is 

𝐸𝑖𝑛𝑡
(1−∞)

= 𝐸𝑒𝑙𝑠𝑡
(1)

+ 𝐸𝑒𝑥𝑐ℎ
(1)

+ 𝐸𝐼𝑁𝐷
(2)

+ 𝐸𝐷𝐼𝑆𝑃
(2)

+ 𝛿𝑖𝑛𝑡
𝐻𝐹 
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The polarization of the system due to an electric field continues to change the multipole moments of each molecule 

and the induced moments further polarize neighbours, leading to higher-order energies contributions. Thus, higher-

order contributions are important and make up the remainder of the total interaction energy. Typically, they are 

too large to ignore, especially for highly polar/polarizable molecules. In Chapter 3 the total two-body interaction 

energy is employed, however, in Chapter 5, the perturbation expansion is truncated to 2nd order.  

In the previous non-empirical potential for pyridine,38, 167 the 3rd order and higher induction energies were absorbed 

into a term known as 𝛿𝑖𝑛𝑡
𝐻𝐹; the Hartree-Fock energy of the system that contains all induction effects38 but no 

correlation corrections265, 266 and is defined as 

𝛿𝑖𝑛𝑡
𝐻𝐹 = 𝐸𝐻𝐹 − 𝐸𝑒𝑙𝑠𝑡

𝐻𝐹 − 𝐸𝑒𝑥𝑐ℎ−𝑟𝑒𝑝
𝐻𝐹 − 𝐸𝑖𝑛𝑑𝑒𝑥

𝐻𝐹  

58 

Equation 58 is the Hartree-Fock interaction energy with the correlation corrections (𝐸𝑖𝑛𝑑𝑒𝑥
𝐻𝐹 ), first order electrostatic 

and exchange-repulsion Hartree-Fock energies subtracted.164 The remaining contributions after these terms have 

been deducted from 𝐸𝐻𝐹 are those involving the change in charge distribution of each molecule due to the electric 

field from neighbouring bodies and higher order charge-delocalization terms, i.e. the remainder of the induction 
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energy. Subsequently, under the SAPT(DFT) partitioning of intermolecular interaction energies, the 𝛿𝑖𝑛𝑡
𝐻𝐹 

correction energy contains all higher order two-body interactions, like the effect of higher order induction terms 

𝐸𝐼𝑁𝐷
(3−∞)

.164 Further detail on its implementation and its effect on the potential energy surface of gas-phase dimers 

and crystal structures is detailed in Chapters 3 and 5. The explicit calculation of the polarisation contribution to 

the lattice energy requires iteration so all symmetry related molecules have the same charge distribution. This is 

equivalent to including the higher order terms, i.e. the induced moments on one molecule induce further changes 

in the induced moments of the nearby molecules, but this is approximate as it uses distributed multipoles and 

polarizabilities within a crystalline, many-body environment. 

2.7 The dispersion model 

The dispersion energy is an approximately pairwise-additive, attractive energy arising from correlated fluctuations 

in the electron distribution of each molecule that create instantaneous multipole moments within a molecule. These 

multipole moments induce other multipole moments within neighbouring molecules, resulting in correlated 

fluctuation of molecular charge densities. These correlations favour lower energy configurations and lower the 

overall energy of the system.164 We say it is approximately pairwise-additive as many-body effects, like the 3-

body dispersion can be important.164, 167  It is a non-classical phenomenon and the dispersion energy is typically 

an enormous contribution to the intermolecular energy and can be dominant in organic crystals depending on 

whether the molecule is capable of strong electrostatic interactions. After all, dispersion is the van der Waals 

interaction that allows spherical neutral molecules to form condensed states.267 Accordingly, an accurate and 

reliable model of this component is crucial. The long-range perturbation theory approach (2.3.1) used to calculate 

the intermolecular energy in a force-field, reduces the dispersion coefficients to products of the individual-

molecule properties, which allows the dispersion energy coefficients to be calculated just once for a rigid 

molecule.164 Quantum electrodynamics has been utilized by Casimir and Polder268 to better describe the dispersion 

energy, which was further developed and simplified269 allowing the dispersion energy to be derived from the 

polarizability components of two interacting bodies at imaginary frequency.164 The energy is accurately calculated 

as a function of frequency-dependent dipolar polarizability from ab initio calculations, but can also be derived 

from experimental data.  Substituting ℋ′ from Equation 42 into Equation 43 gives us the multipole-expanded form 

of the dispersion energy. If we consider only up to the dipole-dipole term in ℋ′ 

𝐸𝑑𝑖𝑠𝑝
(2)

= −𝑇𝛼𝛽𝑇𝛾𝛿 ∑
⟨Ψ𝑀

0 |�̂�𝛼
𝑀|Ψ𝑀

𝑚⟩⟨Ψ𝑀
𝑚|�̂�𝛾

𝑀|Ψ𝑀
0 ⟩⟨Ψ𝑁

0|�̂�𝛽
𝑁|Ψ𝑁

𝑛⟩⟨Ψ𝑁
𝑛|�̂�𝛿

𝑁|Ψ𝑁
0⟩

𝐸𝑚
𝑀 − 𝐸0

𝑀 + 𝐸𝑛
𝑁 − 𝐸0

𝑁

𝑚≠0,𝑛≠0
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Using the full spherical-tensor notation of the intermolecular interaction operator ℋ′ and summing over repeated 

spherical-tensor suffixes 𝑡, 𝑡′, 𝑢 and 𝑢′ gives the multipolar 2nd order dispersion energy as 

𝐸𝑑𝑖𝑠𝑝
(2) [𝑀𝑃] = − ∑

⟨00|�̂�𝑡
𝑀𝑇𝑡𝑢

𝑀𝑁�̂�𝑢
𝑁|𝑚𝑛⟩⟨𝑚𝑛|�̂�𝑡′

𝑀𝑇𝑡′𝑢′
𝑀𝑁�̂�𝑢′

𝑁 |00⟩

𝐸𝑚
𝑀 − 𝐸0

𝑀 + 𝐸𝑛
𝑁 − 𝐸0

𝑁

𝑚≠0,𝑛≠0
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The matrix elements can be factorised components of 𝑀 and 𝑁, however, the denominator cannot be factorised, 

making it awkward to handle. The following identity can be used to obtain an exact formulation of the dipole-

dipole term in the dispersion energy 

1

𝐴 + 𝐵
=

2

𝜋
∫

𝐴𝐵

(𝐴2 + 𝑣2)(𝐵2 + 𝑣2)

∞

0

𝑑𝑣 
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This is valid for positive  𝐴 and 𝐵, and can be applied to the energies in the denominator of Equation 59, where 

ℏ𝐴 = 𝐸𝑚
𝑀 − 𝐸0

𝑀 = ℏ𝜔𝑚
𝑀. Expanding Equation 60,  and still summing over repeated spherical-tensor suffixes 𝑡, 𝑡′, 𝑢 

and 𝑢′, allows one to identify the components of the polarizability at imaginary frequency (𝑖𝑣) to obtain a general 

form of the dispersion energy, that will yield 𝑅−(2𝑛+6) contributions to the dispersion energy. Giving 

𝐸𝑑𝑖𝑠𝑝
(2)

= −
2ℏ

𝜋
𝑇𝑡𝑢

𝑀𝑁𝑇𝑡′𝑢′
𝑀𝑁 ∫ ∑

⟨Ψ𝑀
0 |�̂�𝛼

𝑀|Ψ𝑀
𝑚⟩⟨Ψ𝑀

𝑚|�̂�𝛾
𝑀|Ψ𝑀

0 ⟩𝜔𝑚
𝑀

ℏ((𝜔𝑚
𝑀)2 + 𝑣2)

′

𝑚
× ∑

𝜔𝑛
𝑁⟨Ψ𝑁

0|�̂�𝛼
𝑁|Ψ𝑁

𝑛⟩⟨Ψ𝑁
𝑛|�̂�𝛾

𝑁|Ψ𝑁
0⟩

ℏ((𝜔𝑛
𝑁)2 + 𝑣2)

′

𝑚

∞

0

d𝑣 
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These contributions are partitioned and implemented in the potential as atom-type specific dispersion coefficients 

𝐶2𝑛+6, which are only valid asymptotically. 

𝐸𝑑𝑖𝑠𝑝
(2)

= −
ℏ

2𝜋
𝑇𝑡𝑢

𝑀𝑁𝑇𝑡′𝑢′
𝑀𝑁 ∫ 𝛼𝑡𝑡′

𝑀
∞

0

(i𝑣)𝛼𝑢𝑢′
𝑀 (i𝑣)d𝑣 
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The orientation dependence of the dispersion is defined in the tensors 𝑇𝑡𝑢
𝑀𝑁 and 𝑇𝑡′𝑢′

𝑀𝑁. This expression is exact in 

the limit of large 𝑅. Furthermore, 𝑅2𝑛+7 contributions are zero as they cancel out due to symmetry for 

centrosymmetric molecules and atoms or are very small, therefore, 𝑅2𝑛+7 contributions are not included in our 

distributed dispersion model.  
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2.7.1 Empirical dispersion models 

In empirical force-fields like FIT68 or WILL01,69, 70 the dispersion is fitted together with the repulsion in an 

isotropic atom-atom Buckingham exp-6 potential, which is summed for all atoms 𝑖 and 𝑘 of type 𝜄 and 𝜅 in 

molecules 𝑀 and 𝑁. 

𝑉𝑟𝑒𝑝−𝑑𝑖𝑠𝑝
𝑀𝑁 (𝑅𝑖𝑘) = 𝐴𝜄𝜅 ∑ exp[−𝛼𝜄𝜅𝑅𝑖𝑘]

𝑖∈𝑀,   𝑘∈𝑁

−
𝐶6

𝜄𝜅

𝑅𝑖𝑘
6  
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The 𝐶6
𝜄𝜅 dispersion coefficient, 𝐴𝜄𝜅 and 𝛼𝜄𝜅 are empirically fitted to experimental data and are atom specific, and 

in the case of the Williams potential, specific to atomic-connectivity. In the WILL01 potential are different 

parameters for different nitrogen bonds for example. In empirical potentials combining rules are also used to 

calculate the parameters for heterogeneous pairs,270  

𝐴𝜄𝜅 = √𝐴𝜄𝜄 + 𝐴𝜅𝜅  

𝛼𝜄𝜅 = √𝛼𝜄𝜄 + 𝛼𝜅𝜅 

𝐶6
𝜄𝜅 = √𝐶6

𝜄𝜄 + 𝐶6
𝜅𝜅 
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However, the non-empirical force-fields in this study do not use combining rules. Parameters are derived (in the 

case of the dispersion) or fitted for both heterogeneous and homogeneous pairs. This is done using the dispersion 

module within CAMCASP when deriving the isotropic pair-wise dispersion model.  

2.7.2 Non-empirical dispersion models 

The Iterated Stockholder Atoms approach200 can be utilized to derive the pairwise dispersion model as it leads 

directly from the ISA-Pol method by integration over the distributed polarizabilities. The dispersion contribution 

in our force-field is expressed accurately in terms of a power series in 𝑅−(2𝑛+6), damped with single parameter 

Tang-Toennies damping functions (Equation 67). 

𝑉𝑑𝑖𝑠𝑝
𝑀𝑁 (𝑅𝑖𝑘) = ∑ −𝑓6(𝛽𝑀𝑁𝑅𝑖𝑘)

𝐶6
𝑖𝑘

𝑅𝑖𝑘
6 − 𝑓8(𝛽𝑀𝑁𝑅𝑖𝑘)

𝐶8
𝑖𝑘

𝑅𝑖𝑘
8  − 𝑓10(𝛽𝑀𝑁𝑅𝑖𝑘)

𝐶10
𝑖𝑘

𝑅𝑖𝑘
10

𝑖𝑘
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where 𝑀 and 𝑁 are two interacting molecules and 𝐶2𝑛+6 are the computed dispersion coefficients. The higher 

order  𝐶8 and  𝐶10 terms are included to better capture van der Waals interactions at the short-range as 𝑅−8 & 𝑅−10 

become important at small 𝑅. Atoms are assumed to be spherical, which is an approximation, but necessary as 

anisotropic dispersion models cannot be used in DMACRYS. Furthermore, the dispersion is kept isotropic for the 

sake of simplicity as the issues and complexities associated with an anisotropic model currently outweighs its 

benefits.223 

2.8 Damping 

As previously stated, the long-range distributed multipole expansions ignore the effects of molecular overlap and 

must be damped at short-range in order to prevent them from blowing up and behaving unphysically. Suitable 

damping functions must recover the long-range formula at large separations and supress singularity at small 

separations. In this thesis the Tang-Toennies damping function271 is used. The Tang-Toennies damping function 

uses a single parameter (𝛽𝑀𝑁) and tends to 0 as 𝑅 → 0, and 1 as 𝑅 → ∞. The Tang-Toennies damping function is 

given as 

𝑓𝑛(𝛽𝑀𝑁𝑅𝑖𝑘) = 1 − ex p( − 𝛽𝑀𝑁𝑅𝑖𝑘) (∑
(𝛽𝑀𝑁𝑅𝑖𝑘)𝑚

𝑚!

𝑛

𝑚=0
) 
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where 𝛽𝑀𝑁 is the damping parameter for a molecular pair 𝑀 and 𝑁. Using a single damping parameter is not ideal. 

Not only are our terms dependent on the atom pair but also orientation, therefore, atom specific or even orientation 

specific damping functions should be used. However, the single parameter Tang-Toennies is the only functional 

form accepted by DMACRYS and also allows the force-field to be more transferable between ORIENT and 

CAMCASP.  

The electrostatic expansion is not damped as this is not necessary, when the penetration energy is taken into 

account,272 however, the dispersion must be damped as it mathematically diverges relatively quickly. The 

polarization energy behaves in a similar fashion and is also damped to suppress singularity and avoid errors when 

the wave-functions of two point polarizabilities overlap, known as the polarization catastrophe.165, 227 The final 

dispersion (𝛽𝑑𝑖𝑠𝑝), and polarization damping parameters (𝛽𝑝𝑜𝑙), are obtained by sampling important dimers on a 

molecule’s potential energy surface and calculating their second-order SAPT(DFT) dispersion (𝐸𝐷𝐼𝑆𝑃
(2)

) and 
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polarization (𝐸𝑃𝑂𝐿
(2)

) energies, as detailed for TNB in Chapter 5. A first guess of 𝛽𝑑𝑖𝑠𝑝 can be initially derived from 

the ionization potential of the two monomers 𝑀 and 𝑁.273 

√2𝐼𝑀 + √2𝐼𝑁 = 𝛽𝑑𝑖𝑠𝑝 
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This method is used to obtain the dispersion damping parameter for the initial model derived from the first-order 

SAPT(DFT) interaction energies, which is used for the higher order calculations. 

2.9 Fitting the short-range contribution 

2.9.1 Partitioning the short-range energy 

Interaction effects that occur at short distances, like the dominant exchange-repulsion term, charge-delocalization, 

electron tunnelling, electron exchange and electrostatic penetration, cannot be directly derived from the molecular 

charge density using our current methodology. Instead corrections are made to the potential through fitting. The 

remaining effects not described in the long-range part of our potential are included in the short-range component, 

where the most dominant effect is the energy due to exchange-repulsion. The exchange-repulsion describes the 

repulsive energy due to the anti-symmetrisation of the electron exchanges between the wave-functions (Ψ) of two 

overlapping molecules (2.3.1). This interaction cannot be described by a simple product of their isolated-molecule 

wave-functions, thus we do not derive this portion of the potential but instead fit the total short-range energy (𝐸𝑆𝑅) 

in two stages using CAMCASP,38 and split the energy into the dominant 1st order short range energy (𝐸𝑆𝑅
(1)

) and the 

2nd order short-range energy (𝐸𝑆𝑅
(2)

). 

𝐸𝑆𝑅 = 𝐸𝑆𝑅
(1)

+ 𝐸𝑆𝑅
(2)

 

 𝐸𝑆𝑅
(2)

= (𝐸𝐼𝑁𝐷
(2)

− 𝑉𝑝𝑜𝑙
(2−∞)[𝐷𝑀] − 𝐸𝐶𝐷

(2)
) + (𝐸𝐷𝐼𝑆𝑃

(2)
− 𝑉𝑑𝑖𝑠𝑝

(2) [𝐷𝑀]) 
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The first step in developing a complete description of the short-range is to develop a short-range repulsion model 

from 1st order dimer interaction energies. The 1st order SAPT(DFT) interaction energy (𝐸𝑖𝑛𝑡
(1)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)]) is 

composed of the 1st order electrostatic (𝐸𝑒𝑙𝑠𝑡
(1)

) and exchange-repulsion (𝐸𝑒𝑥𝑐ℎ
(1)

) energies and can be given as 

𝐸𝑖𝑛𝑡
(1)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] = 𝐸𝑒𝑙𝑠𝑡
(1)

+ 𝐸𝑒𝑥𝑐ℎ
(1)
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The total electrostatic energy (𝐸𝑒𝑙𝑠𝑡
(1)

) can be broken down into two contributions, a long-range multipolar 

electrostatic energy (𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀]), which we calculate by the distributed multipole expansion. 𝑉𝑒𝑙𝑠𝑡

(1)[𝐷𝑀] is known 

to differ from the non-expanded electrostatic energy (𝐸𝑒𝑙𝑠𝑡
(1)

) by an energy defined as the electrostatic penetration 

energy (𝐸𝑝𝑒𝑛
(1)

).38, 233 

𝐸𝑒𝑙𝑠𝑡
(1)

= 𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀] + 𝐸𝑝𝑒𝑛

(1)
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The 1st order short-range energy is composed of the 1st order exchange energy (𝐸𝑒𝑥𝑐ℎ
(1)

) and the 1st order penetration 

energy (𝐸𝑝𝑒𝑛
(1)

), a component of 𝐸𝑒𝑙𝑠𝑡
(1)

,  

𝐸𝑆𝑅
(1)

= 𝐸𝑝𝑒𝑛
(1)

+ 𝐸𝑒𝑥𝑐ℎ
(1)
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𝐸𝑝𝑒𝑛
(1)

 is the electrostatic energy due to the penetration of 𝜓 at shorter distances when the molecular charge 

distributions of two molecules overlap. The penetration energy can be absorbed into our short-range exponential 

term as with other small terms, like the charge-delocalization and exchange-dispersion energies by fitting. 

Subsequently, the first-order short-range energy can be given as 

∴ 𝐸𝑆𝑅
(1)

= 𝐸𝑒𝑙𝑠𝑡
(1)

− 𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀] + 𝐸𝑒𝑥𝑐ℎ

(1)
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We do not analytically derive the short-range potential energy but fit the calculated short-range energy 𝐸𝑆𝑅 from 

Equation 69 by fitting to parameters within our short-range exponential 𝑉𝑆𝑅
𝑀𝑁 and approximating induction and 

dispersion damping parameters using 2nd order interaction energy calculations. 

2.9.2 The short-range exponential 

The energy at short-range can be represented by an exponential function in non-empirical force-fields. For the 

atom-atom interactions of atoms 𝑖 of type 𝜄 with atoms 𝑘 of type 𝜅 in molecules 𝑀 and 𝑁, the short-range potential 

energy 𝑉𝑆𝑅
𝑀𝑁 can be defined as: 

𝑉𝑆𝑅
𝑀𝑁 = 𝐺 ∑ exp[−𝛼𝜄𝜅(𝑅𝑖𝑘 − 𝜌𝜄𝜅(𝛺𝑖𝑘))]

𝑖∈𝑀,   𝑘∈𝑁
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Where 𝐺 is a constant to define the energy scale, 𝜌𝜄𝜅(𝛺𝑖𝑘) is the shape function of the pair of atom types 𝜄 and 𝜅, 

an expansion in the angular co-ordinate that can be approximated as 𝜌𝜄𝜅(𝛺𝑖𝑘) ≅ 𝜌𝜄(𝜙𝑖 , 𝜓𝑖) + 𝜌𝜅(𝜙𝑘 , 𝜓𝑘). 𝛺𝑖𝑘 is 

the relative orientation of two sites and 𝛼𝜄𝜅 the hardness parameter. For example using the local axis described in 

Figure 6, for the anisotropic terms 00, 10, 20 on sites 𝑖 and 𝑘 would be described as 

 𝜌𝜄𝜅(𝛺𝑖𝑘) = 𝜌0
𝜄𝜅 + 𝜌1

𝜄 (𝑧𝑖 ∙ �⃗⃗�𝑖𝑘) + 𝜌1
𝜅(𝑧𝑘 ∙ �⃗⃗�𝑖𝑘) + 𝜌2

𝜄 (3[𝑧𝑖 ∙ �⃗⃗�𝑖𝑘]
2

− 1) /2 + 𝜌2
𝜅 (3[𝑧𝑘 ∙ �⃗⃗�𝑖𝑘]

2
− 1) /2   

75 

𝑧𝑖 is a unit vector in the z direction (along the bond on our local axis system) on atom 𝑖, while �⃗⃗�𝑖𝑘 is a unit vector 

in the inter-site direction between sites 𝑖 and 𝑘. This assumes that the anisotropy is cylindrically symmetrical about 

this inter-site vector. The exponential terms 𝛼𝜄𝜅 and 𝜌𝜄𝜅(Ω𝜄𝜅) can be obtained by fitting to penetration energy 

(𝐸𝑝𝑒𝑛
(1)

) and the exchange energy (𝐸𝑒𝑥𝑐ℎ
(1)

).  

2.9.3 The overlap model: fitting the first-order short-range energies to terms in the 

exponential 

As it is non-trivial to directly fit the sum of exponentials, let alone sufficient anisotropy coefficients, the density 

overlap model is used to split the energy into atom-atom contributions. The molecular density of a molecule 𝑀 

can be partitioned into a sum of atomic densities for sites 𝑖 in 𝑀 

𝜌𝑀(𝑟) = ∑ 𝜌𝑖(𝑟)

𝑖
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The same is also true for sites 𝑘 in molecule 𝑁. The density overlap integral for molecular densities of 𝑀 and 𝑁 

at a relative position and orientation 𝑹 can be described as 

𝑆𝑀𝑁(𝒓) = ∫ 𝜌𝑀(𝑟1)𝜌𝑁(𝑟2) 𝑑𝑟 

77 

If we partition the density overlap integral between the atomic sites we can define it as 

𝑆𝑀𝑁(𝒓) = ∑ ∑ ∫ 𝜌𝑖(𝑟)𝜌𝑘(𝑟) 𝑑𝑟

𝑘∈𝑁𝑖∈𝑀

= ∑ 𝑆𝑖𝑘(𝒓)

𝑖∈𝑀,𝑘∈𝑁

 

78 
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𝑆𝑖𝑘(𝒓) is the total density overlap 𝑆𝑀𝑁(𝒓) partitioned into a sum of atom-atom interaction terms between 𝑖 and 𝑘 

using a density-fitting procedure and thus depends on the type of distribution scheme used. As with the multipole 

moments, the ISA partitioning was used in the overlap model. Hence, one can determine the distributed 1st order 

short range energy 𝐸𝑆𝑅
(1)

(𝑖𝑘) using the sum of the product of the atom-atom density overlap integrals and their 

density overlap parameter (𝐾𝑖𝑘) 

𝐸𝑆𝑅
(1)

= ∑ 𝐾𝑖𝑘 ∫ 𝜌𝑖(𝑟)𝜌𝑘(𝑟) 𝑑𝑟

𝑖∈𝑀,𝑘∈𝑁

= ∑ 𝐾𝑖𝑘𝑆𝑖𝑘(𝑹)

𝑖∈𝑀,𝑘∈𝑁

= ∑ 𝐸𝑆𝑅
(1)

(𝑖𝑘)

𝑖∈𝑀,𝑘∈𝑁
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2.9.4 Simplifying terms using symmetry 

2.9.4.1 Atom types 

The number of terms in the potential can be significantly reduced using the symmetry of the molecule, and if the 

molecules within the dimer are identical and symmetrical, the total number of atom types can be further reduced. 

The overlap matrix can be symmetrized; constructed to use all the overlaps of one type between atom types 𝜄 and 

𝜅  of each site 𝑖 and 𝑘 in each molecule 

𝑆𝑝
𝜄𝜅 = ∑ ∑ 𝑆𝑝

𝑖𝑘(𝑁𝑜𝑆𝑦𝑚𝑚)

𝑘=𝜅𝑖=𝜄
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𝑆𝑝
𝜄𝜅 is the total density overlap matrix for atom-types 𝜄 and 𝜅, while 𝑆𝑝

𝑖𝑘(𝑁𝑜𝑆𝑦𝑚𝑚) is the overlap integral matrix 

for atomic sites 𝑖 of atom-type 𝜄 in molecule 𝑀 with sites 𝑘 of atom-type 𝜅 in molecule 𝑁. Furthermore, if the 

dimer is comprised of identical molecules (𝑀 … 𝑀), an additional symmetrization of the overlap matrix 𝑆𝑃
𝜄𝜅 can be 

performed to symmetrize between the atoms 𝜄 molecule 𝑀 and 𝜅 in molecule 𝑁. 

𝑆𝑃
𝜄𝜅(symm) =

1

2
(𝑆𝑃

𝜄𝜅 + 𝑆𝑃
𝜅𝜄) 
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This provides a numerical dataset of overlap values for each pair of atomic types, which depends on the relative 

separation of the atoms and the orientation of the two atomic local axis relative to the intermolecular interatomic 

vector. 
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2.9.4.2 Anisotropic terms 

The anisotropy terms can also be reduced using the symmetry of the molecule, we will use the local axis (blue) 

defined in Figure 6 and the molecule trinitrobenzene (TNB) as an example. As the molecule is planar the 𝑦 terms 

are equal and opposite above and below the plane of the ring, and 𝑦-dependent terms like 11𝑠 and 21𝑠 should be 

zero by symmetry. In addition due to TNB’s 𝐷3ℎ symmetry the terms containing anisotropy in the 𝑥 axis are also 

equal and opposite for all atoms except oxygen, which has different chemical environments on either side. The 

important anisotropy terms for atomic site type 𝜄 in the atom-atom pair 𝜄 − 𝜅 in TNB is shown in Table 5. 

𝐾1 𝐾2 𝐿1 𝐿2 𝐽 Function Term Atoms 

0 0 1 0 1 𝑧 ⋅ �⃗⃗� 10 𝐴𝑙𝑙 

1 0 1 0 1 �⃗� ⋅ �⃗⃗� 11𝑐 𝑂𝑥𝑦𝑔𝑒𝑛 

-1 0 1 0 1 �⃗� ⋅ �⃗⃗� 11𝑠 𝑁𝑜𝑛𝑒 

0 0 2 0 2 (3(𝑧 ⋅ �⃗⃗�)
2

− 1)/2 20 𝐴𝑙𝑙 

1 0 2 0 2 √3(𝑧 ⋅ �⃗⃗�)(�⃗� ⋅ �⃗⃗�) 21𝑐 𝑂𝑥𝑦𝑔𝑒𝑛 

-1 0 2 0 2 √3(𝑧 ⋅ �⃗⃗�)(�⃗� ⋅ �⃗⃗�) 21𝑠 𝑁𝑜𝑛𝑒 

2 0 2 0 2 √3 ((�⃗� ⋅ �⃗⃗�)
2

− (�⃗� ⋅ �⃗⃗�)2) /2 22𝑐 𝐴𝑙𝑙 

-2 0 2 0 2 √3(�⃗� ⋅ �⃗⃗�)(�⃗� ⋅ �⃗⃗�) 22𝑠 𝑁𝑜𝑛𝑒 

Table 5: Allowed anisotropy terms in DMACRYS59, and the atoms in TNB that require them by symmetry. Here 

the terms are for the site 𝜄 in an atom-atom pair 𝜄 − 𝜅 with the directionality 𝜄 → 𝜅. The anisotropic term 𝜌𝜄𝜅(𝛺𝑖𝑘) 

is defined by an S function that can be defined by the terms 𝐾1, 𝐾2, 𝐿1, 𝐿2, 𝐽.For example, for an atom-atom pair 

𝜄 − 𝜅, the 11c term on type 𝜄 can be defined as 𝐽, 𝐾1, 𝐿1 = 1, 𝐾2, 𝐿2 = 0 while the 11c term on type 𝜅 can be defined 

as 𝐽, 𝐾2, 𝐿2 = 1, 𝐾1, 𝐿1 = 0. 

2.9.5 Weighting and Fitting method 

Once we have defined all the distinct atom-atom interaction types, (there are 15 in the TNB dimer), the short-range 

energy can be split into atom-atom contributions using the 15 𝑆𝑝
𝜄𝜅(𝑆𝑦𝑚𝑚) datasets. Each of the exponential terms 

can be fit to their atom-atom contributions. This method is robust as it allows one to truncate or elaborate the 

functional form of our short-range potential. Depending on the axis-system used by various molecular modelling 

codes the allowed anisotropy terms in Table 5 and the functional form of our short-range potential could change. 
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2.9.5.1 Estimating parameters for each atom pair from overlaps 

Dimer energies can either be fit to an isotropic or an anisotropic (including directional terms like 10, 11𝑐, 11𝑠 and 

above) short-range exponential. The calculated 1st order short-range energies 𝐸𝑆𝑅
(1)

 are first fitted to the density 

overlap, firstly using a single overlap proportionality parameter 𝐾0. For atomic types 𝜄 and 𝜅 in molecules 𝑀 and 

𝑁 with overlap proportionality parameters of 𝐾𝜄𝜅 (𝐾𝜄𝜅 = 𝐾0, initially) and density overlap matrices of 𝑆𝜄𝜅 

𝐸𝑆𝑅
(1)

= 𝑒 ≡ 𝐸𝑒𝑥𝑐ℎ
(1)

+ 𝐸𝑝𝑒𝑛
(1)

⟹ 𝐾0𝑆 ⟹ ∑ 𝐾𝜄𝜅𝑆𝜄𝜅(𝑹)

𝜄∈𝑀,𝜅∈𝑁
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i.e. 𝐾0 is first an initial estimate used as a starting point for fitting 𝐾𝜄𝜅. Distributed density overlap integral 

calculations are carried out on each dimer configuration in order to obtain the overlap integrals 𝑆𝑖𝑘 for each atom 

in the molecule. The distributed density-overlap parameters (𝐾𝑖𝑘) are then obtained using the ISA-based 

partitioning of the density. The only difference between the ISA-based partitioning algorithm used to obtain the 

multipole moments and the algorithm used for the overlap model is that the charge density is partitioned in real-

space as opposed to basis space for the overlap model, as it is more accurate. CAMCASP initially calculates the 

total overlap model for each 𝐸𝑆𝑅
(1)

  with just one overlap parameter, i.e. 𝐾𝑖𝑘 is the same as 𝐾0 for all atom pairs. 𝐾0 

changes to minimize the weighted variance 𝜒2 

𝜒2 = ∑ 𝑤(𝑒𝑝)

𝑝

(
𝐾0𝑆𝑝

𝑒𝑝

− 1)

2
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𝑤(𝑒𝑝) is a weighting of a given data point 𝑝 that depends on the energy 𝑒𝑝 and the appropriate weighting scheme 

used (2.9.5.2). Using only a single 𝐾 for all atom pairs allows for a very rough initial fit, however, the resulting 

short-range terms have no physical meaning and are not representative of the landscape sampled by the 1st order 

SAPT(DFT) energy calculations. Hence, 𝐾 is allowed to vary for each atom type. Firstly, preliminary potential 

parameters are generated using the initial density-overlap parameter 𝐾0, and then the Equation 84 is minimized to 

obtain the distributed density-overlap parameters 𝐾𝑖𝑘. A penalty function is used to slightly constrain 𝐾𝑖𝑘 from 

varying too significantly from 𝐾0 (Equation 84). Some of these parameters can be ill-defined and negative, 

however, CAMCASP re-calculates the distributed overlap model, using the 𝐾0 as an anchor for the 𝐾𝑖𝑘 values. 

While it is not easy to tighten the constraints on  𝐾𝑖𝑘 for each pair, one can tighten the constraints of all  𝐾𝑖𝑘 

parameters. 
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𝜒2

∑ 𝑤(𝑒𝑝)𝑝

+ ∑ 𝜆

𝑖𝑘

(𝐾𝑖𝑘 − 𝐾0)2 

84 

The overlap model constraint parameter 𝜆 is included to constrain the fit and the weighted variance is now 

𝜒2 = ∑ 𝑤(𝑒𝑝)

𝑝

(
∑ 𝐾𝑖𝑘𝑆𝑝

𝑖𝑘
𝑖∈𝑀,𝑘∈𝑁

𝑒𝑝

− 1)

2
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The root mean square derivation of the weighted variance (𝜒2) is then used to ascertain the quality of the fit. For 

each atom-atom interaction point (𝑝) in a dimer configurations, the total density overlap values 𝑆𝑝
𝑖𝑘 and fitted 𝐾𝑖𝑘 

parameters are outputted. 

2.9.5.2 Available weighting schemes  

In ORIENT & CAMCASP, there are multiple weighting schemes available to use for the overlap model and 

relaxation/fitting procedure. The choice of weighting scheme is crucial in the fitting of the potential as it ensures 

the most important structures are sampled correctly. Generally, the five main weighting schemes that can be used 

for weighting the short-range and total SAPT(DFT) interaction energies of the dimer configurations are: 

1. 𝑤(𝑒𝑝) = 1 – all energies are given an equal weighting. 

2. 𝑤(𝑒𝑝) = (1 + (𝑒𝑝/𝑒0))
−1

 – equivalent to assuming the uncertainty in the calculated energy 𝑒𝑝 is 

proportional to magnitude of the energy. 

3. 𝑤(𝑒𝑝) = (1 + (𝑒𝑝/𝑒0)
2

)
−1

 – similar to the above scheme, the uncertainty is proportional to the 

magnitude of energy but with a heavier bias towards smaller energies. 

4. 𝑤(𝑒𝑝) = (𝑒0/𝑒𝑝) + 1  

5. 𝑤(𝑒𝑝) = exp [−𝛼(ln(𝑒𝑝/𝑒0))
2

] – Gaussian-log weighting scheme. 

where 𝑒𝑝 is the calculated energy of data point 𝑝 and 𝑒0 is the chosen reference energy to weight against. In the 

force-field development process of non-empirical potentials for pyridine and trinitrobenzene, the Gaussian-log 

weighting274 scheme is used in the fitting of the short-range parameters to the calculated 𝐸𝑆𝑅
(1)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] 

energies, which are repulsive (𝑒𝑝 > 0). This weighting function is good for data that spans multiple orders of 

magnitude, and 𝛼 = 1/ ln 10 by default. However, the Gaussian-log function can only be used for the short-range 
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energies which are positive as it is undefined when 𝑒𝑝 = 0, i.e. when the total energies go through 0. In the 2nd 

stage of the fitting process where the models are relaxed to the second-order SAPT(DFT) intermolecular 

interaction energies (5.6.1), weighting scheme 3 is used, which allows one to include the most repulsive of energy 

without over-biasing the potential. The shape of the intermolecular potential in the region that is most important 

for simulations (Figure 4) means we must use different weighting functions for different parts of the fitting 

process. 

2.10 Developing distributed intermolecular force-fields 

By carefully combining the theory of intermolecular forces with conventional and novel quantum chemical codes, 

one can build each component of the non-empirical atom-atom anisotropic intermolecular force-field from a solid 

foundation. In this chapter, we emphasise that the construction of these potentials is unique to each molecule and 

very involved. The potentials are state-of-the-art and the distributed intermolecular force-fields (DIFFs) in this 

study are the first two non-empirical anisotropic force-fields with an explicit polarization model ever used in CSP. 

The DIFF is extended from the gas-phase to the solid-state of the pharmaceutical building block pyridine in 

Chapter 3, and in Chapter 5 the DIFF workflow and its development is detailed for the energetic building block 

trinitrobenzene (TNB). In Chapter 6 the theory of intermolecular forces and the approximations discussed are 

truly tested in a CSP study of TNB. 
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3 From the gas-phase to the crystalline state: 

Pyridine167 

Now that background has been given into the theory of intermolecular forces and force-field development, we 

shall examine its application. This chapter investigates the development of a non-empirical anisotropic atom-atom 

intermolecular potential for modelling pyridine’s solid state, which is referred to as a Distributed Intermolecular 

Force-Field (DIFF). This DIFF is equivalent to the Model 3 previously developed by Misquitta.38 This chapter 

further develops work initially established by Misquitta and Stone to study the pyridine gas-phase.38 The 

theoretically based many-body pair potential is applied to model the intermolecular interactions in the pyridine 

crystalline-state. The potential uses distributed atomic multipoles, polarizabilities and dispersion coefficients 

derived from the molecular charge distribution, and an anisotropic atom-atom repulsion model fitted from 

SAPT(DFT) dimer interaction energy calculations to model the genuine potential energy surface of pyridine. It is 

established that these new models are capable of accurately modelling pyridine crystal structures and even capable 

of identifying an unreported high pressure phase of pyridine, unlike existing empirical force-fields.167 The 

workflow developed here is completely novel and thus many adaptions to existing codes have been made to apply 

this work to the solid-state and obtain the results published.167 This work on pyridine led to refinements in the 

development and applications of a non-empirical DIFF for trinitrobenzene (TNB)(Chapter 5).  

3.1 Pyridine 

With a melting point of 231.6𝐾,275, 276 pyridine is a liquid at ambient conditions. Pyridine (CSD refcode: 

PYRDNA), isoelectronic to benzene, is a relatively small molecule of 11 atoms, 42 electrons and no flexible 

functional groups. Consequently, its molecular structure changes very little between its experimentally observed 

crystalline structures,186, 275-278 and thus, when modelling, one can assume pyridine to be a rigid molecule that 

adopts its isolated static molecular structure (Figure 9) in the crystalline state. Accordingly, the isolated molecule 

extracted from the PYRDN05186 experimental structure is optimized using the Gaussian09 program,235 the PBE0 

functional203-205  and the d-aug-cc-pVTZ  Dunning basis.214 The structure is kept rigid in all subsequent simulations 

and the axis frames described in Figure 9 (c) are used throughout this study. Different axis definitions were used 

in the initial study of pyridine by Misquitta38, but these were changed in order to allow the transfer of anisotropic 

terms between CAMCASP107/ORIENT108 and DMACRYS.59  
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(a) (b) (c) 

Figure 9: The experimentally observed crystal structures of pyridine, (a) Form I (𝑑5-I PYRDNA04186) and (b) 

Form II (green 𝑑5-II PYRDN05186). (c) The molecule-fixed axis (red) and local axis (blue) definitions used for 

pyridine.  

An accurate potential is required to model the pyridine solid state as it has an observed dipole moment of ~2.2 

Debye,279 and is capable of forming weak 𝐶𝐻 … 𝑁 hydrogen bonds.280 Therefore, the attractive dispersion, 

electrostatic and polarization forces are competitive with the short-range repulsive forces in determining the 

structure of the different phases, as has already been shown in the design of an intermolecular potential for 

simulating liquid pyridine.281 The earliest observed crystal structure of pyridine is unusually complex,275, 276  with 

4 independent molecules in the asymmetric unit (𝑍′ = 4) and 16 molecules in the unit cell (form I, Pna21) (Figure 

9).  After an early crystal structure prediction (CSP) study showed that simpler structures were thermodynamically 

competitive, a low-temperature form II (P212121 𝑍′ = 1) was crystallized from pentane for deuterated-pyridine 

(𝑑5) though not for protonated-pyridine (ℎ5).277 The two polymorphs are rather similar, with a large common 

coordination cluster (Figure 10) but differ in the stacking so that a 𝐶𝐻 … 𝜋 interaction in form I becomes a 𝐶𝐻 … 𝑁 

interaction in the low-temperature, high-pressure form II.186 A later CSP study, using periodic DFT-D calculations, 

suggested that the lattice energy of form II  is slightly more stable than form I by less than 0.1 𝑘𝐽 𝑚𝑜𝑙−1. Moreover, 

the difference increases with pressure, and alternative structures are within 0.1 𝑘𝐽 𝑚𝑜𝑙−1 of the observed 

structures.282 The crystallization behaviour of pyridine is isotope-dependent, as well as depending on pressure and 

temperature.186, 280 Additionally, towards the conclusion of this work, it was discovered that a third form (𝑑5-III) 

had been crystallized at around 2𝐺𝑃𝑎 pressure,278 and the challenge of identifying its structure was set, providing 

a test of how well the intermolecular force-fields model the repulsive wall.   
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(a) (b) 

Figure 10: Comparison of the two observed polymorphs of pyridine; form I in grey (𝑑5-I PYRDNA04186) and form 

II in green (𝑑5-II PYRDN05186). They show an optimum overlay of 11/15 molecules with an RMSD11 = 0.149Å. 

(a) shows the overlay of the lattice cells of the two polymorphs including molecules that do not overlay. It is viewed 

along the b axis with the 𝒂 and 𝒄 axes shown in red and blue respectively. (b) shows the same overlay of forms I 

& II as (a) but along the 𝒄 axis with the 𝒂 and 𝒃 axes shown in red and green respectively.  

3.2 Methodology 

3.2.1 Transferring the analytical models 

The most accurate version of the models developed by Misquitta38 is used in this study. Misquitta derived this 

model from theoretical calculations on the monomer and dimer. The main focus of the following methodology, is 

the aspects of the model that have been modified for use in DMACRYS.59 Furthermore, the necessary sanity 

checks required to ensure the potentials are equivalent and reproducible are described. The pyridine DIFF 

functional form can be given as 

𝑈𝑀,𝑁(𝑅𝑀𝑁, Ω𝑀𝑁) = 

∑ 𝑈𝐷𝐼𝐹𝐹
𝑖𝑘 (𝑅𝑖𝑘 , Ω𝑖𝑘)

𝑖∈𝑀,𝑘∈𝑁

= 𝐺exp[−𝛼𝜄𝜅(𝑅𝑖𝑘 − 𝜌𝜄𝜅(Ω𝑖𝑘))] + 𝑄𝑡
𝑖𝑇𝑡𝑢

𝑖𝑘𝑄𝑢
𝑘 + ∑ 𝑓2𝑛+6(𝛽𝑑𝑖𝑠𝑝 , 𝑅𝑖𝑘)

𝐶2𝑛+6
𝜄𝜅

𝑅𝑖𝑘
2𝑛+6

2

𝑛=0

 

+𝑓𝑛(𝛽𝑝𝑜𝑙 , 𝑅𝑖𝑘)(Δ𝑄𝑡
𝑖𝑇𝑡𝑢

𝑖𝑘𝑄𝑢
𝑘 + Δ𝑄𝑡

𝑘𝑇𝑡𝑢
𝑘𝑖𝑄𝑢

𝑖 )/2 

86 
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where the relative position (𝑅𝑖𝑘) and orientations ( Ω𝑖𝑘) of atom 𝑖 of type 𝜄 in molecule 𝑀 and atom 𝑘 of type 𝜅 in 

molecule 𝑁 is defined by the relative position and orientation (𝑅𝑀𝑁 , Ω𝑀𝑁) of the molecules 𝑀 and 𝑁. The 

components of the above equation are discussed in detail in Chapter 1 & 2. This DIFF uses the axes required by 

the conventions within the DMACRYS, which enable crystal structure modelling program NEIGHCRYS283 to 

transform the multipole moments to maintain a right-handed axis system when molecules are generated by 

inversion or other symmetry operators that would otherwise invert the axis definition. Due to the change in axis 

systems, the short-range coefficients had to be refitted and the distributed polarizabilities were rotated into the 

molecule-fixed axis (Chapter 2). Nonetheless, this DIFF is essentially identical to Model 338 bar the axis 

definitions.  In order to clarify the symmetry relationships within pyridine, the parameters of the DIFF are given 

in full in Appendix 3.A in the ORIENT format. 

3.2.1.1 Long-range terms 

Equation 86 includes the standard multipolar expansion of the long-range electrostatic term, 𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀], given as 

𝑄𝑡
𝑖𝑇𝑡𝑢

𝑖𝑘𝑄𝑢
𝑘, and polarization term, 𝑉𝑃𝑂𝐿

(2−∞)
[𝐷𝑀] in terms of the induced moment Δ𝑄𝑡

𝑖  on atom 𝑖. These long-range 

contributions have been obtained from the asymptotically corrected284 (PBE0/AC) molecular charge density, 

which was calculated with the d-aug-cc-pVTZ  Dunning basis214 on the isolated molecular structure. The molecular 

charge density was then appropriately partitioned using the Iterated Stockholder Atoms (ISA)233 partitioning 

method (2.5.1.7), in order to obtain the distributed multipole moments. These multipole moments were evaluated 

up to rank 4 (hexadecapole) to include the contributions of the atomic anisotropy, such as the lone-pair (dipole) 

and 𝜋-orbital (quadrupole) features, which are important in organic crystals.74  The atomic polarizabilities 

(𝛼𝑙𝑚,𝑙′𝑚′
𝑖 ) required for Δ𝑄𝑡

𝑖  were limited to just the dipolar terms (𝑙 = 𝑙′ = 1) and the atomic dispersion coefficients 

(𝐶𝑛
𝜄𝜅) were kept isotropic. For his pyridine models Misquitta derived these terms using the Williams-Stone-

Misquitta (WSM) polarizability model.285-287 The 𝐶8 and 𝐶10 dispersion terms are included for heavy atoms, to 

ensure the correct distance dependence for the dispersion, as the relative orientations of molecules in crystals 

sample the dispersion out to infinity. In order to prevent unphysical behavior at small 𝑅, the polarization and 

dispersion terms are damped using a single atom-atom parameter Tang-Toennies damping function.271 These 

damping parameters were determined by Misquitta as 𝛽𝑖𝑛𝑑 = 1.25 a.u. and 𝛽𝑑𝑖𝑠𝑝 = 1.67 a.u.. A bespoke code was 

written to translate all parameters from CAMCASP input to DMACRYS format so they could be used in the in-

house systems, with the correct atom labels, numbering and units. These scripts were written using the 

programming language Python2.7.31 
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3.2.1.2 Short-range terms 

For pyridine, Misquitta used the CAMCASP and ORIENT programs to refit the short range contributions to the 

intermolecular potential using the local axis definition in Figure 9. The short-range term was made anisotropic by 

the inclusion of an orientation-dependent shape function (𝜌𝜄𝜅(Ω𝑖𝑘)). This shape function is a polynomial 

containing anisotropic coefficients 𝜌𝜄𝜅 that have been defined relative to the local axis system (Figure 9). As only 

a limited number of 𝜌𝜄𝜅(Ω𝑖𝑘))  terms are available in DMACRYS (Table 5), the terms in the original model38 

cannot be simply rotated. A preliminary model was created by employing the distributed density-overlap model to 

fit the first-order SAPT(DFT) energies computed for almost 4000 pseudo-random dimer configurations. The fit 

was then refined using an additional 750+ infinite-order SAPT(DFT) calculations and assessed using 250+ infinite-

order energies from an independent dataset. The fitting was performed in a hierarchical manner to obtain an atom-

atom exponential repulsive model with a pre-exponential (𝐺) and isotropic hardness (𝛼𝜄𝜅) coefficients.38   

3.2.1.3 Testing the translated analytical models  

The transferring of the DIFF between codes was tested by the calculation of the second virial coefficients (a gas-

phase property) and by reproducing the previous ORIENT gas-phase calculations38 in DMACRYS calculations, 

where identical dimers were set up within cubic unit cells of lengths 100 Å.  Two other non-empirical variants of 

this model were also tested. DIFF(no-pol) simply omits the polarization term, which is the only many-body 

contribution included in the DIFF. The effect of the anisotropic repulsion was also tested by refitting the short-

range terms to an isotropic model to give DIFF(iso-rep)). In this isotropic model 𝜌𝜄𝜅(Ω𝑖𝑘) = 0 and only the 

isotropic short-range coefficient 𝜌00
𝜄𝜅  is included. The non-empirical models were also compared against two 

empirically fitted isotropic atom-atom exp-6 potentials (1.2.2) with the following functional forms 

𝑈𝑀,𝑁(𝑅𝑀𝑁 , Ω𝑀𝑁) = ∑ 𝑈𝐸𝑀𝑃
𝑖𝑘 (𝑅𝑖𝑘 , Ω𝑖𝑘)

𝑖∈𝑀,𝑘∈𝑁

= 𝐺exp[−𝛼𝜄𝜅𝑅𝑖𝑘] + 𝑄𝑡
𝑖𝑇𝑡𝑢

𝑖𝑘𝑄𝑢
𝑘 −

𝐶6
𝜄𝜅

𝑅𝑖𝑘
6  

87 

where atom 𝑖 is of type 𝜄 (C/H/N) and atom 𝑘 of type 𝜅. The empirical models use a simpler short-range and 

dispersion description than the DIFF. The exp-6  FIT parameters40 relevant to pyridine were originally fitted to 

aza-hydrocarbon crystal structures and a limited set of crystal energies72 whereas the WILL01 set discriminates 

between different types of N hybridization.70  The FIT model is combined with the following electrostatic models: 

the same ISA distributed multipoles as used in DIFF (labeled ISA), the GDMA point charge only component 

(labelled POINT) and the GDMA electrostatic model (labelled GDMA). The GDMA multipoles are distributed 

multipoles from the GDMA2230 analysis of the PBE0/6-31G(d, p) molecular charge density of pyridine. GDMA 
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has often been combined with FIT in crystal structure prediction studies.19 Consequently, different wave-functions 

(Ψ) for the GDMA multipoles and the ISA multipoles were used to produce each electrostatic model.  The WILL01 

potential definition includes foreshortening of the H interaction sites, meaning they are moved slightly into the C-

H bond. This to reflect the non-spherical nature of the charge distribution around hydrogen atoms, however, the 

distributed multipoles for these non-atomic sites could only be obtained using GDMA2.230  

3.2.2 Simulation Methods 

3.2.2.1 2nd virial Coefficients 

The virial coefficients derive from the virial expansion of the pressure of a gas (𝑃) in a system (Equation 88). This 

virial expansion describes deviations from the ideal gas law in terms of a power series in density (𝜌). There is a 

general dependence on temperature (𝑇) and the interaction potential between the bodies in the system.288 For 

example, the 2nd virial coefficients (𝐵2(𝑇)) signifies the systems initial deviation from ideality and depends on the 

pressure due to pairwise additive terms in the interaction potential. The 3rd virial coefficients (𝐵3(𝑇)) depend on 

non-additive 3-body interactions and so on. 

 

𝑃

𝑘𝑇
= 𝜌 + 𝐵2(𝑇)𝜌2 + 𝐵3(𝑇)𝜌3 + ⋯ 

88 

where 𝑘 is the Boltzmann constant. In the DIFF, the polarization term is the only non-additive many body 

component, therefore, the second virial coefficients are an appropriate test of the intermolecular pair potential in 

the gas phase, and could be compared with experimental values169, 289 derived by vapour compressibility 

measurements for pyridine in the 1950s. These experimental observations gave a heat of vaporization of 

35.2 𝑘𝐽 𝑚𝑜𝑙−1 at the boiling temperature of 115.26℃ and  40.4 𝑘𝐽 𝑚𝑜𝑙−1 at 25℃. The second virial coefficients 

have been calculated using ORIENT,108 by numerical integration of the standard formulation.290  

𝐵2(𝑇) = −
1

2
∬ [exp (

−𝑉(r,Ω)

𝑘𝑇
) − 1] dΩd3r +

ℏ2

24(𝑘𝑇)3
[
〈F2〉0

𝑀
+ ∑

〈𝑇𝛼
2〉0

𝐼𝛼𝛼
𝛼

] 
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The 1st term in the expression can be used to obtain the classical second virial coefficients, where 𝑉(r) is the 

interaction potential energy. Normally, ORIENT includes the 2nd term in Equation 89, the quantum correction to 

order ℏ2, where 〈F2〉0 is the mean square force, 〈𝑇𝛼
2〉0 is the mean square torque on one molecule of molecular 
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mass 𝑀 and a molecular principal moments of inertia 𝐼𝛼𝛼 . However, for this pyridine study, this term was omitted 

to save a considerable amount of computation time. 

3.2.2.2 Lattice Energy Calculations 

𝐸𝑙𝑎𝑡𝑡 = 𝐸𝑖𝑛𝑡 +  Δ𝐸𝑖𝑛𝑡𝑟𝑎
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒  

90 

Pyridine is held rigid so ∆𝐸𝑖𝑛𝑡𝑟𝑎
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 = 0 and the lattice energy depends only on the atom-atom intermolecular 

interaction energy. The crystal structures and their lattice energies were modelled using DMACRYS2.2.1.140, with 

lattice summations being carried out to 15 Å followed by a 2 Å   splined correction, with the charge-charge, charge-

dipole and dipole-dipole electrostatic contributions being evaluated by Ewald summation. Lattice energy 

minimization used the analytical first derivatives apart from the forces due to the polarization term. As the 

polarization term is the only non-additive many-body term in the potential, its use in the solid-state poses new 

challenges (2.6.1). The induced moments in a crystal structure need to be solved iteratively to consistency40 

because the polarizing field depends on the polarized moments of all the molecules in the crystal. Consequently, 

calculating the polarization forces requires taking numerical derivatives of the iterated distributed induced 

moments. As smooth, numerical forces are needed, minimization with the polarization energy is very 

computationally demanding. This has been done for the pyridine experimental structures (Table 6), where it was 

confirmed that the including the forces due to polarization (Polmin) changed the lattice parameters from those 

minimized without the forces due to polarization  (no-Polmin)by less than 0.04 Å. Moreover, the geometric 

changes resulting from including polarization forces caused a negligible further change in the lattice energy.
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Structure 

FORM I FORM II 

no-PolMin PolMin % change no-PolMin PolMin % change 

𝑬𝒍𝒂𝒕𝒕 -64.94 -65.02 -0.13 -66.76 -66.46 0.44 

𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀] -12.19 -12.18 0.01 -16.83 -16.75 0.45 

𝑉𝑑𝑖𝑠𝑝
(2) [𝐷𝑀] -94.37 -94.33 0.04 -97.97 -97.76 0.22 

𝑉𝑆𝑅  49.23 49.19 0.09 52.87 52.62 0.47 

𝑉𝑃𝑂𝐿
(2−∞)

[𝐷𝑀] -7.62* -7.70 -1.05 -4.83* -4.57 5.27 

Volume / Å3 406.971 407.031 -0.01 401.685 401.982 -0.07 

Density / g cm-3 1.291 1.291 0.02 1.308 1.307 0.08 

a / Å 17.066 17.068 -0.01 5.378 5.373 0.10 

b / Å 8.672 8.669 0.03 6.713 6.746 -0.49 

c / Å 11.000 11.004 -0.04 11.125 11.091 0.31 

𝛽 / ° 90.000 90.000 0.00 90.000 90.000 0.00 

Table 6: Solid-state energy contributions and cell geometries for the protonated (ℎ5-I & ℎ5-II) experimental 

structures of pyridine (PYRDNA04, PYRDNA05)186 (in kJ mol-1). The structures were minimized using the DIFF, 

minimizing with (PolMin) and without (no-PolMin) the forces due to polarization.  *Single point polarization energies 

were added after optimization. The lattice energy (𝐸𝑙𝑎𝑡𝑡) contributions for the experimental structures of Form I 

& II have been denoted 𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀] for the electrostatic, 𝑉𝑑𝑖𝑠𝑝

(2) [𝐷𝑀] for the dispersion, 𝑉𝑆𝑅 for the short-range 

repulsive term and 𝑉𝑃𝑂𝐿
(2−∞)[𝐷𝑀] for the polarization.  

A significant effort was required to minimize the lattice energy including polarization forces, and since the 

calculations in Table 6 show that the cell geometry with polarization forces included is almost identical to that 

obtained by just adding the polarization energy after minimization, all other pyridine minimizations and second 

derivative properties calculations did not include the derivatives of the polarization contribution. A single-point 

polarization energy was added for the DIFF and DIFF(iso-rep). This approximation may only be acceptable 

because the induced moments are small, as shown by a small induced moment electrostatic potential on the van 

der Waals surface (Figure 11). However, the induced moments do vary with the changes in crystalline 

environment, with all the four independent molecules in form I having a less symmetric environment, and hence 

greater polarization, than the single independent molecule in form II (Figure 11). 
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 Form I-1 Form I-2 Form I-3 Form I-4 Form II-1 

      

Figure 11: The additional electrostatic potential on the iso-density surface of 10-3 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑏𝑜ℎ𝑟3⁄  around each 

pyridine molecule in the two crystals arising from the induced atomic dipole moments, after optimization with the 

DIFF. The potential in eV is displayed on the van der Waals surface using ORIENT 4.9.08108. The lower symmetry 

environment in 𝑍′ = 4 form I produces a marked difference in the induced moments relative to 𝑍′ = 1 form II and 

each molecule in form I.  

3.2.2.3 Lattice Dynamics 

To investigate the effects of temperature, the energy difference between the hypothetical static crystal at 0𝐾 and a 

real crystal was estimated by lattice dynamics with the harmonic approximation (2.1.1.2).11, 183 The Helmholtz free 

energy (Equation 91) 

𝐴𝑓𝑟𝑒𝑒(𝑇) = 𝐸𝑙𝑎𝑡𝑡 + 𝐹𝑣𝑖𝑏(𝑇) 

91 

was evaluated at 190 K as this is the temperature at which there is an experimental crystal structure of both form 

I and II but this is only 40 K below the melting point of pyridine. Hence, the use of the harmonic approximation 

is unlikely to be realistic, as discussed in 3.4.3.  The effects of pressure were calculated with DMACRYS by 

optimizing the cell geometry including the 𝑃𝑉 contribution to the energy, to minimise the lattice enthalpy 𝐻𝑙𝑎𝑡𝑡 =

𝐸𝑙𝑎𝑡𝑡 +  𝑃𝑉. 

3.2.2.4 Crystal Structure Prediction 

The pyridine CSP study follows the CSP workflow detailed in Chapter 1, using CrystalPredictor 1.835, 36  to 

generate a million putative  𝑍′ =  1 crystal structures of pyridine within the 59 most probable space groups. 

Optimization using the FIT potential and ISA point charges and then clustering generated just over 5000 unique 

structures. This set was re-minimized with the various non-empirical and empirical force-fields, any minimized 

structures whose second derivative properties showed that they were not true minima were discarded, and the 

remaining structures were re-clustered. The most stable structures were analysed in detail for their similarities to 

each other and the isolated dimer structures. This was done using the similarity tool in Mercury291 which 

determines how many molecules (𝑛) of a maximum coordination cluster (15 for crystals, 2 for dimer comparisons) 
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can be matched within a 20% distance in intermolecular atom-atom distances and 20 in interatomic intermolecular 

angles, and reports the optimum RMSDn (root mean square deviation of 𝑛 molecules) of the overlay, ignoring 

hydrogen or deuterium atoms. A general overview of the CSP process can be found in 1.1.2.2. 

3.3 Results 

3.3.1 Gas-Phase Properties 

3.3.1.1 Classical 2nd virial coefficients 

The classical second virial coefficients (Figure 12) differ markedly between the DIFF and empirical models, with 

the former being closer to the experimental values. The empirical FIT potential underestimates the effect of the 

intermolecular forces on the gas-phase property by approximately 25%, whereas the DIFF appears to slightly 

overestimate the effect by around 10%.  The slightly over-binding nature of the DIFF is discussed in more detail 

in 3.4.5. 

 

Figure 12: The second virial coefficients of pyridine calculated from the DIFF and FIT+GDMA potentials, 

contrasted with the experimental values.169, 289 The values for the DIFF differ from those previously reported38 for 

Model 3 which were affected by a coding error. The equivalence of DIFF and Model 3 is shown. 

3.3.1.2 Gas-phase minima 

In the gas-phase, pyridine’s intermolecular potential energy surface has eight distinct minima38 (Figure 13), the 

most stable minima (Hb1) having two 𝐶𝐻 … 𝑁 weak hydrogen bonds (H-bond). Other minima exhibit only one H-

bond, while some have distorted T shaped geometries stabilized by  𝐶𝐻 … 𝜋 interactions, as well as a trio of  



 100 

displaced stacked geometries (Figure 13). It is notable that the dimers differ markedly in the dominant contribution 

to the binding energy; the electrostatic plus polarization contribution is similar to the total binding for the hydrogen 

bonded Hb1 dimer, but this contribution is less than 1 𝑘𝐽 𝑚𝑜𝑙−1 for the almost iso-energetic stack S1, which has 

double the dispersion stabilization. There are three distorted T dimers with CH…π interactions and another C-H 

close to a nitrogen, which are quite similar in energy and structure apart from the relative position of the nitrogen. 

These T-shaped dimers have all energy components intermediate between the hydrogen-bonded and stacked 

dimers. 
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Dimer 

Label 
Structure 

Dimer Energy Terms (kJ mol1) 

𝑉𝑖𝑛𝑡  

𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀] 𝑉𝑑𝑖𝑠𝑝

(2) [𝐷𝑀] 𝑉𝑆𝑅  𝑉𝑃𝑂𝐿
(2−∞)

[𝐷𝑀] 

S1 

 

-0.87 -28.88 14.85 -0.72 -15.63 

S2 

 

-0.29 -29.36 14.98 -0.72 -15.39 

T1 

 

-6.45 -19.99 12.26 -0.98 -15.17 

T2 

 

-6.47 -19.59 11.79 -1.02 -15.30 

bT 

 

-5.84 -19.19 11.38 -1.03 -14.67 

Hb1 

 

-12.94 -15.76 14.68 -2.53 -16.56 

Hb2 

 

-8.51 -15.72 10.68 -1.68 -15.22 

Hb3 

 

-8.23 -15.14 10.61 -1.57 -14.34 
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Figure 13: The most stable minima in the pyridine intermolecular potential energy surface (gas phase dimers), 

with their DIFF energies (𝑉𝑖𝑛𝑡) broken down into components; multipolar electrostatic (𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀]), damped 

dispersion (𝑉𝑑𝑖𝑠𝑝
(2) [𝐷𝑀]), short-range (𝑉𝑆𝑅) and damped multipolar polarisation (𝑉𝑃𝑂𝐿

(2−∞)
[𝐷𝑀]).  

3.3.2 Reproduction of known crystal structures of pyridine 

Figure 14 and Figure 15 give comparisons of the cell parameters and densities of cell geometry optimizations 

with various analytical potentials. In Figure 14 these optimizations are contrasted with the effect of temperature 

on three experimental determinations of form I between 190𝐾 and 5𝐾, and the two determinations of form I at 

two pressures (but different temperatures). Figure 15 investigates changes in cell geometry as a function of 

temperature and pressure for form II. Lattice energy minimization (which corresponds to a static crystal geometry 

at 0𝐾) using the majority of the potentials gives a satisfactory reproduction of the two polymorphs when compared 

with the variation of observed structures with temperature. The cell parameters of the non-empirical DIFF are 

found to better match the 5𝐾 form ℎ5-I structure (PYRDNA04) than the empirical models, while the empirical 

models that include a distributed multipole electrostatic model (GDMA/ISA) better match the densities at higher 

temperatures (Figure 14 (a) & Figure 15 (a)). Accessible variations in pressure generally have a larger effect on 

the crystal structures than temperature changes, but since pressure experiments are usually done at ambient 

temperature, it is not possible to de-convolute temperature and pressure effects on pyridine which is only solid at 

ambient temperatures when under pressure. Allowing for these differences in temperatures, minimizing the lattice 

enthalpy seems to provide a sensible estimate of the structures under modest pressures (1.1𝐺𝑃𝑎 Figure 14 (b), 

1.23𝐺𝑃𝑎 Figure 15 (b)) for all the intermolecular potentials. 
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(a) 

 

(b) 

Figure 14: Comparison of experimental and calculated structures of pyridine form I, using different empirical 

and non-empirical model potentials. (a) form I structures determined at different temperatures vs the geometries 

obtained from the various models. (b) form I determinations as a function of pressure, against lattice enthalpies 

calculated including the PV energy at 1.23 GPa (All 𝑑5 structure densities have been converted to ℎ5 equivalents). 
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(a) 

 
(b) 

Figure 15: Experimental determinations of form II vs the optimized structure computed with different empirical 

and non-empirical model potentials. (a) form II structures determined at different temperatures vs the geometries 

obtained from the various models. (b) form II determinations as a function of pressure, against lattice enthalpies 

calculated including the PV energy at 1.1𝐺𝑃𝑎, the observed transition pressure186 (All 𝑑5 structure densities have 

been converted to ℎ5 equivalents). 
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3.3.3 Stability of Observed versus Hypothetical Structures 

3.3.3.1 Crystal Structure Prediction Searches with various models 

 

Figure 16: CSP generated crystal structures of pyridine ranked by lattice energy calculated with the DIFF. Each 

point represents a mechanically stable crystal structure, classified by its space group. The lattice energy minima 

obtained by minimizing the experimental structures with a rigid planar molecular structure and the DIFF are 

shown by open red symbols, and are joined by tie lines to the corresponding CSP generated structure found in this  

𝑍′ = 1 search.  The above figure shows the 100 most stable structures. The space group, lattice parameters, 

energy, and the corresponding dimer motif for the 30 most stable structures can be found in the Appendix 3.B, 

linked to the structure identifier pyr#. The complete results of the DIFF CSP can be found in the Appendix CD. 

As this is a 𝑍′ = 1 study, the search is not capable of finding form I or any structures with a 𝑍′ > 1. Regardless, 

CSP lattice energy landscape with DIFF generated many structures competitive in energy with forms I and II 

(Figure 16), with 52 unique structures within 5 kJ mol-1 of the most stable. The lowest energy structure (pyr2) is 

denser and 1.3 𝑘𝐽 𝑚𝑜𝑙−1 more stable than form II. Therefore, this non-empirical model passes the test of predicting 

the observed structures to be well within an energy range of the global minimum, which is believed to be associated 

with thermodynamically plausible polymorphs.7 

Given the experimental uncertainty that the observed structures are the most thermodynamically stable, and the 

neglect of temperature effects in these models, as discussed further in 3.4, the DIFF has transferred successfully 
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to the crystalline state. It is therefore worth determining the importance of the different contributions to the relative 

stability ranking, in light of what parts of the potential energy surface are sampled by the CSP study. 

 

FIT+GDMA 

  

DIFF(iso-rep) DIFF(no-pol) 

Figure 17: The above figure analyses the 100 most stable CSP generated crystal structures of pyridine ranked by 

lattice energy calculated with the empirical FIT+GDMA potential and approximations to the DIFF. Each point 

represents a mechanically stable crystal structure, classified by its space group. The corresponding minima for 

the known polymorphs are labelled. This 𝑍′ = 1 search is not capable of generating form I. Larger images of each 

CSP can be found in the Appendix CD. 

The ranking of the low energy structures varies with force-field (Figure 16, Figure 17 & Figure 18). Removing 

the polarization energy DIFF(no-pol) (Figure 17) leads to considerable re-ranking, with form II becoming the 

most stable, and the energy difference between the two forms increasing to nearly 5 𝑘𝐽 𝑚𝑜𝑙−1. The model fitted 

with an isotropic repulsion model (DIFF(iso-rep)) produces a very different potential energy landscape. A reversal 

in the stability order of form I and II was seen, and a different selection of structures (Figure 17) that are slightly 
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more stable than the known forms. The empirical FIT+GDMA potential gives the observed form II as very close 

in energy (0.14 𝑘𝐽 𝑚𝑜𝑙−1) to form I, but there is also one lower energy structure (0.8 𝑘𝐽 𝑚𝑜𝑙−1) pyr83, which is 

significantly different (Figure 17). Moreover, the empirical potential produces structures that are less dense than 

those generated with the non-empirical potentials, but are closer in density to the observed structures (Figure 14 

& Figure 15).  

3.3.3.2 Analysis of contributions to the lattice energy and prominent interactions 

Analysis of the lowest energy crystal structures (Appendix 3.B) suggests that the coordination clusters are not 

dominated by the most stable gas-phase dimer structures found in Figure 13. The most stable crystal structure 

(pyr2) contains the T-shaped dimer T1 and a much distorted version of the singly hydrogen bonded dimer Hb2, 

whereas the most stable dimer Hb1, occurs in a crystal structure (pyr83) that is 1 𝑘𝐽 𝑚𝑜𝑙−1 less stable. Thus the low 

energy crystal structures differ in the partitioning between the various energy contributions292 in a similar manner 

to the dimers (Figure 13), and they differ in the relative contribution from each of the defining dimers that are in 

van der Waals contact.  Figure 18 displays the relative energies of a selection of structures within 4 𝑘𝐽 𝑚𝑜𝑙−1 of 

the most stable, together with the three known polymorphs of pyridine. The hypothetical structures were selected 

based on the diversity of the gas-phase-like dimers they contained (Appendix 3.B), so as to allow us to clearly 

explore the effects of the various energy models on the relative lattice energy and its components, most importantly 

the impact of the non-pairwise additive polarization term. The relative thermodynamic stability order varies 

significantly as a function of potential (Figure 18). There is only a slight re-ranking of the structures in changing 

between the two empirical repulsion-dispersion models (FIT/WILL+GDMA), but there is a dramatic re-ranking 

caused by omitting the polarization energy (DIFF(no-pol)) or the short-range anisotropy (DIFF(iso-rep)) in the 

DIFF approximations. In addition, the global minimum from the DIFF (pyr2) is less stable than forms I and II with 

the empirical models, and being denser, its stability may be an artefact of the DIFF, as discussed in 3.4.5. There is 

also some variation with the electrostatic model used. A re-ranking is observed, caused by using a point charge or 

distributed multipole representation of the same charge distribution (contrast FIT+POINT with FIT+GDMA). This 

re-ranking, however, is less severe than that caused by changing the quality of charge distribution and its 

representation (contrast FIT+GDMA with FIT+ISA). This is unusual, as the use of distributed multipoles rather 

than the corresponding potential-derived charges usually makes a considerable improvement in CSP studies, 

particularly for hydrogen-bonded systems.74 
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Figure 18: Relative lattice energies of the observed and selected computer generated crystal structures of pyridine, 

relative to form I as a function of the intermolecular force-field. The labels for the CSP generated structures pyr# 

refer to their ranking after the CrystalPredictor35, 36 stage, i.e. with the FIT+POINT model and further details on 

their structures are given in the Appendix 3.B.  

pyr# Form I Form II Form III 2(GM) 58 12 20 546 44 

Dimer motifs T2, bT,  Hb3 T2, Hb3 None T1 Hb1 Hb2 S1, T1 T2, Hb3 None 

𝑉𝑒𝑙𝑠𝑡
(1) [𝐷𝑀] -12.19 -16.83 -13.21 -11.74 -14.45 -13.58 -13.47 -15.86 -13.22 

𝑉𝑑𝑖𝑠𝑝
(2) [𝐷𝑀] -94.37 -97.97 -100.53 -104.13 -99.57 -100.89 -102.50 -95.71 -99.51 

𝑉𝑆𝑅 49.23 52.87 53.48 54.37 52.59 53.20 54.24 51.97 53.02 

𝑉𝑃𝑂𝐿
(2−∞)

[𝐷𝑀] -7.62 -4.83 -5.09 -6.74 -5.87 -5.46 -4.34 -6.21 -5.77 

Lattice -64.94 -66.76 -65.36 -68.24 -67.30 -66.72 -66.07 -65.81 -65.48 

Table 7: Solid-state energy contributions (in kJ mol-1) for DIFF in the observed and the most diverse hypothetical 

structures.  

The lattice energies of the selected crystal structures vary by less than 4 𝑘𝐽 𝑚𝑜𝑙−1 using the DIFF (Table 7), 

however, the various contributions to this energy vary considerably more. The dominant dispersion contribution 

varies by over 10 𝑘𝐽 𝑚𝑜𝑙−1 favouring denser structures that contain stacked or T-shaped dimers, whose dimer 

energies are heavily dominated by the dispersion contribution (Figure 13). But this is often partially balanced out 

by an increase in the short range repulsion term. The electrostatic contribution varies by 5 𝑘𝐽 𝑚𝑜𝑙−1, favouring 

the experimental forms and other structures containing the 𝐶𝐻 … 𝑁 “hydrogen bonds”. The polarization energy is 

a small contribution, but stabilizes form I (𝑍′ = 4) the most, and the difference in polarization energy between the 
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two known polymorphs (2.8  𝑘𝐽 𝑚𝑜𝑙−1) is larger than their total lattice energy difference. Although this difference 

is accounted for by the lower symmetry within form I allowing larger induced moments (Figure 11), the 

polarization term also stabilizes pyr2, and all other structures that are lower in lattice energy than form II. Hence 

the polarization contribution is important, even for pyridine and the low energy structures re-rank substantially in 

the CSP which neglects this structure-dependent non-additive term by using DIFF(no-pol) (Figure 17).  

3.3.4 Form III 

  

(a) (b) 

Figure 19: (a) Structural overlay of the experimental crystal structures of form II (grey ℎ5-II PYRDNA05186) at 

2GPa and the form III of pyridine, refined from experimental powder data, at around 2GPa, showing the optimum 

overlay of 7/15 molecules, with RMSD7 = 0.364 Å. (b) Structural overlay of the crystal structures of  the proposed 

form III (green pyr35) calculated at 2GPa and the neutron structure determined at approximately this pressure 

(grey)278 showing the optimum overlay of 15/15 molecules, with RMSD15 = 0.212 Å.  

On hearing of the occurrence of a new polymorph 𝑑5-III at around 2𝐺𝑃𝑎, the crystal energy landscape was 

recalculated at 2𝐺𝑃𝑎 using the FIT and DIFF potentials. The pressure-volume (𝑃𝑉) energy term significantly re-

ordered the relative stability of the structures (Appendix 3.B) as well as increasing the computed density by up to 

15%. One structure became significantly more favourable with pressure and was only 1.2 𝑘𝐽 𝑚𝑜𝑙−1 less stable 

than form II. Furthermore, this structure (pyr35) had 7 coordinating molecules in common with form II,  and so it 

is a very plausible result of a low-barrier transformation (Figure 19 (a)), unlike the other low energy hypothetical 

structures at 2𝐺𝑃𝑎. Based off its relative energy at 2𝐺𝑃𝑎 and being the structure in the search with the most 

plausible degree of rearrangement from the known forms, it seemed likely to be form III. The overlay of this 

structure (pyr35) with the experimental structure of form III293 at approximately 2𝐺𝑃𝑎 is shown in Figure 19 (b).  

In contrast, the structure of form III could not be identified with the empirical FIT potential. The corresponding 

structure pyr35 is not amongst the most stable, independent of pressure (Figure 17 & Appendix 3.B), and is 
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3.3 𝑘𝐽 𝑚𝑜𝑙−1 less stable and less dense than form II at 2𝐺𝑃𝑎. Thus, it would not have been possible to propose a 

candidate structure for form III using the FIT potential solely from knowledge of its existence at ca. 2𝐺𝑃𝑎. 

3.4 Discussion 

The non-empirical DIFF for pyridine gives a reasonable account of the structures of the polymorphs and their 

stability relative to hypothetical structures. In this instance, its accuracy in the solid-state exceeds that of empirical 

potentials that had been parametrized to experimental crystal structures. The empirical potentials fail badly in 

reproducing the second virial coefficients or the behavior of the solid under pressure. This is a major advance, but 

this study does bring into focus both the advantages and disadvantages of having a genuine pair potential energy 

surface, which it was hoped would be transferable between phases with the approximation that the polarization 

was the only significant many-body term for relative energies. 

3.4.1 Reproduction of Crystal Structures 

For form II, the static lattice or enthalpy (𝑃 = 1.1𝐺𝑃𝑎 and 2𝐺𝑃𝑎) structures from the DIFF are in good agreement 

with the experimental structures, especially given the variation between the structures that have been determined 

at different temperatures (5 − 190𝐾) and pressures (≤ 1.1𝐺𝑃𝑎). The DIFF reproduces the 5𝐾 ℎ5-I structure of 

pyridine well, but overestimates the density by 5.6%. Perhaps this is not as serious an issue as it may seem as it 

has recently been noted that a quasi-harmonic modelling of crystalline imidazole using ab initio based potentials 

gave a 4% increase in molar volume on including just the zero-point energy.294  Hence, a part of the error in the 

density at 5𝐾 could be due to neglecting the effect of the zero-point expansion on the structure. This again 

highlights the limitations in using the static lattice energy (or enthalpy with a 𝑃𝑉 term) to model a material’s crystal 

structures. All things considered, in Figure 14 & Figure 15 it appears that the DIFF gives a reasonable estimate 

of the experimentally inaccessible static crystal structure. The empirically fitted potentials can only be expected to 

model structures at similar temperatures and pressures as they have been fitted to, since they implicitly include 

some averaging over zero-point energy effects, thermal expansion and possibly pressure effects.   

3.4.2 How accurate are the lattice energies? 

The lattice energy landscape generated for the most mechanically stable structures using the DIFF (Figure 16) and 

FIT+GDMA (Figure 17), shows marked differences. The differences in lattice energies for any one structure are 

on the order of 15 𝑘𝐽 𝑚𝑜𝑙−1 (Table 8) between the DIFF and empirical potentials. This emphasizes how many 

approximations in both the force-field and simulation methods are partially absorbed by empirically fitting the 
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potential parameters to experimental data similar to that being computationally modelled. For example, a 

hypothetical heat of sublimation, Δ𝐻𝑠𝑢𝑏 ≈  48.7 𝑘𝐽 𝑚𝑜𝑙−1 at 298𝐾 (66° above pyridine’s normal melting point) 

can be estimated using the  heat of fusion 𝐻𝑓𝑢𝑠 = 8.28 𝑘𝐽 𝑚𝑜𝑙−1 (presumably for form I295) and derived heat of 

vapourisation,169  𝐻𝑣𝑎𝑝
0  = 40.4 𝑘𝐽 𝑚𝑜𝑙−1 at 298𝐾. This heat of sublimation estimate is quite close to the lattice 

energies calculated using the empirical potentials (𝐸𝑙𝑎𝑡𝑡 ~ −51 𝑘𝐽 𝑚𝑜𝑙−1 for FIT+GDMA), with a few 𝑘𝐽 𝑚𝑜𝑙−1 

variations between using the alternative empirical WILL potential parameters, or changing the electrostatic model 

(Table 8). This results from the parameter fitting assuming that Δ𝐻𝑠𝑢𝑏 ≈ −𝐸𝑙𝑎𝑡𝑡 and highlights the absorption of 

temperature effects in these potentials. This approximate relationship has sometimes been improved by the 

common “2RT” thermal correction270 of −5 𝑘𝐽 𝑚𝑜𝑙−1 , but recent work with lattice dynamics show this is often a 

poor estimate,296 and that it can vary for small molecular crystals by up to −11 𝑘𝐽 𝑚𝑜𝑙−1.297   

Structure  FIT+POINT WILL+GDMA FIT+GDMA FIT+ISA DIFF(iso-rep) DIFF DIFF(no-pol) 

FORM I -48.71 -49.20 -51.29 -49.66 -64.19 -64.94 -57.32 

FORM II -48.85 -49.22 -51.44 -53.28 -62.05 -66.76 -61.93 

FORM III -46.93 -47.54 -48.89 -49.63 -59.86 -65.36 -60.27 

pyr2 (GM) -48.58 -46.84 -48.89 -49.67 -64.60 -68.24 -61.50 

Table 8: Lattice energies (in kJ mol-1) of the DIFF global minimum (pyr2), the experimental forms I, II (PYRDNA04, 

PYRDNA05),186 and III for each analytical intermolecular model. 

3.4.3 Lattice Dynamics for Zero-point Energy & Thermal Effects 

 FORM I FORM II FORM III pyr2 (GM) 

𝑬𝒍𝒂𝒕𝒕 -64.939 -66.758 -65.359 -68.237 

ℎ5 Zero-Point E 2.027 2.163 2.146 2.114 

𝐹 𝑣𝑖𝑏(190 K) -6.274 -5.561 -5.716 -6.282 

𝒉𝟓 𝑨 𝒇𝒓𝒆𝒆(190 K) -71.213 -72.319 -71.075 -74.520 

𝑑5 ZPE 1.912 2.039 2.020 1.991 

𝐹 𝑣𝑖𝑏(190 K) -6.773 -6.050 -6.215 -6.783 

𝒅𝟓 𝑨 𝒇𝒓𝒆𝒆(190 K) -71.712 -72.808 -71.574 -75.020 

Table 9: The free energy at 𝑇 = 190𝐾, 𝑃 = 0𝐺𝑃𝑎 calculated using lattice dynamics and the DIFF for the 

observed polymorphs and the global minimum (GM) in the CSP study in Figure 16. Energies in 𝑘𝐽 𝑚𝑜𝑙−1. 
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The lattice energies of the crystals are only an approximation to the thermal stability neglecting the isotope-

dependent zero-point energy and thermal contributions. The free energy estimates in Table 9 show that including 

the zero-point energy and thermal corrections estimated by lattice dynamics, reverses the order of stability of ℎ5-

forms I and III and significantly reduces the energy difference between forms I and II by over 0.7 𝑘𝐽 𝑚𝑜𝑙−1. While, 

these harmonic, rigid-molecule lattice-dynamic estimates are approximate, they emphasize that both the zero-point 

energy and thermal corrections are significant, and affected by deuteration. The effect of deuteration is virtually 

identical for every polymorph within this fixed rigid-molecule harmonic approximation. For pyridine, the rigid-

body harmonic lattice dynamical estimate of the thermal correction (the vibrational free energy (𝐹𝑣𝑖𝑏)) is 

−6 𝑘𝐽 𝑚𝑜𝑙−1 at 190𝐾 (Table 9), subsequently, using the lattice energy from the DIFF (Table 8), and allowing for 

a 7% error from three body dispersion, the zero-point energy and heat capacity improves the agreement; Δ𝐻𝑠𝑢𝑏 =

−(1 − 0.07)𝐸𝑙𝑎𝑡𝑡 + 𝐹𝑣𝑖𝑏 = 65 − 4.5 − 6 = 55.5 𝑘𝐽 𝑚𝑜𝑙−1 at 190𝐾, which compared with the estimated 

Δ𝐻𝑠𝑢𝑏 ≈  48.7 kJ 𝑚𝑜𝑙−1 at 298𝐾. Accordingly, the lattice energies given by the DIFF are reasonable. 

Most organic crystals have a significant thermal expansion, which can be very anisotropic and dependent on the 

specific crystal structure. Recent quasi-harmonic periodic electronic structure methods,297 and empirical potential 

estimates for a large dataset of organic crystals298 show that the effects of thermal expansion are 

thermodynamically significant, producing an underestimation of heat capacities at high temperatures.296, 299 

Moreover, a divergence between harmonic-approximation phonon-modes and those in the crystal as modelled by 

Molecular Dynamics (MD) has been noted at quite low temperatures for imidazole and 5-azauracil.188 For pyridine, 

which is a liquid at room temperature, the molecular motions are likely to be large in amplitude at the temperatures 

of the majority of experimental measurements, and therefore should be more realistically modelled by a finite-

temperature MD simulation. What Table 9 demonstrates, is that both zero-point and thermal contributions are 

significant for the relative stability of the crystal structures, with the common observation that their inclusion 

reduces the energy differences between structures.300   

3.4.4 The advantages of a non-empirical force-field 

The success of the DIFF relative to potentials specifically developed for modelling the organic state derives from 

having a functional form based on the theory of intermolecular forces and not parameterization from experiment.  

The diversity of gas-phase dimers motifs in the low energy hypothetical and experimental crystal structures 

emphasizes that a solid-state CSP samples the intermolecular potential energy surface extensively. A single dimer 

structure only samples the potential around one configuration, whereas a single crystal structure samples a wider 

range of relative orientations and close contacts from all the molecules in the nearest neighbour coordination 
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sphere, which is typically fourteen molecules. The lattice summation, in lattice energy calculations, samples the 

potential over a larger distance than a gas-phase dimer. Additionally, the closest contacts in crystals sample higher 

up the repulsive wall because of the attractive forces from the second, and higher-order coordination spheres, even 

at ambient pressure. The dispersion contribution is about 150 % of the total lattice energy in the low energy crystals 

(Table 7). Hence, the theoretically based distance-dependence of the long range forces is particularly important in 

the solid-state. Using the DIFF dispersion model with a split into 𝐶6, 𝐶8 and 𝐶10 is more theoretically justified than 

using an empirical 𝐶6 only potential where the higher-order dispersion coefficients have been absorbed in the 

parametrization. For empirical models, a small error in 𝐶6 could result in a large overall error due to the lattice 

summation. A similar advantage in the distance dependence is seen when the long range electrostatic terms are 

given by distributed multipoles over atomic point charges, though the main advantage of the higher atomic 

multipole moments is a more truthful modelling of the orientation dependence of the electrostatic forces due to 

lone pair and π electron density. These non-spherical features in the charge distribution also determine the 

anisotropy in the repulsion, as the short-range anisotropic terms are dependent on the shape of the atom. The 

slightly closer contacts in solid-state and diversity of contact configurations means that the relative energies of the 

crystal structures are very sensitive to the anisotropy in the repulsion, as shown by a considerable re-ranking of 

the crystal structures when anisotropy coefficients are not explicitly in the potential (Figure 17 & Figure 18). The 

successful identification of form III as a structure that becomes relatively more stable under pressure is clear 

evidence of the importance of using a non-empirical anisotropic potential. It is not surprising that parameterizing 

an oversimplified functional form of the repulsive wall by fitting to ambient pressure crystal structures fails to 

properly extrapolate the intermolecular interactions of the closer contacts sampled at moderate pressure. Applying 

pressure changes the intermolecular contact distances more than changing temperature and so probes interactions 

higher up the repulsive wall.301, 302 High-pressure recrystallization is a versatile route to generating new 

polymorphs; with structural properties modifying significantly with pressures around and above 1 𝐺𝑃𝑎.303-305 

Therefore, more realistic, theory-based, non-empirical intermolecular potentials will be very important for more 

dependable exploration of structure-property relationships in organic crystals under pressure.  

3.4.5 Accuracy of the pyridine DIFF 

3.4.5.1 Possible errors in the pair-potential 

The second virial coefficients show that the DIFF systematically over-estimates the intermolecular interactions 

(Figure 12).  It is believed that these errors stem not from problems with the fitting procedure described by 

Misquitta and Stone38 but from errors in the reference SAPT(DFT) interaction energies to which the DIFF was fit. 

A deeper analysis of some of these problems can be found in Chapter 5, where the omission of certain terms and 
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further details on the development process of non-empirical potentials are discussed. For the pyridine DIFF there 

are two main likely causes for the over-binding of the SAPT(DFT) interaction energies: 

1. Interaction energy contributions from third to infinite order in the intermolecular interaction operator are 

approximated by the 𝛿𝑖𝑛𝑡
𝐻𝐹energy265, 266 (2.6.3). This energy includes mainly higher order induction and 

exchange-induction contributions, which are known to be important for capturing the effects of hydrogen 

bonding in water. 𝛿𝑖𝑛𝑡
𝐻𝐹 has been included in the DIFF, however, this may not be suitable for configurations 

of pyridine in which the binding is primarily or dominantly from the dispersion interaction,227, 306, 307 as 

this correction may lead to an overestimation of the binding. 

2. The choice of asymptotic correction used for calculating the molecular properties, made by Misquitta and 

Stone,38 may not be suitable for a strongly anisotropic (in shape) molecule such as pyridine. 

Consequently, a different asymptotic correction is used for TNB in Chapter 5. 

The first problem is a potentially serious one as the 𝛿𝑖𝑛𝑡
𝐻𝐹  term is needed for systems with hydrogen bonds178, but 

is known to be inappropriate for dispersion-bound dimers as it leads to over-binding.308, 309 This term is sometimes 

excluded entirely106, 310 if the primary binding is from the dispersion energy as is the case for the benzene crystal. 

But it is not yet clear what is to be done for a system such as pyridine which exhibits both hydrogen-bonding as 

well as dispersive interactions. Work is currently underway by Misquitta, using CCSD(T) dimer calculations to 

better understand both problems, as it is essential for modelling pharmaceuticals where most crystal structures are 

a balance between hydrogen bonding, π-π stacking and other dispersion interactions and conformational changes.  

3.4.5.2 Non-additive many-body terms in condensed-phases 

While a pairwise additive intermolecular potential is sufficient for a complete potential energy surface for the 

isolated dimer, it only accounts for the dominant contributions in condensed phases. The only explicitly non-

pairwise term included in the DIFF is the polarization term, which leads to a net attractive many-body contribution 

to the lattice energy. Yet in a weakly-bound molecular crystal like pyridine, where most of the attractive forces 

arises from the two-body dispersion energy (Table 7), the many-body dispersion energy may be expected to be 

large and repulsive. For example, it has been shown103 311 that the non-additive three-body dispersion contributes 

repulsively to the benzene crystal by as much as 7-14% of the total lattice energy. A similar contribution is expected 

to arise in the pyridine crystal. In particular, the dense, strongly dispersion bound global minimum structure (pyr2) 

will be relatively destabilized by the three-body dispersion. This could change the landscape in Figure 16 

significantly and result in the observed polymorphs becoming the new global minima.  
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3.5 Conclusions 

This investigation has shown the advantage of using non-empirical potentials for CSP, particularly for form III 

which was obtained under pressure, where the repulsive wall is sampled in regions not used in fitting empirical 

potentials.  However, it also shows how sensitive the relative thermodynamics are to the modelling assumptions. 

For example, pyr2 is predicted to be more stable than form II, both at the level of the lattice energy (Figure 16) and 

taking into account thermal effects (Table 9), though the difference is considerably reduced on application of 

pressure (Appendix 3.B) and its stability may be because of the neglect of the many-body dispersion term. On the 

other hand, what would be the consequence of a confident calculation that pyr2 or any other structure was more 

thermodynamically stable than the observed polymorphs at accessible temperatures and pressures? The prediction 

of undiscovered more thermodynamically stable phases is a major justification30 for the development and testing22 

of CSP methods, as this determines the risk of disappearing polymorphs,312  helps justify devising experiments for 

finding new polymorphs313 and can generally assist in the development of specialty organic materials. When 

polymorphs switch relative stability with temperature or pressure, it may often not be as obvious as a solid-state 

phase transformation but only apparent by recrystallization experiments in the presence of seeds of both 

polymorphs. It is difficult to obtain, let alone structurally characterize, the most stable crystalline forms of 

molecules that are liquid or gas under ambient conditions,314 let alone change the experimental conditions 

sufficiently to vary the kinetics (already implicated in the isotopic polymorphism of pyridine), at low temperatures 

or at pressure315 to compete with the nucleation of the known forms. The similarities between the known 

polymorphs of pyridine (Figure 10 & Figure 19) and the contrast to the different dimers in the coordination sphere 

in pyr2 (Table 7) emphasize that the observed structures may be kinetically favoured but not necessarily 

thermodynamically favourable. Pyridine could well have alternative thermodynamically competitive polymorphs 

that have not yet been found. The DIFF could be used for simulating liquid-phase pyridine using MD, adding 

confidence to interpreting experimental data,316, 317 as recent simulations show that this is sensitive to the anisotropy 

of the electrostatic model.281 Such simulations could suggest why the observed forms crystallize, by revealing a 

link between the liquid and solid state structures via the most readily formed nucleus. Non-empirical potentials 

have considerable advantages over periodic electronic structure methods, or other advanced methods of calculating 

lattice energies of molecular crystals130 in that they are relatively inexpensive and can be evaluated sufficiently 

readily to be used in CSP and for estimating the effect of temperature. Empirical potentials have the advantages 

of simpler functional forms, and that errors in the functional form, transferability assumptions and in the method 

of simulation, such as neglect of zero-point and thermal effects, are partially absorbed into the potential. 

Conversely, these advantages imply uncertainties in extrapolating to other conditions as required for solid-state 
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phase diagrams,318 and empirical potentials cannot be expected to transfer to the gas-phase, as demonstrated by 

the second virial coefficients (Figure 12). In contrast, the DIFF and other non-empirical models79, 96 have the 

advantage that the approximations used are known and can be built upon. Although, the polarization energy is 

challenging to include in any force-field, this is being tackled in the development of next generation force-fields 

and simulation codes.319, 320,321 The improved realism of intermolecular force-fields has to go alongside the further 

development of simulation methods and codes to include both zero-point effects and realistic temperature 

dependent dynamics. There is clearly a conceptual advantage in using non-empirical intermolecular force-fields 

where the approximations are known and controlled and the interaction energy can be decomposed into 

contributions that are based off rigorous chemical theories. The current potentials are not definitive, but can act as 

a strong framework for the development of force-fields for organic molecules. 

This chapter has shown that a rigid non-empirical distributed intermolecular force-field (DIFF), derived from the 

theory of intermolecular forces and SAPT(DFT) calculations using the CAMCASP and ORIENT programs, can be 

used for modelling the solid-state of pyridine with a realism that exceeds that of the transferable empirical 

potentials that have been previously used to model the crystalline state. The following chapter shall investigate the 

rigid approximation made in this thesis and how the molecular conformation affects the molecular charge density 

and in turn the associated electrostatic properties and intermolecular interactions. This approximation seems to 

have been suitable for pyridine but does it extend to more flexible molecules? Furthermore, this investigation 

emphasizes the importance of CSP as a comprehensive way of testing the robustness of intermolecular potentials. 

The DIFF was particularly effective for studying the effects of pressure on the relative stability of structures, as 

shown by the identification of form III.  Nevertheless, empirical potentials do have the advantage of absorbing 

many errors, including approximations in the simulation methods, and being more readily implemented in existing 

codes due to their simplified functional forms. Contrasting these novel CAMCASP-derived potentials, and other 

models driven by the theory of intermolecular forces, with more approximate models, should produce a hierarchy 

of force-fields that can be used intelligently with molecule-specific knowledge on the effects of various 

approximations.  
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Appendix 3.A – Potential Parameters 

The DMACRYS input files with axis definition files, can be found in the Appendix CD. Further details on the 

formatting of the input files can be found in the DMACRYS manual.59 

1. DIFF DMACRYS potential input file 

This input file is identical to its ORIENT counterparts save for formatting and unit conversions. 

2. Iterated Stockholder Atoms – Distributed Multipole Moments (ISA-DMA) 

The ISA-DMA multipolar moments are given DMACRYS input file format. These detail the atom labels, atom 

types and multipole moment ranks used for TNB’s electrostatic model. The atomic positions can also be found in 

this input file, adjacent to the corresponding atom label. 

3. Iterated Stockholder Atoms – Distributed Polarizabilities 

The ISA-DMA derived 𝑅𝑎𝑛𝑘 =  1 distributed polarizabilities in DMACRYS input file format calculated in the 

molecule-fixed axis. 

4. Local axes system 

The atom fixed axes system using pyridines atom labels. The .res structure file corresponding to each experimental 

structure can also be found in the Appendix CD. 

Potential Input File 

 

      ! Pair-Potential: Atom-Atom Potential 

      ! Sites:  

      !      H1 H2 H3 N C1 C2 C3 

 

      Induction  damping factor 1.25 

      Dispersion damping factor 1.67 

        

      H1 H1 rho alpha       C6 

         00  00    0     0.409815E+01    0.196501E+01    0.440183E+01 

         00  10    1     -0.110862E+00 

         00  11c   1      0.248000E-01 

         10  00    1     -0.110862E+00 

         11c 00    1      0.248000E-01 

      END 

      H1 H2 rho alpha       C6 

         00  00    0     0.393462E+01    0.196342E+01    0.406704E+01 

         00  10    1     -0.461940E-01 

         00  11c   1     -0.751400E-02 

         10  00    1     -0.110862E+00 

         11c 00    1      0.248000E-01 

      END 

      H1 H3 rho alpha       C6 

         00  00    0     0.403103E+01    0.190116E+01    0.373377E+01 
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         00  10    1     -0.120796E+00 

         00  11c   1      0.978500E-02 

         10  00    1     -0.110862E+00 

         11c 00    1      0.248000E-01 

      END 

      H1 N rho alpha       C6      C8      C10 

         00  00    0     0.497509E+01    0.177257E+01    0.102929E+02    0.251339E+03    

0.538412E+03 

         00  10    1      0.104283E+00 

         00  11c   1     -0.181740E-01 

         10  00    1     -0.110862E+00 

         11c 00    1      0.248000E-01 

         00  20    2      0.125383E+00 

         00  22c   2     -0.163580E+00 

      END 

      H1 C1 rho alpha       C6      C8      C10 

         00  00    0     0.478680E+01    0.183408E+01    0.767587E+01    0.770406E+02    

0.544620E+04 

         00  10    1      0.130845E+00 

         00  11c   1      0.335830E-01 

         10  00    1     -0.110862E+00 

         11c 00    1      0.248000E-01 

         00  20    2     -0.772060E-01 

         00  22c   2     -0.113724E+00 

      END 

      H1 C2 rho alpha       C6      C8      C10 

         00  00    0     0.510776E+01    0.167851E+01    0.130303E+02    0.726110E+02    

0.462274E+04 

         00  10    1      0.120027E+00 

         00  11c   1     -0.206020E-01 

         10  00    1     -0.110862E+00 

         11c 00    1      0.248000E-01 

         00  20    2     -0.606040E-01 

         00  22c   2     -0.137913E+00 

      END 

      H1 C3 rho alpha       C6      C8      C10 

         00  00    0     0.495024E+01    0.173860E+01    0.957761E+01    0.164475E+03    

0.498458E+04 

         00  10    1      0.922750E-01 

         00  11c   1      0.112700E-01 

         10  00    1     -0.110862E+00 

         11c 00    1      0.248000E-01 

         00  20    2     -0.537020E-01 

         00  21c   2     -0.303000E-02 

         00  22c   2     -0.124746E+00 

      END 

      H2 H2 rho alpha       C6 

         00  00    0     0.388760E+01    0.202354E+01    0.411769E+01 

         00  10    1     -0.461940E-01 

         00  11c   1     -0.751400E-02 
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         10  00    1     -0.461940E-01 

         11c 00    1     -0.751400E-02 

      END 

      H2 H3 rho alpha       C6 

         00  00    0     0.397726E+01    0.193503E+01    0.327252E+01 

         00  10    1     -0.120796E+00 

         00  11c   1      0.978500E-02 

         10  00    1     -0.461940E-01 

         11c 00    1     -0.751400E-02 

      END 

      H2 N rho alpha       C6      C8      C10 

         00  00    0     0.484838E+01    0.188781E+01    0.849477E+01    0.245134E+03    

0.496401E+03 

         00  10    1      0.104283E+00 

         00  11c   1     -0.181740E-01 

         10  00    1     -0.461940E-01 

         11c 00    1     -0.751400E-02 

         00  20    2      0.125383E+00 

         00  22c   2     -0.163580E+00 

      END 

      H2 C1 rho alpha       C6      C8      C10 

         00  00    0     0.468908E+01    0.188031E+01    0.636298E+01    0.665131E+02    

0.430509E+04 

         00  10    1      0.130845E+00 

         00  11c   1      0.335830E-01 

         10  00    1     -0.461940E-01 

         11c 00    1     -0.751400E-02 

         00  20    2     -0.772060E-01 

         00  22c   2     -0.113724E+00 

      END 

      H2 C2 rho alpha       C6      C8      C10 

         00  00    0     0.490780E+01    0.171564E+01    0.873624E+01    0.636031E+02    

0.406208E+04 

         00  10    1      0.120027E+00 

         00  11c   1     -0.206020E-01 

         10  00    1     -0.461940E-01 

         11c 00    1     -0.751400E-02 

         00  20    2     -0.606040E-01 

         00  22c   2     -0.137913E+00 

      END 

      H2 C3 rho alpha       C6      C8      C10 

         00  00    0     0.481746E+01    0.187761E+01    0.796230E+01    0.177627E+03    

0.406056E+04 

         00  10    1      0.922750E-01 

         00  11c   1      0.112700E-01 

         10  00    1     -0.461940E-01 

         11c 00    1     -0.751400E-02 

         00  20    2     -0.537020E-01 

         00  21c   2     -0.303000E-02 

         00  22c   2     -0.124746E+00 
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      END 

      H3 H3 rho alpha       C6 

         00  00    0     0.404245E+01    0.207565E+01    0.176919E+01 

         00  10    1     -0.120796E+00 

         00  11c   1      0.978500E-02 

         10  00    1     -0.120796E+00 

         11c 00    1      0.978500E-02 

      END 

      H3 N rho alpha       C6      C8      C10 

         00  00    0     0.493769E+01    0.181110E+01    0.724358E+01    0.180762E+03    

0.498610E+03 

         00  10    1      0.104283E+00 

         00  11c   1     -0.181740E-01 

         10  00    1     -0.120796E+00 

         11c 00    1      0.978500E-02 

         00  20    2      0.125383E+00 

         00  22c   2     -0.163580E+00 

      END 

      H3 C1 rho alpha       C6      C8      C10 

         00  00    0     0.483091E+01    0.187809E+01    0.567625E+01    0.620263E+02    

0.384651E+04 

         00  10    1      0.130845E+00 

         00  11c   1      0.335830E-01 

         10  00    1     -0.120796E+00 

         11c 00    1      0.978500E-02 

         00  20    2     -0.772060E-01 

         00  22c   2     -0.113724E+00 

      END 

      H3 C2 rho alpha       C6      C8      C10 

         00  00    0     0.502446E+01    0.172752E+01    0.738145E+01    0.582632E+02    

0.349286E+04 

         00  10    1      0.120027E+00 

         00  11c   1     -0.206020E-01 

         10  00    1     -0.120796E+00 

         11c 00    1      0.978500E-02 

         00  20    2     -0.606040E-01 

         00  22c   2     -0.137913E+00 

      END 

      H3 C3 rho alpha       C6      C8      C10 

         00  00    0     0.494214E+01    0.184553E+01    0.678423E+01    0.113445E+03    

0.346944E+04 

         00  10    1      0.922750E-01 

         00  11c   1      0.112700E-01 

         10  00    1     -0.120796E+00 

         11c 00    1      0.978500E-02 

         00  20    2     -0.537020E-01 

         00  21c   2     -0.303000E-02 

         00  22c   2     -0.124746E+00 

      END 

      N N rho alpha       C6      C8      C10 
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         00  00    0     0.587069E+01    0.168134E+01    0.305702E+02    0.834432E+03    

0.165808E+05 

         00  10    1      0.104283E+00 

         00  11c   1     -0.181740E-01 

         10  00    1      0.104283E+00 

         11c 00    1     -0.181740E-01 

         00  20    2      0.125383E+00 

         00  22c   2     -0.163580E+00 

         20  00    2      0.125383E+00 

         22c 00    2     -0.163580E+00 

      END 

      N C1 rho alpha       C6      C8      C10 

         00  00    0     0.579316E+01    0.174043E+01    0.244635E+02    0.553381E+03    

0.223420E+05 

         00  10    1      0.130845E+00 

         00  11c   1      0.335830E-01 

         10  00    1      0.104283E+00 

         11c 00    1     -0.181740E-01 

         00  20    2     -0.772060E-01 

         00  22c   2     -0.113724E+00 

         20  00    2      0.125383E+00 

         22c 00    2     -0.163580E+00 

      END 

      N C2 rho alpha       C6      C8      C10 

         00  00    0     0.580618E+01    0.178418E+01    0.339916E+02    0.645135E+03    

0.214618E+05 

         00  10    1      0.120027E+00 

         00  11c   1     -0.206020E-01 

         10  00    1      0.104283E+00 

         11c 00    1     -0.181740E-01 

         00  20    2     -0.606040E-01 

         00  22c   2     -0.137913E+00 

         20  00    2      0.125383E+00 

         22c 00    2     -0.163580E+00 

      END 

      N C3 rho alpha       C6      C8      C10 

         00  00    0     0.582263E+01    0.183870E+01    0.239745E+02    0.896858E+03    

0.276031E+05 

         00  10    1      0.922750E-01 

         00  11c   1      0.112700E-01 

         10  00    1      0.104283E+00 

         11c 00    1     -0.181740E-01 

         00  20    2     -0.537020E-01 

         00  21c   2     -0.303000E-02 

         00  22c   2     -0.124746E+00 

         20  00    2      0.125383E+00 

         22c 00    2     -0.163580E+00 

      END 

      C1 C1 rho alpha       C6      C8      C10 

         00  00    0     0.573571E+01    0.180125E+01    0.109484E+02    0.375201E+03    

0.221470E+05 
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         00  10    1      0.130845E+00 

         00  11c   1      0.335830E-01 

         10  00    1      0.130845E+00 

         11c 00    1      0.335830E-01 

         00  20    2     -0.772060E-01 

         00  22c   2     -0.113724E+00 

         20  00    2     -0.772060E-01 

         22c 00    2     -0.113724E+00 

      END 

      C1 C2 rho alpha       C6      C8      C10 

         00  00    0     0.584264E+01    0.169205E+01    0.134900E+02    0.378918E+03    

0.210985E+05 

         00  10    1      0.120027E+00 

         00  11c   1     -0.206020E-01 

         10  00    1      0.130845E+00 

         11c 00    1      0.335830E-01 

         00  20    2     -0.606040E-01 

         00  22c   2     -0.137913E+00 

         20  00    2     -0.772060E-01 

         22c 00    2     -0.113724E+00 

      END 

      C1 C3 rho alpha       C6      C8      C10 

         00  00    0     0.579373E+01    0.178477E+01    0.168231E+02    0.613483E+03    

0.304373E+05 

         00  10    1      0.922750E-01 

         00  11c   1      0.112700E-01 

         10  00    1      0.130845E+00 

         11c 00    1      0.335830E-01 

         00  20    2     -0.537020E-01 

         00  21c   2     -0.303000E-02 

         00  22c   2     -0.124746E+00 

         20  00    2     -0.772060E-01 

         22c 00    2     -0.113724E+00 

      END 

      C2 C2 rho alpha       C6      C8      C10 

         00  00    0     0.604840E+01    0.164913E+01    0.292550E+02    0.441478E+03    

0.303622E+05 

         00  10    1      0.120027E+00 

         00  11c   1     -0.206020E-01 

         10  00    1      0.120027E+00 

         11c 00    1     -0.206020E-01 

         00  20    2     -0.606040E-01 

         00  22c   2     -0.137913E+00 

         20  00    2     -0.606040E-01 

         22c 00    2     -0.137913E+00 

      END 

      C2 C3 rho alpha       C6      C8      C10 

         00  00    0     0.589174E+01    0.166545E+01    0.249404E+02    0.718721E+03    

0.328551E+05 

         00  10    1      0.922750E-01 
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         00  11c   1      0.112700E-01 

         10  00    1      0.120027E+00 

         11c 00    1     -0.206020E-01 

         00  20    2     -0.537020E-01 

         00  21c   2     -0.303000E-02 

         00  22c   2     -0.124746E+00 

         20  00    2     -0.606040E-01 

         22c 00    2     -0.137913E+00 

      END 

      C3 C3 rho alpha       C6      C8      C10 

         00  00    0     0.592659E+01    0.173539E+01    0.235277E+02    0.983470E+03    

0.445211E+05 

         00  10    1      0.922750E-01 

         00  11c   1      0.112700E-01 

         10  00    1      0.922750E-01 

         11c 00    1      0.112700E-01 

         00  20    2     -0.537020E-01 

         00  21c   2     -0.303000E-02 

         00  22c   2     -0.124746E+00 

         20  00    2     -0.537020E-01 

         21c 00    2     -0.303000E-02 

         22c 00    2     -0.124746E+00 

      END 

 

 

Distributed Multipole Moments Input File 

 

! Multipole moments for pyridine 

! Based on DF-type : ISA 

  

  H1    -3.87454677     2.40829326     0.00000000     Type   H1      Rank   4 

       0.061471 

       0.000000      -0.050749       0.036166 

      -0.033021       0.000000       0.000000      -0.046058       0.050787 

       0.000000       0.192664      -0.108250       0.000000       0.000000 

                      0.000098       0.062916 

      -0.185895       0.000000       0.000000       0.090360      -0.212359 

                      0.000000       0.000000      -0.009016       0.017231 

  

  H2    -4.05745524    -2.27382980     0.00000000     Type   H2      Rank   4 

       0.139293 

       0.000000      -0.035408      -0.018515 

      -0.014446       0.000000       0.000000      -0.038619      -0.057252 

       0.000000       0.206783       0.106450       0.000000       0.000000 

                     -0.013135      -0.058056 

      -0.213268       0.000000       0.000000       0.120076       0.161027 

                      0.000000       0.000000      -0.001913       0.001330 

  

  H3     0.00000000    -4.70080300     0.00000000     Type   H3      Rank   4 
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       0.097072 

       0.000000       0.000000      -0.049607 

      -0.027536       0.000000       0.000000       0.070457       0.000000 

       0.000000      -0.000003       0.231686       0.000000       0.000000 

                     -0.000002       0.042166 

      -0.205392       0.000000       0.000000      -0.227994       0.000001 

                      0.000000       0.000000       0.024111      -0.000007 

  

  H4     4.05745524    -2.27382980     0.00000000     Type   H2      Rank   4 

       0.139293 

       0.000000       0.035413      -0.018518 

      -0.014447       0.000000       0.000000      -0.038618       0.057251 

       0.000000      -0.206778       0.106446       0.000000       0.000000 

                      0.013136      -0.058050 

      -0.213274       0.000000       0.000000       0.120080      -0.161035 

                      0.000000       0.000000      -0.001911      -0.001315 

  

  H5     3.87454677     2.40829326     0.00000000     Type   H1      Rank   4 

       0.061469 

       0.000000       0.050756       0.036171 

      -0.033021       0.000000       0.000000      -0.046058      -0.050784 

       0.000000      -0.192662      -0.108244       0.000000       0.000000 

                     -0.000097       0.062914 

      -0.185896       0.000000       0.000000       0.090361       0.212361 

                      0.000000       0.000000      -0.009015      -0.017239 

  

   N     0.00000000     2.61319624     0.00000000     Type    N      Rank   4 

      -0.449971 

       0.000000       0.000001      -0.244265 

       0.045510       0.000000       0.000000       0.316527       0.000011 

       0.000000       0.000032      -0.504088       0.000000       0.000000 

                      0.000004       1.475723 

      -0.382475       0.000000       0.000000       0.396937       0.000017 

                      0.000000       0.000000      -0.831627      -0.000005 

  

  C1    -2.14372406     1.30476509     0.00000000     Type   C1      Rank   4 

       0.228761 

       0.000000       0.130985       0.026047 

      -0.129155       0.000000       0.000000       0.019084       0.064717 

       0.000000       0.408435       0.163515       0.000000       0.000000 

                     -0.058246       0.913013 

      -1.652743       0.000000       0.000000      -0.054676       0.500720 

                      0.000000       0.000000      -0.031698      -0.726274 

  

  C2    -2.24974336    -1.31486189     0.00000000     Type   C2      Rank   4 

      -0.268306 

       0.000000       0.053328       0.000501 

      -0.145870       0.000000       0.000000       0.043185       0.136925 

       0.000000       0.173628       0.017677       0.000000       0.000000 
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                     -0.180072      -0.354243 

      -0.910322       0.000000       0.000000       0.042759      -0.104278 

                      0.000000       0.000000      -0.107168       0.564049 

  

  C3     0.00000000    -2.65300899     0.00000000     Type   C3      Rank   4 

       0.030478 

       0.000000       0.000002       0.062223 

      -0.103883       0.000000       0.000000      -0.037043      -0.000025 

       0.000000       0.000072       0.289346       0.000000       0.000000 

                      0.000034       0.842877 

      -1.365969       0.000000       0.000000       0.368386      -0.000090 

                      0.000000       0.000000       1.137529       0.000040 

  

  C4     2.24974336    -1.31486189     0.00000000     Type   C2      Rank   4 

      -0.268316 

       0.000000      -0.053314       0.000497 

      -0.145815       0.000000       0.000000       0.043213      -0.136935 

       0.000000      -0.173576       0.017727       0.000000       0.000000 

                      0.180015      -0.354040 

      -0.910243       0.000000       0.000000       0.042858       0.104270 

                      0.000000       0.000000      -0.107146      -0.564034 

  

  C5     2.14372406     1.30476509     0.00000000     Type   C1      Rank   4 

       0.228755 

       0.000000      -0.130972       0.026056 

      -0.129109       0.000000       0.000000       0.019114      -0.064710 

       0.000000      -0.408369       0.163502       0.000000       0.000000 

                      0.058243       0.912796 

      -1.652630       0.000000       0.000000      -0.054614      -0.500771 

                      0.000000       0.000000      -0.031678       0.726285 

  

 

 

Distributed Polarizabilities Input File 

 

! Polarizabilities 

 

 H1  H1 

  0        0        0        0       

  0        2.41744 -0.21103  0       

  0       -0.21103  1.30295  0       

  0        0        0        2.59121 

 

 H2  H2 

  0        0        0        0       

  0        2.57775  0.04114  0       

  0        0.04114  1.17700  0       

  0        0        0        2.69257 
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 H3  H3 

  0        0        0        0       

  0        2.27716 -0.01568  0       

  0       -0.01568  1.34126  0       

  0        0        0        2.70659 

 

 H4  H4 

  0        0        0        0       

  0        2.57775  0.04114  0       

  0        0.04114  1.17700  0       

  0        0        0        2.69257 

 

 H5  H5 

  0        0        0        0       

  0        2.41744 -0.21103  0       

  0       -0.21103  1.30295  0       

  0        0        0        2.59121 

 

 N  N 

  0        0        0        0       

  0        6.75163  0.01380  0       

  0        0.01380  11.6518  0       

  0        0        0        6.22215 

 

 C1  C1 

  0        0        0        0       

  0        9.35259  0.37846  0       

  0        0.37846  12.8105  0       

  0        0        0        3.87911 

 

 C2  C2 

  0        0        0        0       

  0        8.45343 -0.48931  0       

  0       -0.48931  13.1125  0       

  0        0        0        4.18607 

 

 C3  C3 

  0        0        0        0       

  0        8.94908 -0.02629  0       

  0       -0.02629  12.9489  0       

  0        0        0        4.30903 

 

 C4  C4 

  0        0        0        0       

  0        8.45343 -0.48931  0       

  0       -0.48931  13.1125  0       

  0        0        0        4.18607 

 

 C5  C5 
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  0        0        0        0       

  0        9.35259  0.37846  0       

  0        0.37846  12.8105  0       

  0        0        0        3.87911 

 

 

Local Axes 

 

Axes 

  N   z from C3 to N   x from N  to C1 

  C1  z from C1 to H1  x from C1 to C2 

  H1  z from C1 to H1  x from C1 to C2 

  C5  z from C5 to H5  x from C5 to C4 

  H5  z from C5 to H5  x from C5 to C4 

  C2  z from C2 to H2  x from C2 to C3 

  H2  z from C2 to H2  x from C2 to C3 

  C4  z from C4 to H4  x from C4 to C3 

  H4  z from C4 to H4  x from C4 to C3 

  C3  z from C3 to H3  x from C3 to C4 

  H3  z from C3 to H3  x from C3 to C4 

End  
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Appendix 3.B – Crystal Structure Data 

1. Form III prediction 

Analysis of the relative stabilities after re-minimizing the PES under 2𝐺𝑃𝑎. The structural details of 87 structures 

re-minimized can be found in the Appendix CD. 

2. Relative stabilities 

Relative stabilities of hypothetical and observed xminopt structures from the DIFF CSP of pyridine. The full 

rankings can be found in the Appendix CD. 

FORM III PREDICTION: CALCULATIONS UNDER PRESSURE with DIFF and FIT+GDMA 

Structure (pyr#) Lattice Energy Volume Density Space-
Group a b c 𝛼 𝛽 𝛾 # molecules RMSD15 

2 43.19 350.68 1.50 Pna21 6.34 10.49 5.27 90.0 90.0 90.0 1 out of 15 0.00 

27 43.61 352.02 1.49 P21/c 5.17 10.19 7.13 90.0 69.5 90.0 4 out of 15 0.93 

FORM II 44.39 359.42 1.46 P212121 6.52 5.14 10.71 90.0 90.0 90.0 15 out of 15 0.00 

8 44.63 708.64 1.48 Pbca 9.21 8.26 9.31 90.0 90.0 90.0 2 out of 15 0.71 

6 45.18 353.63 1.49 P21/c 6.39 5.31 10.42 90.0 90.0 90.0 1 out of 15 0.00 

9 45.40 355.70 1.48 Pna21 6.82 5.50 9.49 90.0 90.0 90.0 1 out of 15 0.00 

978 45.43 710.12 1.48 C2/c 6.53 12.64 9.27 90.0 68.2 90.0 3 out of 15 0.93 

35 

≈ FORM III 
45.48 356.07 1.48 P212121 12.84 5.26 5.27 90.0 90.0 90.0 7 out of 15 0.38 

20 45.56 352.19 1.49 P21/c 6.89 5.46 10.44 90.0 63.9 90.0 3 out of 15 0.34 

424 45.70 1407.73 1.49 Fdd2 8.63 18.74 8.70 90.0 90.0 90.0 1 out of 15 0.00 

2039 45.87 702.80 1.50 C2/c 8.67 8.71 10.11 90.0 66.9 90.0 1 out of 15 0.00 

7 46.32 355.94 1.48 Pca21 10.35 5.34 6.44 90.0 90.0 90.0 1 out of 15 0.00 

307 46.55 347.06 1.51 P21/c 9.91 5.36 6.84 90.0 72.5 90.0 1 out of 15 0.00 

18 46.75 356.29 1.47 Pna21 8.48 8.02 5.24 90.0 90.0 90.0 5 out of 15 0.28 

72 46.85 352.95 1.49 Pna21 6.70 5.34 9.87 90.0 90.0 90.0 3 out of 15 0.23 

124 46.88 349.75 1.50 P21/c 6.33 5.88 10.47 90.0 64.0 90.0 3 out of 15 0.53 

256 47.09 701.51 1.50 Pbca 9.28 9.37 8.07 90.0 90.0 90.0 2 out of 15 0.74 

104 47.10 349.70 1.50 Pna21 6.78 10.17 5.07 90.0 90.0 90.0 3 out of 15 0.16 

37 47.11 355.78 1.48 P21/c 5.50 7.83 9.55 90.0 59.9 90.0 3 out of 15 0.37 

75 47.12 354.73 1.48 Pca21 6.56 5.39 10.02 90.0 90.0 90.0 3 out of 15 0.27 

Table 10: Comparison of lattice energies (in 𝑘𝐽 𝑚𝑜𝑙−1), crystal structures in the 20 lowest energy structures (in 

order of stability) and the experimental form II for the non-empirical DIFF potential under 2 𝐺𝑃𝑎. These stable 

structures were analyzed in detail for their similarities to the form II (ℎ5-II PYRDNA05)186 under 2 𝐺𝑃𝑎 of pressure. 
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Structure 
(pyr#) Energy Volume Density Space-Group a b c 𝛼 𝛽 𝛾 # 

molecules RMSD15 

2183 75.22 401.31 1.31 P21212 6.85 10.88 5.39 90.00 90.00 90.00 5 out of 15 0.43 

37 75.31 394.48 1.33 P21/c 5.89 7.00 11.29 90.00 57.97 90.00 3 out of 15 0.52 

32 75.32 394.50 1.33 P21/c 5.89 7.00 11.18 90.00 58.85 90.00 3 out of 15 0.52 

34 75.93 400.99 1.31 P41 7.05 5.30 10.74 90.00 90.00 90.00 15 out of 
15 0.00 

3 75.94 401.69 1.31 P212121 10.24 5.47 7.17 90.00 90.00 90.00 1 out of 15 0.00 

FORM II 75.95 401.00 1.31 P212121 7.05 5.30 10.74 90.00 90.00 90.00 15 out of 
15 0.00 

130 75.95 401.71 1.31 Pna21 10.24 7.17 5.47 90.00 90.00 90.00 1 out of 15 0.00 

3506 75.96 401.01 1.31 P212121 7.05 10.75 5.30 90.00 90.00 90.00 15 out of 
15 0.00 

7534 75.98 401.74 1.31 P212121 7.17 5.47 10.24 90.00 90.00 90.00 1 out of 15 0.00 

20 76.18 400.03 1.31 P21/c 7.34 5.62 10.74 90.00 64.41 90.00 3 out of 15 0.86 

90 76.18 400.03 1.31 P21/c 7.34 5.63 10.74 90.00 64.41 90.00 3 out of 15 0.86 

27 76.36 397.81 1.32 P21/c 5.48 10.96 7.14 90.00 67.92 90.00 4 out of 15 1.01 

14 76.61 197.51 1.33 P21 7.05 5.53 5.44 90.00 68.79 90.00 3 out of 15 0.26 

74 76.70 395.16 1.33 P21212 5.53 10.60 7.04 73.04 90.00 90.00 3 out of 15 0.27 

5981 76.75 792.80 1.33 Aba2 10.88 10.67 7.23 109.11 90.00 90.00 4 out of 15 1.04 

57 76.76 792.83 1.33 Aba2 10.88 10.67 7.23 70.88 90.00 90.00 4 out of 15 1.04 

52 76.78 393.69 1.33 P21/c 5.98 7.13 10.94 90.00 57.58 90.00 4 out of 15 0.90 

49 77.00 397.34 1.32 P21/c 5.37 9.15 8.94 90.00 64.69 90.00 1 out of 15 0.00 

9552 77.15 794.82 1.32 P43212 14.34 10.24 5.41 90.00 90.00 90.00 3 out of 15 0.41 

961 77.16 794.86 1.32 P43212 10.24 14.35 5.41 90.00 90.00 90.00 3 out of 15 0.41 

8 77.70 795.94 1.32 Pbca 9.34 8.80 9.68 90.00 90.00 90.00 2 out of 15 0.90 

863 78.06 801.29 1.31 P43212 5.58 10.29 13.96 90.00 90.00 90.00 3 out of 15 0.25 

24 78.09 399.34 1.32 P21/c 6.94 5.61 11.15 90.00 67.02 90.00 1 out of 15 0.00 

1854 78.12 1602.04 1.31 I41/a 7.07 10.98 20.64 90.00 90.00 90.04 1 out of 15 0.00 

18 78.17 402.41 1.31 Pna21 8.77 8.35 5.49 90.00 90.00 90.00 5 out of 15 0.28 

39 78.62 401.82 1.31 P21/c 10.37 5.37 7.48 90.00 74.73 90.00 1 out of 15 0.00 

33 78.77 804.27 1.31 Pbca 5.40 10.87 13.69 90.00 90.00 90.00 2 out of 15 0.28 

1144 78.77 804.27 1.31 Pnma 10.87 13.69 5.40 90.00 90.00 90.00 2 out of 15 0.28 

29 78.83 402.17 1.31 P21/c 5.72 6.79 10.35 90.00 90.45 90.00 1 out of 15 0.00 

46 78.88 400.94 1.31 Pca21 10.47 6.85 5.59 90.00 90.00 90.00 1 out of 15 0.00 

1963 78.90 801.93 1.31 Cmc21 17.24 10.47 5.59 90.00 90.00 127.4
0 1 out of 15 0.00 

2 79.05 401.57 1.31 Pna21 6.87 10.59 5.52 90.00 90.00 90.00 3 out of 15 0.80 

533 79.09 805.84 1.30 Pccn 5.52 10.29 14.17 90.00 90.00 90.00 1 out of 15 0.00 

139 79.17 199.77 1.32 P-1 6.68 5.71 6.36 77.27 65.59 65.01 4 out of 15 1.12 

35 79.26 403.18 1.30 P212121 13.27 5.51 5.51 90.00 90.00 90.00 7 out of 15 0.46 

Table 11: Comparison of Lattice Energies, Crystal structures in the 35 lowest energy structures (in order of 

stability) and the experimental form II for the empirical FIT+GDMA potential at a pressure of 2 GPa. These stable 

structures were analyzed in detail for their similarities to the experimental form II (𝒉𝟓-II PYRDNA05)186  modelled 

at 2 GPa of pressure using the same methods as above but the empirical FIT+GDMA potential. 
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STABILITY OF OBSERVED VERSUS HYPOTHETICAL STRUCTURES  

Structure (pyr#) Lattice Volume Density Space-Group a b c 𝛼 𝛽 𝛾 Dimers 

2 -68.24 394.05 1.3333 Pna21 6.69 10.86 5.42 90.00 90.00 90.00 T1 

594 -67.46 798.12 1.3166 C2/c 7.13 12.94 9.43 90.00 66.63 90.00 Hb1 

58 -67.30 800.42 1.3128 Pbca 6.82 10.43 11.26 90.00 90.00 90.00 Hb1 

1 ≈ FORM II -66.96 401.53 1.3085 P212121 6.72 5.38 11.10 90.00 90.00 90.00 T2, Hb3 

978 -66.94 798.03 1.3167 C2/c 7.12 12.94 9.42 90.00 66.83 90.00 Hb1 

FORM II -66.76 401.69 1.3080 P212121 5.38 6.71 11.13 90.00 90.00 90.00 T2, Hb3 

12 -66.72 398.76 1.3176 Pca21 6.99 5.59 10.21 90.00 90.00 90.00 Hb2 

9 -66.22 399.98 1.3136 Pna21 7.25 5.62 9.82 90.00 90.00 90.00 Hb2 

20 -66.07 394.19 1.3328 P21/c 7.10 5.68 10.76 90.00 65.31 90.00 S1, T1 

428 -65.85 1616.93 1.2997 Fdd2 12.86 17.30 7.27 90.00 90.00 90.00 Hb1 

546 -65.81 826.30 1.2717 P-421c 12.26 12.26 5.50 90.00 90.00 90.00 T2, Hb3 

6 -65.73 398.06 1.3199 P21/c 6.68 5.55 10.73 90.00 90.01 90.00 T1 

88 -65.66 1637.03 1.2838 Fdd2 10.23 13.93 11.49 90.00 90.00 90.00 None 

597 -65.56 393.99 1.3335 P21/c 7.12 5.69 10.73 90.00 114.87 90.00 S1, T1 

44 -65.48 808.53 1.2996 Aba2 13.30 10.99 5.53 90.00 90.00 90.00 None 

2039 -65.45 783.20 1.3417 C2/c 9.04 9.04 10.53 90.00 65.56 90.00 S1 

7 -65.36 401.19 1.3096 Pca21 10.65 5.59 6.74 90.00 90.00 90.00 T1 

2018 -65.34 806.96 1.3022 Aba2 13.66 10.81 5.47 90.00 90.00 90.00 None 

559 -65.32 790.11 1.3299 Pbca 8.96 10.10 8.73 90.00 90.00 90.00 S1 

27 -65.29 394.77 1.3309 P21/c 5.42 10.36 7.64 90.00 67.12 90.00 Hb1, Hb2, S1 

4 -65.17 409.58 1.2828 P212121 5.54 11.14 6.64 90.00 90.00 90.00 T1 

35 ≈ FORM 
III -65.16 399.37 1.3156 P212121 13.19 5.50 5.51 90.00 90.00 90.00 None 

8 -65.12 792.47 1.326 Pbca 9.54 8.63 9.63 90.00 90.00 90.00 Hb3, S1 

91 -65.07 1646.10 1.2767 Fdd2 14.23 12.20 9.49 90.00 90.00 90.00 bT 

437 -65.07 800.10 1.3133 Pbca 6.64 12.72 9.48 90.00 90.00 90.00 Hb1, Hb3, 
S1, T2 

917 -65.04 408.51 1.2861 P21/c 8.59 8.22 5.94 90.00 77.17 90.00 Hb1, S1 

37 -64.97 399.02 1.3167 P21/c 5.64 8.47 9.63 90.00 60.17 90.00 Hb1, S1 

FORM I -64.94 406.97 1.2910 Pna21 17.07 8.67 11.00 90.00 90.00 90.00 T2, bT, Hb3 

85 -64.81 811.96 1.2941 PBCN 10.21 11.28 7.05 90.00 90.00 90.00 Hb1 

41 -64.77 401.80 1.3076 Pna21 7.08 8.86 6.40 90.00 90.00 90.00 Hb2 

18 -64.69 400.10 1.3131 Pna21 9.10 8.14 5.40 90.00 90.00 90.00 None 

162 -64.56 408.71 1.2855 P21/c 5.86 8.26 9.37 90.00 64.36 90.00 Hb1, S1 

Table 12: Comparison of lattice energies (in kJ mol-1), crystal structures and the occurrence of the gas phase dimer 

structures (Figure 13) in the 30 lowest energy structures and the experimental forms I and II  (ℎ5-I PYRDNA04, 

ℎ5-II PYRDNA05)186 for the DIFF potential. These stable structures were analyzed in detail for their similarities to 

each other and the isolated dimer structures. 
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4 The influence of nitro-group conformations and 

charge distributions on organic energetics168 

4.1 Introduction and overview 

The rigid molecule approximation was successful in determining the polymorphs of pyridine (Chapter 3), but 

how well does this approximation extend to more flexible molecules like energetic materials? What is the influence 

of conformation on the electrostatic properties of organic energetics? This chapter investigates the influence of 

variations in the charge distribution of NO2 groups within the crystalline polymorphs of energetic materials. 

Previously suggested correlations are used to see how this may affect their explosive properties. The Iterated 

Stockholder Atoms (ISA) partitioning of high quality (PBE0/aug-cc-p-VTZ) charge distributions is used to 

examine the approximations that can be made in modelling polymorphs and their physical properties, using RDX, 

TNT, TNB and HNB as exemplars. This is done by examining the variations in the NO2 charge distribution 

depending on the neighbouring atoms, the rest of the molecule, and also the NO2 torsion angle within the possible 

variations found in observed crystal structures. Proposed correlations between the molecular electrostatic 

properties, such as trigger-bond potential or maxima in the electrostatic potential, and impact sensitivity, originally 

proposed for comparisons between different molecules, are used to determine the influence of the changes in 

conformation that occur on crystallization. This requires investigating the variations in NO2 torsion observed in 

experimental crystal structures by examining the Cambridge Structural Database (CSD), and determining how this 

is linked to the conformational energy, and the charge and dipole magnitude on each atom. The effect of changes 

in charge density with conformation can be examined by comparing the electrostatic potential around the molecule 

and the lattice energy. These are calculated using the distributed multipoles calculated for the crystalline 

conformation and using multipole moments analytically rotated from the optimized molecular structure. Assuming 

that the charge distribution is not specific to the conformation appears adequate for proposing plausible crystal 

structures in a CSP study but too inaccurate for modelling the relative lattice energies. This establishes the basis 

of transferability for realistic non-empirical model intermolecular potentials for simulating energetic materials. 

One such potential is developed in Chapter 5 for TNB, where the use of a rigid conformation for CSP seems a 

sensible approximation (Chapter 6). The implications of the transferability of the NO2 charge distribution for 

future modelling energetic materials are further discussed in Chapter 7. 
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4.1.1 Energetic properties  

Energetic materials (1.4), which decompose explosively under various external stimuli, are intrinsically difficult 

to study experimentally, and hence the design of new materials with desirable property combinations such as low 

sensitivity but high detonation performance can benefit from accurate molecular modelling.137, 138, 322 Explosive 

properties are sensitive to the arrangement of molecules in the crystal, and hence to the polymorph formed.6, 137, 

236, 323 Consequently, Crystal Structure Prediction (CSP) methods may be used to determine whether an energetic 

molecule can crystallize in a dense structure with desirable energetic properties, helping to focus synthetic efforts. 

There have been extensive quantum mechanical studies324 seeking to find correlations with the experimental 

impact sensitivity of the materials137, 138, 146, 237, 325-333 but these are on the intrinsic sensitivity or stability of the 

isolated molecule as opposed to the measured sensitivity of the condensed phase.324  It has been recognized that 

the crystal structure will also affect energetic properties, as the intermolecular interactions in the solid are linked 

to dissociation processes essential to detonation, such as defect formation. Correlations have been found between 

the heat of fusion of the crystal and the N-N bond dissociation energy334 or crystalline void space,335  but the 

prediction of impact sensitivity and other processes is clearly a complex combination of molecular and crystalline 

properties.336-338 In particular, the crystalline conformation can differ from the isolated molecule conformation, 

vary between polymorphs and with temperature and pressure. The changes in NO2-torsion angles that can occur 

on crystallization are examined and their effect on the molecular charge distribution and associated electrostatic 

properties.  

Computing energetic material properties requires accurately modelling regions of the repulsive wall that are not 

adequately sampled by empirical intermolecular potentials that have been fitted to crystals at ambient conditions. 

Thus developing non-empirical methods for modelling the intermolecular forces between energetic molecules, 

suitable for molecular dynamics (MD) simulations, has been the subject of a considerable body of recent 

research.22, 339, 340 However, such methodologies have usually treated the molecules as rigid. A distributed 

multipole model of the molecular charge distribution provides a method of both examining the transferability of 

the local charge distribution as well as a model for calculating the electrostatic contribution to the intermolecular 

interaction energy. This chapter only examines the conformation dependence of the electrostatic term. However, 

other contributions to the intermolecular energy, such as the polarization, dispersion and anisotropic short-range 

repulsive terms are very closely related to the molecular charge density, and therefore are expected to show similar 

transferability properties. The electrostatic term (2.5) tends to be the most dominant, orientation-dependent 

determinant of intermolecular interactions between molecules in van der Waals contact. It is arguably341 the 

dominant contribution in interactions which are often described by crystal engineers as hydrogen bonding, …𝜋  
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stacking, 𝑁…𝑂 interactions, etc. Accurate atom-atom non-empirical models for intermolecular forces derived from 

the molecular charge density have been isotropic and tended to focus on rigid molecules,164 (1.4.2.2) because of 

the difficulty of modelling the changes in charge distribution with conformation.  

4.1.2 The influence of conformation on impact sensitivity 

There are currently only a few reliable methods for predicting the detonation pressures and velocities of CHNO 

energetics,137 and there has been less progress made towards predicting the sensitivity of an explosive compound 

to  the different stimuli that can initiate detonation.342 This reflects the intricacies of detonation, for example the 

explosive molecule LLM-119 is sensitive to impact but moderately insensitive to friction and electrical sparks.343 

A widely studied and important measure of sensitivity is impact sensitivity, which is the vulnerability of the 

material to explosion after sudden compression due to impact.324 This is a complex process, dominated by the 

chemistry of the chemical reaction that takes place,322 chemical bonding and molecular interactions within the 

crystal. The impact sensitivity of an energetic material is normally determined using a drop-weight test,344 being 

inversely proportional to ℎ50%, the height at which 50% of the experiments produce a reaction on dropping a 

weight onto the material.   

The impact sensitivity of a material is heavily dependent on the particle size,137 the shape and hardness of the 

crystals, the roughness of its surfaces, the purity and the presence of lattice defects, as well as the intrinsic 

differences in polymorph packing,6, 345-347 the surrounding temperature during experiment and, most importantly, 

the weight used. Hence, the observed impact sensitivities (ℎ50%) for TNT vary from around 100 cm to over 250 

cm.236, 323 The experimental impact sensitivities obtained in 1990 by Wilson and Bliss323 are used as they are a 

consistent set of experiments under consistent conditions, for TNB, HNB, and TNT, though these do not have 

separate values for the different polymorphs. RDX is a comparatively new explosive and its impact sensitivities 

were measured later.342, 348 

Correlations between the molecular electrostatic potential (a molecular property) and the impact sensitivity (a 

crystal property) of CHNO energetic materials were investigated decades ago,146, 326-329 based on the crude 

electrostatic models237, 326, 330-333 available at the time.  One approach focuses on the charge distribution at the 

trigger bonds (the bond likely to break during detonation).344, 349 The trigger bonds are typically X-NO2 functional 

groups, and the strengths of C-NO2 and N-NO2 bonds are found to be inversely proportional to the magnitudes of 

the positive electrostatic potentials in the C-N and N-N inter-nuclear regions (𝑉𝑚𝑖𝑑).237, 331, 350, 351 The electrostatic 

potential at the longest C-NO2 bond is often used237, 333, 352  as calculated by the equation first proposed by Owens 

in 1985333 
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𝑉𝑚𝑖𝑑 =  
𝑄𝐶

0.5𝑅
+

𝑄𝑁

0.5𝑅
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where 𝑅 is the longest bond length between C and N in the C-NO2
 bonds, while 𝑄𝐶  and  𝑄𝑁 are the atomic charges. 

The above equation is based on the assumption the longest X-NO2 bond will be the first bond to break during the 

initiation process. The initial correlations between 𝑉𝑚𝑖𝑑  and impact sensitivity computed using the Mulliken point 

charges240 (2.5.1.1) with a HF/STO-3G level of theory333 on each atom were only observed within a specific group 

of poly-nitroaromatics, which at least partly reflects the limitations of the partitioned charges in early ab initio 

calculations. An alternative is to incorporate the response of the other trigger bonds in the molecule. The averaged 

𝑉𝑚𝑖𝑑   

𝑉𝑚𝑖𝑑,𝑎𝑣𝑔 =  
1

𝑁
∑(

𝑄𝑋
𝑖

0.5𝑅𝑖

+
𝑄𝑁

𝑖

0.5𝑅𝑖

)

𝑁

𝑖=1
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has been be used236 to derive  empirical correlation models for reproducing impact sensitivities of CHNO 

explosives. A more general but complex correlation has been suggested between electrostatic potential surface of 

the isolated molecule and crystal impact sensitivities, with the sensitivity of the explosive to impact being 

exponentially related to the average positive and negative potential across the molecular electrostatic potential 

surface236 

ℎ50% = 𝑎1 + 𝑎2 exp[−(𝑎3|�̅�𝑆
+ − |�̅�𝑆

−||)] 
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where 𝑎𝑛 are best fit parameters, and �̅�𝑆
+ and �̅�𝑆

− are the average positive and negative electrostatic potentials on 

the iso-surface. This is an example of the more intricate correlations that have been investigated. However, the 

goal of finding an adequate predictive correlation of impact sensitivity with molecular properties across all 

chemical families of explosives is still elusive. This could well be because sensitivity to detonation is not limited 

to a molecular property, but also the crystal environment. Now that CSP could, in principle, be used in the design 

of new explosives, the likely crystallization environment of a molecule prior to its synthesis is no longer unknown. 

Given the empirical correlations of molecular properties with impact sensitivity have focused on electrostatic 

properties yet ignored the conformational change on crystallization, it is appropriate to ask whether these changes 

in NO2 torsion angle would affect the impact sensitivity. 

The main focus of this chapter is on the electrostatic potential surface maximum (𝑉𝑚𝑎𝑥) and minimum (𝑉𝑚𝑖𝑛) as 

many studies have focused on the correlation of impact sensitivity with these molecular properties.137, 138, 324, 336, 
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349-351, 353-356 The electrostatic maxima and minima in molecules have been previously used in a method of 

estimating the likelihood of co-crystal formation,357 i.e. as a simple and approximate surrogate for likely relative 

crystal energies. Analysis of the electrostatic potential of isolated TNT and CL-20 molecules and their 

hetero/homo-dimers138 was able to correlate their electrostatic potential maxima (𝑉𝑚𝑎𝑥), minima (𝑉𝑚𝑖𝑛) and the 

range of the minima and maxima (𝑉𝑡𝑜𝑡), to justify co-crystal formation and observed sensitivities to impact. Though 

not explicitly discussed in the paper,138 it showed that the change in conformation of CL-20 and TNT from pure 

crystal to co-crystal changes the charge distribution of the isolated molecules and thus the electrostatic potential, 

which may help rationalise the reduced impact sensitivity of the co-crystal.  

In our study, the modelling of the NO2 group charge distributions and the energetic crystals is aided by the ISA 

analysis of the molecular charge distributions (2.5.1.7).231, 232 The atomic multipole moments of the nitro groups 

can be examined for both transferability between molecules and conformations, and used in models for impact 

sensitivity.  The main molecules of focus are the nitro explosives 1-3-5 trinitrobenzene (TNB), hexanitrobenezene 

(HNB), trinitrotoluene (TNT) and 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) whose structurally characterized 

polymorphs are shown in Figure 20. From the variation in nitro torsion angles (and axial/equatorial conformation 

in RDX) between polymorphs it is clear that the crystalline structure has a significant effect on the molecular 

conformation.  This, in turn, will affect the charge distribution by changing the orbital overlaps in 𝜋 and 𝜎 bonding. 

In contrast to the previous work used in proposing correlations between charge distribution and impact sensitivity, 

this thesis uses state-of-the art electrostatic models to examine the role of conformational change on the charge 

distributions of NO2 groups. High quality electrostatic models are required to reduce the artefacts associated with 

poor methods of partitioning inaccurate molecular charge distributions. The Iterated Stockholder Atoms (ISA)231 

partitioned distributed multipoles is used to determine whether changes in torsion angle due to crystallization 

affects some proposed correlations with impact sensitivity. Whether this change is important to the molecular 

modelling of nitro-energetics is also investigated, specifically for crystal structure prediction (CSP) studies and 

the development of non-empirical anisotropic atom-atom intermolecular potentials.  
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TNB 

NO2(𝜙)/ ° 180 

   

Form I TNBENZ11263 
183K, 1.729 g cm-3 

Form II TNBENZ12263 
120K, 1.688 g cm-3 

Form III TNBENZ13263 
183K, 1.717 g cm-3 

NO2(𝜙)/ ° 181, 176, 
212, 176, 191, 171 

178, 176, 184, 185, 181, 
193  

177, 172, 180 

 

HNB 

NO2(𝜙)/ ° 56 

  

Form I HNOBEN358 
R.T.P, 1.988 g cm-3 

NO2(𝜙)/ ° 60, 48, 53, 59, 48, 52 

 

TNT 

NO2(𝜙)/ ° 37, 180 

  

𝛼 ZZZMUC08144 
100K, 1.713 g cm-3 

𝛽 ZZZMUC09144 
123K, 1.704 g cm-3 

NO2(𝜙)/ ° 39, 34, 119, 315, 157, 231 140, 147, 240, 232, 157, 137 

 

RDX (AAA) 

NO2(𝜙)/ ° 166 

 
   

𝛼 CTMTNA03141 
90K, 1.858 g 

𝑐𝑚−3 

𝛽 CTMTNA04142 
150K, 1.82 g 

𝑐𝑚−3 

𝛾 CTMTNA02140 
5.2GPa, 293K, 
2.267 g 𝑐𝑚−3 

𝜀 CTMTNA06143 
5.7GPa, 293K, 
2.266 g 𝑐𝑚−3 

NO2(𝜙)/ ° 166, 
168, 195 

207, 201, 203, 
168, 167, 164 

172, 162, 162, 
169, 214, 183  

225, 217, 219 

Figure 20: The crystal structures of the energetic polymorphic crystals TNB263, HNB358, TNT144 and RDX140-143. 

The form, Cambridge Structural Database (CSD) reference code, determination conditions (at ambient pressure 

unless stated otherwise), density and NO2 torsion angles (𝜙°) are given below each crystal structure. These were 

obtained from their experimental Cambridge Structural Database359-361 entries, and visual representations of the 
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structures constructed using CCDC Mercury 3.6.291, 362 The Iterated Stockholder Atoms (ISA) atomic charges for 

the optimized structures, computed at the PBE0/aug-cc-pVTZ level, are given in parenthesis in red or blue for 

positively or negatively charge nuclei. The NO2 torsion angles for the optimized molecules are given below the 

structural diagrams. 

4.2 Methodology 

4.2.1 The electrostatic model 

The static isolated molecular structures of RDX, TNT, TNB and HNB were optimized using the Perdew-Burke-

Ernzerhof (PBE) general gradient approximation combined with a portion of exact exchange to form the PBE0 

functional203-205  and the aug-cc-pVTZ Dunning basis214 using the Gaussian 09 program.235  This level of theory 

was also used for conformational analysis (unless stated otherwise). In addition, for calculating the molecular 

charge densities in the experimental crystal conformations, hydrogen atom positions were corrected to standard 

bond lengths (𝐶𝑎𝑟𝑜𝑚𝑎𝑡𝑖𝑐 − 𝐻 = 1.08Å, 𝐶𝑠𝑝3 − 𝐻 = 1.06Å)363  to account for the systematic error in X-ray structure 

determinations.  The distributed multipoles (𝑄𝑙𝑚
𝑖 ) of each conformation were calculated in the molecular axis frame 

(Figure 21) and derived using the one of the more recent iterated stockholder atoms algorithms implemented in 

CAMCASP 6.0107, the ISA-A algorithm.233, 273 The main basis used an aug-cc-pVTZ basis, the auxiliary basis used 

Cartesian GTOs of aug-cc-pVTZ size and the atomic basis used an aug-cc-pVQZ basis set. The distributed 

multipole expansion is evaluated to hexadecapole level (Rank 𝑙 =  4) to include the electrostatic effects due to 

lone-pair and 𝜋 atomic anisotropy. 

4.2.2 Electrostatic potential surface and structural analysis 

Using the various sets of distributed multipole moments, the electrostatic potential was computed and mapped 

onto an iso-density surface of 10-3
 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑏𝑜ℎ𝑟3⁄  using CAMCASP 6.0,107 which was visualized on the isolated 

molecular structures using the ORIENT 4.9.08108 program. This iso-density surface was chosen as the majority of 

electrostatic potential studies on energetic materials and their sensitivities use this surface, following the 

suggestion by Bader239, 364 as that it can include more than 95% of a molecule’s true electronic density. This surface 

has recently been used to define the molecular volume for use in estimating the density of energetic materials.365 

The electrostatic potential on this iso-density surface is approximately 3Å from the nearest nucleus in the molecule 

and so gives the electrostatic potential sampled by the non-hydrogenic nuclei that would be in van der Waals 

contact with the molecule in the crystal. Lattice energies were calculated using a combination of the ISA distributed 

multipoles, to obtain the electrostatic energy, and the exp-6 FIT potential, for all other contributions using 



 138 

DMACRYS.40 Crystal structure analysis and visual representations used the analysis software of the Cambridge 

Crystallographic Data Centre, mainly Mercury 3.6.291, 362 Root Mean Square Deviation (RMSDn) calculations, the 

optimum overlay of n (n  15 for crystal structures, n =1 for molecular conformation comparisons) molecules in 

two crystal structures excluding the hydrogen atoms, were also done using Mercury. 

4.2.3 Surveying the Cambridge Structural Database 

To test the transferability of the multipole moments with changes in the NO2 torsion angle, Z matrices of the 

structures in Figure 20 were created and the NO2 functional groups were rotated through 180° in 20 increments, 

while the rest of the molecule was held rigid at the optimized structure. The extent to which the nitro-group torsion 

angles can change in the condensed phase was investigated using histograms of the frequency a 𝑂-𝑁-𝑋-𝐶 torsion 

angle (rounded to nearest degree) occurred in the relevant organic crystal structures found in the Cambridge 

Structural Database (CSD).366 The histograms were constructed for the four unique chemical environments found 

in the four energetic molecules, with the most commonly observed environment being a 𝐶-𝑁𝑂2 on an aromatic 

ring with two adjacent hydrogen atoms (Table 13).  

Distribution curves illustrating the occurrence of each 𝑂-𝑁-𝑋-𝐶 torsion in a specific chemical environment (for 

example, an NO2 adjacent to two hydrogens or a methyl group in an aromatic ring) were generated using an in-

house python program366 for determining the possible torsion angles that could be adopted in crystal structures 

based on the torsion angle statistics of all 870,000+ molecules in the Cambridge Structural Database (CSD).366 

The specific NO2 fragments used are as follows 

    

aromatic C-NO2 
adjacent 

hydrogens (TNB, 
para-NO2 TNT) 

aromatic C-NO2 adjacent NO2 
(HNB) 

aromatic C-NO2 adjacent 
a hydrogen and a 

methyl group (ortho-
NO2 TNT) 

aliphatic N-NO2 
adjacent hydrogens 

(RDX) 

Table 13: The NO2 fragments that were searched for within the CSD. The occurrence of each torsion angle 

(rounded to the nearest degree) was plotted in the conformational histograms (Figure 25 & Appendix 4.A Figure 

27).  
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4.2.4 Analytical Rotation 

The ORIENT108 program can transform the ISA231, 233 distributed multipoles of a molecule (originally calculated 

in the molecule-fixed axis) into the atomic local axes of the molecule as defined in Figure 21. This is done by 

analytically rotating the global multipoles into the local axis frame using Equation 95. 𝑄𝑙𝑘
(𝐿)

 is the multipole moment 

in the local axis, 𝑄𝑙𝑚
(𝐺)

 the multipole moment in the molecule-fixed axis and 𝐷𝑚𝑘
𝑙 (Ω) the transformation tensor used 

to analytically rotate the multipoles. The molecular geometry and the user defined local axes must first be defined 

before the multipole moments calculated in the global axis are then analytically rotated into this user defined local 

axis. 

𝑄𝑙𝑘
(𝐿)

= ∑ 𝑄𝑙𝑚
(𝐺)

𝐷𝑚𝑘
𝑙 (Ω)

𝑚
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4.2.4.1 Method 

The ISA distributed multipoles can be analytically rotated from the molecular axes into the atomic local axes of 

the molecule, with the 𝑧-axis along the 𝑋-𝑁 plane (along the bond) and the 𝑥-axis in to 𝑋-𝑁=𝑂 plane 

(perpendicular to the 𝑧-axis but in the plane of the molecule) (Figure 21). Analytically rotating the local axis-

defined multipoles to a different X-NO2 torsion angle provides an electrostatic model that includes the geometric 

effects of conformational change but does not explicitly account for changes in the molecular charge distribution. 

Provided that the non-NO2 torsion angles, bond lengths and angles are identical, it is possible to analytically rotate 

the multipoles to represent the geometric change in torsion angles, using ORIENT 4.9.08;108 a methodology 

previously used to study the transferability of electrostatic models between polypeptides.367  

 

Figure 21: An example of the local atomic axis (blue) definitions used for comparing and analytically rotating the 

NO2 multipole moments from the molecule fixed axis (red) using ORIENT to be used in lattice energy 

minimizations.  
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In order to focus solely on the effects of changing NO2 torsion angles and compare experimentally observed and 

optimized conformations, the experimentally observed NO2 torsion angles were used while all the bond lengths 

and angles and non-NO2 torsion angles were kept rigid at their optimized values. These structures and charge 

distributions calculated in this conformation are referred to as the optexptNO2. In addition, multipole moments 

calculated in the optimized conformation were analytically rotated into the optexptNO2 conformation. Charge 

distributions obtained this way are referred to as anarot (analytically-rotated). The electrostatic properties obtained 

from the analytically rotated distributed multipoles can then be contrasted with those acquired from calculating 

the charge distribution in the optexptNO2 conformation, which also accounts for the rearrangement of charge 

within the molecule, e.g. from changes in π conjugation. Analytical rotation can only be applied to the nitro-

aromatic molecules, as the aromatic ring is rigid, and undergoes negligible changes when the molecules are 

optimized and the nitro-group rotate. Only the NO2 torsion angles change between the optimized and observed 

conformations (Figure 22). However, for nitramines, like RDX, there is a notable difference in the conformation 

of the aliphatic ring in the experimental crystalline conformers and the optimized conformation. The difference 

results in a change in non-NO2 torsion angles upon optimization. Thus, changing only the NO2 torsion angle in the 

optimized structure using the standard Z-matrix definition (the optexptNO2 methodology) gives a structure that is 

different from the experimental structure. Hence, it is not possible, let alone appropriate, to test transferability by 

analytically rotating the multipoles of RDX using the anarot method (Figure 22, Appendix 4.B Table 17). 

4.2.4.2 Differences in optimized and experimental conformations of RDX contrasted with TNT 

Overlays of experimental conformations, the optimized conformations, and the conformations with only the NO2 

angles rotated (optexptNO2) are shown in Figure 22, to illustrate the changes that accompany nitro-group rotation. 

In the AAE conformation of RDX, the equatorial NO2 moves more into the plane of the ring, as the aliphatic ring 

is more open for the isolated molecule, possibly due to repulsion from lone pairs on the ring sp3 nitrogen atoms, 

that are not being counteracted by crystal packing forces. A similar change in the aliphatic ring conformation and 

nitrogen atoms in the axial NO2 groups is seen for the AAA conformation, therefore, it is not possible to 

consistently analytically rotate the nitro-group multipole moments. While these changes may not look severe, one 

can see by a comparison of differences in cell parameters, RMSD15 values and lattice energies between using the 

experimental and optimized molecular conformations in Appendix 4.B Table 17 that these differences result in 

very different minima. In contrast, the aromatic ring in the optimized and experimental conformations of the nitro-

aromatic TNT is unchanged, with only small methyl group rotation (Figure 22), meaning analytical rotation is 

feasible. Appendix 4.B shows that although there is a significant difference in the nitro groups, which does have 
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a major effect on the crystal packing, changing the nitro- torsion angles to the experimental values can result in a 

good reproduction of the structure. 

optimized (grey) vs experimental (green) 

   

TNT, 𝑅𝑀𝑆𝐷1 = 0.199 Å RDX (AAE), 𝑅𝑀𝑆𝐷1 = 0.182 Å RDX (AAA), 𝑅𝑀𝑆𝐷1 = 0.379 Å 

optexptNO2 (grey) vs experimental (green) 

   

TNT, 𝑅𝑀𝑆𝐷1 = 0.152 Å RDX (AAE), 𝑅𝑀𝑆𝐷1 = 0.185 Å RDX (AAA), 𝑅𝑀𝑆𝐷1 = 0.287 Å 

Figure 22: Overlay of experimental crystalline conformation (green) of TNT form I (molecule 1/ZZZMUC08144), 

RDX 𝛼 (AAE/CTMTNA03141) and 𝜀 (AAA/CTMTNA06143) with their PBE0/aug-cc-pTVZ optimized structures 

(green). The row below is the overlays of the experimental conformations (green) and the optimized conformations 

with experimental NO2 torsion angles, optexptNO2 (grey). 

4.3 Results 

4.3.1 Molecular electrostatic properties and correlation with impact sensitivity 

The electrostatic potential around the static optimized conformations of the four energetic molecules (Figure 23) 

clearly shows that the electrostatic term will greatly influence intermolecular interactions, hence explosive 

properties. Potential extrema (𝑉𝑚𝑎𝑥  and 𝑉𝑚𝑖𝑛) are influenced by molecular symmetry and not necessarily 

centralized around the NO2 groups, in contrast to the measure of the local NO2 charge distribution 𝑉𝑚𝑖𝑑 . The AAE 

and AAA crystalline conformations of RDX optimize to very different geometries, therefore, are conformational 

polymorphs.147 The AAE conformation, with one equatorial NO2 group, is the lower symmetry, higher energy 

conformation of RDX and occurs in the most stable 𝛼 polymorph and one of the two independent molecules in the 
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high pressure 𝛾 form. It has a different surface shape and potential minimum (𝑉𝑚𝑖𝑛) but the potential maximum 

for this bowl-shaped molecule is virtually unaffected. The nitramine RDX has a significantly larger gradient in the 

electrostatic potential around the molecule than any of the flatter nitro-aromatics.  

 

TNB 

 

HNB 

 

TNT 

𝑉𝑚𝑖𝑛 = −0.49𝑒𝑉 

𝑉𝑚𝑎𝑥 =  0.91𝑒𝑉 

𝑉𝑚𝑖𝑛 = −0.26𝑒𝑉 

𝑉𝑚𝑎𝑥 =  1.13𝑒𝑉 

𝑉𝑚𝑖𝑛 = −0.72𝑒𝑉 

𝑉𝑚𝑎𝑥 =  0.59𝑒𝑉 

ℎ50%/𝑐𝑚−1 = 71323 (100368) ℎ50%/𝑐𝑚−1 = 11323 
ℎ50%/𝑐𝑚−1 = 98323 

(160369, 107323) 

 

RDX – AAE 

 

RDX – AAA 

 

𝑉𝑚𝑖𝑛 = −0.73𝑒𝑉 

𝑉𝑚𝑎𝑥 =  1.45𝑒𝑉 

𝑉𝑚𝑖𝑛 = −0.81𝑒𝑉 

𝑉𝑚𝑎𝑥 =  1.46𝑒𝑉 

ℎ50%/𝑐𝑚−1 = 28348 (24, 26342) 

Figure 23: The electrostatic potential (eV) computed using the ISA distributed multipole analysis (ISA-DMA) on 

the iso-density surface of 10-3 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑏𝑜ℎ𝑟3⁄  around the static optimized isolated molecular structures of TNB, 

HNB, TNT and RDX. Note that for some of the above molecules the maximum, 𝑉𝑚𝑎𝑥 is greater than the potential 

scale, which is +1 eV (red) to −1 (blue) eV. 

The variations in charges on the X and N atoms in the X-NO2 groups of the optimized conformations are contrasted 

with X-NO2 groups in the experimentally observed condensed phase conformations that have the most unique 

structures (Table 14). This clearly shows that the nitrogen atoms in the  N-NO2 groups in RDX are more positively 

charged  (0.882 − 0.945 𝑒) than any nitrogen in the aromatic C-NO2 groups (0.749 − 0.852 𝑒) and even within 

the C-NO2 groups, the charge distributions are far from transferable (as seen in the atomic charges in Figure 20). 

Changes in conformation result in variations in the trigger-bond parameter 𝑉𝑚𝑖𝑑  (both longest and average) that 
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can be comparable to the conformational differences between molecules (Table 14).  The values of 𝑉𝑚𝑖𝑑  differ 

more between the molecules, but also vary between the different crystalline conformations. 

Molecule TNB (TNBENZ) HNB TNT RDX 

Polymorph 13 (III) 11 (I) 12 (II) HNOBEN ZZZMUC08 (𝛼) CTMTNA03 (𝛼) CTMTNA06 (𝜀) 

Molecule Opt Mol 1 Mol 2 Opt Opt Mol 1 Mol 2 Opt Expt Opt Expt 

𝑄𝑋𝑚𝑖𝑛 

𝑄𝑋𝑚𝑎𝑥
/𝑒𝑉 

−0.0289 

−0.0278 

−0.0145 

−0.00378 

−0.0213 

−0.0203 

0.000305 

0.00266 

−0.154 

−0.0481 

−0.0938 

0.0303 

−0.0873 

0.0105 

−0.352 

−0.329 

−0.350 

−0.318 

−0.355 

−0.353 

−0.383 

−0.373 

𝑄𝑁𝑚𝑖𝑛 

𝑄𝑁𝑚𝑎𝑥
/𝑒𝑉 

0.797 

0.799 

0.796 

0.810 

0.796 

0.798 

0.749 

0.750 

0.820 

0.852 

0.774 

0.811 

0.777 

0.811 

0.906 

0.943 

0.882 

0.902 

0.907 

0.908 

0.928 

0.945 

𝑉𝑚𝑖𝑑/𝑒𝑉† 1.044 1.093 1.054 1.016 0.948 0.999 0.981 0.819 0.759 0.789 0.783 

𝑉𝑚𝑖𝑑/𝑒𝑉‡ 1.045 1.093 1.054 1.016 1.051 1.098 1.074 0.852 0.857 0.792 0.836 

𝑉𝑚𝑖𝑑,𝑎𝑣𝑔

/𝑒𝑉 
1.044 1.071 1.052 1.016 0.982 1.021 1.007 0.828 0.792 0.790 0.816 

𝑉𝑚𝑖𝑛/𝑒𝑉 −0.49 −0.60 −0.49 −0.26 −0.72 −0.79 −0.74 −0.73 −0.84 −0.81 −1.00 

𝑉𝑚𝑎𝑥/𝑒𝑉 0.91 0.76 0.91 1.13 0.59 0.59 0.61 1.45 1.63 1.46 1.57 

ℎ50%/𝑐𝑚−1 71323 (100368) 11323 98323 (160369, 107323) 28348 (24, 26342) 

Table 14: A comparison of electrostatic properties of the 4 explosives and experimental impact sensitivities (ℎ50%). 

The optimized isolated structures and the most stable experimental conformations within the polymorphs were 

used. In RDX this is the AAE conformation in CTMTNA03, and the AAA conformation in CTMTNA06. The range 

of 𝑄𝑋 (X is either C or N, the atom connected to the nitro-group) and 𝑄𝑁  is the min and max values from the 3NO2 

groups (6 for HNB). The impact sensitivity used is given with other impact sensitivity determinations in brackets; 

for RDX the polymorph used is not specified, thus it is probable that the impact sensitivity of the 𝜀 form is very 

different from literature values, if the experiments used the most stable 𝛼 form. †𝑉𝑚𝑖𝑑  of the longest bond. ‡The 

trigger bond with the most positive 𝑉𝑚𝑖𝑑 . 

In comparing the molecular electrostatic properties 𝑉𝑚𝑎𝑥  and 𝑉𝑚𝑖𝑑  against experimental impact sensitivity (Figure 

24), one observes that conformational changes due to crystallization does affect these properties. There is a notable 

spread in 𝑉𝑚𝑎𝑥  and 𝑉𝑚𝑖𝑑  of the optimized and observed conformations in the nitrobenzenes TNB and TNT. This 

will significantly affect any correlation with impact sensitivity for the nitrobenzenes. Furthermore, for RDX, the 

spread of values for either 𝑉𝑚𝑎𝑥  and 𝑉𝑚𝑖𝑑  is not substantially larger than for TNB despite RDX having much larger 

conformational changes (Figure 20, Figure 22).  
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Figure 24: The calculated trigger-bond potential, 𝑉𝑚𝑖𝑑,𝑎𝑣𝑔 and molecular electrostatic potential surface 

maximum, 𝑉𝑚𝑎𝑥  plotted  against the experimentally observed impact sensitivities (ℎ50%) for the three nitro-

aromatic explosives.323 RDX has a different symbol as it is from a different chemical family, nitramines, and its 

observed ℎ50% has been obtained from a different source.348 The variations between the optimized and the most 

different crystalline conformations; HNB(opt ≈ expt), TNB(opt ≈ form III, molecule 1 in form I,  molecule 2 in 

form II) TNT(𝑜𝑝𝑡, 𝛼) and RDX(opt(AAA),opt (AAE), 𝛼(AAE) & 𝜀(AAA)) are shown. The atomic charge variations, 

other electrostatic properties (including 𝑉𝑚𝑖𝑑,𝑙𝑜𝑛𝑔𝑒𝑠𝑡, 𝑉𝑚𝑖𝑛) are given in Appendix 4.B, along with the plotted 

values. 

4.3.2 Modelling the electrostatic contribution to lattice energies  

4.3.2.1 The effects of NO2 conformation on molecular charge density 

How much variation is likely within the crystalline state and how does this affect atomic charges? Analysis of the 

NO2 torsion angles in the crystal structures in the Cambridge Structural Database (CSD) shows that an aromatic 

NO2 group adjacent to two hydrogen substituents is almost always planar, to within 20, which corresponds to a 

fairly small change in conformational energy, as shown for the para-nitro group in  TNT in Figure 25. There is a 

large barrier of about 25 𝑘𝐽 𝑚𝑜𝑙−1 for rotating the nitro group, presumably from changes in  electron conjugation. 

The atomic charge on C4 (the carbon bound to the para-NO2) rises, while those on the neighbouring C3 and C5 

fall. It was found that the atomic charge on N2 is mainly responsible for the charge balance. Additionally, the 
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dipole moments on the O atoms change significantly with rotation.  A similar picture is seen for the NO2 groups 

in TNB (Appendix 4.A), which are also adjacent to aromatic 𝐶-𝐻 groups. The picture is very different for the 

ortho nitro-groups in TNT (Figure 25), where a large range of torsion angles are observed for the NO2 between a 

methyl and hydrogen substituents on an aromatic ring. Here the planar conformation is the most commonly 

observed in the crystal structures, but this corresponds to a maximum in the intramolecular energy. There is a 

known preference for planar, extended conformations of molecules in the crystalline state as this often allows a 

denser packing.370 The height of the energy barrier is probably overestimated because the methyl group being fixed 

in the calculation and hence sterically clashing with the NO2 group, whereas in the crystal structure the methyl 

could rotate out of the way. However, one should note that the crystallographic angle in the CSD is an average 

over the torsional librations of the methyl and nitro-groups. In the ortho case the charges and dipoles change on 

many more atoms, though again the dipoles change most on the nitro-oxygen atoms. While this effect is probably 

exaggerated by the steric clash, it highlights the effects of changing 𝜋 conjugation between the nitro groups and 

the aromatic ring.  

 

Figure 25: Conformational behaviour of the para- (left) and ortho- (right) nitro groups in TNT. The behaviours 

as a function of torsion angle is given for (top to bottom) the distribution of the observed angles in the CSD for 

each environment; the change in PBE0/aug-cc-pVTZ energy relative to the optimized molecule as the nitro group 

torsion angle is changed; and the relative changes in the magnitude of ISA charge and dipole on each atom. The 

oxygen atoms that undergo the most significant changes in dipole moment have been indicated, and the optimized 

NO2 torsion angles are also illustrated, alongside other more notable NO2 torsion angles. 
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There is far sparser CSD data for an aromatic NO2 between two other NO2 groups (HNB), suggesting that any 

angle could be observed (Appendix 4.A). Nonetheless, the height of the conformational energy barrier is so great 

that without allowing for a concerted and highly correlated change in the other NO2 torsion angles the range of 

angles seen in other crystalline conformations would not occur in HNB. There is even less CSD data for N-NO2 

groups (Appendix 4.A) as seen in the analysis of the AAE conformer of RDX. It was found that there were 

significant variations in some of the atomic charges and dipoles for the ring nitrogen and the attached NO2 atoms.  

Overall, from Figure 25, it is clear that the nitro group can adopt a range of conformations, as a compromise 

between the intramolecular steric hindrance and the crystals packing forces, and that these changes in conformation 

do affect the nitro-group charge distribution, resulting in very different charge distributions for various NO2 

environments.  

The difference maps in Figure 26 show the extent to which the changes in charge distribution, from the 

rearrangement of the valence electrons, affect the electrostatic potential around each nitro-aromatic molecule. The 

difference between the potential calculated for optexptNO2 and anarot multipole moments is shown. The 

differences are very dependent on the extent to which the torsion angles differ between the optimized and 

experimental structures; ranging from being negligible for TNB, to underestimating 𝑉𝑚𝑖𝑛 by nearly 0.3 𝑒𝑉 for 

TNT.   
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TNB Form III 

Δ𝑉𝑚𝑖𝑛 =  −0.0061𝑒𝑉, Δ𝑉𝑚𝑎𝑥 = 0.0070𝑒𝑉 𝑅𝑀𝑆𝐷1 = 0.067 Å 

 

   

HNB Form I 

Δ𝑉𝑚𝑖𝑛 =  −0. 0235𝑒𝑉, Δ𝑉𝑚𝑎𝑥 = 0. 0332𝑒𝑉 𝑅𝑀𝑆𝐷1 = 0.057 Å 

 

   

TNT Form I – Molecule 1 

Δ𝑉𝑚𝑖𝑛 =  −0.22𝑒𝑉, Δ𝑉𝑚𝑎𝑥 = −0.05𝑒𝑉 𝑅𝑀𝑆𝐷1 = 0.258 Å 

 

   

TNT Form I – Molecule 2 

Δ𝑉𝑚𝑖𝑛 =  −0.28𝑒𝑉, Δ𝑉𝑚𝑎𝑥 = 0.05𝑒𝑉 𝑅𝑀𝑆𝐷1 = 0.251 Å 

Figure 26: The difference in electrostatic potential for molecular charge distributions calculated with the NO2 

groups in their experimentally observed torsion angles (optexptNO2) and those analytically rotated (anarot) 

viewed from above and below. The potential is mapped onto an iso-density surface of 10-3
 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑏𝑜ℎ𝑟3⁄   in eV 

with a varying scale. The RMSD1 (in Å) for the overlays of the optimized (grey) and optimized with experimental 

NO2 torsion angles (optexptNO2) (red) molecular conformations, for each molecule is included for comparison. 

4.3.2.2 The effects of NO2 conformation on lattice energies 

Table 15 illustrates how analytically rotating the atomic multipole moments affects the intermolecular lattice 

energy (𝐸𝑙𝑎𝑡𝑡).  For TNT, which has the largest NO2 torsion angle difference between experimental and optimized 
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structures, there is a significant change in the lattice energies of TNT (Table 15). However, the effect of anarot 

multipoles on the minimized lattice parameters and hence potential energy surface minima is negligible. The small 

change in the lattice energy of TNB reflects the very small differences in the torsion angles upon crystallization. 

The lattice energy differences are mainly due to variation in the electrostatic contributions (𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀]) as changes 

in the dispersion-repulsion terms (𝑉𝑑𝑖𝑠𝑝−𝑟𝑒𝑝) arise only from the change in the lattice structure.  Even though the 

relative lattice energies are not well reproduced when rotated multipole moments are employed, the low RMSD15 

values indicate that the crystal geometries differ insignificantly. This is also illustrated by the overlays in Figure 

22. Hence the anarot distributed multipole model, which assumes that the atomic charge distributions can be 

analytically rotated with changes in the NO2 torsion angle, reproduces the experimental polymorph structures 

satisfactorily enough to be used in CSP for initial analysis of the potential energy landscape. 

 TNT TNB HNB 

REFCODE ZZZMUC08 TNBENZ13 HNOBEN 

 𝐸𝑙𝑎𝑡𝑡 𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀] 𝑉𝑑𝑖𝑠𝑝−𝑟𝑒𝑝 𝐸𝑙𝑎𝑡𝑡 𝑉𝑒𝑙𝑠𝑡

(1)[𝐷𝑀] 𝑉𝑑𝑖𝑠𝑝−𝑟𝑒𝑝 𝐸𝑙𝑎𝑡𝑡 𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀] 𝑉𝑑𝑖𝑠𝑝−𝑟𝑒𝑝 

𝐸𝑜𝑝𝑡𝑒𝑥𝑝𝑡𝑁𝑂2−𝐼𝑆𝐴 

/𝑘𝐽 𝑚𝑜𝑙−1 
−121.0 −46.4 −74.6 −104.7 −34.4 −70.3 −150.1 −45.1 −105.1 

𝐸𝑎𝑛𝑎𝑟𝑜𝑡−ISA 

/𝑘𝐽 𝑚𝑜𝑙−1 
−123.2 −48.3 −74.9 −104.4 −34.2 −70.2 −150.8 −46.0 −104.9 

ΔE / 𝑘𝐽  𝑚𝑜𝑙−1 2.177 1.820 0.367 −0.334 −0.262 −0.073 0.710 0.910 −0.200 

%↑ in 𝑎 0.270 −0.015 0.060 

%↑ in 𝑏 0.259 −0.244 −0.050 

%↑ in 𝑐 −0.333 0.190 0.058 

𝑅𝑀𝑆𝐷15/Å 

(optexptNO2) 
0.246 0.166 0.235 

𝑅𝑀𝑆𝐷15/Å 

(anarot) 
0.218 0.162 0.237 

Table 15: A comparison of the effect of ISA multipoles moments calculated in the optexptNO2 conformation and 

those analytically rotated into the optexptNO2 conformation (anarot) using ORIENT. Each experimental crystal 

structure has been minimized holding the molecules rigid in their optextNO2 observed conformation, using the FIT 

potential371 and the defined set of atomic multipole moments to calculate the intermolecular forces. The changes 

in each intermolecular energy contribution and % change in cell parameters are compared. The RMSD15 

comparisons are with the experimental crystal structure. More details on the effect of conformation on lattice 

energy minimizations, including using the optimized molecular conformation and the experimental conformation 

can be found in the Appendix 4.B. 
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4.4 Discussion 

The crystalline and isolated (optimized) conformations of most molecular explosive materials were found to differ 

significantly. This provides the challenge of evaluating the thermodynamic stability of their polymorphs even at 

ambient conditions372 let alone at the high temperatures and pressures sampled during detonation. Here we have 

highlighted the effects of the changes in the NO2 torsion angles that can occur upon crystallization; how these can 

differ between polymorphs and its importance in accurate predictive modelling. 

4.4.1 The influence of conformation on electrostatic properties 

The experimental polymorphs studied show a range of crystalline conformations that are fairly typical of those 

seen in all the other nitro-aromatic and nitramines in the Cambridge Structural Database (CSD). When the adjacent 

functional groups on the aromatic ring (or 𝐶-𝑁-𝑁𝑂2 chain, e.g. RDX) are hydrogen atoms, the NO2 torsion angles 

vary by about ±20° and the nitro groups are relatively planar (Figure 25, Appendix 4.A Figure 27 (a)). On the 

other hand, when the adjacent functional groups are larger, any angle may be observed (Figure 25, Appendix 4.A 

Figure 27 (b)). In the isolated molecule, the interactions with the specific neighbouring substituents can have a 

major effect on the charge distribution and torsion angle of a nitro group. However, in the condensed phase, 

correlated changes in substituent conformation are more affected by crystal packing. Comparing NO2 torsions in 

Figure 20, the nitro-aromatics show differing degrees of conformational adjustment due to the packing forces 

within the crystal lattice. HNB has only one crystal structure, but the six nitro groups have different torsion angles 

ranging between 48-60, losing its molecular symmetry and reflecting the compromises between the 

intramolecular steric forces and the adaption to intermolecular interactions to give a dense crystal. The TNT 

polymorphs have rather similar crystalline conformations as they are polytypic, comprising of different stacks of 

comparable layers of molecules.6, 373 Nonetheless, the two independent molecules in each polymorph show 

variations in the torsion angles of the ortho-NO2 groups that sterically interact with the methyl, and the para-NO2 

groups are not coplanar. The optimized TNB molecule is planar, but the four crystalline conformations in the two 

polymorphs have torsion angles that are up to 32 from planar. Thus, crystal packing forces can easily overcome 

intramolecular stabilization from conjugation, shifting nitro groups from their preferred planar conformation. 

Using an improved novel method of partitioning the isolated molecular charge distribution (ISA) and a high level 

of theory (PBE0/aug-cc-VTZ) to obtain realistic atomic charges and higher order multipole moments for an X-

NO2 group shows that the NO2 charge density differs considerably between N-NO2 and C-NO2 (Figure 20, Table 

14). Moreover, the charge density varies significantly with the neighbouring functional groups, (e.g. ortho and 

para groups in TNT, Figure 20), and also with the NO2 torsion angle. This is to be expected as the atomic charges, 
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in particular, reflect the changes in valence electron distribution, which also determine the molecular reactivity. 

This investigation shows that the published empirical correlations of local electrostatic properties around the NO2 

“trigger-bond”, such as  𝑉𝑚𝑖𝑑  ,or the molecular property  𝑉𝑚𝑎𝑥   with the crystal property, impact sensitivity 

( ℎ50%).137, 356, 374 will be significantly affected by the neglect of the conformational change  (Figure 24, Table 14).  

The packing arrangement of the reactive groups in the crystal will also strongly affect the energetic properties. 

The early correlation between detonation properties and density led to the development of MOLPAK,20 one of the 

first Crystal Structure Prediction (CSP) codes, which sought to establish the possible density of a crystal from the 

molecular structure. Since then CSP methods have evolved to help predict possible polymorphs, and help support 

their structural characterization from powder X-ray diffraction, and other analytical techniques. Whilst these 

techniques are being extensively developed for the pharmaceutical industry,30, 91 the extension to energetic 

materials requires fundamentally different modelling of specific functional groups under the extreme conditions 

unique to explosives. For example, periodic density functional calculations on crystalline nitroguanidine required 

the development of a specific dispersion correction.375  

4.4.2 The influence of conformation on interaction energies 

The care required in CSP studies of nitro-aromatic explosives has been established, to ensure that the large 

variations in possible NO2 torsion angles, shown by the CSD distributions (Figure 25 and Appendix 4.A Figure 

27) are effectively considered. It is the balance between the molecular cost for conformational change (Δ𝐸𝑖𝑛𝑡𝑟𝑎) 

and the improved intermolecular lattice energy (𝐸𝑖𝑛𝑡) from a denser packing, which determine the total lattice 

energy (𝐸𝑙𝑎𝑡𝑡 = Δ𝐸𝑖𝑛𝑡𝑟𝑎 + 𝐸𝑖𝑛𝑡). Ab initio calculations on the molecule, the Ψ𝑀 approach (Chapter 2) can be used 

to obtain Δ𝐸𝑖𝑛𝑡𝑟𝑎  and analyzed to obtain the atomic multipoles, polarizabilities and dispersion coefficients that 

determine the long range intermolecular forces. In this chapter, the ISA analysis of Ψ𝑀 provides an anisotropic 

intermolecular potential with the atomic multipole moments being used to calculate the electrostatic contribution 

to the intermolecular energy. It seems that cell geometries can be obtained relatively accurately and very quickly, 

without recalculating the charge density as the nitro groups rotate (Table 15), by analytically rotating the multipole 

moments. This suggests that the anarot methodology could be used to determine the range of low energy crystal 

structures that could be adopted by a nitro-aromatic energetic molecule within the Ψ𝑀 approach to Crystal 

Structure Prediction,376 and thus could improve the prediction of crystal packing from the molecular diagram of 

new energetic molecules.365 This method is suitable as an initial approximation of the potential energy landscape 

but the relative energy differences in Table 15 are large in comparison with the lattice energy differences between 

polymorphs, which are usually much less than 5 𝑘𝐽 𝑚𝑜𝑙−1 for small molecules.7 The conclusion that analytical 
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rotation does not reproduce relative electrostatic energies well was also reached in the study on the transferability 

of electrostatic models between polypeptides.367 Table 15 shows when doing ab initio calculations on the molecule 

(Ψ𝑀), it is necessary to use an accurate molecular charge density for the refinement of CSP generated crystal 

structures, or a sufficiently accurate periodic electronic structure calculation, in order to determine the relative 

lattice energies reliably and accurately enough to know which of the generated crystal structures are 

thermodynamically plausible polymorphs.376 

4.5 Conclusion 

The charge distributions of the nitro groups in TNB, TNT, HNB and RDX vary considerably depending on the 

bonded and neighbouring functional groups, and also with the conformational differences between their 

polymorphs and their isolated molecular structures. The rigorous ISA partitioning of high quality molecular charge 

density allows us to obtain the distributed multipole representation of the atomic charge density, which has minimal 

sensitivity to basis set and hence artefacts of conformational change are minimized. Using ISA partitioning this 

investigation has shown that variations in NO2 conformations, which occur in crystal structures cause sufficient 

changes in the molecular charge density to affect previously proposed empirical correlations between impact 

sensitivity and molecular electrostatic properties. This chapter demonstrates that it is a poor assumption that the 

molecular charge density will not be significantly changed when placed in the crystalline environment. 

The condensed phase torsion-angles observed for nitro-groups are a subtle balance between intra- and 

intermolecular interactions. The charge distributions of the nitro-groups, and some neighbouring atoms, can 

change significantly with the NO2 torsion angle (Figure 25 & Figure 27), reflecting the change in the bonding 

and molecular charge distribution. This change is sufficiently large that distributed multipole models, which form 

the basis of non-empirical model intermolecular potentials, should be calculated for each conformation if the 

potential is to be accurate enough to model lattice energies to the accuracy needed to predict polymorph relative 

stability. However, analytically rotating the multipoles to reflect the change in aromatic NO2 torsion angles is a 

reasonable approximation that may be useful in performing fast CSP calculations. This chapter utilizes old and 

new computational methodologies in a novel way to establish the necessary assumptions about the transferability 

of charge distribution in nitro-aromatic explosives. These assumptions will be instrumental in producing reliable 

non-empirical potentials suitable for modelling possible polymorphs, particularly those crystallized under 

pressure.199 In the next section, Chapter 5, the lessons learned here, with regards to the importance of an accurate 

description of the molecular charge density, shall be carried forward to develop a rigid non-empirical distributed 

intermolecular force-field for trinitrobenzene.  
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Appendix 4.A 

3. Effects of nitro-group rotation on electrostatic properties 

The relative changes in intramolecular energy and multipole moments with torsion angle for the remaining 

energetic molecules from Figure 20. 

4. The effects of electrostatic model on the lattice 

Analysis of how rotating the multipole moments and changes in conformation can affect the lattice energy and 

minimized cell geometries. 

EFFECTS OF ROTATING NITRO-GROUPS IN TNB, HNB AND RDX (AAE) 

The relative changes of the charge and dipole moment magnitudes with NO2 torsion angle are compared with 

Cambridge Structure Database (CSD) distributions and the intramolecular energy relative to the optimized isolated 

molecular structure for the molecules where this data is not given in this chapter. 
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(a) TNB 

 

(b) HNB 
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(c) RDX-AAE 

Figure 27: Conformational behaviour of TNB (a), HNB (b) and RDX-𝐴𝐴𝐸 (c) as their NO2 torsion angles are 

changed. Only the equatorial NO2 in RDX (c) is rotated. The behaviours as a function of angle is given for (top to 

bottom) the CSD distribution of observed angles for this group; the change in PBE0/aug-cc-VTZ energy relative 

to the optimized molecule as only the nitro group torsion angle is changed; and the variation in the ISA charge 

and dipole on each atom. 

 

 



 155 

EFFECTS OF ELECTROSTATIC MODEL ON THE LATTICE 

Str (REFCODE) 
TNT (ZZZMUC08 (Form I)) 

 
expt xminexpt xminopt xminoptexptNO2 xminanarot 

𝑎/Å 
14.911 14.982 14.209 14.854 14.814 

𝑏/Å 
6.034 6.079 7.397 6.135 6.119 

𝑐/Å 
20.882 20.774 19.386 21.078 21.148 

𝑛(𝑅𝑀𝑆𝐷15)/Å 
~ 15 (0.064) 3 (0.683) 15 (0.246) 14 (0.214) 

𝐸𝑙𝑎𝑡𝑡 (𝑘𝐽 𝑚𝑜𝑙−1) 
 -117.6 -100.4 -121 -123.2 

Str (REFCODE) 
TNB (TNBENZ13 (Form III)) 

 
expt xminexpt xminopt xminoptexptNO2 xminanarot 

𝑎/Å 
12.896 12.833 12.751 12.779 12.781 

𝑏/Å 
5.723 5.871 5.603 5.743 5.757 

𝑐/Å 
11.287 11.038 11.667 11.414 11.393 

𝑛(𝑅𝑀𝑆𝐷15)/Å 
~ 15 (0.154) 15 (0.245) 15 (0.166) 15 (0.162) 

𝐸𝑙𝑎𝑡𝑡 (𝑘𝐽 𝑚𝑜𝑙−1) 
 -112.6 -111.8 -104.7 -104.4 

Str (REFCODE) 
HNB (HNOBEN (Form I)) 

 
expt xminexpt xminopt xminoptexptNO2 xminanarot 

𝑎/Å 
13.22 12.822 12.960 12.768 12.760 

𝑏/Å 
9.13 8.978 8.792 8.812 8.817 

𝑐/Å 
9.68 9.442 9.517 9.558 9.553 

𝑛(𝑅𝑀𝑆𝐷15)/Å 
~ 15 (0.170) 15 (0.214) 15 (0.235) 15 (0.237) 

𝐸𝑙𝑎𝑡𝑡 (𝑘𝐽 𝑚𝑜𝑙−1) 
 -146.1 -144.6 -150.1 -150.8 

Table 16: The expt (experimental structure), xminexpt (DMACRYS59 minimized crystal structure, with all 

molecules held rigid in their experimentally observed conformations), xminopt (DMACRYS minimized crystal 

structure, with all molecules held rigid in their gas-phase optimized conformation), xminoptexptNO2 (DMACRYS 

minimized optimized structure with experimental NO2 torsions using 𝜓 computed after rotation) and the 

xminanarot (DMACRYS minimized optimized structure with experimental NO2 torsions using analytically rotated 

multipole moments) crystal structures and intermolecular lattice energies of TNT, TNB and HNB. The 

intermolecular lattice energy (𝐸𝑙𝑎𝑡𝑡) estimates above are calculated using a distributed multipole electrostatic 

force-field derived from the molecular (PBE0/aug-cc-pVTZ) wave-function and empirical repulsion-dispersion 

model; the empirical FIT potential371 & ISA233 (PBE0/aug-cc-pVTZ). The 𝑅𝑀𝑆𝐷15 values have been calculated 

against each respective experimental determination.   
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Structure RDX 

REFCODE CTMTNA03 (Form 𝛼) CTMTNA06 (Form 𝜀) 

 Expt xminexpt xminopt Expt xminexpt xminopt 

𝑎/Å 11.420 11.635 11.540 7.032 7.371 7.715 

𝑏/Å 10.586 10.615 10.561 10.530 11.113 12.120 

𝑐/Å 13.140 13.426 13.787 8.791 9.673 9.194 

𝑛(𝑅𝑀𝑆𝐷15)/Å ~ 15 (0.169) 15 (0.447) ~ 15 (0.431) 7 (0.857) 

𝐸𝑙𝑎𝑡𝑡 (𝑘𝐽 𝑚𝑜𝑙−1) ~ -121.1 -121.1 ~ -118.9 -93.4 

Table 17: The expt (experimental structure), xminexpt (DMACRYS59 minimized crystal structure, with all 

molecules held rigid in their experimentally observed conformations) and xminopt (DMACRYS minimized crystal 

structure, with all molecules held rigid in their gas-phase optimized conformation) crystal structures and 

intermolecular lattice energies of RDX. The intermolecular lattice energy (𝐸𝑙𝑎𝑡𝑡) estimates above are calculated 

using a distributed multipole electrostatic force-field derived from the molecular (PBE0/aug-cc-pVTZ) wave-

function and empirical repulsion-dispersion model; the empirical FIT potential371 & ISA233 (PBE0/aug-cc-pVTZ). 

This highlights how slight differences in the experimentally observed and optimized conformations of both 

polymorphs of RDX can result in large changes in intermolecular energy. 𝑅𝑀𝑆𝐷15 against each respective 

experimental determination. 

  

(a) (b) 

Figure 28: Overlay of the experimental ZZZMUC08144 structure (green) and their  DMACRYS minimized 

structures using the molecular conformations and distributed multipole moments: 

(a) calculated for the PBE0/aug-cc-pVTZ optimized structure after rotating all NO2 groups into their 

experimental observed torsion angles, optexptNO2 (grey). 𝑅𝑀𝑆𝐷15 = 0.246Å 
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(b) calculated for the PBE0/aug-cc-pVTZ optimized structure and then analytically rotated (anarot) into the 

experimental observed NO2 torsion angles (grey). 𝑅𝑀𝑆𝐷14 = 0.214Å 

Figure 28 shows that even for TNT, which has the greatest differences in optimized and observed NO2 torsion 

angles, analytical rotation of the atomic multipoles into the experimental NO2 torsion angles and recalculation of 

the wave-function for each NO2 torsion angle results in very small structural differences. The only significant 

differences are seen in the intermolecular energies.  

  

(a) (b) 

Figure 29: Overlay of the experimental structures of RDX (green), CTMTNA03141 (a) and CTMTNA06143 (b) and 

their  DMACRYS minimized structures using the molecular conformations and distributed multipole moments: 

(a) calculated for the PBE0/aug-cc-pVTZ optimized AAE conformation in the crystal, xminopt (grey). 

𝑅𝑀𝑆𝐷15 = 0.447Å 

(b) calculated for the PBE0/aug-cc-pVTZ optimized AAA conformation in the crystal, xminopt (grey). The 

xminopt crystal minimizes to a very different minima and energy compared to the experimental lattice 

(xminexpt), with only 7 molecules out of 15 matching and a high RMSD value. 𝑅𝑀𝑆𝐷7 = 0.857Å.  
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5 Non-empirical force-field development for 

trinitrobenzene (TNB) 

This chapter pioneers the development of non-empirical force-fields for larger, non-spherical molecules. It aims 

to establish how far the methods previously used for smaller molecules such as pyridine can be applied to larger 

molecules, to provide potentials suitable for use in crystal structure prediction (CSP). The potential development 

process Misquitta used for pyridine38 has been further built upon and adapted for the larger more challenging 

trinitrobenzene (TNB). Using the general workflow described in Figure 2 in Chapter 1, we aim to illustrate how 

to develop and test a non-empirical anisotropic atom-atom intermolecular force-field for CSP from scratch. The 

various stages of the model building process shall be discussed in depth and one shall see how the non-empirical 

potentials are tailored to each molecule. The products of this investigation are multiple non-empirical force-fields. 

Two approximate models are created from the 1st order SAPT(DFT) dimer interaction energies dubbed Model0-

aniso and Model0-iso, which respectively have anisotropic and isotropic short-range descriptions. The complete 

and final force-field for TNB, a Distributed Intermolecular Force-Field (DIFF) is created, which aims to model 

the genuine potential energy surface of TNB to SAPT(DFT) quality. In the force-field development process some 

transient potentials dubbed ModelD, ModelR and ModelA are also created by fitting to the 2nd order SAPT(DFT) 

interaction energies of different sets of dimer configurations. These are described in detail in 5.6.2.1.  

5.1 Trinitrobenzene (TNB) 

Trinitrobenzene (TNB) is a comparably small energetic molecule but a large system for high quality molecular 

calculations. Energetic materials are intrinsically hard to study in the lab due to safety concerns but can also be 

difficult to model accurately and dependably because of their size. Due to the scaling of the underlying electronic 

structure calculations with system size, TNB stretches the current codes and computational resources available. 

As a result, adaptions have been made to the Misquitta’s previous workflow38 and various novel codes have been 

tested. TNB (Figure 30) has been chosen as a modest sized molecule of 18 atoms, 108 electrons, whose molecular 

structure could be assumed to be rigid as it does not vary drastically in its three polymorphs (Chapter 4). The high 

symmetry of TNB’s isolated molecule has the advantages that the unique atoms types are 𝑂, 𝑁, 𝐻, 𝐶𝑁 and 𝐶𝐻.  

Accordingly, the static isolated molecular structure is obtained by optimizing the experimental structure 

TNBENZ13263 using the Gaussian09 program235, the PBE0 functional203-205 (the Perdue-Burke-Emzerhof (PBE) 

general gradient approximation combined with a portion of exact exchange)  and the d-aug-cc-pVTZ  Dunning 

basis,214 and kept rigid in all simulations. An identical calculation was carried out on pyridine (Chapter 3), and 
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the molecular and local axis were defined in a similar manner. In order to avoid any future complications or re-

fitting (which had to be done for pyridine (Chapter 3)), it is important to correctly define the axis systems. The 

molecule-fixed and local axis definitions will determine the multipole moments, atomic polarizabilities and 

anisotropic repulsion terms. The definitions will also help us later determine which terms on which atoms are most 

important (5.4.3.1). 

 
 

(a) (b) 

Figure 30: (a) The experimentally observed form III of trinitrobenzene (TNBENZ13).263 The other 2 polymorphs 

of TNB can be found in Chapter 6 Figure 44. (b) The molecule-fixed axis (red) and local axis (blue) definitions 

used for TNB.  

The energetic material TNB poses the challenge of accurately modelling a large non-spherical organic molecule 

with a limited amount of experimental data for reference. Challenges like this stresses the importance of 

constructing a sound model from scratch based on the theory of intermolecular forces164 (Chapter 2) and 

generating further theoretical data to test the force-field. 

5.2 The intermolecular interaction energy and its components 

The non-empirical distributed intermolecular force-fields (DIFF) were developed using a combination of 

programs: CAMCASP107, Psi4228, DMACRYS59 and ORIENT.108 Using the theory of intermolecular forces 

introduced and defined in Chapter 2, and the axis definitions and atomic types in Figure 30, the total interaction 

energy can be represented as a non-empirical potential, whose long-range components are represented using the 

distributed multipole expansion164 and the short-range components represented as an exponential, with the 

following functional form: 
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𝑈𝑀,𝑁(𝑅𝑀𝑁, Ω𝑀𝑁) = 𝑉𝑆𝑅 + 𝑉𝐿𝑅 

∑ 𝑈𝐼𝑁𝑇
𝑖𝑘 (𝑅𝑖𝑘 , Ω𝑖𝑘)

𝑖∈𝑀,𝑘∈𝑁

= 𝐺exp[−𝛼𝜄𝜅(𝑅𝑖𝑘 − 𝜌𝜄𝜅(Ω𝑖𝑘))] + 𝑄𝑡
𝑖𝑇𝑡𝑢

𝑖𝑘𝑄𝑢
𝑘 + ∑ 𝑓2𝑛+6(𝛽𝑑𝑖𝑠𝑝 , 𝑅𝑖𝑘)

𝐶2𝑛+6
𝜄𝜅

𝑅𝑖𝑘
2𝑛+6

2

𝑛=0

 

+𝑓𝑛(𝛽𝑝𝑜𝑙 , 𝑅𝑖𝑘)(Δ𝑄𝑡
𝜄 𝑇𝑡𝑢

𝜄𝜅𝑄𝑢
𝜅 + Δ𝑄𝑡

𝜅𝑇𝑡𝑢
𝜅𝜄𝑄𝑢

𝜄 )/2 
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With regards to tensor notation, the long-range multipolar electrostatic potential energy 𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀] can be given as 

𝑄𝑡
𝑖𝑇𝑡𝑢

𝑖𝑘𝑄𝑢
𝑘 where 𝑄𝑡

𝑖  is a multipole moment on atomic site 𝑖 of rank 𝑡, using the notation 𝑡 = 00,10,11𝑐, … to 

describe the multipole moment and its related axes164.  𝑇𝑡𝑢
𝑖𝑘 is the transformation tensor164 determined by our axes 

definitions (Figure 30). The same notation (𝑡𝑢) used for multipole components is used for the polarizabilities and 

transformation tensors. The Tang-Toennies damping function 𝑓𝑛 is defined in 2.8 & 5.3.4. The remaining 

parameters are described and contextualised in detail in Chapter 2 and below. 

5.3 Calculating long-range terms from molecular properties 

After ab initio calculations of the molecular wave-function (Ψ𝑀) on the isolated static molecule using a quantum 

chemical program like Psi4228, NWCHEM
377 or Dalton378, one can employ CAMCASP107 to calculate the following 

molecular properties: 

 Distributed multipole moments (2.5) – these are then used to obtain the electrostatic multipolar energy.  

 Distributed atomic (local) polarizabilities (2.6.1) – can be calculated using the Williams-Stone-Misquitta 

algorithm,285 however, we use the ISA-Pol method200 to obtain the polarization energy 

 Distributed two-centred dispersion coefficients (2.7) – used in a damped Buckingham potential to obtain 

the dispersion energy. 

For TNB a combination of Psi4, NWCHEM and CAMCASP was used. As previously described in Chapter 2, the 

intermolecular interaction energy can be separated into long-range contributions, when there is no overlap of the 

molecular wave-functions Ψ, and short-range contributions, when two Ψ overlap. The long-range multipolar 

expansion is a power series of 1/R, where 𝑅 is the centre-of-mass separation of two sites and the long-range energy 

𝑉𝐿𝑅 portion of the force-field is 

𝑉𝐿𝑅 = ∑ 𝑓2𝑛+6(𝛽𝑑𝑖𝑠𝑝𝑅𝑖𝑘)
𝐶2𝑛+6

𝜄𝜅

𝑅𝑖𝑘
2𝑛+6

2

𝑛=0

+ electrostatic (𝑅𝑖𝑘, 𝑄𝑡
𝑖  𝑙 ≤ 4,ISA, 𝛹) + polarization (𝑅𝑖𝑘 , 𝑄𝑡

𝜄 , 𝛼𝑡𝑡′
𝜄 , 𝛽𝑝𝑜𝑙) 
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The long-range components are the electrostatic, polarization and dispersion contributions to the intermolecular 

interaction energy. 

5.3.1 The electrostatic model from multipole moments 

A concise description of the long-range electrostatic contribution requires a sound partitioning of the molecular 

charge density (calculated with a high quality wave-function) into distributed multipole moments (2.5). The charge 

density of the isolated TNB molecule was calculated using an asymptotically corrected PBE0 hybrid functional 

and the augA-Sadlej basis set.379 PBE0 is an asymptotically corrected hybrid functional, therefore, the asymptotic 

correction for each molecule must be calculated when calculating the molecular charge density. The asymptotic 

shift (Δ) can be defined as summation of the ionization potential (IP) of the molecule and the energy of the highest 

occupied molecular orbital (HOMO) eigenvalue (𝜖𝐻𝑂𝑀𝑂) 

Δ = 𝐼𝑃 + 𝜖𝐻𝑂𝑀𝑂 
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The 𝜖𝐻𝑂𝑀𝑂 can be obtained after calculating the DFT energy of the neutral molecule, while the ionization potential 

can either be obtained by finding the difference between the DFT energy of the neutral molecule and its cation or 

from gas-phase data in the NIST standard reference database.380 The asymptotic shift (Δ) for TNB was calculated 

using the experimental IP of 0.4028 a.u.380 and the energy of the highest occupied molecular orbital (HOMO) 

eigenvalue (𝜖𝐻𝑂𝑀𝑂) resulting in Δ = 0.0539 a. u.. For TNB we move away from the asymptotic correction used 

for pyridine (the GRAC)381 to one which can better model anisotropic molecules like TNB. Accordingly, the CS00 

(Casida-Salahub) asymptotic correction382 was used in NWCHEM
377 to perform a DFT calculation and obtain the 

molecular wave-function (Ψ𝑀) for each conformation. The Iterated Stockholder Atoms (ISA) multipoles 

(evaluated to hexadecapole level (Rank 𝑙 = 4)) are then calculated in CAMCASP relative to the molecular axis 

frame (Figure 30) and derived using the most recent iterated stockholder atoms algorithm implemented in 

CAMCASP 6.0,107 the ISA-A algorithm.273 The ISA-A method develops on the previous BS-ISA method (2.5.1.7) 

in CAMCASP 5.9, which was used for pyridine.38 ISA-A includes a method for re-fitting the atomic electron density 

tails,233 by including another independent atomic basis set, dubbed the AtomAux-Basis. Therefore, the ISA-A 

algorithm in CAMCASP 6.0 contains 4 basis: 

 A main basis – to calculate Ψ𝑀, for TNB the augA-Sadlej is used 

 An auxiliary basis – for re-fitting the atomic electron density tails. This basis can take both Cartesian 

and Spherical Gaussian Type Orbitals (GTOs). We use Cartesian GTOs of aug-cc-pVTZ size. 
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 An atomic basis – to determine the ISA atomic expansions. An aug-cc-pVQZ basis set is used in 

calculating the atomic expansions, and is independent from the refitting & molecular wave-function 

calculations. However, the spherical coordinate system for the GTOs must always be used. 

 An ISA-Basis – which is the s-function part of the atomic basis (aug-cc-pVQZ) that is used to obtain 

the ISA shape-function expansions. 

The multipole moments have been evaluated to Rank 𝑙 = 4 in order to obtain an accurate electrostatic model. 

Dipoles are crucial in describing lone-pair features, and quadrupoles to correctly describe 𝜋-orbitals in organic 

crystals. The computational cost of calculating moments above hexadecapole currently outweighs the 

improvement in quality of electrostatic model. Table 18 shows the effect of symmetry on the multipole moments 

up to quadrupole. Other terms are zero due to TNB’s 𝐷3ℎ symmetry. One can see the importance of higher order 

moments, in the electrostatic potential maps of the higher order moments on each atom type in TNB (Figure 31). 

Figure 31 highlights the anisotropy of the molecule, the dominant terms, the directionality of each moment, and 

the importance of going beyond the use of point charge models in force-field development. The chemistry of the 

molecule is reflected in Table 18 & Figure 31, emphasising the influence and magnitude of the dipole, quadrupole 

etc. multipole moments. The most dominant higher order multipole moment in Table 18 is observable in the atomic 

electrostatic maps in Figure 31. For example, the quadrupolar moment 𝑄22𝑐 is the most dominant anisotropic term 

for oxygen and we see in Figure 31, that the most dominant term is a quadrupolar one with the correct sign. 

Likewise the most prominent anisotropic term on nitrogen is the 𝑄11𝑠 dipole moment; also reflected in Figure 31. 

The inspecting the sign and magnitude of the moment in and Figure 31 provides a good crosscheck. 

In the 
Global Axis 

Charge Dipole Quadrupole 

𝑄00 𝑄11𝑐  𝑄11𝑠 𝑄20 𝑄22𝑐  𝑄22𝑠 

𝑂 -0.435 0.004 -0.012 -0.006 0.325 0.049 

𝑁 0.810 0.036 -0.064 -0.028 0.005 0.009 

𝐶𝑁 -0.033 -0.009 0.016 -0.173 -0.032 -0.055 

𝐶𝐻 -0.081 0.033 0.057 -0.025 -0.001 0.002 

𝐻 0.179 -0.023 -0.039 -0.027 -0.011 0.020 

Table 18: The symmetry unique multipoles moments for each atom type in TNB in atomic units up to Rank 𝑙 = 2. 

The dipole term 𝑄10 and quadrupole terms 𝑄21𝑐 & 𝑄21𝑠 are zero by symmetry. The complete multipole moments 

(up to Rank = 4) input file can be found in Appendix 5.A and the Appendix CD. Appendix 5.A provides the 
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distributed multipole moments ORIENT input file for TNB in atomic units while atom co-ordinates of the rigid 

optimized structure are given in Bohr. 

   

  

Figure 31: An electrostatic potential (eV) map of the higher order multipole moments on the atoms of TNB to 

illustrate the shape of each unique atom in TNB. The map is computed using the ISA distributed multipole analysis 

(ISA-DMA) on the iso-density surface of 10-3 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑏𝑜ℎ𝑟3⁄  around the each unique atom in the static optimized 

isolated molecular structure. On a potential scale of +0.4 𝑒𝑉 (red) and −0.4 𝑒𝑉(blue). 

5.3.2 The polarization model from atomic polarizabilities 

To obtain the atomic polarizabilities within CAMCASP one can either restart/continue the calculation from the ISA 

multipole moments or recalculate the Kohn-Sham molecular orbitals and their energies. For TNB the calculation 

was continued from the ISA multipole moments using the PBE0 functional alongside the CS00 asymptotic 

correction and the ALDA+CHF kernel in NWCHEM (an analogous level of theory to the multipole moments). In 

CAMCASP, we calculate an accurate charge-density susceptibility 𝛼(r,r') (2.6.1.1), for the optimized TNB 

molecule. The charge-density susceptibility is then distributed between atoms to give the atomic 

polarizabilities 𝛼𝑡𝑡′
𝜄𝜄′ , which can be used to obtain the change in multipole moment Δ𝑄𝑡

𝑖′ on atom 𝑖′ in response to 

the net electric field 𝑉𝑡
𝑖 on atom 𝑖. CAMCASP initially calculates the non-localized polarizabilities, which can then 

be used directly to calculate dispersion energies using the dispersion program within CAMCASP. In a non-local 

model, the electric field at one nucleus can induce a change in the multipole moments of other atoms in the same 

molecule. This methodology is very accurate and includes charge-flow effects, which are important for low-

dimensional delocalized systems like 1-D wires or conjugated polymers,383 but also a very complicated and 

elaborate model. Additionally, it is very computationally expensive, obtaining the dispersion term requires a 
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quadruple sum over all sites. Consequently, the non-localized polarizabilities are localized and refined in order to 

obtain a simpler, cheaper localized model. 

In previous studies like that of C6Br2ClFH2,
60 the distributed molecular properties were obtained using the 

Williams-Stone-Misquitta (WSM) scheme.38, 60, 165, 227, 287 The WSM scheme refines the polarizabilities using a 

combination of CAMCASP and molecular electronic structure program like DALTON378 or NWCHEM to do a 

SAPT(DFT) calculation of the local (point-to-point) responses, which is the change in potential at points in an 

array around the molecule in response to a point charge at any of the points. In this study we derive our model 

using the ISA-Pol method, this is analogous to the WSM scheme in many ways. However, with the ISA-Pol 

method, the main difference is the ISA-A calculation used to compute the multipole moments for the electrostatic 

model is then fed into the distributed polarizability module in CAMCASP, which is then utilized to derive the local 

polarizabilities of the molecule. The main benefit of this scheme is that not only is it faster and more efficient38 

but also able to refine the final polarization model into a form suitable for our models; whether that be an intricate 

anisotropic Rank 𝑙 = 4 model or a simpler but still accurate dipole-dipole model using isotropic polarizabilities. 

As with the pyridine study, this study of TNB uses a Rank 𝑙 = 1 polarization model, which ignores the effects of 

induced higher moments like induced quadrupoles but is more transferable between simulation codes.  

𝐴𝑡𝑜𝑚 𝑡𝑦𝑝𝑒 |𝛼𝑖𝑠𝑜
𝑎𝑏 | 𝛼10,10

𝑎𝑏  𝛼11𝑐,11𝑐
𝑎𝑏  𝛼11𝑠,11𝑠

𝑎𝑏  

𝑂 8.11 8.30 5.26 5.07 

𝑁 1.50 9.42 11.66 1.30 

𝐶𝑁 1.96 13.18 9.76 3.21 

𝐶𝐻 13.23 4.42 22.58 4.72 

𝐻 2.67 1.75 0.49 1.07 

Table 19: The symmetry unique atomic polarizabilities for each like-like atom type pair in TNB in atomic units up 

to Rank 𝑙 = 1 (within a local axis system). The off-diagonal terms are not included, but the modulus of the isotropic 

polarizabilities (|𝛼𝑖𝑠𝑜
𝑎𝑏 |) has been included for comparison as they are closely related to the 𝐶6 dispersion term. 

The ORIENT atomic polarizabilities input file for TNB can be found Appendix 5.A in atomic units.  

For 𝑂, 𝑁 & 𝐶𝑁, we see the magnitudes of polarizabilities of in-plane of the bonds (𝛼10,10
𝑎𝑏 ) and along the bonds 

(𝛼11𝑐,11𝑐
𝑎𝑏 ) is larger than those out of plane. As another sanity check the modulus of the ISA-derived isotropic 

polarizabilities should be closely related to their atomic dispersion coefficient counterparts (Table 20), which is 

indeed observed. The |𝛼𝑖𝑠𝑜
𝑎𝑏 | on oxygen is larger than that of nitrogen and appropriately its 𝐶6

𝜄𝜅 dispersion coefficient 
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is also larger. Equally the isotropic polarizabilities for the homogenous pairs of both 𝑁 and 𝐶𝑁 are similar in 

magnitude and hence their 𝐶6
𝜄𝜅 dispersion coefficients are close. 

5.3.3 The dispersion model: Dispersion Coefficients 

The atom-atom dispersion coefficients are computed by integration over the distributed polarizabilities calculated 

at imaginary frequency.285 Formerly for pyridine,38 these were then localized utilizing the Williams-Stone-

Misquitta (WSM) scheme60, 285, 384 but the TNB model employs the ISA scheme to obtain dispersion coefficients. 

Deriving the dispersion coefficients from the atomic polarizabilities using the iterated stockholder atoms (ISA) 

approach reduces the coefficients to products of the individual-molecule properties, allowing the dispersion energy 

coefficients to be calculated just once and reduces dependence on the intramolecular geometry.164, 385 In Chapter 

4 the charge density was found to depend heavily on the intramolecular geometry,168 but derived terms like the 

dispersion coefficients may change with conformation but they are unlikely to change significantly under the ISA 

methodology.  

𝜄 − 𝜅 
Dispersion coefficients (𝑒𝑉 Å2𝑛+4) 

𝐶6
𝜄𝜅 𝐶8

𝜄𝜅 𝐶10
𝜄𝜅  

𝑂 − 𝑂 15.23 34.10 449.52 

𝑁 − 𝑁 3.72 32.18 503.00 

𝐶𝑁 − 𝐶𝑁 4.00 26.84 1310.59 

𝐶𝐻 − 𝐶𝐻 26.86 50.89 2302.19 

𝐻 − 𝐻 1.78 3.64 8.86 

Table 20: The isotropic dispersion coefficients (𝐶2𝑛+4
𝜄𝜅 ) for like-like atom type pairs in TNB in units of 𝑒𝑉 Å2𝑛+4 

up to n = 3. The full list of dispersion coefficients can be found in the complete potential input file in Appendix 

5.A. 

Similar to the polarization model, the functional form of the dispersion models can be changed to suit our force-

field. By limiting the atomic polarizabilities to dipole-dipole, the classic isotropic 𝐶6 model could be chosen or 

higher-order polarizabilities can be used to yield dispersion coefficients up to 𝐶12/𝑅12. The non-empirical model 

for TNB uses an isotropic 𝐶10/𝑅10 dispersion model analogous to that of pyridine.167 Atoms are assumed to be 

spherical, this approximation is necessary as anisotropic dispersion models cannot be used in DMACRYS. 

Furthermore, the dispersion is kept isotropic for the sake of simplicity as the issues and complexities associated 

with an anisotropic model currently outweighs its benefits.223  
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𝑉𝑑𝑖𝑠𝑝
𝑀𝑁 = ∑ −𝑓6(𝛽𝐴𝐵𝑅𝑖𝑘)

𝐶6
𝜄𝜅

𝑅𝑖𝑘
6 − 𝑓8(𝛽𝐴𝐵𝑅𝑖𝑘)

𝐶8
𝜄𝜅

𝑅𝑖𝑘
8  − 𝑓10(𝛽𝐴𝐵𝑅𝑖𝑘)

𝐶10
𝜄𝜅

𝑅𝑖𝑘
10

𝑖∈𝐴,𝑘∈𝐵
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where 𝑀 and 𝑁 are two interacting molecules, 𝑖 and 𝑘 are the interacting atoms of type 𝜄 and 𝜅 in molecules 𝑀 

and 𝑁,  and 𝐶𝑛 are the calculated dispersion coefficients.  

5.3.4 Damping 

This study uses a single parameter (𝛽𝑀𝑁) Tang-Toennies damping function271 (2.8) that tends to 0 as 𝑅 → 0, and 

1 as 𝑅 → ∞. The Tang-Toennies damping function is given as 

𝑓𝑛(𝛽𝑀𝑁𝑅𝑖𝑘) = 1 − ex p( − 𝛽𝑀𝑁𝑅𝑖𝑘) (∑
(𝛽𝑀𝑁𝑅𝑖𝑘)𝑚

𝑚!

𝑛

𝑚=0
) 
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where 𝛽𝑀𝑁 is the damping parameter for a molecular pair 𝑀 and 𝑁. The issues with a single damping parameter 

are discussed in Chapter 2 and 5.5.4 but as this is the only damping function accepted by DMACRYS, we must 

use it. The electrostatic expansion is not damped because we include the penetration energy in the short-range 

portion of the potential (2.9), however, the dispersion and polarization energies are. The final dispersion (𝛽𝑑𝑖𝑠𝑝), 

and polarization damping parameters (𝛽𝑝𝑜𝑙), are obtained by sampling important TNB dimers and calculating their 

second-order SAPT(DFT) dispersion (𝐸𝐷𝐼𝑆𝑃
(2)

) and induction (𝐸𝐼𝑁𝐷
(2)

) energies, discussed in further detail in 5.5.4. A 

preliminary guess of 𝛽𝑑𝑖𝑠𝑝 is initially derived from the ionization potential of the two monomers 𝑀 and 𝑁.273 

√2𝐼𝑀 + √2𝐼𝑁 = 𝛽𝑑𝑖𝑠𝑝 

101 

Using TNB’s experimental 𝐼𝑃 of 0.4028 a.u.380, 𝛽𝑑𝑖𝑠𝑝 = 1.8. This method is used to obtain the dispersion damping 

parameter for the initial model derived from the first-order SAPT(DFT) interaction energies, which is used for the 

basin-hopping calculations (5.5.1).   

5.4 Calculating the first-order short-range energy 

5.4.1 Decomposing the short-range energy  
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Once all damped long-range contributions have been removed from the total interaction energy we’re left with the 

short-range contribution 𝐸𝑆𝑅, which can be fit to a sum of exponentials using the density overlap model274 (5.4.3). 

In Chapter 2 a detailed explanation is given on the derivation and role of the short-range energy in intermolecular 

potentials. For TNB, we model the short-range energy within a force-field using the following functional form  

𝑉𝑆𝑅 = ∑ 𝐺exp[−𝛼00
𝜄𝜅 (𝑅𝑖𝑘 − 𝜌𝜄𝜅(𝛺𝑖𝑘))]

𝑖∈𝑀,𝑘∈𝑁
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In the previous study of pyridine38, 167 higher order induction terms were included as 𝛿𝑖𝑛𝑡
𝐻𝐹 but in our study of TNB 

we do not include this term as it is small and expensive to compute (5.5.1). 𝐸𝑆𝑅 is obtained by only calculating the 

1st and 2nd-order SAPT(DFT) interaction energies of a large number of different dimer configurations, and then 

the short-range exponential in Equation 102 is fit to 𝐸𝑆𝑅 to obtain the term 𝑉𝑆𝑅. As seen in Figure 31 some of the 

atoms of TNB are very anisotropic, thus, it is important to ensure 𝑉𝑆𝑅 is anisotropic to better capture atomic shape. 

5.4.2 Obtaining the first-order SAPT(DFT) energies 

𝐸𝑖𝑛𝑡
(1)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] = 𝐸𝑒𝑥𝑐ℎ
(1)

+ 𝐸𝑒𝑙𝑠𝑡
(1)
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The 𝐸𝑖𝑛𝑡
(1)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] dimer interaction energies were computed for 2000 dimer pseudo-random configurations 

of various orientations and varying relative centre of mass distances 𝑅. For a non-biased 1st order fit, the dimer 

configuration space needs to be sampled adequately but also fairly, which can be difficult even for a planar 

molecule that is held rigid. The space is sampled using the quasi-random Sobol sequence, and Shoemake’s 

algorithm,38 for sampling angular space (Shoemake uses quaternion space to keep sampling uniform yet random), 

implemented in the CAMCASP program. In the case of two rigid planar molecules a six dimensional space 

(𝑅𝑥, 𝑅𝑦, 𝑅𝑧 , 𝑁𝑥, 𝑁𝑦 , 𝑁𝑧 , 𝛼) must be sampled. Using the angular axis system, 𝑅𝛼 denotes the centre of mass of 

molecule 𝑀, while 𝑁𝛼the centre of mass of molecule 𝑁 and 𝛼 the angle between the two. To maintain consistency 

with our distributed multipole moment (𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀]) calculations, the first-order SAPT(DFT) energy calculations 

used the PBE0 functional, the CS00 (Casida-Salahub) asymptotic correction,382 with an AC-shift of 0.0539 𝑎. 𝑢., 

and the ALDA+CHF linear-response kernel. The main basis-set for computing the molecular wave-function was 

augA-sadlej, while the auxiliary and atomic-auxiliary basis sets were aug-cc-pVTZ. These are also identical to the 

basis sets used in the distributed moments calculations. The distributed electrostatic energy (𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀]) were then 
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calculated for the 2000 dimer configurations using the Rank 4 (𝑙 = 4) ISA distributed multipoles moments 

obtained in 5.3.1 and subtracted from the non-expanded electrostatic energy 𝐸𝑒𝑙𝑠𝑡
(1)

 to give 𝐸𝑝𝑒𝑛
(1)

 for each dimer 

configuration (Equation 102). When calculating the 𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀], all basis-sets were monomer centred (MC type), 

however, a dimer centred (DC) type auxiliary basis-set is used for the density fitting step (2.2.4). The density 

fitting is used to fit the atomic densities (𝜌𝑖(r)) to the calculated molecular orbitals.  

5.4.2.1 Sanity Checks 

One sanity check is to ensure all the exchange energies are positive, as 𝐸𝑒𝑥𝑐ℎ
(1)

 is a purely repulsive term. Another 

is to check the effect of basis set. For the first 1200 points generated, the 𝐸𝑒𝑙𝑠𝑡
(1)

 and 𝐸𝑒𝑥𝑐ℎ
(1)

  contributions were 

computed using the augA-Sadlej as their main basis, and they were also checked against energies computed using 

the larger d-aug-cc-VTZ (main) basis and d-aug-ccpVQZ (auxiliary and atomic-auxiliary) basis. This was to 

ensure that the smaller but faster and efficient augA-sadlej basis was producing reasonable energies (Figure 32). 

The single point at high energy in Figure 32 (b) should not be considered an outlier. Higher energy points were 

included as more points were randomly generated. 

  
(a) (b) 

Figure 32: (a)1st order electrostatic and (b) exchange SAPT(DFT) interaction energies for 1200 TNB dimers 

calculated using the augA–Sadlej basis set (the basis used for generating the non-empirical potential) and the 

larger d-aug-cc-VTZ basis set.  Both terms show a line of best fit gradient of 1.0 (2 s.f.)  and an average % 

difference of 5%, we find that the augA-Sadlej and d-aug-cc-VTZ energies are remarkably close.  

5.4.3 The overlap model 
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5.4.3.1 Simplifying terms using symmetry 

In Chapter 2, we discuss the value of utilizing symmetry to simplify the number of terms in our force-field, and 

we see its implementation with pyridine in Chapter 3. With the optimized rigid structure of TNB being 𝐷3ℎ and 

the gas-phase dimers being identical in conformation, the number of total atom-types in our potential is greatly 

reduced from 18 to just 5 (Figure 30), consequently, there are 15 atom-atom type combinations. The 

symmetrisation process and the anisotropic terms for TNB are detailed in Chapter 2 but we show the available 

anisotropic terms Table 21 for ease of reference within this chapter. 

𝐾1 𝐾2 𝐿1 𝐿2 𝐽 Function Term Atoms 

0 0 1 0 1 𝑧 ⋅ �⃗⃗� 10 𝐴𝑙𝑙 

1 0 1 0 1 �⃗� ⋅ �⃗⃗� 11𝑐 𝑂𝑥𝑦𝑔𝑒𝑛 

-1 0 1 0 1 �⃗� ⋅ �⃗⃗� 11𝑠 𝑁𝑜𝑛𝑒 

0 0 2 0 2 (3(𝑧 ⋅ �⃗⃗�)
2

− 1)/2 20 𝐴𝑙𝑙 

1 0 2 0 2 √3(𝑧 ⋅ �⃗⃗�)(�⃗� ⋅ �⃗⃗�) 21𝑐 𝑂𝑥𝑦𝑔𝑒𝑛 

-1 0 2 0 2 √3(𝑧 ⋅ �⃗⃗�)(�⃗� ⋅ �⃗⃗�) 21𝑠 𝑁𝑜𝑛𝑒 

2 0 2 0 2 √3 ((�⃗� ⋅ �⃗⃗�)
2

− (�⃗� ⋅ �⃗⃗�)2) /2 22𝑐 𝐴𝑙𝑙 

-2 0 2 0 2 √3(�⃗� ⋅ �⃗⃗�)(�⃗� ⋅ �⃗⃗�) 22𝑠 𝑁𝑜𝑛𝑒 

Table 21: Allowed anisotropic terms in DMACRYS59, and the atoms in TNB that require them by symmetry. Here 

the terms are for the atom-type 𝜄 in an atom-atom pair 𝜄 − 𝜅 with the directionality 𝜄 → 𝜅. The anisotropic term 

𝜌𝜄𝜅(𝛺𝑖𝑘) (Equation 102) is defined by an S function that can be defined by the terms 𝐾1, 𝐾2, 𝐿1, 𝐿2, 𝐽.For example, 

for an atom-atom pair 𝜄 − 𝜅, the 11c term on type 𝜄 can be defined as 𝐽, 𝐾1, 𝐿1 = 1, 𝐾2, 𝐿2 = 0 while the 11c term 

on type 𝜅 can be defined as 𝐽, 𝐾2, 𝐿2 = 1, 𝐾1, 𝐿1 = 0. 

5.4.3.2 Weighting and Fitting method 

The theory behind the weighting and fitting treatments is detailed in 2.9.5. There are a number of weighting 

schemes available within CAMCASP (2.9.5.2), but for TNB, the Gaussian-log weighting274 𝑤(𝑒𝑝) =

exp [−𝛼(ln(𝑒𝑝/𝑒0))
2

] is used for the construction of the density overlap models, where the 𝛼 = 1/ ln 10 by 

default. This weighting function is very good for data that spans multiple orders of magnitude. 𝑒0 is chosen 

depending on part of the potential energy surface one deems most important. For us a good sampling of the 

repulsive wall is ideal, therefore a large multiple of the absolute global minimum dimer energy was chosen. Its 

default value is 20 𝑘𝐽 𝑚𝑜𝑙−1.  
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For these non-empirical models, the distributed density-overlap fits were performed using the Gaussian-log 

weighting scheme386 (2.9.5.2 Scheme 5), where  𝑒0 was set to 100 𝑘𝐽 𝑚𝑜𝑙−1, 𝛼 = 1/ ln 10, and the energy 

maximums and minimums 𝐸𝑚𝑎𝑥 , 𝐸𝑚𝑖𝑛  were set to 500 𝑘𝐽 𝑚𝑜𝑙−1 and 0.0001  𝑘𝐽 𝑚𝑜𝑙−1 respectively, in order to 

properly sample repulsive configurations. Energy values outside this range are given a weighting of zero. An 

overlap model constraint (𝜆) of 1𝑥10−4 𝑘𝐽 𝑚𝑜𝑙−1 was used, which by default 𝜆 = 10−8. However, the resultant 

short-range terms from tighter constraints were found to be very unphysical, and as a result 𝜆 = 10−4 was used 

for TNB. The unphysical terms may have been a product of the poor sampling (5.4.4.2).  

5.4.4 Relaxing the fit to obtain Model0-iso and Model0-aniso  

Once the total density overlap values 𝑆𝑝
𝑖𝑘  and fitted 𝐾𝑖𝑘 parameters have been fit to 𝐸𝑆𝑅

(1)
𝑆𝐴𝑃𝑇(𝐷𝐹𝑇) (2.9.3), one 

is left with a tentative model of both the isotropic and anisotropic short-range terms. For TNB, these initial 

potentials were dubbed Model0. As combining rules are not used the resultant potentials have a total of 15 atom-

atom pair terms. The fitted energies using these initial parameters were then compared to the reference (calculated) 

energies by ORIENT108 to determine the quality of the fit. For a good fit, the weighted root mean square deviation 

(wRMSD) between the reference energies and the fitted energies should be around 10-15%, with residual energies 

(Table 22) of under 10 𝑘𝐽 𝑚𝑜𝑙−1. The wRMSD of both potentials after fitting was ≈ 11%. 

5.4.4.1 Relaxing the short-range parameters to first-order SAPT(DFT) energies 

After the initial fitting, the next step is allowing limited relaxation of the short-range parameters 𝛼00
𝜄𝜅  and 𝜌00

𝜄𝜅  

(Equation 102) to obtain our final potential (Model0) parameters. Both 𝛼00
𝜄𝜅  and 𝜌00

𝜄𝜅  are heavily correlated; the 

value of 𝛼00
𝜄𝜅  is dependent on 𝜌00

𝜄𝜅  (and 𝜌𝜄𝜅(𝛺𝑖𝑘) if the potential is anisotropic) and vice-versa. Ideally one would 

relax only 𝜌00
𝜄𝜅  as our anisotropic terms are also dependent on 𝛼00

𝜄𝜅 . 𝛼00
𝜄𝜅  directly affects the slope of our exponent 

(Equation 102), thus changing this would result in the most dramatic change in our potential but could also reduce 

the physicality of our 𝜌 parameters. In order to obtain the best fits, the short-range parameters in the 1st order 

models are relaxed simultaneously. Normally, ORIENT calculates 𝛼𝜄𝜅 and 𝜌𝜄𝜅 for each atom pair and then for all 

atoms simultaneously, under the presumption that all terms are correlated. In this study the total correlated 

constants have not been calculated as certain atoms cannot be sampled well enough; this also has other 

consequences, which are discussed in further detail in 5.4.4.2. 

Consequently, the anchors on 𝛼00
𝜄𝜅  were made tighter (set to 1.0) than those on the isotropic 𝜌00

𝜄𝜅  (set to 0.1), while 

the anchors on the anisotropic terms 𝜌𝜄𝜅(𝛺𝑖𝑘) are set to 1.0. The anchors on the anisotropic terms are made tight 

as their initial approximation, with the overlap model, is reasonably good. We find the anisotropic terms 
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(Appendix 5.A) to be very closely related to the distributed multipole moments, as expected as both represent the 

non-sphericity of the atomic charge distribution. This is because the overlap model uses the atomic charge density 

to obtain the short-range terms, consequently, even the initial approximation is very close to reality.  

The relaxation step within CAMCASP occurred in stages as opposed to simultaneously relaxing all parameters due 

to insufficient data and sampling of the carbon and hydrogen repulsive walls. Therefore, it was wise to start with 

the most important atoms first (i.e. oxygen) and end with the least important (hydrogen). By employing chemical 

intuition and also investigating the higher order multipole moments (Figure 31) of each atom in TNB, one was 

able to determine which atoms would be the most important to the short-range potential. This was based off their 

anisotropy (atom-shape), atomic charge density (electronegativity) and how well they had been sampled by the 

dimer configuration space. Figure 31 and Table 18 suggest that the most important atoms are N and O, whereas 

H is the least important to the molecular anisotropy. 

5.4.4.2 Analysis of the final first-order isotropic and anisotropic fits 

In order to see how well the 𝐸𝑆𝑅
(1)

 dataset was sampling intermolecular interactions, what improvements had been 

made on the isotropic potential and also to whittle down terms that were not important and atoms that should be 

kept isotropic, a fully anisotropic potential was first created. As mentioned in 5.4.3.1, certain functions used to 

define many of the anisotropic terms can be ruled out due to symmetry. In addition, some atoms can be made 

isotropic if their repulsive wall is only sampled in a limited range of orientations because most of their atomic 

charge density is within the repulsive wall of other atoms. This is the case with the hydrogens attached to the 

aromatic carbons and even the carbons themselves due to the anisotropy of the NO2 groups.  

  O N CN CH H 

Potential 
Weighted RMS 

(𝑘𝑗 𝑚𝑜𝑙−1) 
largest 

aniso-term 
largest 

aniso-term 
largest 

aniso-term 
largest 

aniso-term 
largest 

aniso-term 

Isotropic 1.157      

O only 0.852 -0.108 (𝜌20)     

N & O only 0.768 -0.120 (𝜌20) -0.078 (𝜌22𝑐)    

CN, N & O 0.979 -0.096 (𝜌20) -0.051 (𝜌20) -0.331 (𝜌22𝑐)   

CN, CH, N & 
O 

0.964 -0.098 (𝜌20) -0.046 (𝜌20) -0.329 (𝜌22𝑐) -0.056 (𝜌22𝑐)  

Fully 
anisotropic 

1.026 -0.080 (𝜌20) -0.057 (𝜌20) -0.353 (𝜌22𝑐) 0.068 (𝜌20) -0.262 (𝜌20) 

Table 22: The weighted RMS residual energies in 𝑘𝐽 𝑚𝑜𝑙−1 for the various 1st order short-range models and the 

largest symmetry allowed term in 𝜌𝜄𝜅(𝛺𝑖𝑘) other than 𝜌00
𝜄𝜅 , in Bohr for each atom type  
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A methodical way of whittling down which terms are truly needed is by adding anisotropy to each atom (starting 

with the most important atom, oxygen) on a term by term basis and observing the effect on the short-range terms 

(Table 22). Atoms showing unphysical anisotropic terms should be made isotropic.  Typically, the weighted 

RMSD is a very good indicator of whether anisotropy is improving the quality of a short-range fit and generally if 

the RMSD does not decrease then adding anisotropy to an atom could be detrimental to the overall potential. As 

all anisotropic fits in Table 22 were started from the isotropic best fit, it is possible there were multiple minima 

and the quality of a fit could have been improved if it was not well determined.  

From the outset, making only the oxygen anisotropic improves the fit considerably, significantly reducing the 

weighted residual error from 1.16 to 0.85. This drastic improvement in quality highlights the importance of 

including shape in the highly anisotropic oxygen atoms. We also find the 𝜌20 term to be the most anisotropic. 𝜌20 

describes the rank 2 term along the bond, and its dominance agrees with the chemistry of TNB and the multipolar 

moments, where the 𝑑𝑧2 moment is the largest (in the local axis). A substantial portion of the molecular charge 

density can be found on the electronegative NO2 groups and therefore they are heavily involved in the 

intermolecular interactions that govern crystal structures and the stability of various polymorphs, especially under 

conditions that sample higher up the repulsive wall. As a result, accurately capturing the shape of these atoms is 

crucial if one wants to reliably predict the structure of weakly bound organic energetics at elevated temperatures 

and pressures. In Table 22 one can see the magnitude of anisotropy on 𝜌20 decreases as we include anisotropy on 

more atoms, however, this still remains the most dominant anisotropic term, for both oxygen and nitrogen. 

Including the symmetry allowed anisotropy terms on the nitrogen further improves the quality of the fit, with very 

realistic final parameter values. Interestingly, in the fully anisotropic model 𝜌20 is the most dominant anisotropic 

term for all atomic types except for CN. The nitrogen and oxygen atoms are sampled very well in the dimer 

configuration space used for the 𝐸𝑆𝑅
(1)

 calculations emphasizing the importance of these atoms in gas-phase 

interactions.  

In Table 22, one can see that the anisotropic terms on the central atoms (C and H) are unphysically large. The 𝜌20 

term on CH should certainly not be larger than the oxygen atom, which suggests CH was poorly sampled. Judging 

from these results, CN, CH and H were also not well sampled/defined within our configuration space. This is likely 

due to these atoms being blocked by the electron rich NO2 groups. Upon close inspection their anisotropic terms 

are very unphysical and are simply numerical values produced by our model. For instance, much of the anisotropy 

on the hydrogen should be engulfed by the connecting carbon as the charge density on CH is substantially larger, 

however, we find the 𝜌20 on the hydrogen to be enormous (almost 4 times larger than the oxygen) in our completely 

anisotropic potential. Most importantly, this greatly influences the anisotropy of our oxygen atoms. There is a 
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dramatic decrease in the final 𝜌xx
𝑂  parameters for oxygen as the model attempts to spread the anisotropy between 

the less well-defined carbon and hydrogen atoms. Chemical intuition says that oxygen and nitrogen should be the 

most anisotropic and are the most important in intermolecular interactions in the lattice, therefore, the fits in Table 

22 that include shape on the aromatic atoms are not as chemically true. Even though anchors on the anisotropic 

terms were held tight during the relaxation stage, the preliminary fitting stage the overlap model was unable to 

prescribe realistic values to the anisotropic 𝜌𝜄𝜅(𝛺𝑖𝑘) of the central atoms. 

 Anisotropic terms  

Atom-Type (𝜄) 𝜌10
𝜄  𝜌11𝑐

𝜄  𝜌20
𝜄  𝜌21𝑐

𝜄  𝜌22𝑐
𝜄  

O 0.05 −0.05 −0.12 0.03 0.09 

N 0.03 0.00 −0.02 0.00 −0.08 

Table 23: The values (in atomic units) of the anisotropic short-range terms 𝜌𝜄𝜅(𝛺𝑖𝑘) used in the final anistropic 

Model0. Only the nitrogen and oxygen atom types were made anisotropic for reasons discussed in 5.4.4.2. The 

complete potential file can be found in Appendix 5.A. 

To conclude, despite the ISA atomic iso-density contours for all atoms being anisotropic (Figure 31),  the final 

Model0-aniso only includes anisotropy on the oxygen and nitrogen atoms in TNB as the anisotropy of the central 

atoms is not well determined. In Table 23 the values used are listed. The largest anisotropic term on oxygen 𝜌20
𝜄 , 

which is 2nd order along the bond, correlates well with the atomic shape seen in Figure 31 and the largest multipole 

moment 𝑄22𝑐 (Table 18).  

  
(a) (b) 
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Figure 33: SAPT(DFT) calculated 𝐸𝑆𝑅
(1)

 energies contrasted against the fitted energies for the (a) Model0-iso and 

(b) Model0-aniso with anisotropy on the N & O only. The weighted root mean squared (RMS) residuals energies 

were found to be 1.16 𝑘𝐽 𝑚𝑜𝑙−1 and 0.77 𝑘𝑗 𝑚𝑜𝑙−1 respectively. 

The plots of the final relaxed energies and the SAPT(DFT) calculated energies (Figure 33) suggest one can obtain 

a very good isotropic fit. A short-range potential with a final weighted RMS residual energy of 2 𝑘𝐽 𝑚𝑜𝑙−1 would 

be considered satisfactory, thus our isotropic model with a weighted RMS of 1.16 𝑘𝐽 𝑚𝑜𝑙−1 is very good. As seen 

in Figure 33 and Table 22, including atomic anisotropy can substantially reduce the weighted RMSD though the 

improvement in the quality of the fit is not incremental. It should be stressed that, while anisotropic terms may be 

transferred between atom pairs (a single 𝜌10
𝜄𝜅  for all oxygen pairs), 𝛼00

𝜄𝜅  and 𝜌00
𝜄𝜅  depend on both atom types. 

Accordingly, the anisotropic terms used in the Model0 is identical to those used the final DIFF model.  

5.4.4.3 Does sampling higher up the repulsive wall improve short-range parameters? 

A possible way to improve on the sampling of the central atoms is to attempt to sample more repulsive structures 

where the dimers are closer together and include this data in our fitting. By setting a more repulsive 𝑅𝑚𝑖𝑛 and 

𝑅𝑚𝑎𝑥 when generating the pseudo-random configurations, one can force the dimers closer together with the hope 

that the atomic shape of  atoms on the aromatic ring will be better sampled. Hence, the 1st order SAPT(DFT) 

energies and distributed overlap integrals for a supplementary 2000 “tighter” configurations were calculated using 

the 2000th configuration from the initial data set as a starting point, meaning no orientations were repeated. 

However, including all 2000 new structures was found to heavily bias our model towards more repulsive structures, 

which pulled the potential energy surface minimum up. There was also a dramatic increasing in the percentage 

error between our fitted and calculated intermolecular perturbation theory energies as the range of energies 

increased significantly. One could argue that the cut-offs of 𝐸𝑆𝑅
(1)

 could have been tighter, but it is the total energy 

that should be scrutinised. Instead one can use high quality 2nd order SAPT(DFT) dimer energy calculations on the 

most important dimers on the PES to relax the short-range parameters and increase the reliability and accuracy of 

the non-empirical models. Which leads us to the question of how does one select the most important configurations 

to sample on a PES? 

5.4.5 Summary of the first-order models and discussion of subsequent steps 

The above methodology results in an isotropic and anisotropic analytical model for describing short-range 

interactions using 𝐸𝑆𝑅
(1)

 energies, which can be used to model the TNB crystalline state in simulations. The 

anisotropic and isotropic Model0s can be combined with the previously derived long-range terms (5.3): the 



 175 

distributed multipoles, polarizabilities, and isotropic dispersion coefficients. Using Equation 101 a dispersion 

damping parameter can be approximated, while an appropriate polarization damping parameter can be assumed 

and refined after testing the model. This would give a non-empirical force-field that could be used in simulations, 

and validated with comparisons to experimental data. In this thesis, we focus on developing accurate and reliable 

potentials for energetic molecules, which can reliably sample the true potential energy surface. Accordingly, one 

should evaluate the precision of these models against high quality theoretical data, like the 2nd order SAPT(DFT) 

(𝐸𝑖𝑛𝑡
(2)[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)]) interaction energies. There are four advantages of analysing the potential against higher-order 

energies: 

1. To assess whether certain contributions can be omitted. The highly non-additive many-body terms, which 

arise from interactions that cause changes in charge distribution (2nd or higher order terms), require very 

careful consideration when transferring them from gas-phase dimer calculations to the solid-state. 

2. The damping parameters can be determined by fitting to 2nd order SAPT(DFT) energies. Approximating 

these may not be suitable for larger molecules like TNB as it is likely they do not follow the trends found 

for small near-spherical molecules.38  

3. Knowing 𝐸𝑖𝑛𝑡
(2)[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] can allow for the refinement of some of the short-range parameters to absorb 

errors or approximations. 

4. Further tests can be made on the accuracy of the model’s PES and its range of validity. This is a key 

consideration, as the pseudo-random sampling method of dimer configurations used to obtain the 𝐸𝑆𝑅
(1)

 

dataset may not be adequate enough for highly anisotropic molecules. The repulsive wall around each 

atom must be sampled as well as it could be in any physical situation (e.g. under pressure or at ambient 

conditions), however for some atoms, like H in TNB, its repulsive wall is buried beneath the charge 

density of the larger atoms, or like the carbon atoms in TNB, can only be accessed/sampled at a few 

orientations. In 5.4.4.3, 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 are changed in order to generate an additional 2000 tighter 

configurations, but this still fails to improve the quality of the potential. Without considering the total 

interaction energy, it is hard to confidently conclude that the relevant areas of the intermolecular potential 

energy surface of TNB has been sampled. 

The testing and refining of a non-empirical model is iterative and interlinked. Thus, the subsequent section starts 

with an investigation of the higher order induction terms 𝛿𝑖𝑛𝑡
𝐻𝐹 and 𝐸𝐶𝐷

(2)
. Can these terms be neglected from the total 

intermolecular energies? We investigate a viable method of calculating 𝐸𝑖𝑛𝑡
(2)[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)], albeit at considerable 

computational expense, and obtaining 𝑉𝑖𝑛𝑡[𝑀𝑜𝑑𝑒𝑙]. 𝐸𝑖𝑛𝑡
(2)[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] was calculated for three distinct datasets: 
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1. A set of gas-phase dimer configurations obtained using an approach analogous to that used for pyridine.38 

The minimum energy configurations of the TNB dimer were located, and then scanned by varying the 

centre of mass distance 𝑅 in order to determine the model’s damping parameters. 

2. A new set of pseudo-random configurations were generated to sample considerably more configuration 

space. This is crucial for describing condensed phase properties. 

3. The most common two-molecule contacts found in TNB crystal structures generated in a preliminary 

CSP study. The models were not parameterised to this dataset; it was only used as a test-set the force-

fields. 

5.5 Testing and improving the models using the total SAPT(DFT) 

dimer interaction energies 

5.5.1 Omitted Terms 

5.5.1.1 3rd to infinite order contributions to the induction 

For pyridine,38 the total SAPT(DFT) energy was calculated in two-steps: 

1. Calculations of the second-order interaction energy using SAPT(DFT). 

2. Calculations of the 𝛿𝑖𝑛𝑡
𝐻𝐹 correction energy, which is needed for third to infinite-order contributions to the 

induction (2.6.3). 

For the pyridine potential, the total two-body SAPT(DFT) interaction energy (including higher up to infinite order 

terms) was used and may have had detrimental effects to the resultant force-field (3.4.5). The decomposition of 

the total intermolecular interaction energy and the methods of describing the higher order energy terms is 

elaborated in Chapter 2. The 𝛿𝑖𝑛𝑡
𝐻𝐹 correction energy was calculated for a single gas-phase minima of TNB (Figure 

34) and the higher order induction contributions to the total energy were found to be small. 𝛿𝑖𝑛𝑡
𝐻𝐹 was found to be 

approximately 1 𝑘𝐽 𝑚𝑜𝑙−1 around the minimum, which is less than 4% of the total interaction energy. While this 

could be considered a substantial contribution to the energy, it is such a costly energy to compute (approximately 

16 – 20 hours per point) that its cost currently outweighs the benefits of inclusion, but this is not always the case.38, 

46, 167 The inclusion of the 𝛿𝑖𝑛𝑡
𝐻𝐹 correction energy has been found to be detrimental to non-empirical potentials for 

organic molecules, where higher order induction contributions are small.167 For the non-empirical model of 

pyridine (Chapter 3), 𝛿𝑖𝑛𝑡
𝐻𝐹 coupled with other effects, could have been the cause of a slightly over-binding 

potential.167  
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Figure 34: 𝐸𝑖𝑛𝑡
(2)

 SAPT(DFT) energy breakdown including the 𝛿𝑖𝑛𝑡
𝐻𝐹 correction energy (points) and comparison with 

the Model0-aniso (dashes) for the S3 dimer. 𝛽𝑑𝑖𝑠𝑝 = 1.65 and 𝛽𝑝𝑜𝑙 = 1.00 

5.5.1.2 Defining the polarization energy and neglecting the second-order charge-delocalization 

energy 

The charge-delocalization term is typically a stabilizing energy that describes the delocalization of charge density 

between two molecules in close proximity (2.6.2). When partitioning the SAPT(DFT) intermolecular interaction 

energy of a system, the charge-delocalization energy is said to be the difference between the 2nd order induction 

energy (𝐸𝐼𝑁𝐷
(2)

) and the 2nd order polarization energy (𝐸𝑃𝑂𝐿
(2)

), which is also the regularized induction energy 

(𝐸𝐼𝑁𝐷
(2)

(𝑅𝑒𝑔)). The charge-delocalization energy’s origins and nature are discussed in further detail in 2.6.2. 

𝐸𝐶𝐷
(2)

= 𝐸𝐼𝑁𝐷
(2)

− 𝐸𝐼𝑁𝐷
(2)

(𝑅𝑒𝑔) 

104 

If the contribution of 𝐸𝐶𝐷
(2)

 to the induction energy is significant enough it can be absorbed into the short-range 

exponential term by relaxing α00
ικ  and ρ00

ικ . However, after computing 𝐸𝐶𝐷
(2)

 using Equation 104, we find that only 
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the very repulsive configurations (𝐸𝑖𝑛𝑡
(2)

> 150 𝑘𝐽 𝑚𝑜𝑙−1) have notable 𝐸𝐶𝐷
(2)

 energies (Figure 35 (a)). Generally, 

the charge-delocalization is tiny and in most cases negligible in comparison to the polarization energy (Figure 35 

(a)). As a result, 𝐸𝐶𝐷
(2)

 is not included in our non-empirical models to reduce the number of approximations/energies 

the models absorb. In Figure 35 (a) one can see the importance of the polarization energy (𝐸𝐼𝑁𝐷
(2)

(𝑅𝑒𝑔)) as its 

contribution to the 2nd order interaction energy is small but still considerable, especially for the more repulsive 

structures. Figure 35 (b) further emphasises that the TNB induction energy is dominated by polarization 

contributions, at least for the majority of configurations seen the gas-phase dimers. 

  

(a) (b) 

Figure 35: (a) The 2nd order SAPT(DFT)intermolecular interaction energy 𝐸𝑖𝑛𝑡
(2)

 compared with the components 

of the 2nd order induction energy, the regularized induction energies 𝐸𝐼𝑁𝐷
(2) (𝑅𝑒𝑔) (also known as 𝐸𝑃𝑂𝐿

(2)
) and the 

charge-delocalization energy 𝐸𝐶𝐷
(2)

 energies for 200+ gas-phase dimer configuration scan and crystal dimer 

configurations. The dimers have been ordered by decreasing interaction energies 𝐸𝑖𝑛𝑡
(2)

. (b) Showcases the 

dominance of the polarization energy (𝐸𝐼𝑁𝐷
(2) (𝑅𝑒𝑔)) compared to the charge-delocalization energy for the same 

dimer configurations. In (b) the dimers have been ordered by increasing polarization energies.  

5.5.2 Calculating second-order SAPT(DFT) energies 

5.5.2.1 Computational considerations 

The remaining 2nd order terms can be included by fitting of our force-field to a grid of numerically dense pair 

interaction energy calculations (5.4.5). The initially proposed methodology for calculating the higher order 

SAPT(DFT) energies of TNB dimers was analogous to the treatment previously used on the 11-atom pyridine, 

where higher order calculations including calculation of the 2nd to infinite order induction terms were carried out 
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using solely CAMCASP on over 1000 different configurations.38 However, TNB is a substantially larger molecule 

with 18 atoms. 2nd order energy calculations that took 2-3 hours per dimer for pyridine in CAMCASP can take 36+ 

hours per TNB dimer. What previously took approximately 2000 hours of computing time would take a whopping 

40000 hours. An alternative is to do the complete higher-order calculation on the still-evolving quantum code 

Psi4.228 The scaling with molecule size is far better with Psi4 as it does well in partitioning and allocating computer 

memory, and is more efficient when handling large calculations. As it is relatively new it makes use of the latest 

treatments to be a substantially faster and efficient code. For example, using the augA-sadlej basis the cost per 

point is approximately 15 hours, more than half as quick. Conversely, as it is a new code there are still bugs and 

quirks that need to be worked around, especially for interfacing with other codes. Accordingly, many bespoke 

python codes, scripts and methodologies had to be developed alongside, in order to analyse and readily employ 

the Psi4 outputs in our codes. It should be noted that the total SAPT(DFT) interaction energies calculated by Psi4 

needed rescaling as the exchange dispersion term 𝐸𝑒𝑥𝑐ℎ−𝑑𝑖𝑠𝑝
(2)

 in the code is unscaled. Furthermore, Psi4 currently 

does not include the ALDA+CHF linear-response kernel that is used in the molecular properties calculations. 

Instead the code uses the ALDA kernel which is more suited for PBE calculations.284 Consequently, we used a 

combination of Psi4 to obtain our molecular wave-functions and CAMCASP for the SAPT calculations. 

5.5.2.2 Methodology 

The 2nd order energy calculations were carried out on geometries obtained from previous configuration scans 

(5.5.3.1.3), pseudo-random dimer configurations (5.5.3.3.1) and the most popular two molecule contacts found in 

TNB crystal structures (5.5.3.2). A combination of Psi4228 and CAMCASP was used to calculate these interaction 

energies. The calculations were once again performed using the PBE0 functional, the CS00 asymptotic 

correction,382 with an AC-shift of 0.0539 𝑎. 𝑢., and the ALDA+CHF linear-response kernel in order to maintain 

consistency with the 1st order SAPT(DFT) energy calculations. The main basis-set for computing the molecular 

orbitals was the augA-sadlej basis in the MC+ (monomer centred with mid-bonds) format with a 3s3p2d2f mid-

bond set. The auxiliary basis sets used was the aug-cc-pVTZ in the DC+ format (dimer centred with mid-bonds). 

Psi4 is used to calculate the wave-functions for each dimer configuration, while CAMCASP uses these orbital 

energies to complete the SAPT portion of the calculation. A bespoke Python31 code was used to extract the dimer 

geometries of all the configuration scan orientations and convert them into the correctly formatted CLUSTER 

input files for the interaction energy calculations. Another homemade script was then used to extract the 

appropriate energy terms and convert them into 𝑘𝐽 𝑚𝑜𝑙−1.  
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5.5.3 Dimer configuration datasets 

5.5.3.1 Gas-phase global and local minima and configuration scans 

5.5.3.1.1 Basin-Hopping 

Basin-hopping is a two-part, iterative global optimization treatment, that employs a global stepping algorithm with 

local minimizations at each step.387 It is a simulation technique in the program ORIENT,108 used to find the global 

and local minima on a potential energy surface (PES) of  a homo/hetero-dimer. The limited-memory BGFS 

(Broyden–Fletcher–Goldfarb–Shanno) aka L-BFGS optimization algorithm388, 389 is used by ORIENT to find local 

and global minima of an intermolecular energy model. Basin-hopping typically shines when used on “bumpy” 

PESs and was used as a preliminary process for choosing important isolated dimers for 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] 

calculations for the further refinement of the short-range terms.  

For the TNB calculations, the maximum number of steps used was 100,000, the maximum displacement  Δ𝑥 =

0.10 of each step and a maximum rotation Δ𝜃 = 30°. An energy corresponding to 𝑘𝑇 at a temperature of 500𝐾 

in kelvin was used as the criterion/instructions for allowing or rejecting a possible step. Basin-hopping simulations 

run either until a specified number of successful steps have been taken or a certain number of minima have been 

found. A basin-hopping run was initially carried out using the isotropic Model0 and contrasted with the results for 

the same run using the empirical FIT371 potential for the dispersion-repulsion contributions alongside an identical 

electrostatic model as Model0. This was to check the sensibility of our model. 

The program CLUSTER which is a part of the suite of programs CAMCASP,107 is then used to analyse the minima 

found by the basin-hopping simulation. CLUSTER re-orientates the geometries into their principle axis and similar 

minima are clustered based on their relative energies, relative moments of inertia in principle axes and a similarity 

cut-off, which is the similarity probability between two minima. These quantities need to be fine-tuned to each 

unique molecule.  

5.5.3.1.2 Basin Hopping: Results 
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Model0-iso 
S1 S2 S3 S4 T1 

     

-26.258 kJ/mol -24.128 kJ/mol -21.015 kJ/mol -20.434 kJ/mol -18.566 kJ/mol 

Empirical FIT 

     

-26.275 kJ/mol -22.911 kJ/mol -22.911 kJ/mol -22.712 kJ/mol -20.791 kJ/mol 

Overlays 

     

RMSD2 – 0.21 RMSD2 – 0.19 RMSD2 – 0.07 RMSD2 – 0.07 RMSD2 – 0.04 

 

Figure 36: The first row displays the 5 basin-hopping minima with their corresponding label (S for stacked, T for 

T-shaped) found with the isotropic version of the non-empirical Model0 and their dimer interaction energies 

computed with the model in 𝑘𝐽 𝑚𝑜𝑙−1. The following row displays the energies and dimers computed with the 

empirical FIT model. The final row are structural overlays of the 5 configurations found by Model0-iso (grey) and 

the empirical FIT model (green). Their RMSD2 values are given in Å.  

We find almost identical minima when using the Model0-iso and empirical FIT force-fields (Figure 36). In the 

overlays of the 5 dimer minima obtained using the two models, all root mean square deviations (RMSDn) are below 

0.25Å. The energy models favor having the two molecules parallel to one another as opposed to the T-shaped 



 182 

configurations and other configurations found in the crystal (5.5.3.2). The lowest energy dimer in both FIT and 

model0 potential energy surfaces, is the S1 structure, which is strongly stabilized by interactions between NO2 and 

the aromatic 𝜋-cloud. Things take an interesting turn when we compare the 2nd and 3rd most stable structures in 

FIT and Model0. Model0 highly favours the staggered mirror stacking of S2 over S3 by over 3 𝑘𝐽 𝑚𝑜𝑙−1, while 

FIT slightly favours the double NO2---NO2 interactions found in S3, the differences between S2 and S3 being only 

0.0005 𝑘𝐽 𝑚𝑜𝑙−1. One could suggest that this is due to the non-empirical model’s improved description of the 

dispersion, through the iterated stockholder atoms (ISA) approach. S4 is stabilized by a balance of NO2---NO2 and 

NO2---aromatic 𝜋 interactions. The least stable minimum found with both models is the T1 structure, where the 

oxygen atoms in the NO2 group interact with the aromatic 𝜋-cloud of the neighboring molecule. However, T-shape 

configurations, and other configurations, are seen in the polymorphs of TNB due to crystal packing forces and the 

presence of more molecules in the local interaction cluster. This highlights the importance of using the most 

popular two molecule contacts found in the crystal structure as a test set, especially if we want these non-empirical 

models to be transferable between phases. Therefore, the assumption that the gas-phase dimer structures appear in 

the observed crystal structures does not hold for TNB. 

5.5.3.1.3 Configuration scan 

Obtaining the TNB basin-hopping minima is just an initial analysis of the favoured orientations in the potential 

energy surface and not necessarily the most informative or complete method of sampling the important dimer 

configurations needed for the 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] calculations. More information on the PES can be gleamed by 

undertaking radial scans of the configuration space on either side of each dimer to obtain additional geometries 

around the repulsive wall and regions where the long-range interactions are damped. We must restrict the 

configuration scan along the radial direction as the configuration space for two rigid molecules has 6 degrees of 

freedom. Hence, only the radial separation vector (𝑅𝑥, 𝑅𝑦 , 𝑅𝑧) varies with scaling the while angle and rotation axis 

remains fixed. 

For each basin hopping dimer, 33 configurations were generated by keeping the relative orientation of each dimer 

fixed, and fraction scaling the centre-of-mass separation (𝑅) between the pair of molecules. The range of 𝑅-

scalings was between 0.76 and 1.4. Separations below 1 correspond to the repulsive region of the potential while 

greater values capture long-range dispersive interactions, therefore, suitable values must be chosen. A dense 

sampling of the repulsive region is required for a reliable comparison of our short-range potential with second-

order SAPT(DFT) interaction energies. ORIENT108 was used to do energy calculations on each configuration using 

the Model0-aniso for an initial comparison with 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] and to determine the importance of 2nd order 

terms. It should be noted that the distributed polarizabilities and the dispersion model in this Model0-aniso were 
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damped using approximate parameters (5.3.4) as the final damping parameters were obtained from these 

calculations. 

5.5.3.2 Crystal Dimers 

An initial Crystal Structure Prediction (CSP) Study was carried out using CrystalPredictor 1.835, 36  to generate a 

million putative  Z′ = 1 crystal structures of TNB within the 59 most probable space groups (this was also the main 

generation step for the CSP study carried out in Chapter 6). The generated structures were further optimized using 

the FIT potential and iterated stockholder atoms (ISA) computed point charges and clustered based on their 

structural similarities. This generated approximately 4 thousand unique structures. These structures were re-

optimized using the FIT model again but with the ISA multipole model that included higher order terms up to 

hexadecapole (Rank 𝑙 = 4) (5.3.1). Any optimized structures whose second derivative properties showed that they 

were not true minima were discarded, and the remaining structures were re-clustered. The 100 most stable 

structures were analysed in detail for their similarities to each other, the gas-phase dimers, and the 66 most common 

two molecule contacts were chosen. This was done using the similarity tool in Mercury291 which determines how 

many molecules (𝑛) of a maximum coordination cluster (15 for crystals, 2 for crystal/dimer comparisons) can be 

matched within a 20% distance in intermolecular atom-atom distances and 20 in interatomic intermolecular 

angles, and reports the optimum RMSDn (root mean square deviation of 𝑛 molecules) of the overlay, ignoring 

hydrogen or deuterium atoms.  

Analysis of the two-molecule configurations seen in the FIT+ISA’s lowest energy structures suggest that the most 

common contacts in the thermodynamically plausible crystal structure differ significantly from those found in the 

gas-phase. These additional data points can act as a test/check for our non-empirical models and ensures that we 

do not bias our fitting towards an inadequate range of the TNB PES. 

5.5.3.3 Avoiding over-fitting 

5.5.3.3.1 Pseudo-random dimers 

How does one avoid biasing a potential to particular configurations? Force-field development is an iterative 

process and initially in this TNB study, the pyridine methodology (Chapter 3) was used to create a relaxed model. 

Model0-aniso was relaxed solely to configurations derived from the 5 most stable gas-phase dimers found on the 

TNB PES. The process of relaxation and the choice of damping parameters is elaborated in further detail in 5.6, 

however, in order to explain the need for pseudo-random configurations in this section we will discuss and 

showcase the relaxed “ModelD”.  
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(a) (b) 

  

(c) (d) 

Figure 37: 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] energy breakdown and comparison for the S1 (a) and T1 (b) gas-phase dimers, 

using the relaxed ModelD, which is Model0 relaxed to 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] calculations on the configuration scan 

dimers using a dispersion damping parameter of 𝛽𝑑𝑖𝑠𝑝 = 1.65. 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] and 𝑉𝑖𝑛𝑡
(2)

[𝑚𝑜𝑑𝑒𝑙] were also 

compared for the most common crystal contacts using ModelD and both damping dispersion parameters, 𝛽𝑑𝑖𝑠𝑝 =

1.6 (c) and 𝛽𝑑𝑖𝑠𝑝 = 1.65 (d). 

Using CAMCASP, Model0 was relaxed to the 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] energies of the 160 structures found in the 

configuration scans of the 5 gas-phase minima to create a relaxed model dubbed ModelD. Two dispersion damping 

parameters were used, 𝛽𝑑𝑖𝑠𝑝 = 1.6 and 𝛽𝑑𝑖𝑠𝑝 = 1.65, as both these values approximated the SAPT(DFT) 
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dispersion energy the best (Figure 39 & Figure 41). No other minima were used and the configuration space was 

only limited to the most stable gas-phase dimers. This was due to the great cost of these higher-order calculations 

and in hopes of being resourceful. For pyridine an astounding 1000+ dimer configurations were used in the fitting 

to 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)], however, for TNB one must be smarter and try and sample the areas of the PES that are 

most important. Hence, minima from the configuration scans were used with the belief that the most significant 

contacts in the gas-phase would be the most dominant in the crystalline state. 

A comparison of these relaxed energies 𝑉𝑖𝑛𝑡
(2)

[𝑚𝑜𝑑𝑒𝑙𝐷] and the 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] contributions for the S1 and T1 

gas-phase dimers (Figure 37)  suggests an exceptional fit but also highlights one major issue. While the relaxed 

potential now better described the gas-phase, the model had clearly been over-fit. There was a marked deterioration 

in its ability to predict crystal contacts, relative to the unrelaxed Model0-aniso (contrasting Figure 37 (c) & (d) 

with Figure 41). This not only emphasised the importance of retaining the crystal configurations to be used as an 

independent test set for our fits but also the need for uncorrelated data. Consequently, in the later stages of the 

force-field development process an additional 282 pseudo-random dimer structures were added: to supplement the 

𝐸𝑖𝑛𝑡
(2)[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] dataset, to ensure a non-bias fit and also increase the space sampled.   

5.5.3.3.2 Methodology 

The most affected crystal contacts were those with energies between −10 and −25 𝑘𝐽 𝑚𝑜𝑙−1 (Figure 37); contacts 

close to the PES minimum. In order to address this issue and better model this region of the energy surface, 190 

random dimers between −10 and −22 𝑘𝐽 𝑚𝑜𝑙−1 (the energy of the most stable pseudo-random dimer) were 

included to the dataset. It is equally important to maintain a thorough description of the repulsive region thus an 

additional 92 repulsive structures with energies were included whose energies ranged from 3 to 65 𝑘𝐽 𝑚𝑜𝑙−1. 

Firstly, 1000 additional dimer configurations were generated using the sampling method described in 5.4. The 

𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 were kept the same as our initial scan (5.4.2). However, the scan used the 2000th configuration 

from the initial data set as a starting point, thus new areas of the configuration space (previously unexplored by 

the configurations used for the 𝐸𝑆𝑅
(1)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] calculations) were sampled. Energy calculations were carried 

out on the new structures using ORIENT and the Model0-aniso created from the 𝐸𝑆𝑅
(1)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] calculations. 

The structures were then ranked according to their dimer interaction energies. The first 200 (most stable 

configurations) and the last 130 (most repulsive) configurations were then chosen for the higher order SAPT(DFT) 

calculations. However, 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] calculations using Psi4/CAMCASP for 48 of those structures failed and 

they were not included in the dataset, hence the pseudo-random dataset comprised of a total of 282 structures. The 

geometries can be found in the Appendix CD. 
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5.5.4 Determining damping parameters 

The multipolar dispersion and polarization damping parameters were determined using the configuration scan 

dataset and checked against the crystal structure dimers. This was done so that the effect of each coefficient could 

be investigated as a function of 𝑅. We found there was no perfect value that covered all ranges of 𝑅. 

5.5.4.1 Damping the multipolar polarization energy 

As we already have a theoretical approximation of the dispersion damping parameter (𝛽𝑑𝑖𝑠𝑝 = 1.8) (5.3.4) but not 

the multipolar polarization damping parameter. 𝛽𝑝𝑜𝑙 must be approximated using the 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] data. The 

initial choice is not only approximate but also tentative. In order to not bias the choice of damping parameter to 

the dimer configurations sampled, the process can be iterative, with the damping model re-assessed and adjusted 

if need be once the full potential energy surface is obtained. The damping parameter can very easily be changed 

and for most cases should be reassessed after preliminary CSP studies have been completed using final DIFF and 

Model0 force-fields. The first approximation of 𝛽𝑝𝑜𝑙 for TNB was used throughout the study though it was one of 

the weakest points in the potential. 𝛽𝑝𝑜𝑙 was the first to be fit to the 𝐸𝑃𝑂𝐿
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] of the most important 

dimer orientations. For various values of 𝛽𝑝𝑜𝑙, the 2nd-order multipolar polarization energy 𝑉𝑃𝑂𝐿
(2)

[𝐷𝑀] was 

estimated by not iterating our model to convergence. The value of 𝛽𝑝𝑜𝑙 was adjusted till non-iterated energies best 

match 𝐸𝑃𝑂𝐿
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)]. As the polarization energy is a many-body term; it is dependent on terms involving the 

interaction of multiple sites. Thus, these damping parameters should depend on the types of interacting pairs and 

possibly their orientation. For example, a N and a O interacting in dimer T1 should, in principle, require a different 

damping parameter to an N and O interacting in dimer S1 or a C and H in dimer T1. Therefore, by employing a 

single parameter damping function like our Tang-Toennies, we struggle to obtain a single 𝛽𝑝𝑜𝑙 that correctly 

describes the 2nd order polarization energy potential surface for all TNB dimer orientations in Figure 38. The more 

anisotropic configurations, S3, S4 and T1 require stronger damping coefficients (Figure 38), which was a trend 

also seen in the dimers of pyridine.38 We see that the damping parameters vary dramatically between conformations 

and across centre of mass distances (𝑅), thus it is difficult to choose a single damping parameter to cover all 

distances. The most important regions to be damped are around equilibrium distances, highlighted in orange in 

Figure 38. We can see that this still varies between configuration scans. Moreover, a large spread is seen in the 

most common two molecule contacts found in TNB crystal structures; further stressing the pitfalls of using a single 

parameter damping function. By weighting the gas-phase dimers based on their presence in crystal structures and 

inspecting the effect of 𝛽𝑝𝑜𝑙 on 𝑉𝑃𝑂𝐿
(2)

[𝐷𝑀] for the two-molecule contacts present in the crystal, a final polarization 

damping parameter of 1.0 was chosen.   
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Figure 38: A comparison of 𝐸𝑃𝑂𝐿
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] against the Model0-aniso 𝑉𝑃𝑂𝐿
(2) [𝐷𝑀] for the 5 gas-phase dimers 

and crystal structures (bottom right) using various polarization damping coefficients (𝛽𝑝𝑜𝑙) and the initial 

dispersion damping coefficient guess 𝛽𝑑𝑖𝑠𝑝 = 1.8.  
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5.5.4.2 Damping the multipolar dispersion energy 

The dispersion model derived from the distributed multipole expansion must also be damped to avoid the 

unphysical behaviour as 𝑅 → 0. Moreover, 𝐸𝐷𝐼𝑆𝑃
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] includes exchange effects in short-range that are 

absent from our long-range multipole expansion. Using a damping function helps combat these divergence issues 

and absorb some of the short-range effects while the remaining contributions are absorbed in the fitting of our 

short-range terms. In Figure 39 we compare a various damping parameters and our initial guess (𝛽𝑑𝑖𝑠𝑝 = 1.8) for 

both gas-phase and crystal dimer configurations. 

 

Figure 39: A comparison of 𝐸𝐷𝐼𝑆𝑃
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] against the Model0-aniso 𝑉𝐷𝐼𝑆𝑃
(2) [𝐷𝑀] across the 200+ dimer 

configurations sampled in the 5 gas-phase minima and the most stable TNB crystal structures using various 

damping coefficients 𝛽𝐷𝐼𝑆𝑃. The initial guess of 1.8 is included for comparison  

Figure 39 suggests that our initial guess of 𝛽𝑑𝑖𝑠𝑝 = 1.8 was sensible. By simply using the ionization energies of 

monomers 𝑀 and 𝑁 in a dimer, an approximate dispersion parameter can be obtained that is suitable for the higher 

dispersion energies. However, the best correlation was found using 𝛽𝑑𝑖𝑠𝑝 = 1.65. One could argue that 𝛽𝑑𝑖𝑠𝑝 =

1.6 exhibits a better correlation as a substantial portion of points fall on the correlation line and only a few points 

are slightly under-binding. In addition, the under-binding nature of 1.6 may help combat the overall over-binding 

nature of our non-empirical potentials discussed in detail in our previous study of pyridine167 (Chapter 3). A 
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quantitative analysis of the datasets (Table 24) reveal that unweighted RMSD between the SAPT(DFT) and 

potential energies was the lowest when 𝛽𝑑𝑖𝑠𝑝 = 1.65 (𝑅𝑀𝑆𝐷 = 4.07 𝑘𝐽 𝑚𝑜𝑙−1) when compared across all 

energies. Inspecting the dispersion energies around the most important part of the PES, the minima, (0 >

 −50 𝑘𝐽 𝑚𝑜𝑙−1) we find the RMSD of all the parameters become very comparable. However, 𝛽𝑑𝑖𝑠𝑝 = 1.65 still 

has the lowest RMSD. 

  Dispersion Damping Parameter (𝛽𝑑𝑖𝑠𝑝) 

  1.6 1.65 1.7 1.75 1.8 

RMSD (kJ/mol) 
0 >  −250 4.65 4.07 7.63 12.22 10.44 

0 >  −50 1.22 0.91 1.06 1.49 1.30 

Table 24: A comparison of the root mean squared deviations (RMSD) in kJ mol-1 between the calculated 

𝐸𝐷𝐼𝑆𝑃
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] and the Model0-aniso 𝑉𝐷𝐼𝑆𝑃
(2) [𝐷𝑀] across the 200+ dimer configurations sampled in the 5 gas-

phase minima and the most stable TNB crystal structures using various damping coefficients 𝛽𝑑𝑖𝑠𝑝. 

  
(a) (b) 

Figure 40: A comparison of the SAPT(DFT) calculated 𝐸𝐷𝐼𝑆𝑃
(2)

 and the Model0-aniso 𝑉𝐷𝐼𝑆𝑃
(2) [𝐷𝑀] for the most 

common two molecule contacts in TNB crystal structures 𝛽𝑑𝑖𝑠𝑝 = 1.6 (a) and 𝛽𝑑𝑖𝑠𝑝 = 1.65 (b). 

5.5.5 Testing Model0 

As both 𝛽𝑑𝑖𝑠𝑝 = 1.65 and 1.6 are very comparable (Figure 40), a final test and comparison of the two damping 

dispersion parameters was carried out using the new polarization damping parameter 𝛽𝑝𝑜𝑙 = 1.00. 

𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] and 𝑉𝑖𝑛𝑡
(2)

[𝑀𝑜𝑑𝑒𝑙]  for the Model0-aniso was compared for the different dimer configurations 

to investigate how well our approximations (Tang-Toennies damping, using a single isotropic damping parameter, 
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ignoring charge-delocalization effects) do. While 𝐸𝑒𝑙𝑠𝑡
(1)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] contains both the penetration and multipolar 

electrostatic energies (2.9.1), the 𝐸𝑝𝑒𝑛
(1)

 has been absorbed into our non-empirical potentials exchange-repulsion 

term. Accordingly, we must compare the summation of the exchange-repulsion and electrostatic energies (Figure 

41) 

𝑉𝑒𝑥𝑐ℎ−𝑟𝑒𝑝
(1) [𝑚𝑜𝑑𝑒𝑙] ≈ 𝐸𝑒𝑥𝑐ℎ−𝑟𝑒𝑝

(1) [𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] + 𝐸𝑝𝑒𝑛
(1)

 

105 

Both dispersion parameters perform amazingly for the gas-phase dimers, however, 𝛽𝑑𝑖𝑠𝑝 = 1.65 performs the best 

in predicting the crystal dimer interaction energies (Table 24, Figure 40, Figure 41 & Appendix 5.B). A key 

thing to note is how well both models perform in long-range, even before the potentials have been relaxed. We see 

that for all gas-phase configurations the long-range portion of potential energy surface is near enough perfect. This 

is an amazing achievement as it stresses the real accuracy, reliability and power of derivation and the ISA 

partitioning methods used to obtain the distributed molecular properties. 
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(a) 
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(b) 

Figure 41: The first 5 graphs (a) compare the 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] energy breakdown (points) with the Model0-

aniso (coloured dashes), with 𝛽𝑑𝑖𝑠𝑝 = 1.65, for the 5 gas-phase dimers, while the last graph (b) compares 

𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] & 𝑉𝑖𝑛𝑡
(2)

[𝑀𝑜𝑑𝑒𝑙] for crystal structures using SAPT(DFT) (points) with the dashed line signifying 

equality. Model0-iso (black dashes for the gas-phase dimers and dots for the crystal dimers) is included for 

comparison. 

5.6 Further adjustments to the potential 

After finalising the damping parameters of the 1st order models (Model0-iso and Model0-aniso) and selecting 

which higher-order terms to include, the next step is to relax the short-range portion of the potential to the 

𝐸𝑖𝑛𝑡
(2)[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] energies of the selection of dimers discussed in 5.5.3. In 5.5.5, we found both dispersion 

parameters 𝛽𝑑𝑖𝑠𝑝 = 1.6 & 1.65 perform exceptionally well. However, based on the unweighted RMSD between 

𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] and 𝑉𝑖𝑛𝑡
(2)

[𝑚𝑜𝑑𝑒𝑙0], we settled with 𝛽𝑑𝑖𝑠𝑝 = 1.65. Figure 38 reminds us that it is not possible 

perfectly describe the polarization contribution using a single damping parameter as it leads to systematic errors 

in some orientations. Yet it is the simplicity of our damping models that allow us to hypothetically get away with 

approximating the damping parameters and not having to calculate 2nd order energies. Nonetheless, using 𝛽𝑝𝑜𝑙 =

1.00 is a good enough approximation if these and other errors can be absorbed by adjusting the short-range 

parameters. All considered, Model0 does exceptionally well in modelling the gas-phase dimers and even the local 

crystal contacts (Figure 41). What is truly exciting about this result is that while calculating the higher order 
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energies may be very computationally exhaustive for more complex molecules, a 1st order model is very accessible, 

furthermore, using informed approximations like Equation 101 can result in solid guesses of the damping 

parameters without the need for higher order energy calculations. Subsequently, we begin the relaxation process 

from a very solid starting point in Model0-aniso. 

5.6.1 Relaxing to second-order SAPT(DFT) energies 

The relaxation process was completed by employing a combination of modules within CAMCASP and ORIENT to 

relax the 𝜌00
𝜄𝜅   and 𝛼00

𝜄𝜅  short-range parameters for the Model0-aniso to the 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] energies of the 160 

structures found in the configuration scans of the 5 gas-phase minima and the 282 pseudo-random structures 

generated. The 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] and 𝑉𝑃𝑂𝐿
(2)

[𝐷𝑀] energies were included in an ORIENT input file that contained 

the co-ordinates of each configuration using an angular axis system. The 𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀] and 𝑉𝐷𝐼𝑆𝑃

(2) [𝐷𝑀] energies were 

not included in the input file as ORIENT can calculate these terms from their respective multipole moments and 

dispersion coefficients file. Currently, ORIENT cannot calculate the non-iterated polarization energy 𝑉𝑃𝑂𝐿
(2)

[𝐷𝑀] in 

the initial re-parameterization step of the relaxation process. As a result, these energies must be inputted separately 

and subtracted from the potential and the energies fitted can be given as 

𝑒𝑓𝑖𝑡 = 𝐸𝑖𝑛𝑡
(2)[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] − 𝑉𝑒𝑙𝑠𝑡

(1)[𝐷𝑀] − 𝑉𝐷𝐼𝑆𝑃
(2) [𝐷𝑀] − 𝑉𝑃𝑂𝐿

(2) [𝐷𝑀] 

106 

i.e. the short-range terms are relaxed to accommodate for 𝐸𝑒𝑥𝑐ℎ
(1)

, 𝐸𝑝𝑒𝑛
(1)

, 𝐸𝐶𝐷
(2)

 and the residual errors made by the 

damped distributed multipole expansions of the polarization and dispersion contributions. The relaxation process 

within ORIENT uses the below Boltzmann weighting scheme (Equation 107) as the Gaussian-log weighting 

scheme (2.9.5.2) used in CAMCASP is not available to ORIENT and the total energies go through zero, so the 

Gaussian-log weighting scheme cannot be used. 

𝑤(𝑒) = exp [
(𝑒𝑚 − 𝑉𝑖𝑛𝑡

(2)
[𝑀𝑜𝑑𝑒𝑙])

𝑒0

] 

107 

The energy defining the Boltzmann weighting 𝑒0 = 100 kJ mol-1 is based off the empirical rule that the value of 

𝑒0 should be about 4 × the modulus of the global minimum. 𝑒𝑚 = −26 kJ mol-1 as the SAPT(DFT) calculated 

global minimum for the gas-phase structures is ~ > −26 kJ mol-1. Before relaxation the datasets were scanned by 

CAMCASP and any dimers above 𝐸𝑚𝑎𝑥 = 2000 𝑘𝐽 𝑚𝑜𝑙−1 and below 𝐸𝑚𝑖𝑛 = −30 𝑘𝐽 𝑚𝑜𝑙−1 were discarded as 
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energies so high up the repulsive wall are likely to be erroneous, and any energy considerably below the global 

minimum is likely to include an error from the multipole expansion. This is a precautionary measure, because for 

TNB there were no dimer configurations outside this bound under any of the models. 

The 𝜌00
𝜄𝜅  term in Equation 102 was relaxed first; while this term may not improve the fit as well as relaxing the 

anisotropic terms 𝜌𝜄𝜅(𝛺𝑖𝑘) or the 𝛼00
𝜄𝜅  term, it is the most appropriate term to relax. Of the short-range terms, the 

isotropic tern 𝜌00
𝜄𝜅  can absorb the most changes while maintaining some sort of physicality. The anisotropic terms 

should remain untouched as they are closely related to the multipole moments in their directionality and magnitude 

and a massive dataset would be required to justify any deviation from the overlap model. Additionally, as 𝛼00
𝜄𝜅  and 

𝜌𝜄𝜅(𝛺𝑖𝑘) are dependent on one another, changing 𝛼00
𝜄𝜅  too much could result in very unphysical parameters. It could 

be argued that only terms on important atoms like N and O should be relaxed but the relaxation of 𝜌00
𝜄𝜅  and 𝛼00

𝜄𝜅  for 

all atomic sites is allowed with strong anchors to prevent any parameters from slipping too far from their initial 

value while still greatly improving the fit. 

For each dataset of dimer configurations the Model0-aniso was employed as a starting point and 𝜌00
𝜄𝜅  is re-fitted 

first to create a transitory model, which is then used as a starting point for the relaxation of the 𝛼00
𝜄𝜅  terms. Not only 

does this prevent the values from slipping but also greatly improves on the fit. The anchors for both 𝜌00
𝜄𝜅  and 𝛼00

𝜄𝜅  

were given values of 1.0, which are fairly conservative to prevent over-fitting. For each model the relaxation was 

done in stages, as used for obtaining the anisotropic terms in the overlap model (5.4.3), starting with all pairs 

involving oxygen, then all pairs containing N (including the 𝑁 − 𝑂 pair, which is re-adjusted), then 𝐶𝑁, afterwards 

𝐶𝐻 and finally 𝐻. This is done using the Python fitting codes included in the CAMCASP package. 

5.6.2 Results & Discussion 

5.6.2.1 Selecting a final non-empirical force-field 

Multiple relaxed models were created and compared to see the effect of sampling various areas of the configuration 

space and observe how changing 𝜌00
𝜄𝜅  and 𝛼00

𝜄𝜅  affects each models ability to predict the structures in both gaseous 

and crystal phases. The two step fits were performed on 4 different datasets (Table 25) generating 8 tentative 2nd 

order models, a model relaxed to all 160 gas-phase dimers found in the configuration scan was initially made, 

dubbed ModelD. This is the model, which initially informed our decision to include pseudo-random dimers in our 

dataset (5.5.3.3). 3 additional models were created using the pseudo-random data set. A model using only the 282 

pseudo-random dimers (ModelR) and a model using all 442 configuration scan and pseudo-random dimers 

(ModelA) was created. A more informed model (ModelS) was also generated using the all 282 pseudo-random 

configurations and a select set of gas-phase dimers. In order to appropriately sample the gas-phase PES but not 
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over-fit, 9 configurations from each of the 5 gas-phase minima were used at 𝑅-scalings of the dimers corresponding 

to 0.76, 0.81, 0.85, 0.90, 1.0, 1.1, 1.15, 1.35, 1.4. 

(Tentative) 
Model 

No 

𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] 

Energy Range (kJ 
mol-1) 

Initial 
weighted RMS 
using model0 

Weighted RMS 
after relaxing 

Non-weighted RMS 
against crystal 

SAPT(DFT) 

𝜌00 𝛼00 𝜌00 𝛼00 

FIT+ISA ~ ~ ~ ~ ~ 1.537 

Model0 ~ ~ ~ ~ ~ 0.794 

ModelD 160 1000 → −25 7.78 2.97 1.24 3.419 3.540 

ModelR 282 66 → −20 1.26 1.07 0.89 0.699 0.573 

ModelS 327 1000 → −25 2.91 1.88 1.39 0.705 0.469 

ModelA 442 1000 → −25 4.57 2.17 1.51 0.678 0.464 

(a) 

(Tentative) 
Model 

No 

𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] 

Energy Range (kJ 
mol-1) 

Non-weighted rms 
against gas-phase 

dimers (SAPT(DFT) (all 
energies) 

Non-weighted rms 
against gas-phase 

dimers (SAPT(DFT) 
(𝑅-scaling ≥ 0.85) 

𝜌00 𝛼00 𝜌00 𝛼00 

FIT+ISA ~ ~ 58.2 6.6 

Model0 ~ ~ 81.0 9.7 

ModelD 160 1000 → −25 17.1 10.3 1.9 1.1 

ModelR 282 66 → −20 78.5 57.7 9.4 7.3 

ModelS 327 1000 → −25 46.1 25.7 5.1 3.1 

ModelA 442 1000 → −25 29.6 20.0 3.3 2.0 

(b) 

Table 25: A comparison of the root mean squared deviations (RMSD) in kJ mol-1 between the SAPT(DFT) 

calculated energies and the computed energies using various models. Table (a) compares the RMSD when used 

for the 66 crystal dimers, before relaxation and after relaxing 𝜌00
𝜄𝜅  and then 𝛼00

𝜄𝜅 . Table (b) investigates the changes 

in RMSD for the 160 gas-phase dimer energies across all 𝑅-scalings and from close to equilibrium → long-range 

From Table 25 one can see how dramatically each fit improves once 𝛼00
𝜄𝜅  is allowed to relax. This is because 

changing this term affects the slope of our repulsive term (Equation 102). As discussed in 5.5.3.3, ModelD is a 

deceiving case. With a low weighted RMSD after relaxing ρ00
ικ  then α00

ικ  and the lowest non-weighted rmsd when 



 196 

compared against the gas-phase dimer 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] energies (Table 25 (b)), one would believe ModelD to 

be the best performing model. However, comparing the RMSD against the crystal dimer 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] 

energies in Table 25 (a) (also illustrated in Figure 37) we see the ModelD dataset is performing very poorly when 

modelling orientations not found in the gas-phase minima. ModelD is highly correlated as it is fitting to only 5 

orientations at different distances. Accordingly, the fits improve on the modelling of these orientations but give a 

significantly worse representation of the dataset that samples contacts from TNB crystal structures. 

The other 3 datasets sample a range of orientations while giving fits of comparable quality. It is not appropriate to 

use ModelR as the final model as the pseudo-random dataset on its own samples too limited a range of important 

configurations, while ModelA includes too many gas-phase dimer structures thus may have biased our potential. 

Furthermore, increasing the number of structures to include all points does not significantly improve on the fit as 

seen by the non-weighted RMSD against the crystal dimers (Table 25 (a)). ModelS seems to be the most 

appropriate dataset as it has a balance of both random and dimer structures while including some high energy 

points and giving a good fit in the energy ranges sampled by the contacts in the TNB crystal structures. 

Consequently, we deem ModelS the most complete non-empirical force-field we have created for TNB and from 

henceforth will refer to ModelS, with both ρ00
ικ  then α00

ικ  relaxed, as TNB’s Distributed Intermolecular Force-Field 

(DIFF).  

5.6.2.2 Comparing the short-range anisotropic terms 

The short-range anisotropic terms for the DIFF model remain unchanged and are identical to those found in the 

Model0-aniso in Table 23. We see some changes in the 𝜌00
ικ  and 𝛼00

ικ  terms upon relaxation in Table 26. As the 

relaxation step allows parameters on all atom pairs to relax, we see the most of the notable changes occurring in 

pairs involving the carbon atoms. Previously mentioned in 5.4.4.2, these central atoms were poorly sampled by 

the configurations in 𝐸𝑖𝑛𝑡
(1)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)]  calculations used for the overlap model stage. Therefore, it is possible 

that the atoms on the aromatic ring with considerable electron density like the carbon atoms were not well-

described by our overlap model, resulting in the changes seen in Table 26 upon relaxation. The hydrogen atoms 

on the other hand have a smaller local charge density and are less anisotropic. This is emphasized in their higher 

order multipole moment maps in Figure 31 and their atomic polarizabilities in Table 19. Accordingly, a poor 

sampling of 𝐻 ⋯ 𝑋 contacts would not be as detrimental to their overlap model description.  
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 𝜌00
𝜄𝜅 (𝑎. 𝑢. ) 𝛼00

𝜄𝜅 (𝑎. 𝑢. ) 

𝜄 ⋯ 𝜅 
Model0-

aniso 
DIFF Δ Model0 DIFF Δ 

𝑂 ⋯ 𝑂 5.669 5.681 0.012 2.000 1.994 −0.007 

𝑂 ⋯ 𝑁 5.446 5.399 −0.047 2.135 1.969 −0.166 

𝑂 ⋯ 𝐶𝑁 5.880 5.664 −0.217 1.950 1.882 −0.069 

𝑂 ⋯ 𝐶𝐻 5.954 6.085 0.131 1.830 1.818 −0.011 

𝑂 ⋯ 𝐻 4.776 4.684 −0.092 1.935 1.836 −0.099 

𝑁 ⋯ 𝑁 4.905 4.939 0.034 2.534 2.531 −0.003 

𝑁 ⋯ 𝐶𝑁 5.602 5.703 0.101 1.983 1.902 −0.081 

𝑁 ⋯ 𝐶𝐻 5.406 5.577 0.172 1.721 1.701 −0.020 

𝑁 ⋯ 𝐻 3.995 4.005 0.010 1.773 1.753 −0.019 

𝐶𝑁 ⋯ 𝐶𝑁 6.252 6.253 0.001 2.008 1.997 −0.011 

𝐶𝑁 ⋯ 𝐶𝐻 6.147 6.059 −0.088 1.710 1.505 −0.205 

𝐶𝑁 ⋯ 𝐻 4.764 4.827 0.063 1.844 1.789 −0.055 

𝐶𝐻 ⋯ 𝐶𝐻 6.138 6.217 0.079 1.607 1.650 0.043 

𝐶𝐻 ⋯ 𝐻 5.139 5.332 0.193 1.963 1.945 −0.019 

𝐻 ⋯ 𝐻 3.573 3.576 0.003 1.972 1.969 −0.003 

Table 26: A comparison of 𝜌00
𝜄𝜅  and 𝛼00

𝜄𝜅  values for all atom-type pairs in both the Model0-aniso and the final 

relaxed DIFF model in atomic units. Like-like pairs have been highlighted for clarity. 

The differences in the 𝜌00
ικ  and 𝛼00

ικ  terms between DIFF and Model0-aniso stresses the importance of having mixed 

datasets. We see 𝐶𝑁 and 𝐶𝐻 vary considerably once the configuration scan dataset is included. The carbon atoms 

are better sampled in the gas-phase dataset (5.5.3), as we see these favour stacked configurations (Figure 36). This 

preference is not something that would be represented by pseudo-random sampling, and further highlights the true 

importance of exploring the configuration space. Choosing where in configuration space to sample is crucial to 

generating a physically representative model. Additionally, weighting or selecting configurations carefully using 

an informed chemical intuition is imperative to preventing potential bias. 

One observes the following relationship between atom-atom contacts and the isotropic repulsion parameter 𝜌00
𝜄𝜅 : 

𝐻 ⋯ 𝐻 ≪ 𝑋 ⋯ 𝐻 < 𝑋 ⋯ 𝑋 
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Contacts involving the larger, more electron rich atoms 𝐶, 𝑁 & 𝑂 have larger 𝜌00
𝜄𝜅 s, which suggests the potential is 

indeed capturing the physics behind the interactions. This also mirrors the results obtained from the molecular 

properties derived directly from the molecular charge distribution (Table 19, Table 20 & Figure 31). The 𝜌00
ικ  and 

𝛼00
ικ  terms for TNB are on the same order of magnitude as those found in pyridine (Appendix 3.A), however, the 

𝜌00
ικ  terms for the 𝐻 ⋯ 𝐻 and 𝑋 ⋯ 𝐻 contacts are notably smaller. This is likely due to the presence of the 

electronegative nitro groups pulling local charge away from the hydrogen atoms and aromatic ring in general, and 

consequently shielding these atoms. Even with the differences in functional groups between pyridine and TNB, 

we find the 𝛼00
ικ  terms to be very comparable. For example 𝛼00

ικ  is between 1.960 − 1.965 for 

𝐻 ⋯ 𝐻 (𝐷𝐼𝐹𝐹[𝑝𝑦𝑟𝑖𝑑𝑖𝑛𝑒]) compared to 1.969 for 𝐻 ⋯ 𝐻(𝐷𝐼𝐹𝐹[𝑇𝑁𝐵]). This comparison acts also as an 

additional sanity-check to ensure that our final force-field is sensible. 

5.6.2.3 Modelling the gas-phase with the DIFF model 

Whilst Figure 41 showed the initial approximate model (Model0) was already good, Figure 42 shows that the 

DIFF model better predicts the equilibrium energies of the gas-phase dimers and the energies of the most common 

TNB crystal contacts. In Figure 42 we see that the potential does an amazing job in predicting energies above 

equilibrium bond-distances, for each confirmation the long-range portion of the PES is almost perfect. This really 

emphasizes on the accuracy and trueness of our long-range model. Deriving the electrostatic, polarization and 

dispersion models from a materials molecular properties is not computationally impractical for a large number of 

energetic and pharmaceutical molecules, and hence should be at least considered in contemporary non-empirical 

force-field development going forward.  

For these non-empirical models, our main concerns lie in accurate modelling of the damped dispersion and 

polarization at short-range. In Figure 42 can clearly see the chief sources of error in our potential are in the short-

range/damped portion of the PES, in particular, the polarization and dispersion contributions. As stated earlier, 

this is likely due to the over-simplification of our Tang-Toennies damping function and the obvious shortcomings 

of using a single damping parameter to describe an anisotropic molecule like TNB. Most readily accessible codes 

do not accept orientation dependent or atom-atom specific damping parameters. However, we see that this should 

certainly be considered in the development of future codes and force-fields, especially those intended to be used 

for highly accurate and reliable CSP on anisotropic organic molecules. 
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(b) 

Figure 42: 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] energy breakdown and comparison with the DIFF model for the 5 gas-phase dimers 

using SAPT(DFT) (points) and our non-empirical potential (dashes) (a). The last figure (b) plots 

𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] against 𝑉𝑖𝑛𝑡
(2)

[𝐷𝐼𝐹𝐹] for the crystal dimers with the dashed line indicating when they are equal. 

Model0-aniso (black dashes and dots) is included for comparison. 

TNB has definitely pushed the current DIFF development methodology, which in turn has resulted in many 

changes and improvements to the workflow but the question then arises, did we need to calculate the 2nd order 

energies? In a sense yes, there is a notable improvement in predictive ability (Figure 41 vs Figure 42 & Table 

25). While the initial approximation of 𝛽𝑑𝑖𝑠𝑝 using Equation 101 was close to our final parameter (1.8 𝑣𝑠 1.65), 

we see a significant reduction in the RMSD when 1.65 is used over 1.8 (Table 24). Furthermore, there is currently 

no physically meaningful way of approximating 𝛽𝑝𝑜𝑙 except for basing a guess on previous work i.e. using 𝛽𝑝𝑜𝑙 =

1.25, the polarization damping parameter used in the pyridine study (Chapter 3). Yet, this treatment is unreliable 

and unlikely to extend to novel or larger molecules. Additionally, we find our largest percentage errors 

in 𝑉𝑃𝑂𝐿
(2) [𝐷𝑀] 𝑣𝑠 𝐸𝑃𝑂𝐿

(2) [𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] and 𝑉𝐷𝐼𝑆𝑃
(2) [𝐷𝑀] 𝑣𝑠 𝐸𝐷𝐼𝑆𝑃

(2) [𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] (Figure 38 & Figure 39), and 

relaxing potential parameters to 2nd order energies is vital to reducing these errors, particularly for organic 

molecular crystals that are dominated by polarization and dispersive interactions. One can certainly obtain a good 

potential using only 𝐸𝑖𝑛𝑡
(1)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] and an informed choice of partitioning treatments. In Chapter 6, we will 

test whether or not higher order energy data is truly required in order to cultivate a force-field fit for the modern 

demands of CSP. 
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Cautious and careful planning is also a necessity when developing non-empirical models for larger organic 

molecules as Figure 37 (c) & (d) emphasises the dangers of assuming one can correctly model the condensed 

phase using only configurations favoured in the gas-phase. A smart sampling of the configuration space is required, 

especially for larger molecules like TNB, which are currently quite computationally exhaustive. Furthermore, we 

must remind ourselves that in making this DIFF some approximations have been made in the SAPT(DFT) 

calculations that has saved a gargantuan amount of computing time, but these approximations may not be 

applicable to all molecules. We ignore the effects of 3rd to infinite order energies as we found them to be not crucial 

to describing TNB’s intermolecular interactions (5.5.1) and even detrimental in some cases (Chapter 3). We have 

also held TNB in its rigid planar conformation, the true implications of which we shall delve into in the following 

chapter. 

5.7 Conclusions & Further work 

We find the most important contributions are the 1st order terms, namely, the exchange-repulsion and electrostatic 

energies. Modelling these concisely is crucial to producing an accurate non-empirical force-field, and 

consequently, our 1st order models do well (Figure 41 & Table 25). Using only the 𝐸𝑖𝑛𝑡
(1)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] dimer 

interaction energies to derive the non-empirical force-field’s short-range parameters does exceptionally well 

compared to the standard empirical FIT model in predicting the crystal and gas-phase dimers, particularly for 

Model0-aniso (RMSDs in Table 25). 1st order non-empirical models are certainly accessible for many 

pharmaceutical and energetic molecules, however, we find the improvements in relaxing to 2nd order dimer 

energies in order to obtain the final non-empirical model (DIFF) have come at a large cost. We have found a 

notable improvement in the fit requires a large 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] dataset. Hence, creating a DIFF for molecules 

larger than TNB may be very challenging.  

Future work should look to drastically increase the high-order energy dataset to sample more hindered atomic sites 

like those in the centre of the aromatic ring, as a better sampling of the carbon and hydrogen atoms may have led 

to different 𝜌00
ικ  and 𝛼00

ικ  values. Moreover, a large enough dataset would enable a physically meaningful and 

reliable relaxation of the anisotropic terms. If the anisotropic short-range terms could be relaxed, then it is possible 

only relaxing terms on the oxygen and nitrogen would still lead to an outstanding fit, as they are the largest 

contributors to the anisotropy of TNB. Codes that allow for atom-atom damping parameters in force-fields do exist 

(e.g. OpenMM390), and informed by the work in this chapter, future non-empirical force-fields created to be used 

in similar codes should include both single Tang-Toennies damping parameters and atom-atom damping 

parameter. Not only would this increase the transferability of the potential but also further reduce errors and the 

need for re-fitting. 
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To conclude, the resultant TNB DIFF performs exceptionally well in the gas-phase and is a truly a state-of-the-art 

bespoke force-field that pushes the current capabilities of modern potential development methods. Many costly 

calculations were required in order to obtain reliable damping parameters and accurate isotropic short-range 

parameters (𝜌00
ικ  and 𝛼00

ικ ) but a substantially larger dataset would be needed if one wanted to improve on the 

anisotropic terms. We will see in Chapter 6 as we look to Crystal Structure Prediction as the final test, whether 

the 2nd order SAPT(DFT) terms are truly worth it in comparison to Model0-iso or Model0-aniso.  
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Appendix 5.A – Input Files for the DIFF 

Table of Contents 

Further details on the formatting of the input files can be found in the ORIENT manual. 

5. Local Axes 

Local/atomic axis in ORIENT input format using the TNB’s atomic labels. 

6. Iterated Stockholder Atoms – Distributed Multipole Moments (ISA-DMA) 

The ISA-DMA multipolar moments are given ORIENT input file format. These detail the atom labels, atom types 

and multipole moment ranks used for TNB’s electrostatic model. The atomic positions can also be found in this 

input file, adjacent to the corresponding atom label. 

7. Iterated Stockholder Atoms – Distributed Polarizabilities 

The ISA-DMA derived 𝑅𝑎𝑛𝑘 =  1 distributed polarizabilities in ORIENT input file format. The values for only 

5 atom types is included as the distributed polarizabilities is calculated in the local axes in ORIENT. 

8. Model0-iso ORIENT input file 

Model0-iso is given in ORIENT input file format; detailing the atom types. For each atom-atom type pair, the 

isotropic short-range parameters ρ00
ικ  (as rho) and α00

ικ  (as alpha) is given. The dispersion coefficients (𝐶6 → 𝐶12) 

are also given adjacent to ρ00
ικ  and α00

ικ . Please see the ORIENT manual for further details on its formatting. 

9. Model0-aniso ORIENT input file 

Model0-aniso is given in ORIENT input file format; detailing the atom types. For each atom-atom type pair, the 

isotropic short-range parameters ρ00
ικ  (as rho) and α00

ικ  (as alpha) and the anisotropic short-range parameters 

ρικ(Ωik) (in its shorthand notation) is given. The dispersion coefficients (𝐶6 → 𝐶12) are also given adjacent to ρ00
ικ  

and α00
ικ .  

10. Distributed Intermolecular Force-Field (DIFF) ORIENT input file 

DIFF is given in ORIENT input file format. Its formatting is identical to that of Model0-aniso and it has identical 

dispersion coefficients and anisotropic short-range terms to Model0-aniso as only ρ00
ικ  and α00

ικ  were relaxed. 

Accordingly, these values have been highlighted for each atom-atom type pair to emphasise the changing terms. 

As the anisotropic terms are identical they are not included below but the fully functioning input file can be found 

in the Appendix CD. 
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Local Axes ORIENT Input File 

Axes 

  C1  z from C1 to N1  x from C1 to C2 

  N1  z from C1 to N1  x from N1 to O2 

  O1  z from N1 to O1  x from N1 to O2 

  O2  z from N1 to O2  x from N1 to O1 

  C2  z from C2 to H1  x from C2 to C3 

  H1  z from C2 to H1  x from C2 to C3 

  C3  z from C3 to N2  x from C3 to C4 

  N2  z from C3 to N2  x from N2 to O4 

  O3  z from N2 to O3  x from N2 to O4 

  O4  z from N2 to O4  x from N2 to O3 

  C4  z from C4 to H2  x from C4 to C5 

  H2  z from C4 to H2  x from C4 to C5 

  C5  z from C5 to N3  x from C5 to C4 

  N3  z from C5 to N3  x from N3 to O6 

  O5  z from N3 to O5  x from N3 to O6 

  O6  z from N3 to O6  x from N3 to O5 

  C6  z from C6 to H3  x from C6 to C5 

  H3  z from C6 to H3  x from C6 to C5 

End 

 

Iterated Stockholder Atoms - Distributed Multipole Moments ORIENT Input File 

! Multipole moments for TNB 

! Based on DF-type : ISA-GRID 

 

  O1     4.94664312    -4.54086037    -0.00008315     Type    O      Rank   4 

      -0.434562 

       0.000003       0.003549      -0.012323 

      -0.006455       0.000024      -0.000029       0.324657       0.048761 

      -0.000044      -0.073265      -0.193155       0.000080      -0.000082 

                      0.516849      -0.077248 

       0.060450      -0.000168       0.000056       0.238484      -0.250316 

                     -0.000077       0.000134      -0.043458      -0.430454 

  

  O2     1.41192200    -6.56512162    -0.00055747     Type    O      Rank   4 

      -0.434846 

       0.000003       0.009062      -0.009690 

      -0.006538      -0.000012       0.000049      -0.115232       0.306717 

      -0.000019       0.200679      -0.033305       0.000129      -0.000121 

                      0.520471       0.066946 

       0.057293      -0.000010      -0.000102      -0.336318       0.086505 

                      0.000009       0.000142       0.386318      -0.190862 

  

  O3    -6.40684762    -2.01269802     0.00239806     Type    O      Rank   4 

      -0.433911 

       0.000009      -0.012463       0.004092 

      -0.005566      -0.000336      -0.000174      -0.203970       0.256848 

      -0.000206      -0.126735       0.159557      -0.000139       0.000977 

                      0.518804      -0.078443 

       0.052667       0.000288       0.000992       0.099210       0.329198 



 205 

                     -0.000340       0.000693      -0.354599       0.249889 

  

  O4    -6.39181863     2.06052698    -0.00229980     Type    O      Rank   4 

      -0.433952 

      -0.000012      -0.012583      -0.003836 

      -0.005595       0.000328      -0.000185      -0.207929      -0.253721 

       0.000173      -0.127936      -0.158512       0.000153       0.000994 

                      0.520238       0.066922 

       0.053037      -0.000253       0.000984       0.094481      -0.329998 

                      0.000439       0.000851      -0.360719      -0.240125 

  

  O5     4.98029536     4.50331719     0.00059148     Type    O      Rank   4 

      -0.434894 

       0.000003       0.003824       0.012259 

      -0.006627       0.000046      -0.000013       0.323795      -0.053839 

       0.000042      -0.071820       0.193577       0.000213      -0.000042 

                      0.518287       0.065246 

       0.059032      -0.000085      -0.000085       0.242448       0.249095 

                      0.000097      -0.000188      -0.031113       0.433109 

  

  O6     1.46131566     6.55482262     0.00013606     Type    O      Rank   4 

      -0.435336 

      -0.000002       0.008799       0.009967 

      -0.006382      -0.000025      -0.000040      -0.120439      -0.304755 

       0.000050       0.200612       0.031586       0.000058      -0.000061 

                      0.518621      -0.078602 

       0.055574      -0.000154       0.000014      -0.340679      -0.079859 

                      0.000003      -0.000067       0.392108       0.178398 

  

  N1     2.66435302    -4.65393213    -0.00028157     Type    N      Rank   4 

       0.810235 

      -0.000003       0.036294      -0.064245 

      -0.027704       0.000003       0.000005       0.005180       0.008870 

      -0.000010       0.030906      -0.054396      -0.000006       0.000006 

                     -0.109342       0.000613 

      -0.178156       0.000030       0.000044      -0.033693      -0.058006 

                     -0.000023      -0.000006       0.087690      -0.156927 

  

  N2    -5.36320109     0.01996496     0.00006236     Type    N      Rank   4 

       0.808852 

      -0.000007      -0.073557       0.000293 

      -0.027467       0.000006      -0.000067      -0.009781       0.000034 

       0.000004      -0.062567       0.000286      -0.000017      -0.000148 

                     -0.109239       0.001140 

      -0.178510      -0.000020      -0.000480       0.069878      -0.000659 
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                      0.000022      -0.000063      -0.181879       0.002818 

  

  N3     2.69894067     4.63389725     0.00024188     Type    N      Rank   4 

       0.811408 

       0.000011       0.036774       0.063929 

      -0.027890       0.000006      -0.000001       0.004999      -0.009021 

       0.000020       0.031231       0.054177      -0.000013      -0.000002 

                     -0.109602       0.001892 

      -0.178765       0.000077       0.000035      -0.033006       0.058276 

                      0.000046       0.000004       0.092698       0.153338 

  

  C1     1.27935016    -2.23526239    -0.00019086     Type   C1      Rank   4 

      -0.032712 

       0.000003      -0.009048       0.015821 

      -0.173242      -0.000013       0.000017      -0.031757      -0.054933 

      -0.000002       0.011433      -0.023187       0.000041       0.000015 

                      0.337873      -0.002051 

      -0.630863      -0.000748       0.000131       0.081407       0.128559 

                      0.000014      -0.000118      -0.079689       0.147361 

  

  C2    -1.33083197    -2.28497352     0.00008693     Type   C2      Rank   4 

      -0.080825 

       0.000009       0.033357       0.057064 

      -0.024883      -0.000024      -0.000015      -0.001163       0.001908 

       0.000110      -0.054499      -0.093388       0.000000       0.000060 

                     -0.347075       0.004005 

       0.213270       0.000790      -0.000319       0.018934      -0.036966 

                      0.000343       0.000125      -0.293120      -0.494830 

  

  C3    -2.57602533     0.00944863     0.00003968     Type   C1      Rank   4 

      -0.031782 

      -0.000001       0.018184      -0.000075 

      -0.172466      -0.000008      -0.000128       0.063883      -0.000462 

       0.000002      -0.025066      -0.000522      -0.000026       0.000322 

                      0.338356      -0.003927 

      -0.642363       0.000051       0.000548      -0.149518       0.001289 

                     -0.000019      -0.000482       0.165273      -0.002632 

  

  C4    -1.31390380     2.29464702    -0.00000756     Type   C2      Rank   4 

      -0.080683 

      -0.000015       0.033157      -0.057285 

      -0.025054       0.000028      -0.000024      -0.001522      -0.001845 

      -0.000070      -0.053201       0.094101      -0.000004       0.000081 

                     -0.347294       0.003863 

       0.213983      -0.000525      -0.000355       0.020380       0.037265 
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                     -0.000333       0.000050      -0.278366       0.501804 

  

  C5     1.29573976     2.22593281    -0.00002646     Type   C1      Rank   4 

      -0.033349 

      -0.000002      -0.009378      -0.015902 

      -0.173187       0.000025       0.000003      -0.031154       0.055159 

       0.000012       0.011003       0.022545      -0.000006       0.000052 

                      0.338387      -0.005586 

      -0.630171       0.000278      -0.000002       0.078778      -0.131190 

                      0.000072      -0.000009      -0.084007      -0.144135 

  

  C6     2.64371154    -0.00967729    -0.00015496     Type   C2      Rank   4 

      -0.079249 

       0.000012      -0.066154       0.000291 

      -0.026220       0.000015       0.000008       0.004004      -0.000027 

       0.000008       0.107322      -0.000365       0.000005       0.000047 

                     -0.345966       0.003869 

       0.209459      -0.000005       0.000227      -0.039056      -0.000666 

                     -0.000104      -0.000124       0.575276      -0.008045 

  

  H1    -2.35807379    -4.04925572     0.00036850     Type    H      Rank   4 

       0.178815 

       0.000013      -0.022983      -0.039412 

      -0.027313      -0.000005      -0.000011      -0.011337       0.019754 

      -0.000004       0.017158       0.029637      -0.000004       0.000021 

                      0.022529      -0.000263 

       0.030438       0.000050      -0.000021      -0.019960       0.035237 

                      0.000007      -0.000043       0.008800       0.014730 

  

  H2    -2.32811785     4.06637663    -0.00017952     Type    H      Rank   4 

       0.178780 

      -0.000012      -0.022690       0.039582 

      -0.027351       0.000003      -0.000007      -0.011651      -0.019553 

       0.000000       0.016977      -0.029747       0.000003       0.000018 

                      0.022492      -0.000224 

       0.030430      -0.000053       0.000006      -0.020466      -0.034894 

                     -0.000017      -0.000039       0.008545      -0.015022 

  

  H3     4.68522599    -0.01721540    -0.00030803     Type    H      Rank   4 

       0.177917 

      -0.000002       0.045885      -0.000148 

      -0.027629      -0.000005       0.000002       0.023042      -0.000166 

       0.000002      -0.033832       0.000142      -0.000005       0.000000 

                      0.022682      -0.000250 

       0.030773      -0.000020      -0.000016       0.041565      -0.000296 
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                      0.000003      -0.000005      -0.018183       0.000195 

  

 

Distributed Polarizabilities ORIENT Input File 

ALPHA  TNB  SITE-NAMES  O   O   RANK 1 TO 1 INDEX   0 FREQSQ       0.0000000 

      8.299266620033      0.657534134342      0.001168032541 

      0.657534134342      5.261042064169      0.002429494229 

      0.001168032541      0.002429494229      5.067264425631 

ALPHA  TNB  SITE-NAMES  N   N   RANK 1 TO 1 INDEX   0 FREQSQ       0.0000000 

      9.423894900420     -0.015361607683      0.016857855523 

     -0.015361607683     11.660479549818      0.003124857303 

      0.016857855523      0.003124857303      1.295136469016 

ALPHA  TNB  SITE-NAMES  C1  C1  RANK 1 TO 1 INDEX   0 FREQSQ       0.0000000 

     13.177116503186     -0.019233973562     -0.015010509176 

     -0.019233973562      9.762773188295      0.008227011694 

     -0.015010509176      0.008227011694      3.212384411971 

ALPHA  TNB  SITE-NAMES  C2  C2  RANK 1 TO 1 INDEX   0 FREQSQ       0.0000000 

      4.415786598166      0.025494065077      0.005934670086 

      0.025494065077     22.582340489149      0.005675237363 

      0.005934670086      0.005675237363      4.722126021275 

ALPHA  TNB  SITE-NAMES  H   H   RANK 1 TO 1 INDEX   0 FREQSQ       0.0000000 

      1.746282716865     -0.008618178385     -0.013895137756 

     -0.008618178385      0.493858247139      0.001103132934 

     -0.013895137756      0.001103132934      1.067402233819 

ENDFILE 

 

Model0-iso ORIENT Input File 

      ! Pair-Potential: Atom-Atom Potential 

      ! Sites:  

      !      O N C1 C2 H 

      O O rho alpha       C6      C8      C10       C12 

         00  00    0     0.569986E+01    0.198934E+01    0.254966E+02    

0.203798E+03    0.959376E+04    0.128300E+06 

      END 

      O N rho alpha       C6      C8      C10       C12 

         00  00    0     0.541574E+01    0.210381E+01    0.116931E+02    

0.212641E+03    0.123982E+05    0.198203E+06 

      END 

      O C1 rho alpha       C6      C8      C10       C12 

         00  00    0     0.585029E+01    0.199973E+01    0.119190E+02    

0.172248E+03    0.320058E+05    0.398233E+06 

      END 

      O C2 rho alpha       C6      C8      C10       C12 

         00  00    0     0.598292E+01    0.183016E+01    0.329903E+02    

0.246549E+03    0.245650E+05    0.289621E+06 

      END 

      O H rho alpha       C6      C8      C10       C12 

         00  00    0     0.474065E+01    0.198269E+01    0.869292E+01    

0.655161E+02    0.182635E+04    0.194930E+05 

      END 

      N N rho alpha       C6      C8      C10       C12 

         00  00    0     0.498873E+01    0.258187E+01    0.624078E+01    

0.192346E+03    0.107350E+05    0.290945E+06 

      END 

      N C1 rho alpha       C6      C8      C10       C12 

         00  00    0     0.558045E+01    0.196324E+01    0.641208E+01    

0.175404E+03    0.190577E+05    0.574780E+06 

      END 

      N C2 rho alpha       C6      C8      C10       C12 

         00  00    0     0.577418E+01    0.178715E+01    0.137852E+02    

0.233419E+03    0.212275E+05    0.436156E+06 

      END 

      N H rho alpha       C6      C8      C10       C12 

         00  00    0     0.443204E+01    0.180278E+01    0.391061E+01    

0.646106E+02    0.329293E+04    0.361222E+05 

      END 
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      C1 C1 rho alpha       C6      C8      C10       C12 

         00  00    0     0.620899E+01    0.201153E+01    0.669735E+01    

0.160388E+03    0.279707E+05    0.663064E+06 

      END 

      C1 C2 rho alpha       C6      C8      C10       C12 

         00  00    0     0.605659E+01    0.174603E+01    0.138268E+02    

0.181587E+03    0.471683E+05    0.649078E+06 

      END 

      C1 H rho alpha       C6      C8      C10       C12 

         00  00    0     0.462393E+01    0.186344E+01    0.400968E+01    

0.510491E+02    0.100250E+05    0.109718E+06 

      END 

      C2 C2 rho alpha       C6      C8      C10       C12 

         00  00    0     0.617586E+01    0.164264E+01    0.449526E+02    

0.304137E+03    0.491337E+05    0.559020E+06 

      END 

      C2 H rho alpha       C6      C8      C10       C12 

         00  00    0     0.508006E+01    0.201513E+01    0.113262E+02    

0.859296E+02    0.668283E+04    0.715384E+05 

      END 

      H H rho alpha       C6      C8      C10       C12 

         00  00    0     0.363215E+01    0.198405E+01    0.297800E+01    

0.217686E+02    0.189172E+03    0.138605E+04 

      END 

 

Model0-aniso ORIENT Input File 

      ! Pair-Potential: Atom-Atom Potential 

      ! Sites:  

      !      O N C1 C2 H 

      O O rho alpha       C6      C8      C10       C12 

         00  00    0     0.566884E+01    0.200027E+01    0.254966E+02    

0.203798E+03    0.959376E+04    0.128300E+06 

         00  10    1      0.500728E-01 

         00  11c   1     -0.483256E-01 

         10  00    1      0.500728E-01 

         11c 00    1     -0.483256E-01 

         00  20    2     -0.120337E+00 

         00  21c   2      0.268936E-01 

         00  22c   2      0.912824E-01 

         20  00    2     -0.120337E+00 

         21c 00    2      0.268936E-01 

         22c 00    2      0.912824E-01 

      END 

      O N rho alpha       C6      C8      C10       C12 

         00  00    0     0.544592E+01    0.213467E+01    0.116931E+02    

0.212641E+03    0.123982E+05    0.198203E+06 

         00  10    1      0.257796E-01 

         10  00    1      0.500728E-01 

         11c 00    1     -0.483256E-01 

         00  20    2     -0.175252E-01 

         00  22c   2     -0.784986E-01 

         20  00    2     -0.120337E+00 

         21c 00    2      0.268936E-01 

         22c 00    2      0.912824E-01 

      END 

      O C1 rho alpha       C6      C8      C10       C12 

         00  00    0     0.588042E+01    0.195040E+01    0.119190E+02    

0.172248E+03    0.320058E+05    0.398233E+06 

         10  00    1      0.500728E-01 

         11c 00    1     -0.483256E-01 

         20  00    2     -0.120337E+00 

         21c 00    2      0.268936E-01 

         22c 00    2      0.912824E-01 

      END 

      O C2 rho alpha       C6      C8      C10       C12 

         00  00    0     0.595393E+01    0.182963E+01    0.329903E+02    

0.246549E+03    0.245650E+05    0.289621E+06 

         10  00    1      0.500728E-01 

         11c 00    1     -0.483256E-01 

         20  00    2     -0.120337E+00 
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         21c 00    2      0.268936E-01 

         22c 00    2      0.912824E-01 

      END 

      O H rho alpha       C6      C8      C10       C12 

         00  00    0     0.477593E+01    0.193521E+01    0.869292E+01    

0.655161E+02    0.182635E+04    0.194930E+05 

         10  00    1      0.500728E-01 

         11c 00    1     -0.483256E-01 

         20  00    2     -0.120337E+00 

         21c 00    2      0.268936E-01 

         22c 00    2      0.912824E-01 

      END 

      N N rho alpha       C6      C8      C10       C12 

         00  00    0     0.490457E+01    0.253391E+01    0.624078E+01    

0.192346E+03    0.107350E+05    0.290945E+06 

         00  10    1      0.257796E-01 

         10  00    1      0.257796E-01 

         00  20    2     -0.175252E-01 

         00  22c   2     -0.784986E-01 

         20  00    2     -0.175252E-01 

         22c 00    2     -0.784986E-01 

      END 

      N C1 rho alpha       C6      C8      C10       C12 

         00  00    0     0.560217E+01    0.198305E+01    0.641208E+01    

0.175404E+03    0.190577E+05    0.574780E+06 

         10  00    1      0.257796E-01 

         20  00    2     -0.175252E-01 

         22c 00    2     -0.784986E-01 

      END 

      N C2 rho alpha       C6      C8      C10       C12 

         00  00    0     0.540571E+01    0.172074E+01    0.137852E+02    

0.233419E+03    0.212275E+05    0.436156E+06 

         10  00    1      0.257796E-01 

         20  00    2     -0.175252E-01 

         22c 00    2     -0.784986E-01 

      END 

      N H rho alpha       C6      C8      C10       C12 

         00  00    0     0.399525E+01    0.177254E+01    0.391061E+01    

0.646106E+02    0.329293E+04    0.361222E+05 

         10  00    1      0.257796E-01 

         20  00    2     -0.175252E-01 

         22c 00    2     -0.784986E-01 

      END 

      C1 C1 rho alpha       C6      C8      C10       C12 

         00  00    0     0.625156E+01    0.200797E+01    0.669735E+01    

0.160388E+03    0.279707E+05    0.663064E+06 

      END 

      C1 C2 rho alpha       C6      C8      C10       C12 

         00  00    0     0.614701E+01    0.171046E+01    0.138268E+02    

0.181587E+03    0.471683E+05    0.649078E+06 

      END 

      C1 H rho alpha       C6      C8      C10       C12 

         00  00    0     0.476364E+01    0.184384E+01    0.400968E+01    

0.510491E+02    0.100250E+05    0.109718E+06 

      END 

      C2 C2 rho alpha       C6      C8      C10       C12 

         00  00    0     0.613784E+01    0.160748E+01    0.449526E+02    

0.304137E+03    0.491337E+05    0.559020E+06 

      END 

      C2 H rho alpha       C6      C8      C10       C12 

         00  00    0     0.513878E+01    0.196339E+01    0.113262E+02    

0.859296E+02    0.668283E+04    0.715384E+05 

      END 

      H H rho alpha       C6      C8      C10       C12 

         00  00    0     0.357276E+01    0.197229E+01    0.297800E+01    

0.217686E+02    0.189172E+03    0.138605E+04 

      END 

 

DIFF ORIENT Input File 

      ! Pair-Potential: Atom-Atom Potential 
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      ! Sites:  

      !      O N C1 C2 H 

      O O rho alpha       C6      C8      C10       C12 

         00  00    0     0.568097E+01    0.199363E+01    0.254965E+02    

0.203797E+03    0.959360E+04    0.128299E+06 

~ 

      END 

      O N rho alpha       C6      C8      C10       C12 

         00  00    0     0.539913E+01    0.196850E+01    0.116930E+02    

0.212641E+03    0.123980E+05    0.198202E+06 

~ 

      END 

      O C1 rho alpha       C6      C8      C10       C12 

         00  00    0     0.566392E+01    0.188182E+01    0.119189E+02    

0.172249E+03    0.320057E+05    0.398248E+06 

~ 

      END 

      O C2 rho alpha       C6      C8      C10       C12 

         00  00    0     0.608513E+01    0.181833E+01    0.329903E+02    

0.246547E+03    0.245649E+05    0.289621E+06 

~ 

      END 

      O H rho alpha       C6      C8      C10       C12 

         00  00    0     0.468381E+01    0.183627E+01    0.869282E+01    

0.655152E+02    0.182636E+04    0.194931E+05 

~ 

      END 

      N N rho alpha       C6      C8      C10       C12 

         00  00    0     0.493905E+01    0.253092E+01    0.624072E+01    

0.192344E+03    0.107351E+05    0.290947E+06 

~ 

      END 

      N C1 rho alpha       C6      C8      C10       C12 

         00  00    0     0.570289E+01    0.190190E+01    0.641211E+01    

0.175403E+03    0.190577E+05    0.574786E+06 

~ 

      END 

      N C2 rho alpha       C6      C8      C10       C12 

         00  00    0     0.557727E+01    0.170088E+01    0.137852E+02    

0.233418E+03    0.212276E+05    0.436146E+06 

~ 

      END 

      N H rho alpha       C6      C8      C10       C12 

         00  00    0     0.400508E+01    0.175312E+01    0.391049E+01    

0.646125E+02    0.329294E+04    0.361223E+05 

~ 

      END 

      C1 C1 rho alpha       C6      C8      C10       C12 

         00  00    0     0.625305E+01    0.199735E+01    0.669739E+01    

0.160389E+03    0.279707E+05    0.663074E+06 

      END 

      C1 C2 rho alpha       C6      C8      C10       C12 

         00  00    0     0.605877E+01    0.150547E+01    0.138267E+02    

0.181588E+03    0.471682E+05    0.649096E+06 

      END 

      C1 H rho alpha       C6      C8      C10       C12 

         00  00    0     0.482690E+01    0.178865E+01    0.400952E+01    

0.510493E+02    0.100251E+05    0.109716E+06 

      END 

      C2 C2 rho alpha       C6      C8      C10       C12 

         00  00    0     0.621681E+01    0.165041E+01    0.449515E+02    

0.304136E+03    0.491335E+05    0.559018E+06 

      END 

      C2 H rho alpha       C6      C8      C10       C12 

         00  00    0     0.533222E+01    0.194477E+01    0.113262E+02    

0.859303E+02    0.668292E+04    0.715369E+05 

      END 

      H H rho alpha       C6      C8      C10       C12 

         00  00    0     0.357561E+01    0.196938E+01    0.297810E+01    

0.217684E+02    0.189172E+03    0.138606E+04 

      END  
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Appendix 5.B – Supplementary analysis 

  

  

  

Figure 43: The first 5 graphs compare the 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] energy breakdown (points) with the Model0-aniso 

(dashes) for the 5 gas-phase dimers, while the last graph compares 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] & 𝑉𝑖𝑛𝑡
(2)

[𝑀𝑜𝑑𝑒𝑙] for crystal 

structures using SAPT(DFT) (points) with the dashed line signifying equality. 𝛽𝑑𝑖𝑠𝑝 = 1.6.  
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6 From the gas-phase to the crystalline state: 

Trinitrobenzene 

The methodology for developing a rigid non-empirical intermolecular atom-atom force-field for trinitrobenzene 

(TNB) has been established and detailed in Chapter 5. The workflow for TNB builds upon that of pyridine 

(Chapter 3), with a few adaptions to existing codes. The non-empirical distributed intermolecular force-field 

(DIFF) has been tested on the most significant gas-phase dimers and two molecule contacts in the TNB crystal 

structures, and shown to reproduce the SAPT(DFT) dimer energies well (5.6.2.3). This chapter uses the 

intermolecular force-fields to model the crystals of TNB, and utilizes these models in a Crystal Structure Prediction 

(CSP) study. Since, it is not possible to minimize the crystal structures with the explicit modelling of the 

polarization term using the distributed polarizabilities (2.6.1.1), potentials where TNB’s small polarization 

contribution (Figure 42) has been absorbed into the electrostatic term are considered and minimized.  

In this chapter, the complete non-empirical model that has been relaxed to 2nd order SAPT(DFT) interaction 

energies (𝐸𝑖𝑛𝑡
(2)[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)]) of 327 TNB dimers will be referred to as the Distributed Intermolecular Force-Field 

(DIFF). The similarities and differences between the DIFF for trinitrobenzene (TNB) and that for pyridine38, 167 

were mentioned in Chapter 5, and this chapter examines how differences in the molecular conformation of the 

observed and optimized structure, symmetry, and the relative importance of the different contributions to the 

intermolecular forces affects the crystal lattice. The DIFF uses distributed multipole moments, polarizabilities and 

dispersion coefficients derived from the molecular charge distribution using the Iterated Stockholder Atoms (ISA) 

approach,233 and an anisotropic atom-atom repulsion model, which was fitted to over 2000 𝐸𝑖𝑛𝑡
(1)[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] 

calculations. The DIFF reproduces the pair potential energy surface of TNB as discussed in Chapter 5, but in the 

crystal structure, modelling with the DIFF includes the non-pairwise-additive polarization term. The reliability of 

non-empirical atom-atom intermolecular force-fields constructed from 1st order SAPT(DFT) dimer interaction 

energies are also investigated, as these 1st order model potentials are cheaper to develop and could be used for 

larger systems. These 1st order Model0s, are the preliminary unrelaxed non-empirical force-fields (5.4.5). The 

effects of anisotropy on the short-range contribution is also studied by comparing Model0-iso with Model0-aniso.  

6.1 Trinitrobenzene (TNB) 

Trinitrobenzene (TNB) is an aromatic explosive that is considered the basic building block for contemporary 

energetic materials today.148 TNB is considered a high explosive, that is extremely volatile in its dehydrated 

powder form.148 Accordingly, there are many safety precautions associated with experimental studies of the 
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material, limiting the amount of readily available observed data. Even though it was first discovered in 1883,391 a 

determination of its crystal structure was not made until 1972,368 almost a century after. The nitrated-benzene 

derivative has a melting point of ~400𝐾,148, 392 so is solid at room temperature and pressure. Consequently, one 

would expect the force-fields empirically fit to ambient data to model TNB’s intermolecular interactions better 

than they did pyridine’s (Chapter 3), as pyridine is a liquid at R.T.P. In the field of crystal structure prediction 

(CSP), TNB would be considered a medium sized molecule, with 18 atoms, 108 electrons and 3 flexible nitro-

groups (NO2). It is certainly a more challenging molecule for CSP than pyridine and the conformational 

dependence of its molecular properties and intermolecular interactions were examined in Chapter 4.  

 

  

 

TNB Form I Form II Form III 

REFCODE TNBENZ11263 TNBENZ12263 TNBENZ13263 

Conditions Ambient Pressure, 183𝐾 
Ambient Pressure, 

120𝐾 
Ambient Pressure, 

183𝐾 

Density (𝑔 𝑐𝑚−3) 1.729 1.688 1.717 

NO2 torsion angles (°) 
181, 176, 212, 176, 191, 

171 
178, 176, 184, 185, 181, 

193 
177, 172, 180 

Figure 44: The polymorphic crystal structures of the energetic molecule trinitrobenzene (TNB).263 The form, 

Cambridge Structural Database (CSD) reference code, determination conditions, density and NO2 torsion angles 

(°) are given below each crystal structure. These were obtained from the experimental Cambridge Structural 

Database359-361 entries, and visual representations of the structures constructed using CCDC Mercury 3.6.291, 362 

The Iterated Stockholder Atoms (ISA) atomic charges computed for the optimized isolated molecular structure at 

the PBE0/aug-cc-pVTZ level are given in parenthesis in red or blue for positively or negatively charge nuclei. 

From sampling the experimental crystal structures in the Cambridge Structural Database (CSD) in Chapter 4, it 

was found that at ambient temperatures and pressures, the observed conformation of a nitro-group adjacent to two 

hydrogen atoms does not change significantly from the planar conformation of the optimized isolated molecular 

structure. Consequently, TNB has been held rigid throughout this investigation. This is an approximation (Figure 

44) but a necessary simplification for deriving the DIFF (Chapter 5). The effect of idealising the molecular 

conformation is examined in 6.3.2.2, otherwise the isolated molecular is used in this chapter. The TNBENZ13263 

experimental structure was optimized using the Gaussian09 program235 and the PBE0/d-aug-cc-pVTZ203-205, 214 
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level of theory. The overlays of the three known polymorphs of TNB in Figure 45, show that even though the 

molecular conformation of each crystal is similar the configurations and close contacts within the crystalline 

structures differ significantly, with only 2 − 5 out of 30 molecules shared between crystal structures. As the 

polymorphs are so different, the balance of intermolecular interactions in each polymorph varies significantly. 

Pyridine is a polar molecule but TNB is not due to the symmetry of its optimized structure. Polarization was found 

to be a relatively small contribution to the intermolecular energy for TNB’s gas-phase dimers (Chapter 5), 

however, it is a non-additive contribution and could prove important to certain configurations in the crystal. It is 

important to test if the model currently used to estimate polarization effects in CSP (the polarizable continuum 

model) has any significant effect on the structures that correspond to lattice energy minima (6.2.2). 

As TNB is an energetic material, its behaviour at elevated temperatures and pressures are of great interest in 

industry.137, 350, 355, 393, 394 A genuine description of the repulsive interactions in the short-range is required to 

accurately measure up the repulsive wall of its potential energy surface (PES). The very weak hydrogen bonds 

formed by 𝐶 − 𝐻 … 𝑂 and 𝐶 − 𝐻 … 𝑁 contacts, combined with 𝑁𝑂2 … 𝑁𝑂2 contacts has been found to greatly 

influence the crystal structure configurations of TNB.263, 395 Consequently, it is found that the most sampled two 

molecule contacts in the crystal differs significantly from those seen in the gas phase (Figure 44 & 5.5.3.2).   
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Reference Comparison Reference Comparison Reference Comparison 

Form I 

TNBENZ11 

Form II 

TNBENZ12 

Form I 

TNBENZ11 

Form III 

TNBENZ13 

Form II 

TNBENZ12 

Form III 

TNBENZ13 

N/30 (𝑅𝑀𝑆𝐷5 Å) N/30 (𝑅𝑀𝑆𝐷2 Å) N/30 (𝑅𝑀𝑆𝐷3 Å) 

5/30 (1.48) 2/30 (0.35) 3/30 (1.00) 

Figure 45: The optimum overlays out of 30 molecules of the 3 experimentally known trinitrobenzene polymorphs. 

The overlays show very few common contacts between the 3 comparisons. The reference molecule is in grey and 

the comparison molecule in green.  

The polymorphism of TNB was first reported after being induced by the additive trisindane,263 which resulted in 

the serendipitous crystallization of forms II (𝑍′ = 2) and III (𝑍′ = 1) in attempted co-crystallization experiments. 

Additive induced polymorphism highlights the value of CSP for predicting polymorphs that only appear in unusual 

crystallization conditions.263, 396-399 The crystal structures of both 𝑍′ = 2 forms of TNB show V-shape troughs 

(Figure 44) heavily influenced by polar contacts. The 𝑍′ = 1, centrosymmetric form III exhibits a more “normal” 

packing, influenced more by crystal packing forces with no real distinguishable underlying structural motifs.263, 400 

The authors relied on crude lattice energy calculations, using the Dreiding force-field401 with empirical atomic 

charges, to suggest that form III was the most stable form, even though form I was the observed densest. Form III 

was calculated to be almost 25 𝑘𝐽 𝑚𝑜𝑙−1 more stable than form I and ~1.4 𝑘𝐽 𝑚𝑜𝑙−1 more stable than form II.263 

These calculations were very tentative as they were done using a very approximate model.263 An energy difference 

of 25 𝑘𝐽 𝑚𝑜𝑙−1 is way beyond the believed energy difference of typical polymorphs but not unheard of.7 The 

energy difference is also surprising as form III was discovered over 100 years after the determination of form I.391 

What is certain, is that form I is the kinetically favourable polymorph as it readily crystallises, while forms II and 

III require additives, and have problems of reproducing single crystal growth. Form II could not be reproduced in 

another lab,263 which is a reminder that the appearance, disappearance, isolation and reproduction of polymorphs 

is still mysterious and can be very erratic. If TNB is monotropic, the melting points of 

121.8℃ (𝐼), 119.2℃ (𝐼𝐼) & 122.7℃ (𝐼𝐼𝐼) suggest that form III is the most stable form. However, the polymorphs 
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may be enantiotropically related, and the use of the DIFF should give a much better estimate of the relative stability 

order of the static lattice. Since there is no recently published experimental polymorph screening for TNB, it is the 

perfect candidate to explore whether a DMACRYS59 𝑍′ = 1 CSP study using the DIFF PES can give a realistic 

prediction of further polymorphs. 

6.2 Methodology 

6.2.1 Models 

The CSP study of TNB focuses on one empirical and three non-empirical force-fields: 

 The empirical FIT model,40 uses an exp-6 Buckingham potential with an undamped 𝐶6 isotropic 

dispersion model. Its short-range parameters were originally fitted to aza-hydrocarbon crystal structures 

at ambient conditions (1.2.2.1).72 The empirical model is combined with two electrostatic models in this 

study. GDMA, which is often used with FIT in CSP studies, and ISA-DMA to have the same electrostatic 

model as the non-empirical potentials (2.5). 

 Model0-iso, is a non-empirical intermolecular force-field derived from 2000 1st order SAPT(DFT) TNB 

dimer interaction energies (𝐸𝑖𝑛𝑡
(1)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)]), which utilizes an isotropic atom-atom short-range model.  

 Model0-aniso, is analogous to Model0-iso, however, Model0-aniso employs an anisotropic atom-atom 

short-range model. 

 The distributed intermolecular force-field (DIFF), is the final non-empirical atom-atom intermolecular 

force-field generated from the relaxation of the 𝛼00
𝜄𝜅  and 𝜌00

𝜄𝜅  short-range parameters to the 2nd order 

SAPT(DFT) dimer interaction energies 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] of 327 pseudo-random and important TNB 

gas-phase dimers (5.6.2.1). 

The non-empirical potentials all have the same long-range electrostatic, polarization and dispersion models, as 

specified in Chapter 5. Approximations to the DIFF and Model0 are used for lattice energy minimizations because 

of the impossibility of minimizing with an explicit polarization model in DMACRYS. However, all other quoted 

lattice energies, employing the non-empirical models, include the fixed-geometry explicit polarization except for 

DIFF(no-pol), which is the DIFF model with the multipolar polarization energy 𝑉𝑝𝑜𝑙
(2−∞)

[𝐷𝑀] not included. The 

influence and importance of the polarization contribution, particularly for relaxing structures, is examined by using 

the polarizable continuum model (PCM) to calculate the electrostatic model (6.2.2). The functional forms of the 

empirical and non-empirical models are not given in this chapter as they are identical to those used in Equations 

86 and 87 in Chapter 3 and detailed in Chapters 1, 2 & 5. The history and details of the FIT model can be found 
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in Chapter 1, while the theory behind non-empirical force-fields and the development of the bespoke potentials 

for TNB can be found in Chapters 2 & 5. The ORIENT108 input files for the non-empirical models can be found 

in Appendix 5.A, and the DMACRYS potential input files used can be found in the Appendix CD. The non-

empirical force-fields include the Iterated Stockholder Atoms (ISA)231, 233 derived distributed multipole moments 

and polarizabilities. The quality and the methodology for deriving the electrostatic and polarizability models can 

be found in Chapter 5.377, 379, 382  

The CAMCASP computed ISA-Pol atomic polarizabilities must undergo rotation and truncation in order to be used 

in DMACRYS for lattice-energy minimizations, as detailed in 2.6.1.2. Further details on the electrostatic and 

polarizability models like their values and relationships can be found in Chapter 5 & Appendix 5A. The FIT 

potential is coupled with the same ISA electrostatic model as the DIFF, and a Gaussian-Distributed Multipole 

Analysis (GDMA)230 derived electrostatic model (Chapter 2), as it is often used in CSP studies.19 The GDMA 

electrostatic model was obtained from the molecular charge density at the PBE0/6-31G(d, p) level of  theory. A 

different level of theory is used here to the ISA model as this is the standard level of theory used in CSP studies19 

and used to compare our models to current methodologies. The FIT model absorbs induction effects into its 

empirically fitted short-range parameters, so no explicit polarization model is used. 

6.2.2 Polarizable continuum model (PCM) 

6.2.2.1 Influence on the electrostatic model 

Computing and including the contribution of polarization to the lattice energy is an advanced treatment. For a 

number of molecular modelling and dynamics codes the polarization term cannot be explicitly included, 

particularly for modelling organic crystal structures as the induced multipole moments need to be iterated to be 

self-consistent and all evaluations of the forces, torques and second derivatives have to be evaluated numerically 

(2.6.1.3). Thus a simplified yet accurate functional form that implicitly models the polarization is required. To 

address this issue and also investigate the importance of the polarization contribution to the relative energies and 

structures in Crystal Structure Prediction (CSP), non-empirical intermolecular force-fields with implicitly 

absorbed approximate polarization effects were created. In CSP, the polarizable continuum model (PCM) is 

usually used to estimate polarization effects and applied as a post-minimization to determine how sensitive the 

relative lattice energies are to the difference between the charge distribution calculated in vacuum and in a 

polarizable continuum. As the polarization term in the original model is derived from the charge distribution it is 

most appropriate to have this term is absorbed into the electrostatic model. The long-range effects of polarization 

can be absorbed into the electrostatic model by recalculating TNB’s multipole moments in a dielectric polarizable 

continuum solvation model (PCM) (2.6.1.4).  
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With reference to the solid dielectric constant of nitrobenzene (3.44𝐷 𝑎𝑡 0℃)261 and previous work in determining 

a suitable “general” dielectric constant (𝜀) for organic solids,260, 261 TNB’s multipole moments were recalculated 

under a PCM with dielectric constants (𝜀) of 3, 7, and 11. The effects of each dielectric constant on the isolated 

molecule can be seen in Figure 46, where 𝜀𝑟 = 1 corresponds to vacuum, and is the multipole moments under no 

external electric field. 

𝜀𝑟 = 1  𝜀𝑟 = 3  𝜀𝑟 = 7  𝜀𝑟 = 11  

    

𝑉𝑚𝑖𝑛 = −0.51𝑒𝑉 

𝑉𝑚𝑎𝑥 =  0.9𝑒𝑉 

𝑉𝑚𝑖𝑛 = −0.60𝑒𝑉 

𝑉𝑚𝑎𝑥 =  1.08𝑒𝑉 

𝑉𝑚𝑖𝑛 = −0.64𝑒𝑉 

𝑉𝑚𝑎𝑥 =  1.15𝑒𝑉 

𝑉𝑚𝑖𝑛 = −0.65𝑒𝑉 

𝑉𝑚𝑎𝑥 =  1.17𝑒𝑉 

Figure 46: The electrostatic potential (eV) computed using the ISA distributed multipole analysis (ISA-DMA) on 

the iso-density surface of 10-3 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑏𝑜ℎ𝑟3⁄  around the static optimized isolated molecular structures of TNB. 

The changes in charge density around the TNB molecule, and potential maxima and minima under the various 

dielectric constants (𝜀) is observed on a potential scale of +1.5 eV (red) to −1.0 (blue) eV. 

An alternative is to derive the dielectric constant of the molecule using the Clausius–Mossotti relation (Equation 

108).262 This relation derives from the work of the two physicists, though the formula was initially used in the 

investigation of indices of refraction. With regards to dielectric constants, this theory relates the atomic or 

molecular polarizability and the molecular density in SI units to the dielectric constant (relative permittivity) of a 

material, 𝜀𝑟. The following approximation of the relation assumes the polarizability across the material to be 

homogeneous and not orientation dependent as it is known to be with water.165 

𝜀𝑟 − 1

𝜀𝑟 + 2
=

𝑁𝛼

3𝜀0

 

108 

where, 𝑁 is the number of molecules per cubic metre, 𝛼 is the molecular polarizability and 𝜀0 is permittivity in 

vacuum. From the charge density calculations in Chapter 5 TNB’s molecular and distributed ISA-Pol 

polarizabilities were obtained. The total molecular dipole-dipole static polarizability was found to be 121.2 in the 

atomic units of polarizability (𝑒2𝑎0
2/𝐸ℎ). a.u., computed with CAMCASP107 using the PBE0/AC functional203-205 
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and ALDA+CHF hybrid kernel. The experimental density of TNB is approximately 1.7 𝑔 𝑐𝑚−3,263 and its 

molecular mass 213 𝑔 𝑚𝑜𝑙−1. Therefore, from Equation 108 one obtains a relative permittivity 𝜀𝑟 for TNB of 2.72. 

This is very close to, and could be rounded up to, the 𝜀𝑟 of 3 that was once proposed as the most suitable “general” 

dielectric constant for organic solids.260 

6.2.2.2 Influence on the gas-phase 

The influence of using a PCM to represent the 2nd order polarization term (𝐸𝑃𝑂𝐿
(2)

) in the gas-phase dimer interaction 

energy with the non-empirical force-field, Model0-aniso, was examined in Figure 47. This is to help assess how 

using a simpler functional form than the DIFF affects intermolecular interactions. This is an important enquiry, 

especially if the end goal is to scale this workflow up to larger more complex and computationally challenging 

systems. It is vital to know what approximations can be made to still produce an accurate non-empirical 

intermolecular force-field.  
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Figure 47: The intermolecular potential energy (𝑉𝑖𝑛𝑡) with various models compared against the 2nd order 

SAPT(DFT) interaction energy (𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)]) for the 5 gas-phase minima of TNB. The force-fields used: 

the empirical FIT+ISA electrostatic model (𝑅𝑎𝑛𝑘 𝑙 = 4), the 1st order model0-aniso+ISA electrostatic model 

(𝑅𝑎𝑛𝑘 𝑙 = 4) and an explicit polarization model (Chapter 5), and model0-aniso with the ISA electrostatic model 

with the four different dielectric constants 𝜀𝑟 instead of an explicit polarization model. 

Increasing the dielectric enhances the electrostatic potential gradient of the molecule as one would expect (Figure 

46). By placing our TNB molecule in an isotropic dielectric, the oxygen surface is found to become more negative 

and the ring centre more positive. The PCM favours configurations where the positive and negative nodes are close 

(Figure 46). This is the case with the T1 and S4 TNB dimers (Chapter 5 Figure 36), where the PCM is 

increasingly over-stabilising, with increasing 𝜀. However, configurations where the two molecules are stacked 

results in increasingly repulsive interactions with increasing dielectric constant. The polarizability is highly 

directional (the resultant electric field felt is also very directional) but a PCM extremely simplifies the model, 

failing to capture the anisotropic TNB molecular environment and the anisotropy of other surrounding TNB 

molecules. Hence, the COSMO PCM fails to mimic polarization effects in the gas-phase. Conversely, the non-

additivity of polarization means this error may be much less pronounced in the condensed phase. 

The differences between the well-depths of the different dimer configurations (Figure 47) with different 

polarization models, suggests that the polarization would need to be explicitly modelled for studying the gas-phase 

dimers of TNB. Unsurprisingly, no 2nd virial coefficient data is readily available for TNB, due to the difficulties 

associated with energetic experiments. So no comparison of the force-fields with gas-phase experimental data 

could be made for TNB unlike pyridine in Chapter 3.  

6.2.3 Lattice energy minimization calculations 
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The lattice energies calculated in this CSP study are the lattice summation over the atom-atom intermolecular 

interactions. TNB is held rigid, and so the change in intramolecular energy between different crystal structures 

∆𝐸𝑖𝑛𝑡𝑟𝑎
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 = 0. Lattice energy minimizations were conducted on the TNB crystal structure in two conformations: 

its experimentally observed conformations (TNBENZ1X, with standardised 𝐶 − 𝐻 bond lengths), these are 

referred to as xminexpt calculations, and its planar rigid conformation, referred to as xminopt calculations, in order 

to see how well the rigid planar structure reproduces the known experimental structures (Table 27). In xminopt 

calculations, the optimized isolated molecular structure is pasted into the experimentally observed crystal 

configurations and minimized. The lattice energy for the crystal structures was minimized using 

DMACRYS2.2.1.1,40 with lattice summations being carried out to 15 Å followed by a 2 Å splined correction, with 

the charge-charge, charge-dipole and dipole-dipole electrostatic contributions being evaluated by Ewald 

summation. The treatment and workflow used here was identical to that used in Chapter 3. During the lattice 

energy minimization, the forces due to the polarization are not explicitly calculated by DMACRYS as the 

polarization term is a non-additive contribution and the induced moments have to be solved iteratively to 

consistency40 by taking their numerical derivatives (2.6.1.3). For the polar molecule pyridine, the lattice energy 

was minimized with respect to the polarization forces in a very expensive calculation (Chapter 3 Table 6) but 

showed to not contribute significantly to changes in cell geometry, thus the forces due to explicit polarization have 

been omitted for TNB. Instead, this CSP study attempts to model the effects of the polarization forces using a 

cheaper method, the polarizable continuum model (6.2.2). Accordingly, the lattice energy minimizations were also 

carried out using the DIFF and various electrostatic models under different dielectric constants (𝜀𝑟 = 3, 7 & 11).  

6.2.4 Crystal Structure Prediction (CSP) 

The TNB CSP study employed CrystalPredictor 2.0.135, 36 to use the optimized isolated molecular structure of 

TNB as a starting point to search within the 59 most probable space groups403 and generated 670112 putative 𝑍′ =

1 crystal structures. The lattice energies of these structures were calculated using the FIT potential and the ISA 

point charges from the electrostatic model created in Chapter 5. The structures were then clustered (1.1.2.2) 

leaving 13956 unique structures. These unique structures were used as the starting point of our study. This is a 

novel approach as previously in Chapter 3 and in the Blind Tests,22 the more elaborate force-fields were used as 

a post-processing treatment after minimisation with a good intermediary force-field that included distributed 

multipoles. As a result, the small changes in the force-fields rarely resulted in a significant change in the final 

lowest energy hypothetical structures, as found for pyridine (3.3.3.1). The differences between a point-charge and 

distributed multipole model, and between the FIT and the non-empirical potentials are likely to be large for TNB, 
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and hence minimisations starting directly from the CrystalPredictor generated structures are likely to sample more 

of the potential energy surface. Following the investigation in 6.3.1, all minimizations were performed with the 

force-fields without any polarization (𝜀𝑟 = 1), unless otherwise specified. For the non-empirical potentials, the 

lattice energy was then revaluated in a single-point calculation to include the polarization energy, iterated using 

the distributed polarizabilities, permanent and induced multipole moments. 

After the ~14000 structures had been minimized with each model, they were clustered once more and the most 

stable structures were analysed for their similarities with each other, the experimental forms and the gas-phase 

minima from Chapter 5. The crystal structure similarity tool in Mercury 3.6291 was used to determine the number 

of molecules in a maximum coordination cluster (30 for crystals, 2 for dimer comparisons), which matched within 

a 30% distance in intermolecular atom-atom distances and 30 in interatomic intermolecular angles. The root mean 

squared deviation (𝑅𝑀𝑆𝐷𝑛) of overlaid molecules was calculated ignoring hydrogen atoms. The number of 

molecules overlaid was increased to 30 for TNB because of the changes in common CSP practise and the flexibility 

of TNB, thus the size of the cluster required is larger and the RMSD overlay constraints for finding a match are 

looser than for pyridine (Chapter 3). One should recall that the resultant lattice energy minima from re-minimizing 

the 14000 structures with the FIT+ISA model was used in the development of the non-empirical force-fields in 

Chapter 5 to obtain the most popular two molecule contacts sampled in the lowest energy structures (Figure 51 

(c)), which were then used as a test dataset for the potentials. The force-field will have performed “well” if the 

𝑍′ = 1 form III is found in the CSP search and the three polymorphs of TNB are amongst the most stable generated 

structures with a reasonable energy difference considering their melting points (6.1).263  

6.3 Results 

6.3.1 The influence of implicit polarisation on cell geometry 

Does including implicit polarization by using molecular charge densities calculated empirically in a polarizable 

continuum improve on traditional empirical methods, which simply absorb polarization effects alongside many 

other errors? Absorbing the contribution gives us a loose indication of the importance of polarization on the 

minimized crystal structure. As previously mentioned, one cannot minimize the structures with the explicit 

polarization model, thus a direct comparison of the PCM and the explicit model cannot be made. Form III of TNB 

was examined with both isotropic and anisotropic versions of the 1st order model (Model0) and the DIFF to 

investigate whether the crystal lattices undergo any significant structural changes and variations in the lattice 

energies when optimized with the non-empirical models compared to the empirical force-fields (Table 27).  
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Form III 

Model0-Aniso 

FIT+ISA FIT+GDMA 

Explicit 1 3 7 11 

𝐸𝑙𝑎𝑡𝑡 −109.6 −98.3 −105.2 −107.8 −108.6 −100.6 −92.2 

𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀] −37.4 −37.4 −49.1 −47.9 −48.7 −30.6 −21.6 

𝑉𝑃𝑂𝐿
(2−∞)

[𝐷𝑀] −11.3 ~ ~ ~ ~ ~ ~ 

Density 1.707 1.707 1.719 1.724 1.725 1.705 1.692 

𝑅𝑀𝑆𝐷30/Å 0.774 0.774 0.782 0.785 0.787 0.412 0.306 

Form III 

Model0-Iso 

FIT+ISA FIT+GDMA 

Explicit 1 3 7 11 

𝐸𝑙𝑎𝑡𝑡 −108.6 −96.4 −103.3 −105.9 −106.7 −100.6 −92.2 

𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀] −37.9 −37.9 −44.2 −47.0 −47.8 −30.6 −21.6 

𝑉𝑃𝑂𝐿
(2−∞)

[𝐷𝑀] −12.0 ~ ~ ~ ~ ~ ~ 

Density 1.697 1.697 1.709 1.714 1.715 1.7045 1.692 

𝑅𝑀𝑆𝐷30/Å 0.633 0.633 0.658 0.666 0.668 0.412 0.306 

Form III 

DIFF 

FIT+ISA FIT+GDMA 

Explicit 1 3 7 11 

𝐸𝑙𝑎𝑡𝑡 −108.8 96.6 −103.5 −106.1 −106.9 −100.6 −92.2 

𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀] −36.8 −36.8 −44.6 −47.4 −48.3 −30.6 −21.6 

𝑉𝑃𝑂𝐿
(2−∞)

[𝐷𝑀] −12.2 ~ ~ ~ ~ ~ ~ 

Density 1.715 1.715 1.728 1.732 1.734 1.7045 1.692 

𝑅𝑀𝑆𝐷30/Å 0.489 0.489 0.526 0.534 0.538 0.412 0.306 

Table 27: Electrostatic models that include the effects of polarization using the PCM are compared for various 𝜀 

(𝜀𝑟 = 1,3,7,11), the explicit polarization model and the empirical FIT potential using the 𝜀𝑟 = 1 (in vacuum) 

electrostatic model. The lattice energy (𝐸𝑙𝑎𝑡𝑡), the multipolar electrostatic (𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀]) and damped multipolar 

polarisation (𝑉𝑃𝑂𝐿
(2−∞)

[𝐷𝑀]) are given in kJ mol-1. The structural changes are compared in the lattice density (given 

in g cm-1) and the 30 molecule structural overlays of the minimized structures and the experimental form III 

(TNBENZ13263, experimental density = 1.717 g cm-1). The RMSD30 values are given in Å. 
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The previous study of the polar pyridine167 (Chapter 3) found that the forces due to polarization had a negligible 

effect on the structure. One would be right to believe the polarization forces may be significant in a larger, 

multifaceted molecule like TNB. Including polarization using the PCM increases the predicted density (Table 27). 

The RMSD overlays of the xminopt structures with the experimental structure of form III, suggest that including 

polarization in the electrostatic model has some effect on the resultant structure and results in a poorer overlay 

with increasing 𝜀𝑟, though not by a significant margin. The PCM does not seem to stabilise the lattice energy as 

much as an explicit polarization model (Table 27). The most significant changes in lattice energy and structure 

occur when 𝜀𝑟 is increased from 1 → 3. The gradient on the molecule’s electrostatic potential surface (ESP) rises 

with increasing 𝜀𝑟 (Figure 46) and in turn further stabilises the electrostatic model. Increasing the dielectric 

constant beyond 𝜀𝑟 = 3 has less of an effect on the lattice energy. One can see that increasing the dielectric constant 

𝜀𝑟 = 11 (which is well beyond the assumed dielectric constant of TNB, 𝜀𝑟 = 2.72) does not match energy stability 

gained from having an explicit polarizability model. This is likely due to the electrostatic potential gradient across 

the molecule, which destabilizes stacked configurations within the crystal lattice, similar to the gas-phase. 

Therefore, using a PCM in CSP may also result in very different relative energies and rankings that favour specific 

geometries, where nodes on the opposing electrostatic potential surface are close together. Accordingly, the PCM 

electrostatic models are used alongside the DIFF model for CSP in Figure 52. 

6.3.2 Reproduction of known crystal structures 

6.3.2.1 Rigid conformation 

Gratifyingly, the DIFF model was found to result in a considerable improvement in the overlay 𝑅𝑀𝑆𝐷30 of the 

minimized form III structure and the experimental structure compared to the 1st order models (Table 27). In Figure 

48, the lattice density of form III seems to vary drastically with the force-field and even electrostatic model 

(FIT+GDMA vs FIT+ISA). For form III, the non-empirical models predict a denser crystal structure than the 

empirical models that have absorbed the effects of temperature and zero-point vibration, as was the case with 

pyridine (3.3.2). The behaviour of each force-field varies between the polymorphs (Figure 48), consistent with 

each form sampling very different intermolecular interactions. Interestingly, the experimental density for all forms 

is larger than all the xminopt predicted densities (Table 28). The experimental crystal structures were determined 

at ambient pressure and low temperatures,263 which should have decreased the density, thus this difference is 

probably because the geometries were modelled using a rigid planar molecular structure. The flexibility of the 

nitro-groups is likely to allow for denser packing. One should note that the torsion angles of the nitro-groups in 

the experimental structures of forms I and II of TNB show a larger distribution than those in form III (Figure 44). 
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Consequently, the rigid model approximation used to model these may not have extended as well as it has in form 

III. Accordingly, minimizations with the experimental conformation were carried out. 

 

Form I (a) 

 

Form II (b) 
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Form III (c) 

Figure 48: The experimental crystal structures of forms I-III (a)-(c) of TNB compared with both non-empirical 

and empirical force-fields. All determinations were at ambient pressure, however, the temperature of each 

determination varies and is indicated on the graph (form I – 183 K, form II – 120 K, form III – 183 K). 

6.3.2.2 Experimental conformation 

Lattice energy minimizations were conducted with the three polymorphs of trinitrobenzene (TNB) in their 

experimental conformation (xminexpt). This exercise was a brief investigation on whether the model had been 

hindered by approximating TNB as a rigid planar molecule. The ISA-DMA electrostatic and polarization models 

were recalculated in the experimental conformation to test the effects of the rigid molecule approximation on the 

cell geometry and lattice energy. If the experimental conformation was to be used in CSP one should recalculate 

also the DIFF short-range parameters and dispersion coefficients (which are isotropic) in the experimental 

conformation. These differences should be small as the only neglected changes in the short-range parameters and 

dispersion coefficients are due to changes in the charge density not associated with geometric change (Chapter 

4). Furthermore, the experimental conformations are associated with a small conformation energy (Chapter 4 

Figure 27). Hence the original DIFF with these new electrostatic and polarization models should be a very close 

approximation and substantially better than analytically rotating the multipole moments (Chapter 4).  
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 I (TNBENZ11) II (TNBENZ12) III (TNBENZ13) 

 expt xminexpt xminopt expt xminexpt xminopt expt xminexpt xminopt 

𝑎/Å 12.5870 12.4317 12.3456 9.2970 10.1110 10.1513 12.8960 12.8835 12.5738 

𝑏/Å 9.6840 9.8983 10.5082 18.7300 17.7759 18.0981 5.7230 5.7253 5.9370 

𝑐/Å 26.8600 27.0772 26.7136 9.6330 9.9927 9.9241 11.2870 11.1944 11.3971 

Density 

(𝑔 𝑐𝑚−1) 
1.7293 1.6993 1.6338 1.6877 1.5762 1.5527 1.7167 1.7198 1.7150 

𝐸𝑙𝑎𝑡𝑡 
(𝑘𝐽 𝑚𝑜𝑙−1) 

~ -105.124 -103.375 ~ -123.566 -111.221 ~ -123.558 -108.847 

𝑅𝑀𝑆𝐷30/Å ~ 0.15 
0.64 

(26/30) 
~ 0.61 0.57 ~ 0.25 0.49 

Overlay of 
xminopt 

with 
experimen

t 

   

Table 28: The expt (experimental structure), xminexpt (DMACRYS59 minimized crystal structure, with all 

molecules held rigid in their experimentally observed conformations), and the xminopt (DMACRYS minimized 

crystal structure, with all molecules held rigid in their gas-phase optimized conformation) crystal structures and 

intermolecular lattice energies of the three known polymorphs of TNB. The intermolecular lattice energy (𝐸𝑙𝑎𝑡𝑡) 

estimates above were calculated using the DIFF force-field. The 30 molecule overlays (𝑅𝑀𝑆𝐷30) have been 

calculated against each respective experimental determination and visualisations of the overlays of the xminopt 

structures with their corresponding experimental forms shown. 

There is a substantial stabilisation of the lattice energy when the experimental conformation is used (Table 28). It 

should be noted that this lattice energy does not include the intramolecular distortion energy from the optimized 

to the experimental structure. The largest stabilisation is seen for form III (14.7 𝑘𝐽 𝑚𝑜𝑙−1) despite this structure 

containing the most coplanar NO2 groups. The xminexpt structures also have denser computed structures. The 

xminexpt density for form III better matches the approximations and relationships found for the non-empirical 

models for pyridine (Chapter 3). One would expect the computed density to be higher than the experimental 

density at ambient conditions or at least very close as temperature, pressure, zero-point energy and many-body 

effects have not been included. The visualisation of the 30 molecule overlays and the reduction in RMSD show 

that the reproduction of the cell geometry of forms I and III also improves (Table 28). The largest improvement is 
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seen for form I which has a greater range of NO2 torsion angles than form III (Figure 44). Interestingly, form II 

also has a large range of NO2 torsion angles yet the RMSD30 values for the xminexpt and xminopt structures are 

very similar. The overall energy rankings of the polymorphs do not change. Both xminopt and xminexpt 

calculations predict form II to be the most stable polymorph, however, the energy difference between forms II and 

III becomes almost negligible. The energy difference goes from ~2.5 𝑘𝐽 𝑚𝑜𝑙−1 to ~0.008 𝑘𝐽 𝑚𝑜𝑙−1, highlighting 

the stabilisation of the form III once conformational flexibility is included. 

6.3.3 Relative stabilities of observed and hypothetical Structures 

6.3.3.1 DIFF 

 

Figure 49: Analysis of the 200 most stable CSP generated crystal structures of trinitrobenzene ranked by lattice 

energy against its density, calculated with DIFF. Each point represents a mechanically stable crystal structure, 

classified by its space group. The lattice energy minima obtained by minimizing the experimental structures with 

a fixed rigid, planar molecular structure (xminopt) and the DIFF are shown by the opaque symbols corresponding 

to their space group. Generated structures that had a 30/30 molecule overlay with form III are indicated by the 

pentagon and cross. This 𝑍′ = 1 search is not capable of generating forms I and II. The space group, lattice 

parameters, and lattice energy for the 30 most stable structures can be found in the Appendix 6.A and all structures 

and a complete table on the Appendix CD, linked to the structure identifier TNB#. 

The stability of the observed structures was compared to the hypothetical structures generated by the rigid crystal 

structure prediction study. The CSP study was a 𝑍′ = 1 search, which was not capable of finding the 𝑍′ > 1 

structures of TNB such as forms I and II, whose xminopt structures have been included in the CSP lattice energy 

landscapes in Figure 49, Figure 51 & Figure 52 for comparison. One can see how the landscape changes 
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significantly with force-field. Across the different force-fields, a varying set of structures are found to be within 5 

kJ mol-1 of the most stable, which is a likely energy difference between apparently stable polymorphs.7 The DIFF 

finds only 9 structures to be in this energy range of the global minimum. It is important to note that the DIFF’s 

lowest energy structure (TNB9955) has a 30 molecule overlay with DIFF xminopt form III with a 𝑅𝑀𝑆𝐷30 = 0.6 

(Figure 50), which is not much larger than the 0.5Å differences between xminopt and the experimental structure 

(Table 28). Considering quantum effects and the effects of conformational flexibility, temperature and pressure 

have not been included, and the experimental uncertainty that is associated with the observed structures, the DIFF 

has successfully predicted form III as the global minimum.  

 

Figure 50: The 30 molecule overlay of the DIFF global minimum (TNB9955) and the xminopt minimized structure 

of trinitrobenzene, form III with an 𝑅𝑀𝑆𝐷30 = 0.604. This is typical of the other CSP generated putative 

structures that have a 30/30 molecule overlay with form III, which if found in each potential energy landscape, 

are indicated by the pentagon and crosses. 

Of the top 10 structures predicted by the DIFF within a 5 𝑘𝐽 𝑚𝑜𝑙−1 energy range of the global minimum, a majority 

of them are in the same space group as form III (P21/c) and have a 30/30 molecule overlay with form III. The 

remaining two are in Pbca, the more stable of which is loosely related to form I with 8/30 overlaying molecules 

(TNB55), and Pna21, which could be an undiscovered form as it’s ~5 𝑘𝐽 𝑚𝑜𝑙−1 from the global minimum.  
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6.3.3.2 Model0 and FIT 

All the non-empirical models found form I to be considerably less stable than the other two forms, which given 

that it is the most commonly crystallized structure,263 suggests that it is a kinetic form. Moreover, the order of 

stability between forms II and III switches with model, with only small relative energy differences (~1 𝑘𝐽 𝑚𝑜𝑙−1). 

Only model FIT+GDMA and Model0-aniso found form III to be the most stable of the three polymorphs, the DIFF 

predicted form II to be the most stable. 

 

Model0-Aniso 

 

Model0-Iso 
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FIT+ISA 

 

FIT+GDMA 

Figure 51: Analysis of the 200 most stable CSP generated crystal structures of TNB ranked by lattice energy 

against its density, calculated with the empirical FIT+GDMA (d) & FIT+ISA (c) potentials and the 1st order 

approximations to the DIFF, Model0-aniso (a) & Model0-iso (b). Each point represents a mechanically stable 

crystal structure, classified by its space group. The xminopt structures of the three TNB forms are shown by the 

opaque symbols corresponding to their space group. Generated structures that had a 30/30 molecule overlay with 

form III are indicated by the pentagon and cross. The space group, lattice parameters, and lattice energy for the 

most stable structures can be found in the Appendix CD, linked to the structure identifier TNB#. 

The sensitivity of the potential energy surface to the other models is shown in Figure 51. The global minimum in 

Model0-iso also overlays with form III, with an 𝑅𝑀𝑆𝐷30 = 0.608. The 1st order model with an anisotropic short-
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range description (Model0-aniso) found the rigid experimental structure of form III to be significantly higher than 

the global minimum. Model0-aniso failed to find any structures with a 30/30 overlay with form III within 5 kJ 

mol-1 of its global minimum compared to the DIFF (Figure 50). The closest matching structure with a 30/30 

overlay was 3rd in Model0-aniso’s energy ranking. The actual experimental structure was placed 51st in its energy 

ranking. Hence, the differences made to the CSP results from the relaxing the short-range parameters to the 2nd 

order SAPT(DFT) energies, and the inclusion of short-range anisotropy is substantial. If a flexible search was 

allowed the energy of form III would drop considerably, as found in Table 28 for the DIFF, and the xminexpt 

structure may have been the global minimum for many of these models.  

Figure 51 (c) & (d) show the sheer diversity of structures predicted by the empirical models, producing structures 

in a considerable number of space groups that, judging from the experimental structures and theoretically justified 

DIFF, may not be favourable for TNB. The empirical FIT+ISA model failed to find any putative structures 

corresponding to form III in the search but it did to predict it to be 19th in the energy rankings (Figure 51 (c)). The 

FIT+GDMA model also failed to find any hypothetical structures corresponding to form III in its top 200 

structures. The best overlay was 5/30 molecules with a structure 83rd in the energy rankings. The FIT+GDMA 

model also predicted the xminopt structure of form III to be an astonishing 1600th in the energy rankings. It did not 

even make the top 200 structures shown in the above CSP energy landscapes (Figure 51 (d)). The drastic variations 

between these two potential energy landscapes, which use the same FIT exp-6 potential, are due to the differences 

in the intermolecular interactions described by the electrostatic model of each potential. The force-fields in Figure 

49 & Figure 51(a)-(c) use the ISA electrostatic model (6.2.1), which uses a better quality wave-function and 

charge partitioning scheme than the GDMA electrostatic model (Chapter 2). This clearly makes a substantial 

difference alongside the repulsion-dispersion potential, as the non-empirical potentials give different low energy 

structures to the empirical FIT model. The nuances that define the short contacts between nearest neighbours in 

the TNB crystal structure are complex and intricate, a real challenge to describe accurately, and the classical CSP 

recipe of FIT+GDMA is most certainly unrealistic for TNB. 
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6.3.3.3 Implicit polarization models 

 

𝜀𝑟 = 3 

 

𝜀𝑟 = 7 
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𝜀𝑟 = 11 

 

DIFF(no-pol) 

Figure 52: Analysis of the 200 most stable CSP generated crystal structures of TNB ranked by lattice energy 

against its density, calculated with DIFF and different electrostatic models (𝜀𝑟 = 3 (𝑎), 7 (𝑏), 11(𝑐)) using a 

PCM across various dielectric constants and with the explicit polarization model removed and under no dielectric, 

DIFF(no-pol) (𝜀𝑟 = 1 (𝑑)). The xminopt structures of the three TNB forms are shown by the opaque symbols 

corresponding to their space group. Generated structures that had a 30/30 molecule overlay with form III are 

indicated by the pentagon and cross. The space group, lattice parameters and energy for the most stable structures 

can be found in the Appendix CD, linked to the structure identifier TNB#. 

The explicit polarization model does not change the predicted cell geometries as the polarization forces are not 

calculated, but it does affect relative energies. Figure 52 (d) shows the CSP landscape before the explicit 
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polarization was added (DIFF(no-pol)) compared to the full DIFF in Figure 49. DIFF(no-pol) predicts form III 

became more stable than form II (Table 29). The global minimum structure remained the same for both DIFF and 

DIFF(no-pol). However, it is noticeable that the addition of the explicit polarization energy not only significantly 

stabilises the lattice energy, but also increases the spread of energy values significantly (10 − 15 𝑘𝐽 𝑚𝑜𝑙−1), so 

that the DIFF has larger relative lattice energy differences. The explicit polarization contribution to the lattice 

energy is clearly very sensitive to the structure, as the spread of structures which have a 30/30 molecule overlay 

with form III has also changed by 5 𝑘𝐽 𝑚𝑜𝑙−1. 

The structural landscapes with the two most plausible dielectric constants 𝜀𝑟 = 3 and 𝜀𝑟 = 1 in Figure 52 (a) & 

(d) suggest that the CSP results may not be significantly affected by neglecting the explicit polarization 

contribution when minimizing structures, if suitable approximations to the polarization energy are made. The PCM 

was found to not significantly affect the structures of the predicted lattice energy minima for the xminopt structure 

of form III (Table 27), even as 𝜀𝑟 → 11. However, optimizing the CrystalPredictor generated structures 

(corresponding to the FIT with ISA atomic charge PES) with different PCM electrostatic models does make a 

notable difference to the set of low energy structures (Figure 52). The same global minimum structure found in 

the DIFF and DIFF(no-pol) was also found when 𝜀𝑟 = 3. The higher dielectric constants 𝜀𝑟 = 7, 11, give different 

global minimums, however, the 2nd most stable structure for the 𝜀𝑟 = 7 model and the 3rd most stable structure for 

the 𝜀𝑟 = 11 model are identical and have a 30/30 overlay with form III. The global minimum for both models is a 

Pbca structure that is substantially less dense than form III and may be an artefact of the potential, possibly due to 

the disfavouring of stacked configurations (6.2.2.2). This confirms the sensitivity of the CSP results to the 

modelling of the electrostatic and polarization model.  
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6.3.4 The most distinct low energy structures on the DIFF TNB lattice energy 

landscape 

6.3.4.1 Prominent interactions and motifs 

  

S4 T1 

Figure 53: The S4 and T1 gas-phase dimers (green) calculated with the DIFF compared with the two 

corresponding common two molecule contacts in the crystal structures calculated with the DIFF (grey), the S4 

overlay is for the two-molecule motif found in the DIFF global minimum TNB9955 and almost identical to the gas-

phase dimer, compared to the skewed version of the T-shaped dimer found in TNB5307. 

For both pyridine and TNB, the DIFF has transferred well to the crystalline state, predicting the observed most 

stable polymorphs as the lowest energy structures and other polymorphs within a competitive energy range. It is 

also important to decompose the lattice energies to determine, which contributions have been most significant. 

Table 29 displays the most distinct structures (including the global minimum) found in the 200 most stable minima 

produced by the DIFF. The differences in space group and each contribution to the lattice energy is given, 

alongside a comparison with the xminopt minimized structures for the polymorphs of TNB (Table 29).  

One can see that though the space groups differ significantly the percentage contributions of each term to the lattice 

energy are very similar. The only exception is for TNB440, which is a relatively unstable, low density structure in 

a high-symmetry space group (Fdd2). Like pyridine (Chapter 3), the most dominant term is the dispersion energy, 

this is reflected in the most prominent gas-phase dimer motif, S4. Additionally, the electrostatic and polarization 

contributions are more prominent in the more electron rich TNB than pyridine. The polarization energy is 

approximately 11 − 18% of the lattice energy.  

The intermolecular interactions that dominate the most stable and distinct structures from the search are very 

different to those that dominate the gas-phase dimer structures (Figure 36). The most stable gas-phase minima S1, 
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S2 and S3 are not even found in any of the 200 most stable structures in the DIFF and only a very select few crystal 

structures have the T1 motif. The most reoccurring dimer motifs in the crystal structures was actually the least 

stable stacked gas-phase dimer configuration S4 and a skewed version of the T-shaped T1 dimer (Figure 53 & 

Table 29). The recurring presence of the S4 dimer, does suggest that even among different space groups many of 

the structures prefer particular interactions that favour certain contributions. The S4 dimer involves a mixture of 

strong electrostatic interactions between the poles on the electron rich nitro groups of TNB, and dispersive 

interactions between overlaying stacked units. This orientation also allows the monomers to slide across each other 

in the crystal lattice.263 

Form III shares the S4 motif but the two other polymorphs of TNB, forms I and II, show none of the gas-phase 

motifs. This suggests that the interactions within the crystal are dominated by long-range forces like dispersion 

and polarization forces and crystal packing. In a flexible search, the rotation of the nitro-groups may allow for a 

denser, more stable packing as a variant on all the CSP structures generated with the rigid planar molecule, and 

maybe even more diverse structures would be found. 

TNB# I II III 9 55 119 195 1612 440 5307 
9955 

(𝐺𝑀, ~𝐼𝐼𝐼) 
10109 

Space group Pbca Pca21 P21/c Pna21 Pbca C2/c Cc P212121 Fdd2 𝑃4̅21𝑐 P21/c Pca21 

Motifs ~ ~ S4 S4 S4 S4 ~ ~ S4 T1 S4 S4 

𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀] -35 -42 -37 -40 -41 -42 -40 -42 -26 -47 -42 -45 

𝑉𝑑𝑖𝑠𝑝
(2) [𝐷𝑀] -111 -105 -125 -124 -133 -132 -117 -114 -118 -110 -127 -114 

𝑉𝑆𝑅  58 55 66 68 73 73 64 63 56 63 68 66 

𝑉𝑃𝑂𝐿
(2−∞)

[𝐷𝑀] -14 -19 -12 -21 -17 -14 -18 -20 -18 -17 -19 -17 

𝐸𝑙𝑎𝑡𝑡 −103 −111 −109 −117 −118 −115 −111 −114 −106 −110 −121 −111 

Table 29: Solid-state energy contributions (in 𝑘𝐽 𝑚𝑜𝑙−1) for DIFF in the observed and the most diverse 

hypothetical structures. The lattice 𝐸𝑙𝑎𝑡𝑡, electrostatic 𝑉𝑒𝑙𝑠𝑡
(1)[𝐷𝑀], dispersive 𝑉𝑑𝑖𝑠𝑝

(2) [𝐷𝑀], short-range 𝑉𝑆𝑅 and 

polarization 𝑉𝑃𝑂𝐿
(2−∞)

[𝐷𝑀] energies are given rounded up to their integer values. 

Visualising the crystal structures and examining the diversity of space-groups (Appendix CD) emphasises that 

this CSP study samples an enormous range of interactions and orientations. Many different orientations can 

stabilise different contributions to the energy, and the important contacts in the crystal structure differ significantly 

from the gas-phase. 
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6.3.4.2 The effects of model on the most unique structures 

 

Figure 54: Relative lattice energies of the observed and selected computer generated crystal structures of TNB, 

relative to form III as a function of force-field. The labels for the CSP generated structures TNB# refer to their 

ranking after the CrystalPredictor35, 36 stage, i.e. with the FIT+POINT model and further details on their structures 

are given in the Appendix CD.  

The relative stabilities of the most stable, distinct structures alongside the polymorphs of TNB vary massively as 

a function of the force-field. Interestingly, the force-field with the most similar relative stabilities to the DIFF is 

the isotropic 1st order model (Model0-iso). The relative stabilities of the three polymorphs of TNB are the same in 

the DIFF and Model0-iso. Additionally, the global minimum in Model0-iso is closely related to that of the DIFF. 

All variations of the 2nd order models predict the DIFF global minimum TNB9955 to be the most stable of the 

distinct structures.  The other models predict TNB9955 and the form III of TNB to be higher in energy. The range 

of relative energies is small for the 2nd order models and is even tighter for the 1st order models. The energy range 

increases dramatically when the wave-function quality and multipole moment partitioning method is changed in 

FIT+GDMA. The order of stabilities is also very different for the FIT+ISA model, however, the energy range for 

the most unique structures is not a huge as it is with FIT+GDMA (Figure 54).  

6.4 Discussion 

The optimized structure of TNB is planar, symmetrical, contains no strong hydrogen bonding, and yet contains 

polar and polarizable nitro-groups, in contrast to pyridine or many drug molecules with hydrocarbon chains, and 

hydrogen bond networks. Furthermore, the conformational differences between the molecules in the observed 

polymorphs and the optimized isolated molecular structure is greater for TNB (Figure 44) than in pyridine (Figure 



 240 

14), which makes modelling the intermolecular interactions within the crystal using a rigid molecule model a 

greater approximation. Since TNB is an energetic molecule, there is a greater need for a force-field developed 

from firm theoretical footing for modelling the condensed phases, but also there is a lack of experimental data for 

validation. There is one polymorph, form I, that readily crystallizes, and two that have been found in attempted 

co-crystallization experiments, which gave only melting points and single-crystal crystal structure determinations 

of forms II & III.263 Given the sensitivity of the lattice energy to NO2 group torsion angles (6.3.2.2), the xminexpt 

minimizations are probably the more accurate. The xminexpt calculations gave the lattice energy difference 

between forms II and III to be very small (~0.008 𝑘𝐽 𝑚𝑜𝑙−1) in (Figure 48), and form I to be very metastable. 

This is a better estimate of the relative lattice energies than that obtained using the Dreiding force-field,263 but it 

would be interesting to compare with the best available electronic structure methods.110, 130 

6.4.1 Crystal structures 

6.4.1.1 CSP 

Overall, the DIFF performed surprising well for the medium-sized energetic molecule TNB in these CSP studies. 

Even with the rigid molecule approximation, the global minimum was found to overlay with form III, the only 

observed 𝑍′ = 1 polymorph of TNB. The range of crystal structures generated in the CSP that have a 30 molecule 

overlay with form III and their energy range is also surprising. In many CSP studies, the generation of such similar 

structures would suggest the possibility of static or dynamic disorder in the crystal structures.404-407 However, these 

additional structures may be an artefact of the rigid planar TNB molecule generating many lattice energy minima 

that would merge into one with conformational change. This seems possible if one compares the xminexpt lattice 

energies of form III (Table 28) with the lattice energies of the rigid hypothetical structures generated in the DIFF 

CSP study (Figure 49). The lattice energy of the DIFF global minimum, TNB9955, is substantially lower than the 

xminopt form III structure, however, the xminexpt was calculated to be −124 𝑘𝐽 𝑚𝑜𝑙−1 (Table 28) against the 

global minimum’s −121 𝑘𝐽 𝑚𝑜𝑙−1. The range of rigid structures that overlay with form III (pentagons with crosses 

in Figure 49) with lattice energies between the xminopt and xminexpt structures suggest that there are 

transformation energy barriers between very similar configurations. These CSP searches are limited by the rigid 

molecule approximation, and show that the rigid molecule potential energy surface around the global minimum is 

bumpy. 

The top 10 structures in the DIFF imply that there could be some unobserved polymorphs of TNB in the Pbca 

(TNB55) and Pna21 (TNB9) space groups (Table 29, Figure 49 & Figure 54). Though the overlay is loose with 8/30 

molecules in common with form I, it is possible that TNB55 may be found if the fast crystallization of form I with 

some sub-optimal packing could be suppressed. TNB55 has a hypothetical density of ~1.75 𝑔 𝑐𝑚−1, which suggests 
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it could be a high pressure form that has yet to be observed experimentally due to the obvious challenges of high 

pressure energetic studies. TNB55 also has 16 out of 30 molecules in common with form III, further implying that 

it could be the product of a high pressure transformation similar to form II → form III in the pyridine study (3.3.4), 

if a sufficient quantity of TNB form III could be generated. The less dense TNB9 has no molecules in common with 

form III and only 4 in common with form II, thus it may be an unobserved form that could be found via another 

crystallization route. These structures are sufficiently different to suggest that it would be worth confirming their 

relative stability (c.f. Figure 54) before embarking on more experimental work on the solid state crystallization of 

TNB. The problems and safety issues of screening for new polymorphs of explosives may prevent this from 

happening, particularly, for high pressure experiments.  

6.4.1.2 Cell geometry 

The cell parameters of all forms are in reasonable agreement with the experimental structures, suggesting that 

contacts along the 3 axes are well-sampled and described by the non-empirical force-fields. The most dramatic 

changes are found to be in the lattice densities. This is likely due to the change in crystal packing that occurs when 

the monomers are held rigid. The range of torsion angles seen in the nitro-groups of form III are significantly 

smaller than that of forms I & II (Figure 44), which is why xminopt calculations with the non-empirical models 

perform better for form III than for the other two forms. There is a stark difference in the predicted and 

experimental densities when the molecule is held rigid and planar (xminopt) compared to the observed 

conformation (xminexpt). The predicted density of forms I and II increases notably in the xminexpt minimizations 

(Table 28), stressing the effects of conformation on crystal packing. The improvement of the overlays of forms I 

and III with the experimental determinations (Table 28) also reinforces the importance of conformation in the 

intermolecular interactions and the resultant minima. Considering the possible changes in cell geometry, due to 

experimental uncertainty, the inclusion of zero-point energy,294 and temperature and pressure effects, the DIFF 

potential performs very well for form III (Figure 48 (c)). The empirical models do not model form III’s lattice 

structure as well. The absorption and averaging over errors, approximations and other effects results in an 

unreliable prediction. In addition, changing the wave-function and the method of partitioning (GDMA vs ISA) 

changes the lattice density dramatically (Figure 48 (c)). Forms I and II could be very good tests of the ability of 

future flexible non-empirical models. However, it would be helpful to have more detailed experimental studies on 

the polymorphs of TNB, looking carefully for the presence of disorder and variability with sample crystal, as a 

function of temperature. 
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6.4.1.3 Polarization 

The non-additive nature of polarization is particularly challenging for modelling the crystalline phase because of 

the need to iterate to consistency (2.6.1.3). Chapter 5 showed that the polarization energy is significant in dimers 

of TNB, and Table 29 shows that it also makes a significant contribution to the lattice energy. This is because the 

induced dipoles are determined by the field around the atoms, and the local symmetry around atoms in these 

organic crystals is rarely much higher than in the dimer. This study has pioneered the use of distributed 

polarizability models in CSP studies, and shows that the polarization energy is very sensitive to crystal structure. 

The inclusion of this explicit polarization model has increased the relative lattice energies of fairly similar 

structures, such as those with a 30/30 molecule overlay with form III, and this may have been over-estimated 

(6.4.4.1). 

The investigation of the use of the polarizable continuum model, as an approximation to modelling polarization 

during lattice energy minimization, appears successful, though it does not model the polarization effects in the 

dimer well (6.2.2.2). Including polarization via the PCM does increase attractive interactions and the computed 

lattice density but it does not improve on the predicted structure nor does it change the cell geometry significantly, 

as one can see from the RMSD30 values of the minimized form III (using different 𝜀) overlaid with the observed 

structure in Table 27. The potential energy surface does not change significantly either (Figure 52), however, it 

has to be stressed that TNB is an unusual medium-sized molecule in having high symmetry and few functional 

groups. Modelling with the PCM was introduced as a way to improve the relative energies of different hydrogen-

bonding motifs in peptide crystal structures,260 which are very different systems to TNB. Using a dielectric close 

to the calculated dielectric constant of TNB (2.72) and the proposed dielectric constant of organic solids260, 261 

(𝜀𝑟 = 3) gives an energy landscape (Figure 52) similar to the DIFF with an explicit polarization model (Figure 

49), and found a hypothetical structure that has a 30/30 molecule overlay with form III as the global minimum 

(Figure 52). Increasing the dielectric does not improve the model but instead generates artefact structures, as seen 

with the substantially less dense global minimums of the 𝜀𝑟 = 7 and 11 models (Figure 52), which may be to the 

maltreatment of certain two molecule contacts (6.2.2.2). Accordingly, it seems the proposed dielectric constant for 

approximating polarization effects in organic crystals over 10 years ago260 is still a valuable model. 

6.4.2 Lattice energies and intermolecular interactions 

The lattice energy landscapes created by each potential vary noticeably, especially between empirical and non-

empirical models. Figure 54 highlights how dramatically the landscape changes, the relative energy rankings 

change between the non-empirical models, but the relative energy ranges are similar. The relative energy range 
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and rankings change most notably for the empirical models. Especially for FIT+GDMA, which also uses a different 

wave-function to construct the electrostatic model. The energy range of the set of distinct crystal structures is an 

astounding 50 𝑘𝐽 𝑚𝑜𝑙−1 with the FIT+GDMA model. The non-empirical models give a more reasonable 

qualitative crystal energy landscape than the empirical models (Figure 49, Figure 51 & Figure 52). Anisotropy 

in the short-range portion of the potential appears to stabilise the overall model, as the total lattice energy falls for 

the explicit Model0-aniso compared to Model0-iso. This may be because the shape (anisotropy) appears to also 

improve the description of the close-contacts in the crystal lowering the crystal density (Model0-iso vs Model0-

aniso, Table 27), and so increasing the stabilizing dispersion. It does seem that 1st order SAPT(DFT) dimer 

energies are not sufficient enough to provide an accurate enough potential energy surface for the anisotropic TNB, 

as the crystal structure overlays of form III are worse with the Model0s than the DIFF. Including the 2nd order 

dimer interaction energies in the DIFF seems to improve on this and lower the energy of the hypothetical structures 

(Figure 49). 

It is clear the non-empirical models favour very different intermolecular geometries compared to the empirical 

models. The empirical models generate structures in a significantly larger number of space-groups (Figure 51 & 

Figure 55 (b)). The range of space-groups and the increased presence of groups like Fdd2 and R3 highlights the 

benefit of minimizing the structures straight from their CrystalPredictor generation (6.2.4) and sampling more of 

the differences in the potential energy surfaces. When the lattice energy minima from a force-field with a good 

distributed multipole electrostatic model are used as starting points (3.2.2.4), many structures do not move far from 

their minima, once re-minimized with another potential. The FIT+ISA model in particular seems to favour the 

Pbca crystal configuration as its global minimum is the said space group and the FIT+ISA model is the only model 

that predicts form I, which is also Pbca, to be the most stable polymorph (Figure 54). The lattice energy landscape 

generated by FIT+ISA is quite reasonable, in that the three known polymorphs are close in energy, and not 

significantly less stable than the alternative structures generated. 
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(a) (b) 

 

Figure 55: The crystal motifs found in the P21/c (a) and Pbca (b) space-groups, viewed along the b-axis. 

6.4.3 Flexibility 

The relatively poor reproduction of the crystal structures by the rigid planar molecules in the xminopt calculations 

(Table 28) highlights the importance of conformation in nitrobenzene CSP studies. The stabilisation of the 

computed lattice energies of all three forms of TNB (Table 28) suggests crystal packing also plays a large role in 

the intermolecular energy. Keeping TNB in a rigid planar conformation seems to be the main limitation of the CSP 

results. It would be very difficult and expensive to include flexibility in this CSP study as the range of available 

conformations for the nitro-groups is large and the electrostatic model (and thus the polarization and dispersion 

models) changes with conformation (Chapter 4 Figure 25). The ISA-DMA multipole moments for the 5 different 

molecular conformations are very different (see Appendix CD) and have resulted in very different lattice energies 

(Table 28) even though the range of observed torsion angles is not enormous (Figure 44). Pressure would certainly 

change the NO2 torsion angles and thus in order to conduct a pressure study like that done on pyridine in Chapter 

3, a flexible search would be required. Analytically rotating the multipole moments may reproduce the crystal 

structures but does not replicate the relative energies (Table 15), thus using codes like DMAFlex408 may not be 

suitable for a trustworthy flexible CSP study of TNB. 

A future work could be to conduct a high quality flexible CSP study on TNB to see the effect of allowing the NO2 

groups to move would have on CSP predictions. This could easily be done with CrystalOptimizer39 and the 

empirical FIT+GDMA potential to see if there was any improvement in prediction. However, it is also clear to see 
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that using an empirical model with a cheaper inaccurate electrostatic model (FIT+GDMA) is not appropriate for 

anisotropic molecules like TNB. The FIT+GDMA model performed decently for pyridine in Chapter 3, but does 

not for the larger TNB. The oversimplification of functional form and the electrostatic energy fails to capture the 

shape and close-contacts of TNB. Improving the quality of the wave-function used in the electrostatic model and 

the partitioning method (FIT+ISA) greatly improves the predicted potential energy landscape. Although the 

FIT+ISA model fails to find form III in the search, it calculates the xminopt energy to be within the top 20 

structures. On the other hand, re-calculating the ISA distributed multipoles of the required high quality wave-

function would be computationally expensive to do for each conformation. 

6.4.4 Omitted Terms 

Alongside, approximating TNB as a rigid planar molecule, many other approximations have been made in the 

DIFF that may have been detrimental to the force-field. Chapter 5 describes in detail the reasoning behind the 

omission of some higher-order and many-body terms in the DIFF. Contrary to the pyridine investigation (Chapter 

3), omitting the many-body terms has not resulted in a denser predicted structure. This may be due to uncertainties 

in the experimental determinations of TNB, all three forms were from the same study, but also may be due to 

relative contribution of these terms to the intermolecular energy. The many-body dispersion should in theory be 

more considerable in the larger TNB but may not be as important as previously thought.38, 167, 200, 409 The higher-

order induction terms and charge delocalization contributions are likely to be small in the condensed phase of 

TNB, which is less polar than pyridine and substantially less polar than water, where these terms were found to be 

most important.38, 46, 410 Conversely, form II is in a polar space group, and for a finite-sized crystal, there may be a 

destabilising energy term that depends on the crystal size and morphology.411 The DIFF computed net dipole 

moment per unit cell of form II is 0.0026 𝑒Å and 0.09640 𝑒Å for the xminopt and xminexpt calculations 

respectively. 

6.4.4.1 Charge delocalization and higher order induction terms 

The effects of including the polarization implicitly via the PCM on the reproduction of the experimental 

configurations seemed negligible (Table 27), but there was a significant influence on the lattice energies (Table 

27, Figure 52 & Figure 54). The implicit PCM potentials generated less polarization than the explicit distributed 

polarizability models. In this thesis, only dipolar polarizabilities have been used, and the single molecule damping 

parameter did not appear to be very accurate against the SAPT(DFT) polarization energies (Chapter 5 Figure 

38). It is quite possible that the explicit polarization term implemented in all the non-empirical potentials is 

overestimating the effect of polarization on the relative lattice. It is possible that the inclusion of the charge 
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delocalization and higher-order induction terms (via 𝛿𝑖𝑛𝑡
𝐻𝐹), may have increased the stability of the lattice, lowering 

the energy and increasing the overall density of the structures. It was found that the non-empirical potentials 

underestimated the experimental densities (Figure 48) by a significant margin for forms I and II (even if one was 

to account for possible experimental uncertainties). 𝛿𝑖𝑛𝑡
𝐻𝐹 resulted in over-binding for the pyridine structures in 

Chapter 3 because there was a strong presence of the most stable stacked dimer in the lowest energy crystal 

structures. However, in TNB one can see that the two molecule contacts in the lattice greatly differ from those 

found in the gas-phase (Table 29 & 5.5.3.2), and it seems to not have a preference for stacked configurations. The 

only stacked gas-phase configuration present is the S4 dimer. Consequently, it is possible that the inclusion of 𝛿𝑖𝑛𝑡
𝐻𝐹 

may not have been detrimental to the potential but it certainly would have been expensive. Further research into 

modelling the polarization of larger organic molecules in their low symmetry crystal structures is needed.  

6.4.4.2 Non-additive many-molecule dispersion 

Table 29 emphasises the importance of the dispersion contribution to the total intermolecular energy. The 

dispersion coefficients were derived from the molecular charge distribution as a pairwise-additive term, however, 

the importance of the many-body dispersion in the TNB phases was not investigated. TNB is a more electron-rich 

molecule than pyridine, thus, electron correlated contributions like the 3-molecule dispersion may actually have a 

considerable contribution to intermolecular interaction energy. Coupled cluster (CCSD(T)) (1.3.2) calculations on 

a TNB cluster would be considerably expensive but may shed some light on the importance of this contribution in 

the condensed phase. For example, stacked configurations like those with the S4 motif may be relatively 

destabilized if the non-additive many-molecule dispersion was included, which could significantly change the 

energy rankings.  

6.4.4.3 The effects of temperature 

The empirical FIT potential has absorbed some temperature effects in its parameterisation against experimentally 

observed crystal structures at various conditions.67, 68 Thus using empirical force-fields in MD could lead to the 

double-counting of temperature effects. The FIT+ISA study gives sensible results, in that the observed structures 

are reasonably close in energy, and not implausibly higher in energy than the most stable structures (unlike 

FIT+GDMA). Moreover, the differences between the FIT+ISA and the non-empirical potentials are significant, 

most notably in the relative instability of form I. It seems likely that temperature will have a significant effect on 

the relative stabilities, particularly given the number of CSP generated structures that are very similar to form III. 

It is likely these similar structures are local minima on a bumpy PES with small energy barriers that would smooth 

out to one minimum if NO2 rotation due to temperature was allowed. We cannot apply the rule of thumb for rigid 

hydrocarbon structures that thermal effects reduce relative energy differences, as the denser, more stable structures 
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have lower amplitude and higher frequencies.300 The DIFF has reversed the density order of forms I and III (Figure 

48), which is partially because of neglecting conformational flexibility (Table 28). The librations of the NO2 

groups is likely to be a major contribution to the relative thermal stabilization. However, a definitive comparison 

with experimental data for judging the accuracy of a force-field should consider the effects of temperature. 

6.4.5 Future work to reduction computational cost or accuracy 

The DIFF outperforms the cheaper 1st order models but is this improvement worthwhile once the computational 

time spent in developing the force-field comes into question? The DIFF used only 327 𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] dimer 

interaction energies to relax Model0-aniso’s 𝛼00
𝜄𝜅  and 𝜌00

𝜄𝜅  short-range parameters and fit the polarization and 

dispersion model damping parameters. This is a substantially smaller dataset compared to pyridine’s ~1000 2nd 

order points, which was considered “a tiny dataset”.38 With each TNB calculation taking approximately 15 hours 

compared to pyridine’s 2 hours (on an older workflow, which hadn’t even been optimized like TNB’s workflow 

has been) it’s understandable why the dataset is that size. For large molecules one has to be cunning with selecting 

configurations for fitting, and cannot assume that the gas-phase dimer configurations are going to dominate the 

crystal structures. Ideally, all of the configuration space would be sampled, without “diluting” important 

configurations, but as discovered in Chapter 5, this requires many configurations, and hence calculating sufficient 

second-order energies may not be possible for molecules larger than TNB. Future work would be to see how well 

Model0-aniso does in CSP using the approximate dispersion damping parameter of 1.8 (5.3.4) and an educated 

guess of the polarization damping parameters to see if the 1st order models are good enough to be used on large 

molecules as an alternative to empirical force-fields. 

The main limitation of this TNB CSP was the neglect of flexibility in the nitro-groups. Minimizing the crystal 

structures whilst allowing the NO2 groups to rotate (analytically rotating the multipole moments instead of re-

calculating them) may have provided better crystal structures. However, the final energy evaluation would require 

re-calculating the ISA electrostatic models for the final conformation of each molecule within the low energy 

crystal structures in order for it to be reliable. The sensitivity of the quality of the electrostatic model (GDMA vs 

ISA), shows that this would be very expensive for the required quality of charge density. 

6.5 Conclusion 

To conclude, the DIFF was successful in modelling the TNB crystal lattice and has provided some important 

insight into the importance of conformation, force-field functional form and polarization effects in CSP. Even 

within the limitations of using a rigid planar TNB model, the 𝑍′ = 1 CSP of the non-empirical potentials showed 

the favourability of the form III packing, which is the motif favoured in TNB molecular complexes. Furthermore, 
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the DIFF generated low energy hypothetical structures with similar motifs to those seen in forms I and III. This 

state-of-the-art model has really pushed the envelope with respect to what was considered previously possible with 

anisotropic force-fields for CSP. This is the third ever non-empirical anisotropic atom-atom potential used in 

CSP60, 167 and only the second to include an explicit polarization model, the first being the pyridine DIFF (Chapter 

3). One can see that for the larger more flexible trinitrobenzene, the DIFF performs very well in CSP, compared 

to the standard empirical FIT+GDMA model. The rigid molecule approximation coupled with a pairwise model 

and a many-body polarization model reproduces the lattice structure reasonably well (Figure 48) and can be used 

in CSP to model the potential energy surface of organic energetic materials (Figure 49). The CSP study raises 

many questions about the possible polymorphs of TNB, a system that warrants further experimental investigation 

in order to develop the modelling of energetic materials.  
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Appendix 6.A – Stability of observed & top 30 DIFF hypothetical 

structures 

The lattice energies (𝑘𝐽 𝑚𝑜𝑙−1) and cell geometries of the 30 lowest energy structures and the xminopt 

minimizations of the three forms of TNB using the DIFF. 

Structure (pyr#) Lattice Density Space-Group a b c 𝛼 𝛽 𝛾 

9955 ≈ 𝐼𝐼𝐼 -121.3867 1.7244 P21/c 12.8586 5.6599 11.3555 90 83.3271 90 

9983 -120.7215 1.7208 P21/c 16.2124 5.6524 11.3901 90 52.0029 90 

4917 -120.1334 1.7285 P21/c 12.85 5.6631 11.3444 90 82.7394 90 

4888 -119.2635 1.7113 P21/c 24.9121 5.6993 11.3035 90 148.9775 90 

30 -119.2343 1.7273 P21/c 12.8476 5.6631 11.3496 90 82.93 90 

4891 -118.7367 1.7117 P21/c 17.961 5.7003 11.2982 90 45.6336 90 

55 -118.4311 1.7469 Pbca 25.8181 5.5358 11.3385 90 90 90 

2515 -118.4252 1.7294 P21/c 12.8406 5.6707 11.3367 90 82.5398 90 

9 -116.4963 1.6762 Pna21 10.0116 9.1053 9.2636 90 90 90 

5027 -116.3286 1.7138 P21/c 12.8672 5.9579 10.9892 90 78.6387 90 

54 -116.1642 1.7307 Pbca 25.918 5.5876 11.295 90 90 90 

4850 -116.1383 1.6689 P21/c 14.0265 5.8616 11.3202 90 114.3208 90 

119 -115.268 1.7384 C2/c 26.329 5.5214 11.3921 90 79.5187 90 

31 -115.2529 1.7105 P21/c 12.8955 5.6945 11.3198 90 84.5685 90 

9961 -114.97 1.7091 P21/c 12.8739 5.9415 11.0174 90 79.3385 90 

12374 -114.8589 1.6758 P21/c 15.5483 6.1539 11.3261 90 128.7907 90 

4918 -114.5712 1.6689 P21/c 21.1977 5.8604 11.3228 90 37.0838 90 

2301 -114.3375 1.6331 P21/c 10.5322 5.8758 14.0529 90 85.2796 90 

5929 -114.3299 1.7329 C2/c 26.359 5.5079 11.4736 90 78.7359 90 

10680 -114.0364 1.719 C2/c 38.3638 5.5914 11.3433 90 137.404 90 

13 -113.9348 1.6791 P21/c 9.6005 9.7002 9.0901 90 84.7742 90 

7 -113.7005 1.6719 Pna21 10.0313 9.0781 9.297 90 90 90 

1612 -113.6915 1.623 P212121 11.0628 13.2627 5.9441 90 90 90 

4916 -113.5758 1.6697 P21/c 14.0435 5.8522 11.3344 90 65.5166 90 

8489 -113.5221 1.7217 C2/c 26.5095 5.591 11.3223 90 101.5273 90 

33 -113.4227 1.7098 P21/c 12.8748 5.9372 11.0225 90 100.723 90 

23 -113.3903 1.6236 P21/c 10.2745 9.3887 9.038 90 89.7458 90 

12375 -113.3723 1.6796 P21/c 15.5998 6.1578 11.3589 90 50.5658 90 
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25 -113.3499 1.6766 P21/c 9.6436 9.749 9.0507 90 97.1621 90 

39 -113.3389 1.6178 Pbca 10.0891 9.8364 17.6324 90 90 90 

II -111.2 1.5527 Pca21 10.1513 18.0981 9.9241 90 90.00 90 

III -108.8 1.7150 P21/c 12.5738 5.9370 11.3971 90 104.0449 90 

I -103.4 1.6338 Pbca 12.5870 9.6840 26.8600 90 90.00 90 

The full structures can be found in the Appendix CD in .res format. 

Appendix 6.B - DMACRYS Input Files for the DIFF 

Table of Contents 

The DMACRYS input files with axis definition files, can be found in the Appendix CD. Further details on the 

formatting of the input files can be found in the DMACRYS manual.59 

11. Iterated Stockholder Atoms – Distributed Multipole Moments (ISA-DMA) 

The ISA-DMA multipolar moments are given DMACRYS input file format. These detail the atom labels, atom 

types and multipole moment ranks used for TNB’s electrostatic model. The atomic positions can also be found in 

this input file, adjacent to the corresponding atom label. 

12. Iterated Stockholder Atoms – Distributed Polarizabilities 

The ISA-DMA derived 𝑅𝑎𝑛𝑘 =  1 distributed polarizabilities in DMACRYS input file format calculated in the 

molecule-fixed axis. 

13. ISA-DMA under the PCM with 𝜺𝒓 = 𝟑 

The ISA-DMA multipolar moments under the polarizable continuum model (PCM) with a dielectric constant (𝜀𝑟) 

of 3, given DMACRYS input file format. 

14. ISA-DMA under the PCM with 𝜺𝒓 = 𝟕 

Same as above, with 𝜀𝑟 = 7 

15. ISA-DMA under the PCM with 𝜺𝒓 = 𝟏𝟏 

Same as above, with 𝜀𝑟 = 11 

16. Model0-iso, Model0-aniso and DIFF DMACRYS input file 

As the input files are identical to their ORIENT counterparts save for formatting and unit conversions.  
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7 Conclusions and Further Work 

The non-empirical distributed intermolecular force-field (DIFF) developed for the gas-phase dimers of pyridine 

has been adapted for modelling crystal structures using DMACRYS. The rigid molecule approximation coupled 

with a non-empirical pairwise model with a many-body polarization model reproduces the lattice structure well 

(Chapter 3), and using a genuine potential energy surface showed the strengths and limitations of using the DIFF 

to predict properties at a range of pressures and temperatures (Chapter 3). The DIFF was even capable of finding 

the high-pressure polymorph of pyridine due to its accurate modelling of the repulsive wall of its potential energy 

surface (PES).  

The extension of the DIFF approach to energetics started by assessing the importance of the flexibility of nitro-

groups within crystal structures, the transferability of their charge distributions and its effect on electrostatic 

properties (Chapter 4). The advanced partitioning of high-quality molecular charge distributions of the closely 

related nitroaromatic molecules showed very limited transferability of the NO2 charge distribution between 

themselves, and the variation with conformation. These results showed that molecule-specific force-fields were 

required and that conformational flexibility was an important issue. The conformational dependence of the charge 

would be a factor that would need to be modelled to predict energetic properties like impact sensitivity, in order 

to employ early empirical correlations (4.3). 

A DIFF was developed for trinitrobenzene (TNB), as it considered an energetic building block,148 and the 

polymorphic nitrobenzene that would be best modelled as a rigid molecule. This development produced new 

challenges as TNB is considerably larger than pyridine and the smaller molecules, which were used in developing 

the DIFF approach.38, 60, 165, 227 Although the molecule has high symmetry, requiring only 5 atom-types, it is quite 

polarizable. The lessons learned about each component of the DIFF are discussed in 7.1. Compared to pyridine, 

the much greater difference between the relative orientations sampled in the crystal and the gas-phase dimer 

structures for TNB make it challenging. Due to the larger molecule size and configuration space required to be 

sampled it was also computationally expensive to absorb errors in individual contributions into the models by 

fitting. In comparison to pyridine,38 only a small number of total SAPT(DFT) intermolecular interaction energies 

could be calculated. This DIFF did provide a reasonable CSP study of TNB, further developing the CSP workflow 

(7.2), which raises some questions for further experimental work as well as theoretical study on crystalline TNB 

(Chapter 6). 

The benefit of producing a model intermolecular potentials, such as the DIFF, is that in principle, it could be used 

to simulate a far wider range of properties than is possible with periodic electronic structure modelling, without 
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double-counting temperature and other effects, which is implicit in using empirical force-fields. The future work 

needed to exploit the benefits of a DIFF are briefly discussed in 7.3 and 7.4. 

7.1 The theory of intermolecular forces and distributed 

intermolecular force-fields (DIFFs) 

This thesis shows the value of computational studies on a molecule using CSP. One can conclude that a non-

empirical model advances well beyond current empirical force-fields, and that building a force-field from solid 

theory164 and state-of-the-art approaches provides unparalleled benefits. It allows for a more reliable description 

of the intermolecular potential energy surface, a better decomposition and understanding of the intermolecular 

interaction energy, and the ability to truly delve into the importance of various contributions to the intermolecular 

interactions in a crystalline lattice. Subsequently, a DIFF would allow one to derive a crystal’s physical properties 

that would otherwise be costly or difficult to study experimentally with confidence that the underlying PES was 

on a sound theoretical footing with quantified errors. The uncertainty in using an empirical force-field for 

molecules or properties beyond the range of experimental data for which the force-field has been validated against 

is a common issue in the modelling done in specialty industries like energetics and pharmaceuticals. 

7.1.1 Non-empirical vs empirical models 

The non-empirical force-fields have a functional form based on the theory of intermolecular forces164 with some 

chemical intuition (i.e. using symmetry to decide the number of distinct atom types). Pairing the simpler, isotropic 

exp-6 Buckingham functional forms of the empirical FIT & WILL potentials with a point-charge model or a less 

elaborate method of distributed multipole analysis can lead to uncertainties. Especially coupled with transferability 

assumptions, extrapolating to parts of the PES outside of the experimental conditions sampled by the dataset used 

for parameterisation can be unreliable at times. This was the case for pyridine (Chapter 3), where the DIFF was 

able to be used to model the effects of pressure on the relative stability of polymorphs, while the empirical models 

were not as successful. This is certainly a massive leap forward. The distributed intermolecular force-field (DIFF) 

was able to re-rank the pyridines crystal structures and suggest the correct lattice structure for form III, while the 

empirical FIT model was unable to accurately model the repulsive wall of the pyridine PES. This was due to the 

many errors, approximations and effects that have been averaged and absorbed into empirical potentials, deriving 

from their fitting to experimental data that has been obtained at various conditions. 

Another point of caution is the comparison of relative stabilities and cell geometries of the static lattice to 

experimental determinations at ambient conditions. The empirical models have absorbed many phenomena like 

pressure and temperature effects in their parameterisation, and so can have expanded densities that might better 
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match crystal determinations at higher temperatures. However, these are not accurate or reliable representations 

of a crystal’s physical properties. We see this is the case when we compare the cell geometries of the polymorphs 

of pyridine in Figure 14 in Chapter 3, and the cell geometries of the polymorphs of TNB in Figure 48. Due to 

the absorption of many errors and approximations in empirical potentials, it is impossible to de-convolute the 

influence of each intermolecular contribution on physical properties.  

The DIFF has the advantage that quantum and ambient effects can be included explicitly and so their influence 

can be properly observed. For example, Chapter 3 also attempted to model the importance of free energy, though 

this was just a preliminary study, one can see the importance of isotope effects on polymorphism and the relative 

stabilities of polymorphs. In Chapter 6, the non-empirical models outperform empirical force-fields in CSP, with 

the DIFF and the 1st order Model0-iso finding TNB’s form III as the global minimum, while Model0-aniso found 

form III as the 3rd most stable polymorph, within 3.5 𝑘𝐽 𝑚𝑜𝑙−1 of the global minimum. The FIT+GDMA model 

that is typically used in CSP studies23, 24 failed to find any approximation to TNB form III in its top 200 structures, 

and had the xminopt structure at 1600th. These simpler intermolecular force-fields, such as the FIT exp-6 model, 

although cheaper, do not consistently extend to molecules and conditions they have not been fitted to. For TNB 

this resulted in both FIT models generating artefact structures in their CSP that one could not expect to be possible 

unobserved polymorphs (6.3.3.2). Non-empirical force-fields have the advantage that the approximations used are 

known and can be systematically built upon to provide a realism unobtainable with empirical methods.  

7.1.2 The electrostatic model 

Deriving our long-range terms directly from the molecular charge density gives us confidence that the non-

empirical force-fields are accurately capturing the importance of each long-range contribution. A rigorous 

partitioning of the molecular charge density using the Iterated Stockholders Atoms (ISA) approach allows one to 

obtain a more physical representation of the distributed charge density, which has minimal sensitivity to basis set 

and hence the artefacts of conformational change are minimized. Using the ISA partitioning in Chapter 4 showed 

that the degree of observed conformational variations in nitro-groups, can cause sufficient changes in the molecular 

charge density to affect proposed empirical correlations between energetic properties and molecular electrostatic 

properties. Furthermore, these changes were significant enough to suggest that a single electrostatic model could 

not be used to dependably model the lattice energies of different conformers. Analytically rotating the multipole 

moments is a possible solution that could cheaply approximate finding low energy crystal structures but not relative 

energies (Chapter 4 Table 15). An inadequate description of the multipolar electrostatic energy has significant 

influences on the predicted intermolecular interactions and associated electrostatic and energetic properties (4.4). 
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In Chapters 3 & 6, we see that the influence of electrostatic model on the intermolecular interactions sampled and 

favoured on a potential energy surface is enormous. Using the more conventional partitioning method (GDMA) 

and a cheaper wave-function produces a very different intermolecular potential energy landscape compared to the 

more elaborate ISA partitioning alongside a high-quality basis set (Chapter 3 Figure 18, Chapter 6 Figure 54). 

Minimizing structures directly from the CrystalPredictor generated output allows us to really appreciate the 

influence of using distributed multipoles rather than point charges as the electrostatic model, and the method of 

partitioning and the quality of the wave-function on the PES (6.3.3.2). There is a more profound change in the re-

ranking of structures, the FIT+ISA model manages to predict the observed forms of TNB within a reasonable 

energy range of the global minimum (~5 𝑘𝐽 𝑚𝑜𝑙−1), while the FIT+GDMA model predicts the forms of TNB an 

astounding 35 𝑘𝐽 𝑚𝑜𝑙−1 from the global minimum. For TNB, the GDMA (PBE0/6-31G(d, p)) electrostatic model 

is certainly not suitable for a reliable CSP study. Its widespread use has mainly been amongst pharmaceutical 

molecules; a series of CSP studies on six chloro-nitrobenzenes412 used the original DMA method on a MP2/6-

31G(d,p) charge density. 

7.1.3 The polarization energy 

Accurately modelling the polarization contribution to the intermolecular interaction energy has been a challenge. 

From the molecular charge density, we have derived state-of-the-art explicit polarization models for pyridine and 

TNB, which are non-pairwise additive and the only many-body term in the non-empirical force-fields. This is 

certainly pioneering work but it has raised many questions with regards to the importance of higher-order induction 

terms (Chapter 3 & 5) and the possible over-estimation of the polarization energy in the non-polar but polarizable 

TNB molecule (6.4.4.1). In Chapter 5, we found the damping of the polarization energy to be one of the largest 

sources of error in the DIFF as using a single parameter damping function fails to concisely model the polarization 

energy across all separations for every configuration sampled in both the gas-phase and the crystal lattice. 

Computing the polarization forces to convergence is a computationally expensive calculation (2.6.1.3) that is not 

currently feasible for the number of structures generated from in a CSP study. After carrying out one-off 

calculations for the experimental forms of the polar pyridine in Chapter 3, the effects of polarization on the final 

cell geometry was suggested to be negligible. In Chapter 6 the polarizable continuum model (PCM) was explored, 

which is normally used after obtaining the lowest energy structures, to observe changes in relative energies with 

polarization effects.413 For TNB, it appeared that the polarization has minor influence on the crystal structures of 

lattice minima (Chapter 6 Figure 52 & Table 27). The issues with the PCM lay in its unreliable prediction of the 

final lattice energy, however, in future CSPs, a non-empirical potential coupled with a PCM with an appropriate 
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dielectric constant (𝜀𝑟 ≈ 3) could be used as an intermediary model for minimizing structures to find the most 

stable few. The lowest energy structures could then be re-minimized using a more expensive model that 

numerically iterates the forces due to an explicit polarization model to convergence. 

7.1.4 Dispersion in weakly-bound organic crystals 

In this thesis, we see that a genuine modelling of the dispersion is vital to reproducing the true PES of these organic 

systems. We find the dispersion to be a significant energy in both the gas-phase dimers and solid-state of pyridine 

(Chapter 3) and TNB (Chapter 5 & 6), making up approximately 150% and more of the intermolecular lattice 

energy. The non-empirical models attempt to accurately model the dispersion contribution over a range of 

separations by including the higher-order 𝐶8 and 𝐶10 dispersion coefficients, which aims to better capture the 

dispersion at small 𝑅. The coverage of separation by the higher-order terms also better captures the influence of 

dispersion on density. The lattice summation used to calculate the lattice energy for crystal structures samples the 

potential over a much greater separation than for a gas-phase dimer or trimer, thus for empirical models like the 

FIT, a small error in the 𝐶6 dispersion coefficient results in a large error due to lattice summations. This is also 

true for using higher-order multipole moments over a point-charge electrostatic model. 

This improvement in the theoretical basis of the dispersion model coupled with a damping parameter derived from 

high quality 2nd order SAPT(DFT) calculations not only greatly increases the accuracy of dispersion energies but 

also their reliability. As with the polarization model, the largest source of error in our dispersion model is the use 

of a single parameter damping function (5.5.4). Single parameter damping functions are currently the only types 

of damping functions accepted in DMACRYS, however, we hope future codes will be built that are capable of 

employing atom-atom orientation dependent damping functions. We see in Chapters 3, 5 & 6 that the range of 

orientations sampled in the crystal and gas-phase is far too rich for the repulsive wall to be truthfully modelled 

using a single damping parameter. 

Nevertheless, the sound theoretical foundation of the non-empirical models compared to the conventional 

empirically-fitted 𝐶6 models is certainly a step in the right direction for a genuine modelling of the PESs of future 

novel materials. The absorption of higher-order dispersion coefficients and many-body dispersion effects by 

empirical models makes it very difficult to decompose the influence of each dispersion contribution. For example, 

for pyridine (Chapter 3) by being able to study each contribution, it is possible to suggest that including the many-

body dispersion may have destabilized the global minimum (pyr2) and resulted in the observed forms being found 

as global minima in the CSP. The exclusion of the many-body dispersion has resulted in denser predicted 
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structures, while the inclusion of the 𝛿𝐻𝐹 resulted in the favouring of stacked dispersion dominated two molecule 

contacts in pyridine (3.4.5).  

7.1.5 Creating a truthful description of the short-range interactions 

Deriving the genuine potential energy surface of an organic molecular crystal is no easy feat. Particularly for 

larger, flexible more anisotropic molecules (Chapter 5). Through this thesis one can see that deriving a 

theoretically based model that accounts for all the nuances and contributions in the intermolecular interaction 

energy is very difficult for molecules larger than water. Water itself is a challenge.46 Currently some 

approximations must be made (Chapter 5), and errors must be absorbed (Chapter 3) due to the computational 

and theoretical undertakings faced. For example, the 1st order short-range energies were fit using a Gaussian-log 

weighting function. However, this function could not be used for the total 𝐸𝑖𝑛𝑡
(2)[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)] energies, as it cannot 

go through 0, thus, a weighting function of a different shape had to be used. The short-range portion of the potential 

must be fitted as analytically deriving the terms is non-trivial (2.9), yet in fitting one runs into another problem. 

For the molecules of interest, the cost of high-quality, total intermolecular interaction energy calculations can be 

very expensive.  

Over 2000 pseudo random dimer configurations were sampled in the fitting of the Model0s from the 1st order 

SAPT(DFT) interaction energies (5.4.2), compared to the 327 dimer configurations used to relax the final model. 

For a solid description of the PES both models need to sample an ample amount of the configuration space, which 

Model0 certainly does. ModelD demonstrates that (5.5.3.3) a poor sampling can result in a second-order model 

that actually performs worse than the cheaper well sampled first-order models because of an over-biasing of the 

parameters. It can be tough to combat poor sampling for larger, more expensive molecules. For TNB, each 2nd 

order SAPT(DFT) intermolecular dimer interaction energy calculation (𝐸𝑖𝑛𝑡
(2)

[𝑆𝐴𝑃𝑇(𝐷𝐹𝑇)]) took a minimum 15 

computing hours, and thus, adequately sampling the two molecule contact configuration space becomes an issue. 

How does one efficiently sample important interactions without biasing the potential? In the construction of these 

non-empirical force-fields one must be sure to sample the intermolecular potential energy surface extensively 

(Chapter 5). Gas-phase dimer configurations typically sample a limited region of configuration space, especially 

for large molecules. For larger molecules, crystal packing and long-range effects really play a part in the resultant 

close-contacts and crystal structure. A crystal structure samples a wider range of relative orientations, so in 

potential development one must try to account for this while including a test set (5.5.3.2) to challenge the resultant 

models. Furthermore, the task of interfacing and pushing current and new experimental programs for modelling 

can become a coding challenge, to say the least. These larger molecules can “break” codes, and demand careful 
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treatment and monitoring. The development of a new methodology for CSP alone is a serious undertaking. It has 

been through great care and time that the novel distributed intermolecular force-fields (DIFFs) have been 

transferred to the pyridine solid-state (Chapter 3), and developed and applied to TNB for CSP, and in both cases 

they have outperformed current empirical treatments. 

7.2 Changes to the CSP workflow 

Another big development and progression within this thesis for the field of Crystal Structure Prediction (CSP), 

was the changes and updates that had been made to the specific CSP workflow and methodology (Figure 1) used 

in the Price group, to allow the use of more complex force-fields. In addition, the approach of minimizing the 

lattice energies of the generated structures directly with the high quality force-fields (Chapter 6) and not using an 

intermediate model (Chapter 3), is a new workflow that has allowed for some interesting structures to be found 

(Chapter 6 Figure 49, Figure 51 & Figure 52). Previously, the majority of force-field approaches used 

completely isotropic force-fields (including an isotropic point-charge electrostatic model)22-25, 93 to model the 

intermolecular forces between molecules as this functional form was easily transferable between codes and could 

be used in Molecular Dynamics (MD) simulations. The increasing desire to study larger more complex systems, 

the importance of atomic shape (anisotropy) and conformation for these systems, coupled with the improvement 

of MD codes like DL Multi414 that can take anisotropic potentials, has resulted in a shift to developing more 

dependable intermolecular force-fields from ab initio methods.60, 167, 415 Thanks to major leaps in computing 

capabilities and the optimization of calculations within codes like MolPro,416 NWCHEM
402 and Psi4,228 the ability 

to use SAPT(DFT), obtain adequate charge densities, and the reliability of novel non-empirical force-fields has 

truly grown. These newer codes are still very experimental and under constant development but have been vital in 

the progress made in this thesis. Molecule size is still a huge limiting factor, and many bugs, conversion and 

interface issues between quantum chemistry codes have been overcome in order to produce these non-empirical 

force-fields. The scripts and codes developed within this thesis for CSP can be found in the Appendix CD. 

However, this thesis shows that it is very possible to generate an anisotropic non-empirical atom-atom 

intermolecular force-field for a medium sized molecule using only its chemical diagram and attempt to model its 

genuine PES. The work here hopes to augment current foundational knowledge on force-field development, and 

really is just the tip of the ever-growing iceberg that is CSP. It is hoped that future work learns and develops on 

the challenges that have been faced within this thesis in order to generate transferable, inexpensive force-fields 

that rival the highest quality electronic structure methods. 
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7.3 Beyond the lattice energy 

Chapters 3, 4 & 6 emphasise the importance of properties beyond the lattice energy in CSP. In Chapter 3, the 

importance of pressure is explored resulting in the unexpected discovery of the third form of pyridine.293 Both 

Chapters 3 & 6 highlighted the effects of temperature on crystal structure and the importance and influence of 

higher order induction terms and many-body dispersion terms. The conventional practice of computing the static 

lattice energy (𝑇 = 0𝐾) is only an initial step in determining the crystal structures that may be synthesised in a 

lab. The most thermodynamically stable structures may not be the kinetically observed polymorphs.417 This seems 

to be the case for TNB form I (Chapter 6).263 However, to determine the possibility of  disappearing 

polymorphs,312 the prediction of unobserved more thermodynamically favourable structures is a major 

justification30 for the development and testing22 of innovative CSP treatments. Chapter 3 highlights that a 

significant reshuffling of the energy ranking of structures can occur with changes in temperature or pressure. This 

may not occur through a phase transformation but instead via serendipitous recrystallization experiments in the 

presence of seeds of a polymorph or previously unexplored additive pathways.263 Particularly for energetic 

materials it can be difficult to obtain and characterize different crystal structures of a molecule, especially as the 

experimental conditions can vary the kinetics of crystallization. Crystal structures that share many similar 

molecules within a coordination sphere with the observed polymorph (Chapter 3 & 6) may be thermodynamically 

more stable but not kinetically favoured. The DIFF suggests that both pyridine and TNB may have some 

unobserved thermodynamically competitive polymorphs that are simply waiting to be found. 

Future uses of novel force-fields could go beyond lattice or free energies (Chapter 4), and also speculate the 

explosive properties of energetic materials (Chapter 4). By deriving the electrostatic, polarization and dispersion 

models directly from the molecular charge density, the effects of conformation on electrostatic properties like the 

electrostatic potential maximum 𝑉𝑚𝑎𝑥  can be reliably analysed and used to extrapolate possible energetic properties 

using previously proposed empirical correlations.137, 168, 236, 324, 355, 393, 418, 419 A poor definition of the molecular 

charge density using electrostatic models that are inaccurate for larger systems (2.5.1) can result in inaccurate 

predictions and will fail to model changes in charge density with crystalline environment. The iterated stockholder 

atoms (ISA) partitioning has proved to be the next generation treatment for a physically sound description of the 

distributed charge density. The ISA electrostatic models have not only produced tangible atomic charges but have 

permitted a deeper understanding of the influence of chemical environment and torsion angle on multipole 

moments, intermolecular interactions and energetic properties (Chapter 4). 
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7.4 Next generation modelling  

The complexity of the processes that determine the impact sensitivity and other key properties of the polymorphs 

of energetic materials,346 implies that multi-scale modelling, involving both periodic electronic structure 

calculations and MD simulations will be required. The MD codes will need to use the best non-empirical models 

for the inter- and intramolecular forces, derived directly from the molecular charge density. These models will be 

specific to the molecule, as the charge distribution around the nitro groups is clearly affected by changes in the 

rest of the molecule, particularly the adjacent functional groups or with the presence of an aromatic ring (Chapter 

4 Figure 25).  

7.4.1 Conformation 

Considering the polymorphs of energetic molecules and CSP studies provides a good starting point for developing 

the next generation of molecule-specific flexible force-fields. This in turn will help contribute to the development 

of predictive computational modelling of their key physical properties such as free energies, thermal expansion, 

and other non-reactive properties. We find that for larger energetic molecules, molecular conformation should not 

be overlooked (Chapter 4 & 6). For every novel material studied, how conformation affects its molecular charge 

distribution and its intermolecular interactions should be thoroughly investigated. The difference in the diversity 

of gas-phase dimers found for pyridine (Chapter 3) and TNB (Chapter 5), emphasises that for larger molecules 

under a rigid molecule approximation, sampling the most favourable gas-phase dimer configurations is not enough 

to build an accurate representation of the intermolecular interactions in the solid state. Pyridine had 8 very different 

gas-phase dimers under 3 different classes of contact, compared to the 5 gas-phase dimers of TNB, 4 of which are 

in a stacked configuration. The percentage contribution of each intermolecular energy term for pyridine’s gas-

phase dimers also differed markedly (Chapter 3 Figure 13) compared to TNB’s dimers (Chapter 5 Figure 42). 

Did the rigid molecule approximation limit the diversity of gas-phase minima as well? Possibly. It is likely that 

this is why so few of TNB’s gas-phase dimers were seen in the lowest energy crystal structures (Chapter 6 Table 

29), whereas the experimentally more rigid pyridine exhibited a richer range of gas-phase motifs (Chapter 3 Table 

7). 

Therefore, there may be a significant loss in accuracy if novel intermolecular potentials do not include an NO2 

torsion angle dependence. Future CSP studies of energetic materials should certainly attempt to include 

conformational flexibility using a high quality electrostatic model. It could be possible to fit analytical models to 

changes in atomic multipoles420 as Chapter 4 Figure 25 shows that the ISA atomic multipoles change relatively 

smoothly with NO2 torsion angle and therefore can be modelled using splines, or other functions of low 
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complexity. However, while it is clear how these changes can be modelled as a function of a single degree of 

freedom (single torsion), the correlated conformational adjustments of neighboring groups on the aromatic ring 

may pose a challenge. The changes in multipole moments during the rotation of the methyl group in TNT, let alone 

with changes in the aliphatic ring seen for RDX (Chapter 4 Figure 22), will not be represented by a simple Fourier 

series term, and this will also apply to the conformational energy penalty.166  

In Chapter 4, one sees the effects of conformation and approximations to conformation (analytical rotation, 

holding the molecule rigid etc.) on the electrostatic properties and final lattice energies. Even small geometric 

differences can result in significant changes in relative energies, and therefore, different CSP landscapes. Small 

differences in conformation may not change the intermolecular close-contacts significantly enough for dramatic 

changes in cell geometry but it can influence energy rankings. Yet, if the rigid molecule approximation can be 

made in force-fields for novel materials it should. It lowers the cost of the potential and required time for 

development by a considerable amount and is still capable of modelling the genuine potential energy surface of a 

weakly-bound organic molecular crystal. Chapter 3, exemplifies this in predicting the high pressure polymorph 

of pyridine in a CSP study, and in showing the effects of deuteration on the pyridine crystal structure are small but 

can result in different relative energies between its 3 polymorphs and their free energies. Isotope effects within 

polymorphism is not something to be ignored.   

7.4.2 Next generation modelling of the polarization contribution 

The explicit inclusion of the non-additive many-body polarization term in the DIFF has been a groundbreaking 

component of these non-empirical potentials, which has also proved challenging. Comparing DIFF(no-pol) and 

DIFF for both pyridine (3.3.3.1) and TNB (6.3.3.3), one can see that the influence of this energy on the relative 

energies of crystal lattices is huge. The long-range polarization contribution is vital in representing the genuine 

PES. Yet, how does one correctly model this term if many molecular mechanics codes cannot include explicit 

polarization models and if they do they only take a single parameter damping function?59 How does one affordably 

include the forces due to polarization for more polarizable or polar molecules? It appears that future CSP studies 

will have to use a combination of the polarizable continuum model (6.3.1) and lattice energy minimizations that 

include the fully iterated polarization forces (Table 6) on important low energy structures in order to concisely 

determine the polarization contribution. Moreover, the polarization damping parameter should be adjusted 

iteratively through successive CSP studies in order to damp the multipolar polarization energy 𝑉𝑃𝑂𝐿
(2−∞)

[𝐷𝑀] 

appropriately, as not doing this could lead to an overestimation of the polarization in the lattice (6.4.4.1).  
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There are other terms that have not been as thoroughly investigated in this thesis, chiefly, the higher-order 

induction and many-body dispersion contributions, which have been found to be important for other molecules.38, 

40, 200, 421-423 But are they important for larger more anisotropic molecules like TNB? These terms are specific to 

the molecule, and as they are non-additive they also depend on the preferred configurations of the lowest energy 

crystal structures. For example, depending on configurations seen in the lattice co-ordination clusters, the many-

body dispersion could be attractive or repulsive. Molecule specific terms will require concentrated investigations 

beforehand, like CCSD(T) calculations to obtain a precise description of these non-additive contributions to the 

intermolecular interaction energy. 

7.4.3 Speed and accuracy  

In comparison to empirically fit models or some isotropic non-empirical models,93, 161 the DIFF is an expensive 

potential. Attempting to produce a non-empirical force-field that truthfully describes each contribution to 

intermolecular energy, with components that have a physically meaningful derivation, has been computationally 

expensive and will only be more challenging for the more complex systems investigated in industry. Recently, 

some alternative treatments for the fast development of cheap, accurate bespoke force-fields that rival periodic 

DFT accuracy have become prevalent. One of the most interesting alternatives are machine-learning or neural 

network (NN) approaches to CSP.424-432  

It is almost guaranteed that some form of machine-learning methodology will be present in the next blind test, but 

currently these treatments face similar issues to empirical methods in that they are very specific to the data they 

have been parameterised to. More so than conventional empirical models, NN models are not transferable between 

molecules and or even between conformations.431 Unlike the non-empirical models (DIFF and Model0), the 

interaction energies obtained from these approaches cannot be separated into any physically meaningful 

contributions because of the handling of the initial inputs into the NN. Furthermore, the functional forms used in 

the network layers have no physical link to the components of the energy and are purely mathematical 

representations of a property.431 Nevertheless, the use of artificial intelligence (AI) in CSP is certainly exciting and 

re-enforces the importance and relevance of CSP. A truthful modelling of the genuine potential energy surface 

will always be a central goal in computational chemistry. 

7.5 Conclusion 

To conclude this thesis has found the gas and solid phases of pyridine and TNB can be modelled realistically using 

a rigid non-empirical anisotropic atom-atom intermolecular force-field. The distributed intermolecular force-fields 

(DIFFs) developed for pyridine and trinitrobenzene (TNB) are the first two non-empirical atom-atom anisotropic 
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force-fields with explicit polarization models ever used in CSP. The success of the DIFF in predicting the solid-

state of pyridine (a building block in the pharmaceuticals industry) and TNB (a building block in the energetics 

industry) is very promising in the quest for reliable and accurate force-fields for novel materials in specialty 

industries. 

These non-empirical force-fields provide a realism that surpasses the empirical force-fields that have been used 

previously used for crystal structure prediction. Empirical models have the benefit of absorbing many errors and 

approximations, some degree of transferability and simplifying the functional form to enable the use of the models 

in many codes and simulation methods. The empirical force-fields are a sort of hit and miss approach that isn’t 

consistently reliable but generally works. The DIFF, on the other hand, has been derived using the theory of 

intermolecular forces (Chapter 2) and SAPT(DFT) calculations using a suite of quantum chemistry programs 

(Chapter 5). The development and implementation of these force-fields is far more elaborate and time consuming. 

However, one can see that for the molecules in the energetic and pharmaceutical industries, this level of detail is 

vital if we wish to have a genuine intermolecular potential that can be used to simulate different phases over a 

range of pressures and temperatures. The DIFF demonstrates that an accurate potential energy surface can be 

obtained and applied to condensed phases, if we perceptively use molecule-specific knowledge and chemical 

intuition regarding the effects of certain approximations on modelling the crystal structure.  

The rigid molecule approximation is a good approximation for pyridine, and when coupled with a non-empirical 

pairwise model and a many-body polarization model it reproduces the lattice structure well and can produce a 

genuine potential energy surface capable of predicting properties at non-ambient pressures and temperatures 

(Chapter 3). The DIFF was even capable of finding the high pressure polymorph of pyridine due to its accurate 

modelling of the repulsive wall of pyridine’s PES. The extension of the DIFF workflow (Chapter 1 Figure 2) to 

energetic materials brought new challenges and improved insights into the process. The flexibility of the NO2 

groups, and the dependence of its charge distribution on the molecule and conformation (Chapter 4) reduced the 

consistency of the DIFF CSP results, even for the most symmetrical, planar energetic nitroaromatic, TNB. 

Analytical rotation of the multipole moments will only assist with including flexibility in determining the 

minimized structures, as the changes due to re-distribution of charge with torsion angle affects the relative energies 

(Chapter 4 Table 15). 

The size of TNB brought challenges in performing an adequate enough number of SAPT(DFT) calculations with 

a suitable quality molecular charge density, particularly when calculating the second-order and higher energies 

(Chapter 5). TNB also illustrated the need to really cover a wide range of accessible relative orientations with 

second-order energy calculations, in order to ensure that the final relaxed and refined model provided a worthwhile 
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improvement on anisotropic models derived from 1st order SAPT(DFT) calculations like Model0-aniso (5.6.2). 

The DIFF performed notably better than conventional empirical models in the CSP of the larger more flexible 

TNB, as well as pyridine. The two resultant publications167, 168 and the impending publication on the DIFF for TNB 

are testament to the success of this thesis in the development of non-empirical force-fields for weakly bound 

organic molecular crystals. 
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