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Abstract

Numerical analysis for partial differential equations (PDEs) traditionally considers

problems that are well-posed in the continuum, for example the boundary value problem

for Poisson’s equation. Computational methods such as the finite element method (FEM)

then discretise the problem and provide numerical solutions. However, when a part of the

boundary is inaccessible for measurements or no information is given on the boundary at all,

the continuum problem might be ill-posed and solving it, in this case, requires regularisation.

In this thesis we consider the unique continuation problem with (possibly noisy)

data given in an interior subset of the domain. This is an ill-posed problem also known as

data assimilation and is related to the elliptic Cauchy problem. It arises often in inverse

problems and control theory. We will focus on two PDEs for which the stability of this

problem depends on the physical parameters: the Helmholtz and the convection–diffusion

equations. We first prove conditional stability estimates that are explicit in the wave number

and in the Péclet number, respectively, by using Carleman inequalities. Under a geometric

convexity assumption, we obtain that for the Helmholtz equation the stability constants

grow at most linearly in the wave number.

Then we present a discretise-then-regularise approach for the unique continuation

problem. We cast the problem into PDE-constrained optimisation with discrete weakly

consistent regularisation. The regularisation is driven by stabilised FEMs and we focus on

the interior penalty stabilisation. For the Helmholtz and diffusion-dominated problems, we

apply the continuum stability estimates to the approximation error and prove convergence

rates by controlling the residual through stabilisation. For convection-dominated problems,

we perform a different error analysis and obtain sharper weighted error estimates along the

characteristics of the convective field through the data region, with quasi-optimal conver-

gence rates. The results are illustrated by numerical examples.
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Impact statement

The work presented in this thesis concerns the theoretical and numerical analysis of

unique continuation problems. These are a class of ill-posed problems for partial differential

equations that are of both mathematical and practical importance.

Unique continuation arises often in inverse problems and control theory, and po-

tential applications of our results and of similar numerical methods could arise in acoustic

problems with unknown scatterers or flow problems in which the full boundary is inacces-

sible for measurements but where local data (either in a subset of the domain or on a part

of the boundary) can be obtained. Another source of practical applications could involve

data assimilation problems in biomedical imaging.

The main results obtained for the Helmholtz and convection–diffusion equations

have been published in [21] and [22], with the preprint [23] being under review. They

have also been presented at several conferences: ICIAM (Valencia, 2019), Applied Inverse

Problems (Grenoble, 2019) and Inverse Problems: Modeling and Simulation (Malta, 2018).
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Introduction

In this thesis we will consider the ill-posed unique continuation problem for two

partial differential equations (PDEs) for which the stability depends on the physical parame-

ters: the Helmholtz and the convection–diffusion equations. The numerical approximations

that we propose are designed following a discretise-then-regularise approach in which the

discrete regularisation is based on stabilised finite element methods (FEMs).

We begin in Chapter 1 by introducing well-posed problems in the setting of PDEs

and recalling the necessary and sufficient conditions for well-posedness. We then discuss

linear ill-posed problems and the classical theory of the Moore-Penrose generalised inverse

based on least squares solutions. For linear continuous operators with non-closed range –

such as the ones we will consider – there is no continuous dependence of the solution on

data as the generalised inverse is discontinuous. However, instead of continuous dependence,

one can have conditional stability. The problems we will consider are of this kind and an

important example is the elliptic Cauchy problem, where Dirichlet and Neumann data

are given on a subpart of the boundary. This is a severely ill-posed problem, but it is

conditionally stable. In close connection to this, we introduce the main topic of this thesis:

unique continuation problems with (perturbed) data given in an interior subset of the

domain.

Conditional stability estimates for unique continuation are discussed in Chapter 2.

These are obtained from Carleman estimates that are proven in an elementary way. For

the convection–diffusion operator we derive three-ball inequalities in which the stability

constant depends exponentially on the Péclet number. This is based on our work [22].

For the Helmholtz operator we assume a specific geometric setting for unique continuation

inside the convex hull of the data set, and, following our paper [21], we prove stability

estimates with constants that are uniform in the wave number or increase at most linearly

in it, depending on the chosen norms. For both operators, to weaken the norms in these

estimates we make use of semiclassical pseudodifferential operators that are briefly recalled

in Appendix B.
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In Chapter 3 we focus on the numerical approximation of the unique continuation

problem. We present a general discretise-then-regularise approach in which the problem

is written in the form of PDE-constrained optimisation. We first discretise the problem

and introduce a Lagrangian functional to which we then add discrete regularisation terms

based on stabilised FEMs. The discrete regularisation should enhance stability and also

control certain residual quantities in order to provide error estimates. In particular, the

stabilisation is obtained through the continuous interior penalty that acts on the discrete

solution penalising the jumps of the normal gradient across interior faces. The optimality

conditions then give a well-posed discrete FEM system.

Based on [21], we apply in Chapter 4 this methodology to the Helmholtz equation

and we prove error estimates that are explicit in the wave number for the geometric set-

ting considered in Chapter 2. To prove that the saddle points converge to the continuum

solution (when it exists) we apply the continuum stability estimates to the approximation

error. Bounding the residual by the stabilising terms, we obtain error estimates with the

convergence order given by the Hölder stability exponent. Numerical examples demonstrate

the results and highlight the difference between convex and non-convex directions for unique

continuation in this case.

For the convection–diffusion equation we consider the diffusion-dominated regime

in Chapter 5, which is based on [22]. We take a similar approach to the previous chapter

and use continuous interior penalty as the key component of the discrete regularisation.

The continuum stability is used to obtain error bounds by controlling the residual of the

PDE through stabilisation. The constants depend explicitly on the Péclet number and

the convergence order is again given by the Hölder stability exponent. When convection

dominates, however, the stability constant grows exponentially and to overcome this we

develop in Chapter 6, based on [23], an error analysis that captures the dominant transport

phenomenon. For a simplified geometric setting, we obtain quasi-optimal weighted error

estimates in a stability region along the characteristics of the convective field that go through

the data set. Different convergence properties are proven and observed numerically for

unique continuation upstream compared to downstream.



Chapter 1

Ill-posed inverse problems and

unique continuation

We begin with an introductory chapter that briefly describes ill-posed inverse

problems, setting the scene for the class of ill-posed problems that we will study in this

thesis: unique continuation problems. We first recall in Section 1.1 the definition of well-

posed problems related to PDEs and then consider in Section 1.2 the class of ill-posed

problems that can be solved by using the generalised inverse. The problems we are interested

in fall outside these two classical types of problems.

1.1 Well-posed problems

We first recall the definition of a well-posed problem given by Hadamard [35]: a

problem is well-posed if it admits a unique solution and the solution depends continuously

on data (stability property). To be more precise, let us consider an abstract linear problem

Au = f, (1.1)

where A : W → F is a linear operator between two Banach spaces. We will denote the

kernel of A by Ker(A) and the range by Im(A).

Definition 1.1 (Well-posed problem). Problem (1.1) is well-posed if the following hold

true:

1. For any f ∈ F there exists a solution u ∈W .

2. The solution u ∈W is unique.

11



Chapter 1. Ill-posed inverse problems and unique continuation 12

3. The solution u ∈W depends continuously on data, i.e. there exists Cst > 0 such that

for any f ∈ F ,

‖u‖W ≤ Cst‖f‖F .

In other words, problem (1.1) is well-posed if A is bijective and its inverse A−1

is continuous. If A is a continuous linear operator, then the condition for well-posedness

is that A should be bijective – its inverse A−1 will necessarily be continuous by the Open

Mapping Theorem.

For PDE-related problems, the operator A in the abstract problem (1.1) arises

from the weak formulation, which typically reads as

find u ∈W such that a(u, v) = f(v), for any v ∈ V, (1.2)

where V is a reflexive Banach space, a is a continuous bilinear form on W × V , and f ∈ V ′
is a continuous linear form on V . Indeed, defining A : W → V ′ by

〈Au, v〉V ′,V := a(u, v), (1.3)

problem (1.2) is equivalent to problem (1.1) with F = V ′.

When the test space V and the solution space W are Hilbert spaces and coincide,

a sufficient condition for well-posedness is given by the Lax-Milgram Lemma.

Lemma 1.2 (Lax-Milgram). Let V be a Hilbert space, a : V × V → R be a continuous

bilinear form and f ∈ V ′. If the bilinear form a is coercive, i.e. there exists α > 0 such

that for any u ∈ V ,

a(u, u) ≥ α‖u‖2V ,

then problem (1.2) is well-posed with the a priori estimate

‖u‖V ≤
1

α
‖f‖V ′ .

Proof. See [32, Lemma 2.2].

If, in addition to the assumptions in Lemma 1.2, the bilinear form a is symmetric,

then the solution of problem (1.2) is the minimiser over V of the energy functional

J(v) = 1
2a(v, v)− f(v).

Example 1.3 (Poisson’s equation). Let Ω ⊂ Rn be a domain, let f ∈ H−1(Ω) and consider
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Poisson’s equation with homogeneous Dirichlet boundary conditions−∆u = f in Ω,

u = 0 on ∂Ω.

Integrating by parts, the weak formulation of this problem reads as: find u ∈ H1
0 (Ω) such

that

(∇u,∇v)L2(Ω) =: a(u, v) = f(v), for any v ∈ H1
0 (Ω).

By the Lax-Milgram Lemma 1.2 this problem is well-posed. Indeed, for the usual norm on

H1
0 (Ω) given by ‖v‖2H1

0 (Ω) := ‖v‖2L2(Ω) + ‖∇v‖2L2(Ω), the bilinear form a defined on H1
0 (Ω) is

continuous by the Cauchy-Schwarz inequality and it is coercive since

a(u, u) = ‖∇u‖2L2(Ω) ≥ α‖u‖2H1
0 (Ω), with α = 1

1+C2
p
,

by the Poincaré inequality

‖u‖L2(Ω) ≤ Cp‖∇u‖L2(Ω), for any u ∈ H1
0 (Ω). (1.4)

However, the coercivity condition in Lemma 1.2 is not an optimal condition for the

well-posedness of problem (1.2); it is only a sufficient condition. Necessary and sufficient

conditions are given by the following inf-sup condition, which is also known as the Babuška-

Brezzi condition or the Ladyzhenskaya-Babuška-Brezzi condition. For consistency with [32],

we adopt the Banach-Nečas-Babuška terminology proposed there.

Theorem 1.4 (Banach-Nečas-Babuška). Let W be a Banach space and V a reflexive Ba-

nach space. Let a : W × V → R be a continuous bilinear form and f ∈ V ′. Then problem

(1.2) is well-posed if and only if

(BNB1) There exists α > 0 such that

inf
w∈W

sup
v∈V

a(w, v)

‖w‖W ‖v‖V
≥ α.

(BNB2) Let v ∈ V . If a(w, v) = 0 for any w ∈W , then v = 0.

Moreover, the following a priori estimate holds

‖u‖W≤
1

α
‖f‖V ′ .
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Proof. See [32, Theorem 2.6].

Note that the inf-sup condition in Theorem 1.4 is equivalent to

sup
v∈V

a(w, v)

‖v‖V
≥ α‖w‖W , ∀w ∈W,

which in terms of the operator A : W → V ′ given in (1.3) can be written as

‖Aw‖V ′ ≥ α‖w‖W , ∀w ∈W.

By the Closed Range Theorem and the Open Mapping Theorem this is equivalent to A
being injective and Im(A) being closed, see e.g. [32, Lemma A.39]. Considering the dual

operator A∗ : V →W ′ defined by 〈A∗v, w〉W ′,W = 〈Aw, v〉V ′,V , where we have identified V ′′

with V due to reflexivity, we thus have the following equivalences for the BNB conditions,

see e.g [32, Appendix A]:

• (BNB1) ⇐⇒ Ker(A) = {0} and Im(A) closed ⇐⇒ A∗ surjective.

• (BNB2) ⇐⇒ A∗ injective.

When the spaces V and W have the same finite dimension, problem (1.2) reduces to a

linear system and the condition in the Lax Milgram Lemma 1.2 states that the matrix is

positive definite, while the BNB conditions in Theorem 1.4 become equivalent and say that

the matrix is invertible.

1.2 Linear inverse problems

We will now introduce linear ill-posed problems and briefly review the standard

theory of least squares solutions and the Moore-Penrose generalised inverse, see e.g. [31,

Chapter 2]. For the abstract problem (1.1), we herein suppose that A : W → F is a

continuous linear operator between two Hilbert spaces, and we denote by A∗ : F → W its

adjoint operator defined by 〈Av, g〉F = 〈v,A∗g〉W , for any v ∈W and g ∈ F .

Definition 1.5 (Ill-posed problem). Problem (1.1) is ill-posed if at least one condition in

Definition 1.1 is not satisfied. This means that at least one of the following holds:

1. Non-existence, i.e. there exists f ∈ F such that f /∈ Im(A).

2. Non-uniqueness, i.e. Ker(A) 6= {0}.
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3. Instability, i.e. the solution does not depend continuously on data.

The non-existence issue, in which the data is not in the range of the operator, can

be overcome by considering least squares solutions that minimise the distance to the data.

To deal with non-uniqueness, which arises when the operator is not injective, one of the

least squares solutions – the one with the minimal norm – can be selected to obtain the

best approximation solution. We recall these definitions and the conditions under which the

best approximation solution exists.

We call u ∈W a least squares solution of problem (1.1) if

‖Au− f‖F ≤ ‖Av − f‖F , for any v ∈W.

We call u† ∈ W a best approximation solution of problem (1.1) if u† is a least squares

solution and

‖u†‖W ≤ ‖u‖W , for any least squares solution u.

Moreover, due to the convexity of the norm, the best approximation solution is unique in

this case. When least squares solutions exist, they can be characterised by the normal

equation

A∗Au = A∗f.

However, least squares solutions might not always exist.

Lemma 1.6. Least-squares solutions exist for problem (1.1) if and only if f ∈ Im(A) ⊕
Im(A)⊥.

Proof. See [31, Theorem 2.6]

Notice that Im(A)⊥ = Im(A)
⊥

, hence Im(A)⊕ Im(A)⊥ is dense in F .

• If Im(A) is closed, then least squares solutions exist for any f ∈ F . Note that this is

a necessary condition for well-posedness in Theorem 1.4 as well.

• When Im(A) is not closed, least squares solutions do not exist for f ∈ Im(A)\ Im(A).

We can thus define an operator mapping data f ∈ Im(A)⊕ Im(A)⊥ to the best approxima-

tion solution of Au = f . This operator is called the pseudoinverse or the Moore-Penrose

generalised inverse, and can be obtained by restricting the domain and codomain of A in

order to obtain an invertible operator which is then extended to its maximal domain.
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Definition 1.7 (Moore-Penrose generalised inverse). Let A : W → F be a continuous

linear operator and denote its restriction to Ker(A)⊥ by Ã : Ker(A)⊥ → Im(A). The

Moore-Penrose generalised inverse

A† : D(A†)→W

is the unique linear extension of the inverse Ã−1 to D(A†) := Im(A) ⊕ Im(A)⊥ with

Ker(A†) = Im(A)⊥. Moreover, A† is a linear operator with Im(A†) = Ker(A)⊥.

Theorem 1.8. Let f ∈ Im(A) ⊕ Im(A)⊥. Then problem (1.1) has a unique best approxi-

mation solution which is given by

u† = A†f.

Proof. See [31, Theorem 2.5].

Even though the generalised inverse overcomes the issues of non-existence and

non-uniqueness that can appear in the linear inverse problem (1.1), it cannot provide a

remedy for the instability encountered when the range of the operator is not closed: the

generalised inverse is discontinuous in this case.

Theorem 1.9. The generalised inverse A† is continuous if and only if Im(A) is closed.

Proof. See [31, Proposition 2.4].

An important class of problems that are ill-posed due to instability is given by

the inversion of compact operators – their infinite-dimensional range cannot be closed, see

e.g. [31, Section 2.2]. In this case, the generalised inverse can be expressed using the singular

value decomposition of the operator and the ill-posedness can be quantified in terms of the

decay to zero of the singular values:

• Problem (1.1) is severely ill-posed if the singular values decay to zero at an exponential

rate.

• Problem (1.1) is mildly ill-posed if the singular values decay to zero at a polynomial

rate.

Solving such unstable ill-posed problems requires regularisation and we will present

a discrete regularisation framework in Chapter 3.
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1.2.1 Conditionally stable problems

In this thesis we will focus on ill-posed problems that have conditional stability :

the solution depends continuously on data assuming an a priori bound on the solution itself.

We articulate this notion in the following definition.

Definition 1.10 (Conditionally stable problem). Problem (1.1) is conditionally stable with

respect to a seminorm |·|W on W if

1. For any f ∈ Im(A), the solution u is unique.

2. There exist a non-decreasing function Cst : [0,∞) → [0,∞) and a modulus of conti-

nuity Υ, such that for any f ∈ Im(A),

|u|W≤ Cst (‖u‖W ) Υ (‖f‖F ) .

We say that a function Υ : [0,∞) → [0,∞) is a modulus of continuity if it is

continuous with Υ(0) = 0. The non-decreasing function Cst incorporates the a priori bound

on the solution and acts similarly to a stability constant. Note that we only assume that the

solution can be controlled in a seminorm |·|W . The dependence on data, i.e. the stability

of the problem, is provided through the modulus of continuity Υ. The ill-posed problems

that we will discuss henceforth have two types of conditional stability, namely:

• Hölder stability, if Υ(t) = tκ for some κ ∈ (0, 1).

• Logarithmic stability, if Υ(t) = |log(t)|−κ for some κ ∈ (0, 1).

1.3 The Cauchy problem

Ω

Γ

Figure 1.1: Sketch for a domain Ω with Cauchy data given on a part of the boundary
Γ ⊂ ∂Ω.
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A well-known ill-posed problem which is conditionally stable is the elliptic Cauchy

problem. For an open set Ω ⊂ Rn with ∂Ω smooth, Dirichlet and Neumann data are given

on a part of the boundary Γ ⊂ ∂Ω, see Figure 1.1. The problem reads as follows: find

u ∈ H1(Ω) such that 
−∆u = f in Ω,

u = gD on Γ,

∇u · n = gN on Γ,

(1.5)

where f ∈ H−1(Ω), gD ∈ H
1
2 (Γ), gN ∈ H−

1
2 (Γ) and n is the unit outward normal.

The elliptic Cauchy problem (1.5) was considered by Hadamard in [35] where it was

shown – by a now classical example – that it is ill-posed: there is no continuous dependence

on data.

Example 1.11 (Hadamard’s example). Let Ω = (0, π)× (0, 1) and consider a zero source

term f = 0 and Cauchy data on Γ = (0, π) × {0} given by gD = 0 and gN = 1
n sin(nx),

together with the exact solution of (1.5)

u(x, y) = 1
n2 sin(nx) sinh(ny).

The solution doesn’t depend continuously on data since

‖gN‖
H−

1
2 (Γ)
≤ C‖gN‖L∞(Γ) → 0 as n→∞,

while

‖u‖H1(Ω) →∞ and u(x, y)→∞ exponentially a.e. as n→∞.

0
1

2
3 0 0.2 0.4 0.6 0.8 1

−1

0

1

x y

Figure 1.2: Plot of Hadamard’s classical Example 1.11 on [0, π]× [0, 1] for n = 4.

Moreover, the Cauchy problem is an example of a severely ill-posed problem. It

was proven in [7] that for a smooth domain in R2 the problem is equivalent to inverting



Chapter 1. Ill-posed inverse problems and unique continuation 19

a compact operator with non-closed range and whose singular values decay to zero faster

than any polynomial rate.

However, the Cauchy problem (1.5) is conditionally stable, i.e. assuming an a

priori bound on the solution one can obtain continuous dependence on data, see e.g. [1]

or [43, Chapter 3]. We recall a simplified version of [1, Theorem 1.7] which states that for a

simply connected subset B ⊂ Ω for which B∩ (∂Ω\Γ) = ∅, there exist C > 0 and κ ∈ (0, 1)

depending on B such that the following L2-norm stability estimate holds

‖u‖L2(B) ≤ C
(
‖u‖L2(Ω)

)1−κ (
‖f‖H−1(Ω) + ‖gD‖

H
1
2 (Γ)

+ ‖gN‖
H−

1
2 (Γ)

)κ
. (1.6)

Since ‖u‖1−κL2(Ω) ≤ ‖u‖
1−κ
H1(Ω) trivially, the problem is Hölder stable with respect to the lo-

cal L2-norm on B. For a global L2-norm estimate on Ω, the stability deteriorates into

logarithmic with an H1-norm a priori bound on u.

1.4 Unique continuation

In close connection to the Cauchy problem, we introduce the unique continuation

problem in which the restriction of the solution is given on an open subset and no data is

given on the boundary, see Figure 1.3. This is also known as the data assimilation problem.

We make no assumption on the regularity of the domain which, without loss of generality,

can be replaced with a slightly smaller polyhedral domain that can be easily discretised.

Considering again the Laplacian as the typical elliptic differential operator, for an open

subset ω ⊂ Ω ⊂ Rn the problem reads as follows: find u ∈ H1(Ω) such that−∆u = f in Ω,

u = uω in ω,
(1.7)

where f ∈ H−1(Ω) and uω ∈ H1(ω). For a solution to exist, the data must be compatible:

−∆uω = f in ω. Assuming there is a solution u ∈ H1(Ω) for problem (1.7), its uniqueness

follows by considering the difference w of two solutions, which satisfies∆w = 0 in Ω,

w = 0 in ω.

We have that the difference w vanishes everywhere by analytic continuation as harmonic

functions are real analytic. In general, we say that an elliptic differential operator L has
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the unique continuation property if any solution to Lu = 0 that vanishes on an open subset

must vanish everywhere.

The unique continuation property can also be deduced from the uniqueness of the

solution to a Cauchy problem. Indeed, if w|ω= 0 and ∆w = 0 in Ω, then taking a ball

ω′ ⊂ ω, we obtain w = 0 in Ω \ ω′ as the unique solution of the equation ∆w = 0 in Ω \ ω′
with zero Cauchy data on ∂ω′. The reverse is also true: the unique continuation property

implies uniqueness for Cauchy data, see e.g. [1].

Ω

ω

Figure 1.3: Sketch for unique continuation from the subset ω (grey).

The unique continuation problem is ill-posed. To prove this consider the contin-

uous linear operator Auc : H1(Ω) → H−1(Ω) × H1(ω) given by Aucu = (−∆u, u|ω). The

range of this operator is not closed and its generalised inverse A†uc is discontinuous. Indeed,

if Im(Auc) was closed then by Theorem 1.9 there would exist a constant C > 0 such that

for any u ∈ H1(Ω)

‖u‖H1(Ω) ≤ C
(
‖∆u‖H−1(Ω) + ‖u‖H1(ω)

)
.

Using Hadamard’s Example 1.11 for a subset ω close to the origin, we have that the constant

C above cannot be uniform and must actually depend on n, hence we obtain a contradiction.

However, if a solution u ∈ H1(Ω) to problem (1.7) exists in the usual weak sense,

i.e. not just in the sense of A†uc acting on (f, uω), then conditional stability estimates hold

and they are closely related to the ones for the Cauchy problem. We discuss conditional

stability estimates for unique continuation in Chapter 2. The Cauchy problem can be used to

derive stability estimates for unique continuation, as in [40, Corollary 1.2], while quantifying

the reverse implication was at the heart of the method used in [1] in which stability estimates

for unique continuation (Theorem 5.1 there) were used to derive stability estimates for the

Cauchy problem (Theorem 1.7 there) by slightly extending the domain near the set with

Cauchy data. As discussed, the Cauchy problem is severely ill-posed, and hence unique

continuation is also severely ill-posed, due to the above equivalence.
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Conditional stability estimates for

unique continuation

We have seen in Chapter 1 that unique continuation is ill-posed and closely related

to the Cauchy problem. In this chapter we will study quantitative unique continuation via

conditional stability estimates in a bounded, open, simply connected domain Ω ⊂ Rn for a

second order elliptic operator L that will be either:

• the Laplacian L = ∆.

• the convection–diffusion operator L = µ∆− β · ∇, with µ > 0 and β ∈ [L∞(Ω)]n.

• the Helmholtz operator L = ∆ + k2, with the wave number k > 0.

Given an open subset ω ⊂ Ω we want to find u ∈ H1(Ω) that solves the unique continuation

problem Lu = f in Ω,

u = uω in ω,
(2.1)

where f ∈ H−1(Ω), uω ∈ H1(ω). For an open set B ⊂ Ω that contains ω such that B \ ω
does not touch the boundary ∂Ω (see Figure 2.1) we will prove Hölder stability estimates

that essentially state that

‖u‖L2(B) ≤ Cst
(
‖u‖L2(ω) + ‖Lu‖H−1(Ω)

)κ
‖u‖1−κL2(Ω),

for a stability constant Cst > 0 and some κ ∈ (0, 1). When lower terms are included, i.e.

for the convection-diffusion and the Helmholtz operators, we will be interested in making

such estimates explicit in the physical parameters.

21
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Let us mention that we will not focus on global stability estimates, which are of

logarithmic type. We recall that it was proven in [44] that analytic continuation from a disc

to a larger concentric disc has only logarithmic stability. From the numerical point of view,

it was recently shown in [59] that an exponential loss in digits of accuracy can happen for

analytic continuation when moving away from the subset where the function is known to

a certain precision. This indicates that accurate computations in the logarithmic stability

regime are extremely challenging. We will consider only Hölder stable problems.

Ω

B

ω

Figure 2.1: Sketch for unique continuation from the set ω (grey) to the set B ⊂ Ω (light
grey).

We first prove, in an elementary way, a Carleman inequality that will then be used

to prove quantitative unique continuation results. Sometimes semiclassical analysis is used

to derive this kind of results, see e.g. [51]. Such techniques are very convenient when the

estimates are shifted in the Sobolev scale, and we will use them in Sections 2.3.1 and 2.4.1

below. This chapter is based on [21] and [22].

2.1 A pointwise Carleman estimate for the Laplacian

In the seminal paper [26], Carleman introduced a new kind of inequality to prove

unique continuation for a second order elliptic operator L in R2. Roughly speaking, for

a compactly supported function w ∈ C∞0 (Rn), the modern usage of the term Carleman

estimate refers to an inequality of the form

‖eτφw‖L2(Rn) ≤ C‖eτφLw‖L2(Rn),
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where τ > 0 is a large parameter and φ is a weight function. Quantitative unique continu-

ation can be proven by applying Carleman estimates with suitable φ and cut-off χ.

In this section we present an elementary proof for a Carleman estimate for the

Laplacian L = ∆. The starting idea is to use an exponential weight function e` and study

the expression

∆(e`w) = e`∆w + lower order terms,

or the conjugated operator e−`∆e` for a function ` that will be carefully chosen afterwards.

For an overview of Carleman estimates we refer the reader to [51,58], the classical references

are [38, Chapter 17] for second order elliptic equations, and [39, Chapter 28] for hyperbolic

and more general equations. Let us also mention that a typical approach is to study com-

mutator estimates for the real and imaginary part of the principal symbol of the conjugated

operator. Our approach can be seen as an alternative to these estimates by considering

a more elementary computation that leads first to a pointwise Carleman estimate similar

those in [48, Chapter 2] or [50, Chapter 4].

Lemma 2.1 (Carleman-type identity). Let ` ∈ C3(Ω), w ∈ C2(Ω) and σ ∈ C1(Ω). We

define v = e`w and

a = σ −∆`, q = a+ |∇`|2, b = −σv − 2(∇v,∇`), B = (|∇v|2−qv2)∇`.

Then

1
2e

2`(∆w)2 = 1
2(∆v + qv)2 + 1

2b
2

+ a|∇v|2+2D2`(∇v,∇v) +
(
−a|∇`|2+2D2`(∇`,∇`)

)
v2

+ div(b∇v +B) +R,

where R = (∇σ,∇v)v + (div(a∇`)− aσ) v2.

Proof. Step 1. Let us start by expanding ∆(e`w) into

∆v = ∆(e`w) = div(∇(e`w)) = div(v∇`+ e`∇w)

= (∇v,∇`) + v∆`+ (∇e`,∇w) + e`∆w

= 2(∇v,∇`) + (∆`− |∇`|2)v + e`∆w,
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where we have used the identity

(∇e`,∇w) = (e`∇`,∇w) = (∇`, e`∇w) = (∇`,∇(e`w))− (∇`, w∇e`)
= (∇`,∇v)− v|∇`|2.

Rearranging terms, then adding and subtracting σv, we have that

e`∆w = ∆v − 2(∇v,∇`) + (−∆`+ |∇`|2)v = ∆v + b+ qv.

Thus

1
2e

2`(∆w)2 = 1
2(∆v + qv + b)2 = 1

2(∆v + qv)2 + 1
2b

2 + b∆v + bqv. (2.2)

We will now study the cross terms b∆v and bqv.

Step 2. We start with the first cross term, b∆v, in (2.2). Let us begin by studying

β∆v where β = −2(∇v,∇`). We write

β∆v = −(∇β,∇v) + div(β∇v)

and

−(∇β,∇v) = 2(∇(∇v,∇`),∇v) = 2D2v(∇v,∇`) + 2D2`(∇v,∇v),

where D2` is the Hessian matrix of `, and D2`(X,Y ) = XT (D2`)Y for some vectors X and

Y . We also have that

2D2v(∇v,∇`) = (∇`,∇|∇v|2) = div(|∇v|2∇`)− |∇v|2∆`. (2.3)

To summarize, for β = −2(∇v,∇`) it holds that

β∆v = −∆`|∇v|2+2D2`(∇v,∇v) + div(β∇v + |∇v|2∇`). (2.4)

Consider now β∆v where β = −σv. We have that

−(∇β,∇v) = (∇σ,∇v)v + σ|∇v|2,
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and

β∆v = σ|∇v|2+(∇σ,∇v)v + div(β∇v). (2.5)

Now (2.4) and (2.5) imply that

b∆v = a|∇v|2+2D2`(∇v,∇v) + div(b∇v + c0) +R0, (2.6)

where c0 = |∇v|2∇` and R0 = (∇σ,∇v)v.

Step 3. Let us now study the second cross term, bqv, in (2.2). We have

−2(∇v,∇`)qv = −(∇v2, q∇`) = v2 div(q∇`)− div(v2q∇`),

hence, recalling that q = a+ |∇`|2 and −a = −σ + ∆`,

bqv = −σqv2 − 2(∇v,∇`)qv (2.7)

= (−σq + div (q∇`))v2 + div c1

= (−|∇`|2σ + div(|∇`|2∇`))v2 + div c1 +R1,

where c1 = −qv2∇` and R1 = (div(a∇`) − aσ)v2. The identity (2.3) with v = ` implies

that

div (|∇`|2∇`) = 2D2`(∇`,∇`) + |∇`|2∆`,

and since σ = a+ ∆`, we have that

−|∇`|2σ + div(|∇`|2∇`) = −a|∇`|2+2D2`(∇`,∇`). (2.8)

The claim follows by combining (2.8), (2.7), (2.6) and (2.2).

Let us notice that from this identity we obtain an inequality that is very close to

a pointwise Carleman estimate, namely

1
2e

2`(∆w)2 ≥ a|∇v|2+2D2`(∇v,∇v) +
(
−a|∇`|2+2D2`(∇`,∇`)

)
v2

+ div(b∇v +B) +R.

For a weight function `, we can now take the function a in such a way that the following
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bounds containing Hessian terms hold

a|∇v|2+2D2`(∇v,∇v) ≥ Cτ |∇v|2,
(−a|∇`|2+2D2`(∇`,∇`))v2 ≥ Cτ3v2,

with constants depending on `, and from this we will obtain the following result.

Proposition 2.2 (Pointwise Carleman estimate). Let ρ ∈ C3(Ω) and K ⊂ Ω be a compact

set that does not contain critical points of ρ. Let α, τ > 0 and the weight function φ = eαρ.

Let w ∈ C2(Ω). Then there exists C > 0 such that

e2τφ((a1τ
3 − a2τ

2)w2 + (b1τ − b0)|∇w|2) + div(b∇v +B) ≤ Ce2τφ(∆w)2 in K.

Proof. Step 1. Let ` = τφ, v = eτφw, and let λ > 0 such that |D2ρ(X,X)|≤ λ|X|2. Using

the product rule we have that

D2φ(X,X) = αφ(α(∇ρ,X)2 +D2ρ(X,X)),

hence

D2φ(X,X) ≥ αφD2ρ(X,X) ≥ −αλφ|X|2

and

D2φ(∇φ,∇φ) ≥ α3φ3(α|∇ρ|4−λ|∇ρ|2).

Choosing ε > 0 such that ε ≤ |∇ρ|2≤ ε−1 it holds

D2φ(∇φ,∇φ) ≥ α3φ3(αε2 − λε−1).

Since

2D2`(∇v,∇v) ≥ −2αλφτ |∇v|2,

by choosing a = 3αλφτ , i.e. σ = ∆`+ 3αλφτ in Lemma 2.1 we obtain the bounds

a|∇v|2+2D2`(∇v,∇v) ≥ αλφτ |∇v|2,
(−a|∇`|2+2D2`(∇`,∇`))v2 ≥ (2αε2 − 5λε−1)(αφτ)3v2.

Step 2. We now bound the last two terms

(div(a∇`)− aσ)v2 = ((∇a,∇`)− a2)v2 = (3αλ|∇φ|2−9α2λ2φ2)τ2v2,
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and

(∇σ,∇v)v = (∇(∆`),∇v)v + 3αλ(∇`,∇v)v ≥ −(|∇(∆φ)|+3αλ|∇φ|)τ |∇v|·|v|.

Combining this lower bound with

τ |∇v|·|v|≤ 1
2(|∇v|2+τ2|v|2),

and taking α large enough, we obtain from Lemma 2.1 that

Ce2τφ(∆w)2 ≥ (a1τ
3 − a2τ

2)v2 + (b1τ − b0)|∇v|2+ div(b∇v +B), (2.9)

with aj , bj > 0 depending only on α and ρ. In particular, a1 = 2α3ε2φ3 and b1 = αλφ.

Step 3. Using the elementary inequality

(x+ y)2 ≥ 1
2x

2 − y2,

which gives that

|∇v|2= e2τφ|τw∇φ+∇w|2≥ e2τφ 1
2 |∇w|2−e2τφ|∇φ|2τ2w2,

we conclude from (2.9) by taking α large enough such that a1 can absorb −Cb1 for some

positive constant C independent of α.

Corollary 2.3 (Carleman estimate). Let ρ ∈ C3(Ω) and K ⊂ Ω be a compact set that does

not contain critical points of ρ. Let α, τ > 0 and φ = eαρ. Let w ∈ C2
0 (K). Then there

exists C > 0 such that

�
K
e2τφ(τ3w2 + τ |∇w|2) dx ≤ C

�
K
e2τφ|∆w|2 dx,

for α large enough and τ ≥ τ0, where τ0 > 1 depends only on α and ρ.

Proof. We integrate over K the pointwise inequality in Proposition 2.2 and then use that

the integral of the divergence term vanishes by the divergence theorem since w = 0 on

∂K.
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2.2 Hölder stability estimates

Now we explore how the Carleman estimate in Corollary 2.3 can be used to obtain

a conditional stability estimate for unique continuation for the Laplacian. The first estimate

of this kind that we prove is a three-ball inequality. By a covering argument, see e.g. [52],

it can be propagated to obtain Hölder stability in the interior of the domain for unique

continuation from an open subset.

We first state an auxilliary log-convexity lemma that optimises the exponential

parameters coming from the Carleman estimate and provides a Hölder-type inequality with

an explicit stability constant.

Lemma 2.4. Suppose that a, b, c ≥ 0 and p, q > 0 satisfy c ≤ b and c ≤ epλa + e−qλb for

all λ > λ0 ≥ 0. Then there are C > 0 and κ ∈ (0, 1) (depending only on p and q) such that

c ≤ Ceqλ0aκb1−κ.

Here κ = q/(p+ q).

Proof. We may assume that a, b > 0, since c = 0 if a = 0 or b = 0. The minimizer λ∗ of the

function f(λ) = epλa+ e−qλb is given by

λ∗ = 1
p+q log

qb

pa
,

and writing r = q/p, the minimum value is

f(λ∗) = a

(
qb

pa

)p/(p+q)
+ b

(
qb

pa

)−q/(p+q)
=
(
rp/(p+q) + r−q/(p+q)

)
aq/(p+q)bp/(p+q).

This shows that if λ∗ > λ0 then

c ≤ C1a
κb1−κ,

where κ = q/(p + q) and C1 = rp/(p+q) + r−q/(p+q). On the other hand, if λ∗ ≤ λ0 then it

holds that e−qλ0 ≤ e−qλ∗ = aq/(p+q)(rb)−q/(p+q), or equivalently,

bq/(p+q) ≤ eqλ0aq/(p+q)r−q/(p+q).

Therefore

c ≤ b = bq/(p+q)bp/(p+q) ≤ eqλ0r−q/(p+q)aq/(p+q)bp/(p+q).
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That is, if λ∗ ≤ λ0 then

c ≤ C2e
qλ0aκb1−κ,

where C2 = r−q/(p+q). As eqλ0 ≥ 1 and C1 > C2, the claim follows by taking C = C1.

Corollary 2.5 (Three-ball inequality for the Laplacian). Let x0 ∈ Ω and 0 < r1 < r2 <

d(x0, ∂Ω). Define Bj = B(x0, rj), j = 1, 2. Then there exist C > 0 and κ ∈ (0, 1) such that

for u ∈ H2(Ω) it holds that

‖u‖H1(B2) ≤ C
(
‖u‖H1(B1) + ‖∆u‖L2(Ω)

)κ
‖u‖1−κH1(Ω).

Proof. Due to the density of C2(Ω) in H2(Ω), it is enough to consider u ∈ C2(Ω). Let now

0 < r0 < r1 and r2 < r3 < r4 < d(x0, ∂Ω). We choose non-positive ρ ∈ C∞(Ω) such that

ρ(x) = −d(x, x0) outside B0. Since |∇ρ|= 1 outside B0, ρ does not have critical points

in B4 \ B0. Let χ ∈ C∞0 (B4 \ B0) satisfy χ = 1 in B3 \ B1, and set w = χu. We apply

Corollary 2.3 with K = B̄4 \B0 to get

�
B4\B0

(τ3|w|2+τ |∇w|2)e2τφ dx ≤ C
�
B4\B0

|∆w|2e2τφ dx, (2.10)

for φ = eαρ, with large enough α > 0, and τ ≥ τ0 (where τ0 > 1 depends only on α and ρ).

Since φ ≤ 1 everywhere, by defining Φ(r) = e−αr we now bound from below the left-hand

side in (2.10) by

�
B2\B1

(τ3|w|2+τ |∇w|2)e2τφ dx ≥ τe2τΦ(r2)‖u‖2H1(B2) − τe2τ‖u‖2H1(B1).

An upper bound for the right-hand side in (2.10) is given by

C

�
B4

|∆u|2e2τφ dx+ C

�
(B4\B3)∪B1

|[∆, χ]u|2e2τφ dx

≤ Ce2τ‖∆u‖2L2(B4) + Ce2τΦ(r3)‖u‖2H1(B4\B3) + Ce2τ‖u‖2H1(B1).

Combining the last two inequalities we thus obtain that, for τ ≥ τ0,

e2τΦ(r2)‖u‖2H1(B2) ≤ Ce2τ
(
‖u‖2H1(B1) + ‖∆u‖2L2(B4)

)
+ Ce2τΦ(r3)‖u‖2H1(B4).

We conclude by Lemma 2.4 with p = 1− Φ(r2) > 0 and q = Φ(r2)− Φ(r3) > 0.
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2.3 Convection–diffusion operator

Using the previous results, one can easily include lower order terms having low

regularity in the differential operator L and obtain a three-ball inequality similar to Corol-

lary 2.5. However, the stability constant will depend exponentially on the size of these lower

order terms. To be more precise, for the convection–diffusion operator

L = µ∆− β · ∇,

with µ > 0 and β ∈ [L∞(Ω)]n, we recall the Péclet number associated to a given length

scale l given by

Pe(l) :=
l‖β‖[L∞(Ω)]n

µ
.

We have the following result.

Corollary 2.6. Let x0 ∈ Ω and 0 < r1 < r2 < d(x0, ∂Ω). Define Bj = B(x0, rj), j = 1, 2.

Then there are C > 0 and κ ∈ (0, 1) such that for µ > 0, β ∈ [L∞(Ω)]n and u ∈ H2(Ω) it

holds that

‖u‖H1(B2) ≤ CeCP̃e
2 (
‖u‖H1(B1) + 1

µ‖Lu‖L2(Ω)

)κ
‖u‖1−κH1(Ω),

where P̃e = 1 + |β|/µ and |β|= ‖β‖[L∞(Ω)]n.

Proof. Following the proof of Corollary 2.5 and using the same notation, we have that

µ2

�
B4\B0

(τ3|w|2+τ |∇w|2)e2τφ dx ≤ C
�
B4\B0

|µ∆w|2e2τφ dx, (2.11)

for φ = eαρ, with large enough α > 0, and τ ≥ τ0 (where τ0 > 1 depends only on α and ρ).

We bound from above the right-hand side by a constant times

�
B4\B0

|µ∆w − β · ∇w|2e2τφ dx+ |β|2
�
B4\B0

|∇w|2e2τφ dx.

Taking τ ≥ 2|β|2/µ2, the second term above is absorbed by the left-hand side of (2.11) to

give

µ2

�
B4\B0

(τ3|w|2+
τ

2
|∇w|2)e2τφ dx ≤ C

�
B4\B0

|µ∆w − β · ∇w|2e2τφ dx. (2.12)

Since φ ≤ 1 everywhere, by defining Φ(r) = e−αr we now bound from below the left-hand
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side in (2.12) by

µ2

�
B2\B1

(τ3|w|2+τ |∇w|2)e2τφ dx ≥ µ2τe2τΦ(r2)‖u‖2H1(B2) − µ2τe2τ‖u‖2H1(B1).

An upper bound for the right-hand side in (2.12) is given by

C

�
B4

|µ∆u− β · ∇u|2e2τφ dx+ C

�
(B4\B3)∪B1

|(µ[∆, χ]− β · ∇χ)u|2e2τφ dx

≤ Ce2τ‖µ∆u− β · ∇u‖2L2(B4) + Ce2τΦ(r3)(µ2 + |β|2)‖u‖2H1(B4\B3)

+ Ce2τ (µ2 + |β|2)‖u‖2H1(B1).

Combining the last two inequalities we thus obtain that

µ2e2τΦ(r2)‖u‖2H1(B2) ≤Ce2τ
(

(µ2 + |β|2)‖u‖2H1(B1) + ‖µ∆u− β · ∇u‖2L2(B4)

)
+ Ce2τΦ(r3)(µ2 + |β|2)‖u‖2H1(B4),

for τ ≥ τ0 + 2|β|2/µ2. We divide by µ2 and conclude by Lemma 2.4 with p = 1−Φ(r2) > 0

and q = Φ(r2) − Φ(r3) > 0, followed by absorbing the P̃e = 1 + |β|/µ factor into the

exponential factor eCP̃e
2

.

Note that a similar approach applied to the Helmholtz operator L = ∆+k2 would

give a three-ball inequality for which the stability constant increases exponentially with the

wave number k. However, estimates that are robust in the wave number – in the sense that

the stability constant is uniform – can be obtained under certain convexity assumptions on

the geometry. We discuss this in Section 2.4.

2.3.1 Shifting the norms

Our goal in Chapter 5 will be to design finite element methods for unique contin-

uation that combine continuum Hölder stability estimates as in Corollary 2.6 with discrete

regularisation, in order to obtain good convergence properties for the numerical solutions.

For this aim, we will need to weaken the norms in which we measure data for unique

continuation, from

‖u‖H1(B1) and ‖Lu‖L2(Ω)
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to

‖u‖L2(B1) and ‖Lu‖H−1(Ω).

This shift in the Sobolev indices will allow us to make the stability estimates valid for

H1 functions and apply them to the finite element approximation error and its residual.

A similar argument to the one in this section will also be made in Section 2.4.1 for the

Helmholtz operator and will be used in the error analysis in Chapter 4.

When shifting Carleman estimates, as we want to keep track of the large parameter

τ , it is convenient to use the semiclassical version of pseudodifferential calculus where we

write h̄ > 0 for the semiclassical parameter that satisfies h̄ = 1/τ . The semiclassical

pseudodifferential operators are pseudodifferential operators where, roughly speaking, each

derivative is multiplied by h̄. We recall the precise definition and the results that we will

use in Appendix B. The scale of semiclassical Bessel potentials is defined by

Js = (1− h̄2∆)s/2, s ∈ R,

and the semiclassical norms for Sobolev spaces are given by

‖u‖Hs
scl(Rn) = ‖Jsu‖L2(Rn).

We will give a shifting argument that is similar to that in Section 4 of [29]. To this

end, we introduce the following key estimates for semiclassical pseudodifferential operators,

see e.g. (4.8) and (4.9) of [29]. Suppose that ψ, χ ∈ C∞0 (Rn) and that χ = 1 near supp(ψ),

and let A,B be two semiclassical pseudodifferential operators of orders s,m, respectively.

Then for all p, q,N ∈ R, there exists C > 0 such that

‖(1− χ)A(ψu)‖Hp
scl(Rn) ≤ Ch̄N‖u‖Hq

scl(Rn), (2.13)

‖[A,B]u‖Hp
scl(Rn) ≤ Ch̄‖u‖Hp+s+m−1

scl (Rn)
. (2.14)

Both these estimates follow from the composition calculus, see Corollary B.3. The first

inequality is sometimes called a pseudolocality estimate, and the second one is a commutator

estimate.

Lemma 2.7. Let x0 ∈ Ω and 0 < r1 < r2 < d(x0, ∂Ω). Define Bj = B(x0, rj), j = 1, 2.

Then there are C > 0 and κ ∈ (0, 1) such that for µ > 0, β ∈ [L∞(Ω)]n and u ∈ H1(Ω) it
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holds that

‖u‖L2(B2) ≤ CeCP̃e
2(
‖u‖L2(B1) + 1

µ‖Lu‖H−1(Ω)

)κ
‖u‖1−κL2(Ω),

where P̃e = 1 + |β|/µ and |β|= ‖β‖[L∞(Ω)]n.

Proof. Let 0 < rj < rj+1 < d(x0, ∂Ω), j = 0, . . . , 4 and Bj = B(x0, rj), keeping B1, B2

unchanged. Let r̃j ∈ (rj−1, rj) and B̃j = B(x0, r̃j), j = 0, . . . , 3, where r−1 = 0. Choose

ρ ∈ C∞(Ω) such that ρ(x) = −d(x, x0) outside B̃0, and define φ = eαρ for large enough α.

Consider v ∈ C∞0 (B5 \ B̃0). As in Lemma 2.1, by taking ` = φ/h̄ and σ = ∆` + 3αλφ/h̄,

we obtain after integration that

C

�
Rn
|eφ/h̄∆(e−φ/h̄v)|2 dx ≥

�
Rn

(h̄−1|∇v|2+h̄−3v2 − |∇v|2−h̄−2v2) dx.

Scaling this with µ2h̄4, we insert the convective term and obtain that

C

�
Rn

(µeφ/h̄h̄2∆(e−φ/h̄v)− eφ/h̄h̄2β · ∇(e−φ/h̄v))2 dx

can be bounded from below by

�
Rn
h̄µ2(h̄2|∇v|2+v2) dx−

�
Rn
h̄2µ2(h̄2|∇v|2+v2) dx−

�
Rn

(eφ/h̄h̄2β · ∇(e−φ/h̄v))2 dx.

Since

eφ/h̄h̄2β · ∇(e−φ/h̄v) = −h̄(β · ∇φ)v + h̄2β · ∇v,

introducing the conjugated operator Pv = −h̄2eφ/h̄L(e−φ/h̄v), the previous bound implies

C‖Pv‖2L2(Rn) ≥ h̄µ2‖v‖2H1
scl(Rn) − h̄2µ2‖v‖2H1

scl(Rn) − h̄2|β|2‖v‖2H1
scl(Rn).

The last two terms in the right-hand side can be absorbed by the first one when

h̄ ≤ 1

2
and h̄ ≤ 1

2

µ2

|β|2 , (2.15)

thus obtaining that √
h̄µ‖v‖H1

scl(Rn) ≤ C‖Pv‖L2(Rn). (2.16)

Let now η, ϑ ∈ C∞0 (B5 \ B̃0) and suppose that ϑ = 1 near B4 \B0 and η = 1 near

supp(ϑ). Let also χ ∈ C∞0 (B4 \B0) satisfy χ = 1 in B3 \ B̃1. Then there exists h̄0 > 0 such



Chapter 2. Conditional stability estimates for unique continuation 34

that for v = χw, w ∈ C∞(Ω), and h̄ < h̄0,

‖v‖L2(Rn) ≤ ‖ηJ−1v‖H1
scl(Rn) + ‖(1− η)J−1ϑv‖H1

scl(Rn) ≤ C‖ηJ−1v‖H1
scl(Rn), (2.17)

where we used (2.13) to absorb one term by the left-hand side. From (2.17) and (2.16) we

have that

√
h̄µ‖v‖L2(Rn) ≤ C

√
h̄µ‖ηJ−1v‖H1

scl(Rn) ≤ C‖P (ηJ−1v)‖L2(Rn), (2.18)

and the commutator estimate (2.14) gives that

‖[P, ηJ−1]v‖L2(Rn) ≤ Ch̄µ‖v‖L2(Rn) + Ch̄2|β|‖v‖H−1
scl (Rn).

Recalling the assumption (2.15), these terms can be absorbed by the left-hand side of (2.18),

obtaining

√
h̄µ‖v‖L2(Rn) ≤ C‖ηJ−1(Pv)‖L2(Rn) ≤ C‖Pv‖H−1

scl (Rn). (2.19)

We now combine this estimate with the technique used to prove Corollary 2.6.

Consider u ∈ C∞(Rn) and set w = eφ/h̄u. Take ψ ∈ C∞0 (Ω) supported in B1 ∪ (B5 \ B̃3)

with ψ = 1 in (B̃1 \B0)∪ (B4 \B3). Recall that χ ∈ C∞0 (B4 \B0) satisfies χ = 1 in B3 \ B̃1.

Using (2.14) to bound the commutator

‖[P, χ]w‖H−1
scl (Rn) ≤ ‖[P, χ]ψw‖H−1

scl (Rn) ≤ Ch̄(µ+ |β|)‖ψw‖L2(Rn),

we obtain from (2.19) that

√
h̄µ‖χw‖L2(Rn) ≤ C‖χPw‖H−1

scl (Rn) + Ch̄(µ+ |β|)‖ψw‖L2(Rn).

This leads to

√
h̄µ
∥∥∥χeφ/h̄u∥∥∥

L2(Rn)
≤ C

∥∥∥χeφ/h̄(µ∆u− β · ∇u)
∥∥∥
H−1(Rn)

+ Ch̄(µ+ |β|)
∥∥∥ψeφ/h̄u∥∥∥

L2(Rn)
,

where we used the norm inequality ‖ · ‖H−1
scl (Rn) ≤ Ch̄−2‖ · ‖H−1(Rn). Letting Φ(r) = e−αr
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and using a similar argument as in the proof of Corollary 2.6, we find that

µeΦ(r2)/h̄‖u‖L2(B2) ≤ Ce1/h̄
(

(µ+ |β|)‖u‖L2(B1) + h̄−
3
2 ‖µ∆u− β · ∇u‖H−1(Ω)

)
+ CeΦ(r̃3)/h̄h̄

1
2 (µ+ |β|)‖u‖L2(Ω),

when h̄ satisfies (2.15) and is small enough. Absorbing the negative power of h̄ in the

exponential, we then use Lemma 2.4 and conclude by absorbing the P̃e = 1 + |β|/µ factor

into the exponential factor eCP̃e
2

.

Remark 2.8. In the case of three-ball inequalities one can be more precise about the Hölder

exponent κ in Lemma 2.7. We recall some known results for second-order elliptic equations:

we refer to [1, Theorem 2.1] for the Laplace equation, and for the case including lower-order

terms to [52, Theorem 3]. Let u be a homogeneous solution of Lu = 0. For a constant Cst

depending implicitly on the coefficients µ and β, the following three-ball inequality holds

‖u‖L2(B2)≤ Cst‖u‖κL2(B1)‖u‖1−κL2(B3)
.

The constant Cst does not depend on the radii r1, r2, but it does depend on r3. The exponent

κ ∈ (0, 1) is given by

κ =
log r3

r2

C3 log r2
r1

+ log r3
r2

,

where C3 > 0 is a constant depending on r3. Notice also that when the radius r1 → 0, the

exponent κ→ 0 as well and the three-ball inequality provides no useful information.

We can weaken the norms just in the right-hand side of Corollary 2.6 by making the

additional coercivity assumption ∇ · β ≤ 0 and using the stability estimate for a well-posed

convection-diffusion problem with homogeneous Dirichlet boundary conditions.

Corollary 2.9. Let x0 ∈ Ω and 0 < r1 < r2 < d(x0, ∂Ω). Define Bj = B(x0, rj), j = 1, 2.

Then there exist C > 0 and κ ∈ (0, 1) such that for µ > 0, β ∈ [W 1,∞(Ω)]n having

ess supΩ∇ · β ≤ 0, and u ∈ H1(Ω) it holds that

‖u‖H1(B2) ≤ CeCP̃e
2 (
‖u‖L2(B1) + 1

µ‖Lu‖H−1(Ω)

)κ (
‖u‖L2(Ω) + 1

µ‖Lu‖H−1(Ω)

)1−κ
,

where P̃e = 1 + |β|/µ and |β|= ‖β‖[L∞(Ω)]n.

Proof. Let the balls B0, B3 ⊂ Ω be such that Bj ⊂ Bj+1, for j = 0, 2. Consider the

well-posed problem

Lw = Lu in B3, w = 0 on ∂B3.
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Since ess supΩ∇ · β ≤ 0, as a consequence of the divergence theorem, we have

‖w‖H1(B3)≤ C 1
µ‖Lu‖H−1(B3).

Taking v = u− w, we have Lv = 0 in B3. The stability estimate in Corollary 2.6

used for B0, B2, B3 reads as

‖v‖H1(B2) ≤ CeCP̃e
2

‖v‖κH1(B0)‖v‖1−κH1(B3),

and the following estimates hold

‖u‖H1(B2) ≤ ‖v‖H1(B2) + ‖w‖H1(B2)

≤ CeCP̃e
2

(‖u‖H1(B0) + 1
µ‖Lu‖H−1(Ω))

κ(‖u‖H1(B3) + 1
µ‖Lu‖H−1(Ω))

1−κ.

Now we choose a cutoff function χ ∈ C∞0 (B1) such that χ = 1 in B0. Then χu satisfies

L(χu) = χLu+ [L, χ]u, χu = 0 on ∂B1,

and we obtain

‖u‖H1(B0) ≤ ‖χu‖H1(B1) ≤ C 1
µ

(
‖[L, χ]u‖H−1(B1) + ‖χLu‖H−1(B1)

)
≤ C 1

µ

(
(µ+ |β|)‖u‖L2(B1) + ‖Lu‖H−1(Ω)

)
The same argument for B3 ⊂ Ω gives

‖u‖H1(B3) ≤ C 1
µ

(
(µ+ |β|)‖u‖L2(Ω) + ‖Lu‖H−1(Ω)

)
,

thus leading to the conclusion after absorbing the P̃e = 1+ |β|/µ factor into the exponential

factor eCP̃e
2

.

2.4 Helmholtz operator

It is well known, see e.g. [43], that if B \ ω ⊂ Ω then the unique continuation

problem for the Helmholtz operator L = ∆ +k2 is conditionally Hölder stable: for all k ≥ 0

there exist Cst > 0 and κ ∈ (0, 1) such that for all u ∈ H2(Ω)

‖u‖H1(B) ≤ Cst
(
‖u‖H1(ω) + ‖∆u+ k2u‖L2(Ω)

)κ
‖u‖1−κH1(Ω). (2.20)
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As discussed in the introduction of this chapter, if B \ω touches the boundary ∂Ω then one

can only expect logarithmic stability.

In general, the stability constant Cst and the Hölder exponent κ in (2.20) depend

on the wave number k, and might actually blow up faster than any polynomial in k as we

show in the following example.

Example 2.10. Let ε ∈ (0, 1) be small and consider Ω = (−ε, 1 + ε)2 and the domains

ω = (0, 1)× (0, ε) and B = (0, 1)2. Take the ansatz u(x, y) = eikxa(x, y), where for n ∈ N,

a(x, y) = a0(x, y) + k−1a1(x, y) + . . .+ k−nan(x, y).

We have that

∆u+ k2u = eikx (2ik∂xa+ ∆a) ,

and we choose aj, j = 0, . . . , n such that

∂xa0 = 0, 2i∂xaj + ∆aj−1 = 0, j = 1, . . . , n. (2.21)

Then

∆u+ k2u = eikxk−n∆an

and ‖∆u+ k2u‖L2(Ω) = k−n‖∆an‖L2(Ω). Since aj is chosen to be independent of k, for all

j = 0, . . . , n, we obtain for a generic constant C > 0 that

‖∆u+ k2u‖L2(Ω) ≤ Ck−n.

We can solve (2.21) in such a way that a0(x, y) = a0(y), supp(a0) ⊂ (ε, 1) and

supp(aj) ⊂ [−ε, 1 + ε]× (ε, 1), j = 1, . . . , n..

Then u|ω= 0 and we have that

C−1k ≤ ‖u‖H1(B) ≤ ‖u‖H1(Ω) ≤ Ck.

for large k. The estimate (2.20) then becomes

Ck ≤ Cst(k−n)κk1−κ, i.e. Ckκ(n+1) ≤ Cst.

Choosing large n we see that Cst depends on k, and for any N ∈ N, Cst ≤ kN cannot hold.
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However, under suitable convexity assumptions on the geometry and direction

of continuation, it is possible to prove that in (2.20) both the constants Cst and κ are

independent of the wave number k – this is closely related to the so-called increased stability

for unique continuation [40].

The proofs are based on a pointwise Carleman estimate that is a variation of [40,

Lemma 2.2] but we give a self-contained proof in Corollary 2.12. In [40] the Carleman

estimate was used to derive the increased stability estimate under suitable convexity as-

sumptions on the geometry. We briefly recall these assumptions for completeness. Let

Γ ⊂ ∂Ω be such that Γ ⊂ ∂ω and Γ is at some positive distance away from ∂ω ∩ Ω. For a

compact subset S of the open set Ω, let P (ν; d) denote the half space which has distance d

from S and ν as the exterior normal vector. Let Ω(ν; d) = P (ν; d)∩Ω and denote by B the

union of the sets Ω(ν; d) over all ν for which P (ν; d) ∩ ∂Ω ⊂ Γ. This geometric setting is

illustrated in a general way in Figs. 1 and 2 of [40] where B is denoted by Ω(Γ; d). Under

these assumptions it was proven that

‖u‖L2(B) ≤ CF + Ck−1F κ‖u‖1−κH1(Ω), (2.22)

where F = ‖u‖H1(ω) + ‖∆u + k2u‖L2(Ω) and the constants C and κ are independent of k.

As k grows, the first term on the right-hand side of (2.22) dominates the second one, and

the stability is increasing in this sense.

As our focus in Chapter 4 will be to design a finite element method for this problem,

we prefer to measure the size of the data in the weaker norm

E = ‖u‖L2(ω) + ‖∆u+ k2u‖H−1(Ω).

Taking u to be a plane wave solution to the Helmholtz equation suggests that

‖u‖L2(B) ≤ CkE + CEκ‖u‖1−κL2(Ω),

could be the right analogue of (2.22) when both the data and the a priori bound are in

weaker norms. Similarly to Section 2.3.1, using tools from semiclassical analysis we prove in

Section 2.4.1 a stronger estimate with only the second term on the right-hand side, namely

‖u‖L2(B) ≤ CEκ‖u‖1−κL2(Ω).

Following the argument in Lemma 2.1, we first prove a Carleman-type identity for

the Helmholtz operator.
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Lemma 2.11. Let k ≥ 0. Let ` ∈ C3(Ω), w ∈ C2(Ω) and σ ∈ C1(Ω). We define v = e`w,

and

a = σ −∆`, q = k2 + a+ |∇`|2, b = −σv − 2(∇v,∇`), c = (|∇v|2−qv2)∇`.

Then

1
2e

2`(∆w + k2w)2 = 1
2(∆v + qv)2 + 1

2b
2

+ a|∇v|2+2D2`(∇v,∇v) +
(
−a|∇`|2+2D2`(∇`,∇`)

)
v2 − k2av2

+ div(b∇v + c) +R,

where R = (∇σ,∇v)v + (div(a∇`)− aσ) v2.

Proof. Following Step 1 in the proof of Lemma 2.1 we have

1
2e

2`(∆w + k2w)2 = 1
2(∆v + b+ qv)2 = 1

2(∆v + qv)2 + 1
2b

2 + b∆v + bqv, (2.23)

and it remains to study the cross terms b∆v and bqv. For the first term we have from Step

2 in the proof of Lemma 2.1 that

b∆v = a|∇v|2+2D2`(∇v,∇v) + div(b∇v + c0) +R0, (2.24)

where c0 = |∇v|2∇` and R0 = (∇σ,∇v)v. Let us now study the second cross term in (2.23).

We have

−2(∇v,∇`)qv = −(∇v2, q∇`) = v2 div(q∇`)− div(v2q∇`),

hence, recalling that q = k2 + a+ |∇`|2 and −a = −σ + ∆`,

bqv = (−σq + div(q∇`))v2 + div c1 (2.25)

= (−|∇`|2σ + div(|∇`|2∇`))v2 − k2av2 + div c1 +R1,

where c1 = −qv2∇` and R1 = (div(a∇`) − aσ)v2. The identity (2.3) with v = ` implies

that

div(|∇`|2∇`) = 2D2`(∇`,∇`) + |∇`|2∆`,
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hence, recalling that σ = a+ ∆`,

−|∇`|2σ + div(|∇`|2∇`) = −a|∇`|2+2D2`(∇`,∇`). (2.26)

The claim follows by combining (2.26), (2.25), (2.24) and (2.23).

In this section we use the identity in Lemma 2.11 with the choice σ = ∆`, or equiv-

alently a = 0, but we remark that a different choice was used in the proof of Proposition 2.2

for convection–diffusion.

Corollary 2.12 (Pointwise Carleman estimate). Let φ ∈ C3(Ω) be a strictly convex function

without critical points, and choose ρ > 0 such that

D2φ(X,X) ≥ ρ|X|2, X ∈ Rn.

Let τ > 0 and w ∈ C2(Ω). We define ` = τφ, v = e`w, and

b = −(∆`)v − 2(∇v,∇`), c = (|∇v|2−(k2 + |∇`|2)v2)∇`.

Then

e2τφ
(
(a0τ − b0)τ2w2 + (a1τ − b1)|∇w|2

)
+ div(b∇v + c) ≤ 1

2e
2τφ(∆w + k2w)2,

where the constants aj , bj > 0, j = 0, 1, depend only on ρ,

inf
x∈Ω
|∇φ(x)|2 and sup

x∈Ω
|∇(∆φ(x))|2.

Proof. We employ the equality in Lemma 2.11 with ` = τφ and σ = ∆`. With this choice

of σ, it holds that a = 0. As the two first terms on the right-hand side of the equality are

positive, it is enough to consider

2D2`(∇v,∇v) + 2D2`(∇`,∇`)v2 +R

≥ 2ρτ |∇v|2+2ρτ3|∇φ|2v2 − τ |∇(∆φ)|·|∇v|·|v|.

The claim follows by combining this with

|∇v|2= e2τφ|τw∇φ+∇w|2≥ e2τφ 1
3 |∇w|2−e2τφ 1

2 |∇φ|2τ2w2,
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and

τ |∇(∆φ)|·|∇v|·|v|≤ C(|∇v|2+τ2|v|2).

When continuing the solution inside the convex hull of ω as in [40], we consider

for simplicity a specific geometric setting defined in Corollary 2.13 below and illustrated in

Figure 2.2. As shown in Example 2.10, without such a convexity assumption, the stability

constant in estimates of the form (2.20) may depend on the wave number k and can even

increase faster than any polynomial in k. A similar reasoning to the one in Corollary 2.6

would lead to a three-ball inequality with a stability constant that is exponential in k.

However, in the geometric setting that we consider, we can derive a stability estimate that is

robust in the wave number by starting from the pointwise Carleman estimate Corollary 2.12

and using a foliation by spheres in the convex direction.

The stability estimates we prove below in Corollaries 2.13 and 2.14, and Lemma 2.15

also hold in other geometric settings in which B is included in the convex hull of ω and B\ω
does not touch the boundary of Ω, such as the ones we consider for numerical experiments

in Chapter 4 and for which we give a proof in Example 4.10.

0 r R

H

y

ω

B

Figure 2.2: The geometric setting in Corollary 2.13.

We use the following notation for a half space

H := {(x1, . . . , xn) ∈ Rn; xn < 0}.
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Corollary 2.13. Let r > 0, β > 0, R > r and
√
r2 + β2 < ρ <

√
R2 + β2. Define

y = (0, . . . , 0, β) and

Ω = H ∩B(0, R), ω = Ω \B(0, r), B = ω ∪ (Ω \B(y, ρ)).

Then there exist C > 0 and κ ∈ (0, 1) such that for all u ∈ C2(Ω) and k ≥ 0

‖u‖H1(B) ≤ C
(
‖u‖H1(ω) + ‖∆u+ k2u‖L2(Ω)

)κ
‖u‖1−κH1(Ω).

Proof. Choose
√
r2 + β2 < s < ρ and observe that ∂Ω\B(y, s) ⊂ ω. Define φ(x) = |x−y|2.

Then φ is smooth and strictly convex in Ω, and it does not have critical points there.

Choose χ ∈ C∞0 (Ω) such that χ = 1 in Ω \ (B(y, s) ∪ ω) and set w = χu. Corol-

lary 2.12 implies that for large τ > 0

�
Ω

(τ3w2 + τ |∇w|2)e2τφdx ≤ C
�

Ω
(∆w + k2w)2e2τφdx, (2.27)

a result also stated, without a detailed proof, in [43, Exercise 3.4.6]. The commutator [∆, χ]

vanishes outside B(y, s) ∪ ω and φ < s2 in B(y, s). Hence the right-hand side of (2.27) is

bounded by a constant times

�
Ω
|∆u+ k2u|2e2τφdx+

�
B(y,s)∪ω

|[∆, χ]u|2e2τφdx (2.28)

≤ Ce2τ(β+R)2
(‖∆u+ k2u‖2L2(Ω) + ‖u‖2H1(ω)) + Ce2τs2‖u‖2H1(B(y,s)).

The left-hand side of (2.27) is bounded from below by

�
B\ω

(
τ |∇u|2+τ3|u|2

)
e2τφ dx ≥ e2τρ2‖u‖2H1(B\ω). (2.29)

Using the trivial bound e2τρ2‖u‖2H1(ω) ≤ e2τ(β+R)2‖u‖2H1(ω), the inequalities (2.27)–(2.29)

imply

‖u‖H1(B) ≤ Cepτ
(
‖∆u+ k2u‖L2(Ω) + ‖u‖H1(ω)

)
+ Ce−qτ‖u‖H1(Ω),

where p = (β +R)2 − ρ2 > 0 and q = ρ2 − s2 > 0. The claim follows from Lemma 2.4.

Corollary 2.14. Let ω ⊂ B ⊂ Ω be defined as in Corollary 2.13. Then there exist C > 0

and κ ∈ (0, 1) such that for all u ∈ H1(Ω) and k ≥ 0

‖u‖H1(B) ≤ Ck(‖u‖L2(ω) + ‖∆u+ k2u‖H−1(Ω))
κ(‖u‖L2(Ω) + ‖∆u+ k2u‖H−1(Ω))

1−κ.
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Proof. Let ω1 ⊂ ω ⊂ B ⊂ Ω1 ⊂ Ω, denote for brevity L = ∆+k2, and consider the following

auxiliary problem  Lw = Lu in Ω1,

∂nw + ikw = 0 on ∂Ω1,

where ∂n denotes the normal derivative, whose solution satisfies the estimate [5, Corollary

1.10]

‖∇w‖L2(Ω1) + k‖w‖L2(Ω1) ≤ Ck‖Lu‖H−1(Ω1),

which gives

‖w‖H1(Ω1) ≤ Ck‖Lu‖H−1(Ω).

For v = u − w we have Lv = 0 in Ω1. The stability estimate in Corollary 2.13 used for

ω1, B,Ω1 reads as

‖v‖H1(B) ≤ C‖v‖κH1(ω1)‖v‖1−κH1(Ω1),

and the following estimates hold

‖u‖H1(B) ≤ ‖v‖H1(B) + ‖w‖H1(B)

≤ C(‖u‖H1(ω1) + ‖w‖H1(ω1))
κ(‖u‖H1(Ω1) + ‖w‖H1(Ω1))

1−κ + Ck‖Lu‖H−1(Ω)

≤ C(‖u‖H1(ω1) + k‖Lu‖H−1(Ω))
κ(‖u‖H1(Ω1) + k‖Lu‖H−1(Ω))

1−κ.

Now we choose a cutoff function χ ∈ C∞0 (ω) such that χ = 1 in ω1 and χu satisfies

L(χu) = χLu+ [L, χ]u, ∂n(χu) + ik(χu) = 0 on ∂ω.

Since the commutator [L, χ] is of first order, using again [5, Corollary 1.10] we obtain

‖u‖H1(ω1) ≤ ‖χu‖H1(ω) ≤ Ck
(
‖[L, χ]u‖H−1(ω) + ‖χLu‖H−1(ω)

)
≤ Ck

(
‖u‖L2(ω) + ‖Lu‖H−1(ω)

)
.

The same argument for Ω1 ⊂ Ω gives

‖u‖H1(Ω1) ≤ Ck(‖u‖L2(Ω) + ‖Lu‖H−1(Ω)),

thus leading to the conclusion.
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2.4.1 Shifting the norms

In this section we prove an estimate similar to the one in Corollary 2.13, but

with the Sobolev indices shifted down one degree. Compared to Corollary 2.14, we can

win a factor of k by using a semiclassical argument that is in the same vein as the one

in Section 2.3.1. Our starting point for this is again a Carleman inequality. Appendix B

contains the definitions and the main results in semiclassical analysis that we will use. The

stability estimate with weaker norms will be applied to the approximation error of the finite

element method devised in Chapter 4.

Lemma 2.15. Let ω ⊂ B ⊂ Ω be defined as in Corollary 2.13. Then there exist C > 0 and

κ ∈ (0, 1) such that for all u ∈ H1(Ω) and k ≥ 0

‖u‖L2(B) ≤ C(‖u‖L2(ω) + ‖∆u+ k2u‖H−1(Ω))
κ‖u‖1−κL2(Ω).

Proof. We take the semiclassical parameter to be h̄ = 1/τ . Let φ be as in Corollary 2.12

and set ` = φ/h̄ and σ = ∆` in Lemma 2.11. Then

1
2

(
eφ/h̄∆e−φ/h̄v + k2v

)2
≥ 2h̄−1D2φ(∇v,∇v) + 2h̄−3D2φ(∇φ,∇φ)v2

+ div(b∇v +B) + h̄−1(∇∆φ,∇v)v

Consider the conjugated operator P = eφ/h̄h̄2∆e−φ/h̄ and let v ∈ C∞0 (Ω′) where Ω′ ⊂ Rn is

open and bounded, and Ω ⊂ Ω′. Then, rescaling by h̄4,

C‖Pv + h̄2k2v‖2L2(Rn) ≥ h̄‖h̄∇v‖2L2(Rn) + h̄‖v‖2L2(Rn) − Ch̄2‖v‖2H1
scl(Rn),

and for small enough h̄ > 0 we obtain

√
h̄‖v‖H1

scl(Rn) ≤ C‖Pv + h̄2k2v‖L2(Rn).

Note that the conjugated operator P is a semiclassical differential operator,

Pu = eφ/h̄h̄2 div∇(e−φ/h̄u) = h̄2∆u− 2(∇φ, h̄∇u)− h̄(∆φ)u+ |∇φ|2u.

Let χ, ψ ∈ C∞0 (Ω′) and suppose that ψ = 1 near Ω and χ = 1 near supp(ψ). Then

for v ∈ C∞0 (Ω),

‖v‖H1+s
scl (Rn) ≤ ‖χJsv‖H1

scl(Rn) + ‖(1− χ)Jsψv‖H1
scl(Rn) ≤ C‖χJsv‖H1

scl(Rn)
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where we used the pseudolocality (2.13) to absorb the second term on the right-hand side

by the left-hand side. We have

√
h̄‖v‖H1+s

scl (Rn) ≤ C
√
h̄‖χJsv‖H1

scl(Rn) ≤ C‖(P + h̄2k2)χJsv‖L2(Rn), (2.30)

and using the commutator estimate (2.14), we obtain

‖[P, χJs]v‖L2(Rn) ≤ Ch̄‖v‖H1+s
scl (Rn).

This can be absorbed by the left-hand side of (2.30). Thus

√
h̄‖v‖H1+s

scl (Rn) ≤ C‖χJs(P + h̄2k2)v‖L2(Rn) ≤ C‖(P + h̄2k2)v‖Hs
scl(Rn).

Take now s = −1 and let the cutoff χ and the weight φ be as in the proof of

Corollary 2.13, with the following additional condition on χ: there exists ψ ∈ C∞0 (B(y, s)∪
ω) satisfying ψ = 1 whenever [P, χ] 6= 0.

Let u ∈ C∞(Rn) and set w = eφ/h̄u. Then the previous estimate becomes

√
h̄‖χw‖L2(Rn) ≤ C‖(P + h̄2k2)χw‖H−1

scl (Rn).

We have

‖[P, χ]w‖H−1
scl (Rn) = ‖[P, χ]ψw‖H−1

scl (Rn) ≤ Ch̄‖ψw‖L2(Rn).

Using the norm inequality ‖ · ‖H−1
scl (Rn) ≤ Ch̄−2‖ · ‖H−1(Rn), we thus obtain

√
h̄‖χeφ/h̄u‖L2(Rn) ≤ C

∥∥∥χ(eφ/h̄∆e−φ/h̄ + k2)w
∥∥∥
H−1

scl (Rn)
+ Ch̄‖ψw‖L2(Rn)

≤ Ch̄−2
∥∥∥χeφ/h̄(∆u+ k2u)

∥∥∥
H−1(Rn)

+ Ch̄
∥∥∥ψeφ/h̄u∥∥∥

L2(Rn)

Using the same notation as in the proof of Corollary 2.13, due to the choice of ψ we get

eρ
2/h̄‖u‖L2(B) ≤ Ce(β+R)2/h̄

(
h̄−

7
2 ‖∆u+ k2u‖H−1(Ω) + h̄

1
2 ‖u‖L2(ω)

)
+ Ces

2/h̄h̄
1
2 ‖u‖L2(Ω),

for small enough h̄ > 0. Absorbing the negative power of h̄ in the exponential, and using

Lemma 2.4, we conclude the proof.



Chapter 3

Discrete regularisation using

stabilised finite element methods

In this chapter we change focus to numerical analysis and review a computational

framework that can be used to solve ill-posed problems with an emphasis on unique contin-

uation. We first describe two different approaches to regularising such ill-posed problems:

regularise-then-discretise and discretise-then-regularise. Then we present in more details

the latter strategy based on stabilised finite element methods, which will be employed in

the subsequent chapters.

Let Ω ⊂ Rn be a bounded domain and let L be a second order elliptic operator,

that will either be the Hemlholtz operator in Chapter 4 or the convection–diffusion operator

in Chapters 5 and 6. We consider the ill-posed unique continuation problem discussed

previously, which reads as follows: given an open subset ω ⊂ Ω and the data uω ∈ L2(ω)

and f ∈ H−1(Ω), find u ∈ H1(Ω) such thatLu = f in Ω,

u = uω in ω.
(3.1)

To begin with, we cast this as a PDE-constrained optimisation problem:

min
u∈H1(Ω)

1
2‖u− uω‖

2
L2(ω) subject to Lu = f in Ω. (3.2)

For compatible data uω and f , these two problems are equivalent. Consider the weak

formulation of Lu = f given through the bilinear form a by

a(u, z) = f(z), for any z ∈ V,

46
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for a test space V ⊂ H1(Ω) that could encode some boundary conditions, for example

V = H1
0 (Ω). We can then introduce the test function z as a Lagrange multiplier and

consider the naive Lagrangian functional

L̃(u, z) := 1
2‖u− uω‖

2
L2(ω)︸ ︷︷ ︸

data term

+ a(u, z)− f(z)︸ ︷︷ ︸
PDE constraint

.

Solving the minimisation problem (3.2) is equivalent to finding the saddle-point of L̃, which

we will denote by (ũ, z̃) ∈ H1(Ω)× V . The saddle point satisfies the optimality conditions 0 = ∂uL̃v = (ũ− uω, v)L2(ω) + a(v, z̃),

0 = ∂zL̃w = a(ũ, w)− f(w),
∀(v, w) ∈ H1(Ω)× V,

which can be written as: find (ũ, z̃) ∈ H1(Ω)× V such that(ũ, v)L2(ω) + a(v, z̃) = (uω, v)L2(ω),

a(ũ, w) = f(w),
∀(v, w) ∈ H1(Ω)× V,

This problem is still ill-posed, of course, and its discretisation will lead to linear systems

that might be singular or very ill-conditioned (thus with very unstable numerical solutions).

To overcome the ill-posedness one uses regularisation. This can be performed on

the continuum level or on the discrete level. On the continuum level, regularisation is

achieved by adding some penalty terms to the objective function of the minimisation prob-

lem (3.2) to render it well-posed. The optimality conditions then give a well-posed problem

that can be discretised with standard methods and solved numerically. This is a regularise-

then-discretise approach, and one classical example of this kind is Tikhonov regularisation.

For a general introduction, see e.g. [31, Chapter 5]. Introducing a regularisation parameter

αT > 0 and penalising the norm of the gradient, this reads as follows:

min
u∈H1(Ω)

1
2‖u− uω‖

2
L2(ω) + αT

2 ‖∇u‖
2
L2(Ω) subject to Lu = f in Ω.

Notice that increasing the regularisation parameter αT enhances stability in the detriment

of data fitting. Writing the PDE constraint in weak form again and introducing a Lagrange

multiplier z, we have the regularised Lagrangian functional

LT (u, z) := 1
2‖u− uω‖

2
L2(ω)︸ ︷︷ ︸

data term

+ αT
2 ‖∇u‖

2
L2(Ω)︸ ︷︷ ︸

regularisation

+ a(u, z)− f(z)︸ ︷︷ ︸
PDE constraint

.
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The optimality conditions for the saddle point (uαT , zαT ) ∈ H1(Ω)× V are given by(uαT , v)L2(ω) + αT (∇uαT ,∇v)L2(Ω) + a(v, zαT ) = (uω, v)L2(ω),

a(uαT , w) = f(w),
∀(v, w) ∈ H1(Ω)× V.

For any αT > 0 this system is well-posed by Theorem 1.4. If the unique continuation

problem (3.1) has a solution u, then this will be recovered as the limit of the regularised

solutions lim
αT→0

uαT = u.

Another version of Tikhonov regularisation for problem (3.1) is to consider the

minimisation problem

min
w∈Duω (L)

1
2‖Lw − f‖

2
L2(Ω) +

αqr
2 ‖w‖

2
H1(Ω),

where αqr > 0 is a regularisation parameter and Dg(L) = {u ∈ D(L) : u = g in ω},
with D(L) being the domain of the operator L. The optimality condition for the solution

uqr ∈ Duω(L) is given by

(Luqr,Lv)L2(Ω) + αqr(uqr, v)H1(Ω) = (f,Lv)L2(Ω), ∀v ∈ D0(L). (3.3)

The fourth order regularised problem (3.3) is well-posed for any αqr > 0. This regularisation

method is known as quasi-reversibility. It was introduced in [49] for the Cauchy problem,

and revisited in [47] and [10]. Mixed formulation of this method have also been considered,

most recently in [11].

However, when solving regularised continuum problems, a regularisation parameter

– such as αT > 0 and αqr > 0 above – must be chosen and making an optimal choice is a

delicate issue that depends on the stability of the problem and the size of the perturbations

in data. Moreover, when the problem is discretised one also has to balance the regularisation

parameter with the mesh size. In the following we will see that such issues can be avoided

by taking a different methodological approach.

3.1 Discretise-then-regularise

We now present a discretise-then-regularise approach in which the optimisation

problem with PDE constraints is first discretised using finite elements and then regular-

ising terms are added on the discrete level. These regularising terms draw upon stabili-

sation techniques for numerically unstable well-posed problems that we briefly review in
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Sections 3.2 and 3.3. This framework was introduced in [14] and [15] to solve non-coercive

boundary value problems as well as ill-posed problems such as the Cauchy problem. We

will use it in Chapter 4 for a Helmholtz problem and in Chapters 5 and 6 for convection–

diffusion problems. The methodology has also been proven feasible for unique continuation

subject to other PDEs such as the heat equation [24], the wave equation [16], the Stokes

equation [19] or the linearised Navier-Stokes equation [9]. For a comparison with Tikhonov

regularisation see [20].

Consider first a finite element solution space Vh in which a discrete solution uh ∈ Vh
for problem (3.1) is sought. Let Wh be the discrete test space and let ah be the discrete

bilinear form giving the weak formulation of Lu = f as

ah(uh, zh) = f(zh), for any zh ∈Wh,

Introducing the test function zh as a Lagrange multiplier, a naive discrete Lagrangian

functional would be

L0
h(uh, zh) = 1

2‖uh − uω‖
2
L2(ω)︸ ︷︷ ︸

data term

+ ah(uh, zh)− f(zh)︸ ︷︷ ︸
PDE constraint

.

To enhance stability we add some discrete regularising terms through the abstract bilinear

forms s : Vh×Vh → R and s∗ : Wh×Wh → R and obtain the discrete Lagrangian functional

Lh(uh, zh) := 1
2‖uh − uω‖

2
L2(ω)︸ ︷︷ ︸

data term

+ 1
2s(uh, uh)− 1

2s
∗(zh, zh)︸ ︷︷ ︸

discrete regularisation

+ ah(uh, zh)− f(zh)︸ ︷︷ ︸
PDE constraint

. (3.4)

Here the stabilising forms s and s∗ can be scaled with the parameters γ > 0 and γ∗ > 0,

respectively. These can be chosen experimentally and their values can be fixed throughout

all the computations (when refining the mesh). They do not depend on the noise level in

the measurements nor on the mesh size, and they do not play a role in the convergence of

the method.

Any saddle point (uh, zh) ∈ Vh×Wh of the Lagrangian (3.4) satisfies the optimality

conditions ah(uh, wh)− s∗(zh, wh) = f(wh),

(uh, vh)L2(ω) + ah(vh, zh) + s(uh, vh) = (uω, vh)L2(ω),
∀(vh, wh) ∈ Vh ×Wh. (3.5)

Notice that we have written first the equation corresponding to ∂zhLhwh = 0. Assuming
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that an exact solution to problem (3.1) exists, we see from this equation that the dual

variable that we are approximating by zh is trivially z̃ = 0 for which the bilinear form s∗

should vanish as well. As general required properties, the stabilisers s and s∗ must:

• enhance stability and make the discrete problem well-posed.

• be weakly consistent, i.e converge to zero at an optimal rate for smooth solutions as

the approximation spaces get refined.

• control, together with the data term, the residual of the weak formulation which,

combined with conditional stability estimates on the continuum level, then provides

convergence rates for the error.

Collecting the left-hand sides of the optimality conditions (3.5) in the bilinear form A, with

A[(uh, zh), (vh, wh)] := ah(uh, wh)− s∗(zh, wh) + (uh, vh)L2(ω) + s(uh, vh) + ah(vh, zh),

the discrete system (3.5) can be written as

A[(uh, zh), (vh, wh)] = (uω, vh)L2(ω) + f(wh), ∀(vh, wh) ∈ Vh ×Wh. (3.6)

Note that

A[(uh, zh), (uh,−zh)] = ‖uh‖2L2(ω) + s(uh, uh) + s∗(zh, zh),

and by designing the stabilisers s and s∗ such that

‖(uh, zh)‖2s := ‖uh‖2L2(ω) + s(uh, uh) + s∗(zh, zh) (3.7)

is a norm on Vh ×Wh, we obtain by Theorem 1.4 that problem (3.6) is well-posed – and

problem (3.5) as well – since it satisfies the inf-sup condition

sup
(vh,wh)∈Vh×Wh

A[(uh, zh), (vh, wh)]

‖(vh, wh)‖s
≥ ‖(uh, zh)‖s.

The linear system corresponding to problem (3.5) thus has a unique solution and its matrix

version is [
A −S∗

Mω + S AT

][
Uh

Zh

]
=

[
F

Uω

]
,

where A is the matrix representation of ah, S corresponds to s, S∗ to s∗, and Mω to the

scalar product on ω. By the capitals Uh, Zh, F and Uω we denote the vectors corresponding
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to uh, zh, f and uω.

3.2 Stabilised finite element methods

The required features of the stabilising operators s and s∗ can be formulated in

an abstract way and now we discuss how these operators can be designed to have these

features, that is to provide the needed stability, to be weakly consistent, and to contribute

to the control of the residual. A wide range of techniques from stabilised finite element

methods come to help and possible choices depend on the differential operator L as well as

the approximation order of the finite element spaces. In this section we briefly discuss an

example for a well-posed convection-dominated problem that requires discrete stabilisation.

Then in Section 3.3 we discuss in more details how continuous interior penalty can provide

discrete regularisation for ill-posed problems.

Example 3.1. For the diffusivity µ > 0 and the convection vector field β ∈ [W 1,∞(Ω)]n

with ess supΩ∇ · β ≤ 0, consider the convection–diffusion problem−µ∆u+ β · ∇u = f in Ω,

u = 0 on ∂Ω,

with the source term f ∈ L2(Ω).

The weak formulation in this example reads as follows: find u ∈ H1
0 (Ω) such that

µ(∇u,∇v)L2(Ω) + (β · ∇u, v)L2(Ω) =: a(u, v) = (f, v)L2(Ω), ∀v ∈ H1
0 (Ω).

Denoting by |β|:= ‖β‖[L∞(Ω)]n , the bilinear form a is continuous by the Cauchy-Schwarz

inequality since

a(u, v) ≤ C(µ+ |β|)‖u‖H1
0 (Ω)‖v‖H1

0 (Ω).

Integrating by parts and using the divergence theorem, we have that

a(u, u) = µ‖∇u‖2L2(Ω) − ((1
2∇ · β)u, u)L2(Ω).

Assuming that ess supΩ∇ · β ≤ 0, we obtain by the Poincaré inequality (1.4) that the

bilinear form a is coercive since

a(u, u) ≥ α‖u‖2H1
0 (Ω), with α = µ

1+C2
p
> 0,
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The problem is then well-posed by the Lax-Milgram Lemma 1.2 and we have the stability

estimate

‖u‖H1
0 (Ω)≤

1

α
‖f‖L2(Ω).

When convection dominates and µ � |β|, we see that there is a loss of coercivity (α � 1)

and the stability deteriorates ( 1
α � 1).

Note that if ∇ · β = 0, then by multiplying the equation with a constant function

1 and using the divergence theorem we have that −µ
�
∂Ω∇u · n ds =

�
Ω f dx, showing that

the gradient could blow up at the boundary as µ → 0, resulting in sharp boundary layers

for the solution. We also have that a(u, u) = µ‖∇u‖2L2(Ω) = (f, u)L2(Ω).

Even though on the continuum level the problem is well-posed in the convection-

dominated regime, when considering numerical solutions the degenerate stability constant

becomes an issue and instability arises. Spurious oscillations can appear as there is no

robust control of the error. For example, considering a naive discretisation of the weak

formulation using finite elements, the discrete solution uh satisfies the stability estimate

µ‖∇uh‖L2(Ω) ≤ C‖f‖L2(Ω),

and µ‖∇uh‖2L2(Ω) = (f, uh)L2(Ω) when ∇ · β = 0. Since in general uh does not satisfy

the maximum principle, the term (f, uh)L2(Ω) could be moderate and ‖∇uh‖L2(Ω) could be

large due to spurious oscillations for small µ. One remedy comes from stabilised methods.

Considering a solution space Vh with ush ∈ Vh, a test space Wh and a discrete version ah

of the bilinear form a, the underlying idea of such methods is to introduce the stabilising

forms ash and lsh and consider the modified problem

ah(ush, vh) + ash(ush, vh) = lsh(vh) + (f, vh)L2(Ω), ∀vh ∈Wh.

This should enhance the stability and provide estimates with an improved dependence

on the physical parameters. Examples of such methods for singularly perturbed prob-

lems are reviewed in [55] and we mention the streamline diffusion method [46], also known

as streamline upwind Petrov-Galerkin [12], Galerkin least squares, discontinuous Galerkin

methods [28], local projection stabilisation, and interior penalty. In the following we will

focus on the latter which was introduced in [30] and revisited in [18], where the following

stability estimate for Example 3.1 was proven with lsh = 0 and ash = hJh as in (3.8) below,

µ
1
2 ‖∇ush‖L2(Ω) + ‖ush‖L2(Ω) + ‖h 1

2β · ∇ush‖L2(Ω) ≤ C‖f‖L2(Ω),
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This improves the control of the gradient. It is also robust in the L2-norm and the streamline

derivative for fixed h, limiting the rate of blow-up of ‖β · ∇ush‖L2(Ω) when h→ 0.

3.3 Continuous interior penalty

We now present the discrete regularisation strategy based on interior penalty,

which will be the cornerstone of the numerical methods discussed in Chapters 4 to 6.

To prepare the setting, let Th = {K} be a triangulation of the polygonal domain Ω

with elements K having maximal diameter h. Let P1 be the set of piecewise affine functions

and consider the conforming finite element space

Vh :=
{
u ∈ C(Ω̄) : u|K∈ P1(K),K ∈ Th

}
.

We denote the set of interior element faces by Fi. The jump J∇uh · nKF of the normal

derivative across an interior face F ∈ Fi is given by

J∇uh · nKF := ∇uh · n1|K1+∇uh · n2|K2 ,

with K1,K2 ∈ Th being two elements such that K1 ∩K2 = F , and nj the outward normal

of Kj , j = 1, 2, see Figure 3.1 for a sketch.

K1 K2

F

v|K1

v|K2

JvKF

Figure 3.1: Sketch for the jump of a function across an interior face.

The key component in the discrete stabilisation that we will use is the interior

penalty operator

Jh(uh, vh) :=
∑
F∈Fi

�
F
hJ∇uh · nKF J∇vh · nKF ds, (3.8)

which acts on functions in the finite element space Vh and penalises the jumps of the normal

gradient across interior faces.
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The following Poincaré-type inequality says that the interior penalty Jh can be

chosen as the primal stabiliser s since together with the L2-seminorm on ω it provides a

full norm on Vh. Taking the dual stabiliser s∗ such that it gives a norm on the test space

Wh, we obtain that the stabilising norm (3.7) defines indeed a norm on Vh×Wh and hence

problem (3.5) is well-posed. To control the residual of the PDE, we will also need the norm

given by s∗ to be equivalent to the H1-norm, preferably with constants independent of the

mesh size h.

Lemma 3.2 (Poincaré-type inequality). There exists a constant C > 0 such that for all

h > 0 and vh ∈ Vh there holds

h‖vh‖H1(Ω) ≤ C
(
‖vh‖L2(ω) + Jh(vh, vh)

1
2

)
.

Proof. See [20, Lemma 2].

The interior penalty Jh is also weakly consistent, as the following estimate shows.

Lemma 3.3 (Weak consistency). Let ih : H1(Ω) → Vh be an interpolant that satisfies the

standard approximation inequality

‖∇(w − ihw)‖L2(Ω) ≤ Ch|w|H2(Ω), ∀w ∈ H2(Ω).

Then there exists a constant C > 0 such that for all h > 0 and w ∈ H2(Ω) there holds

Jh(ihw, ihw) ≤ Ch2|w|2H2(Ω).

Proof. Notice first that since w ∈ H2(Ω) its gradient has no jumps across faces F ∈ Fi.
Inserting w and using the trace inequality (A.2) and approximation, we have that

∑
F∈Fi

�
F
hJ∇ihw · nK2

F ds =
∑
F∈Fi

�
F
hJ∇(ihw − w) · nK2

F ds

≤ C
(
‖∇(ihw − w)‖2L2(Ω) + h2‖∇(ihw − w)‖2H1(Ω)

)
≤ Ch2‖w‖2H2(Ω).
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Helmholtz equation

In this chapter we consider the unique continuation problem for the Helmholtz

equation

Lu := ∆u+ k2u = −f,

in an open, bounded and connected set Ω ⊂ Rn, and introduce a stabilised finite element

method to solve the problem computationally. The method is explicit with respect to the

wave number k and we prove convergence estimates with explicit dependence on k. This

chapter is based on [21].

We recall first the unique continuation problem that we aim to approximate∆u+ k2u = −f in Ω,

u = uω in ω,
(4.1)

where ω ⊂ Ω is open, and f ∈ L2(Ω) and uω ∈ L2(ω) are given. For a solution to exist, a

data compatibility condition must hold.

Following the discretise-then-regularise approach in Chapter 3, the crux of the

computational method is to discretise this ill-posed problem as a PDE-constrained min-

imisation with additional discrete regularising terms. Continuous interior estimates with

Hölder stability were proven in Section 2.4 using Carleman estimates in a geometric setting

typical for continuation inside the convex hull of ω. Combined with the discrete properties

of the stabilisers, these estimates lead, when applied to the approximation error, to error

bounds with a (sub-linear) convergence order given by the Hölder exponent and which are

explicit in the wave number. The chapter ends with some numerical examples illustrating

the theoretical results and the importance of the geometric setting, i.e. continuing the

55
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solution inside vs outside the convex hull of the data set.

For the well-posed problem of the Helmholtz equation with Robin boundary con-

ditions

∆u+ k2u = −f in Ω and ∂nu+ iku = 0 on ∂Ω, (4.2)

the following sharp bounds

‖∇u‖L2(Ω) + k‖u‖L2(Ω) ≤ C‖f‖L2(Ω) (4.3)

and

‖u‖H2(Ω) ≤ Ck‖f‖L2(Ω) (4.4)

hold for a star-shaped Lipschitz domain Ω and any wave number k bounded away from

zero [5]. The error estimates that we derive in Section 4.2, e.g. ‖u−uh‖H1(B) ≤ C(hk)κ‖u‖∗
in Theorem 4.4, contain the term

‖u‖∗ = ‖u‖H2(Ω) + k2‖u‖L2(Ω),

which corresponds to the term k‖f‖L2(Ω) in the well-posed case.

It is well known from the seminal works [4, 41, 42] that the finite element ap-

proximation of the Helmholtz problem is challenging also in the well-posed case due to

the so-called pollution error. Indeed, to observe optimal convergence orders of H1- and

L2-errors the mesh size h must satisfy a smallness condition related to the wave number

k, typically for piecewise affine elements, the condition k2h . 1. This is due to the dis-

persion error that is most important for low order approximation spaces. The situation

improves if higher order polynomial approximation is used. Recently, the precise conditions

for optimal convergence when using hp-refinement (p denotes the polynomial order of the

approximation space) were shown in [53]. Under the assumption that the solution operator

for Helmholtz problems is polynomially bounded in k, it is shown that quasi-optimality is

obtained under the conditions that kh/p is sufficiently small and the polynomial degree p

is at least O(log k).

Another way to obtain stability without, or under mild, conditions on the mesh

size of the approximate scheme is to use stabilisation. The continuous interior penalty

stabilisation (CIP) was introduced for the Helmholtz problem in [60], where stability was

shown in the kh . 1 regime, and was subsequently used to obtain error bounds for standard

piecewise affine elements when k3h2 . 1. It was then shown in [25] that, in the one

dimensional case, the CIP stabilisation can also be used to eliminate the pollution error,
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provided the penalty parameter is appropriately chosen. When deriving error estimates for

the stabilised FEM that we herein introduce, we will use the mild condition kh . 1.

4.1 Discretisation

Consider a quasi-uniform family {Th} of geometrically conformal triangulations of

Ω, see e.g. [32, Definition 1.140]. Let

Vh :=
{
u ∈ C(Ω̄) : u|K∈ P1(K),K ∈ Th

}
be the H1-conformal approximation space based on the P1 finite element and let

Wh := Vh ∩H1
0 (Ω).

Consider the orthogonal L2-projection πh : L2(Ω)→ Vh, which satisfies

(u− πhu, v)L2(Ω) = 0, ∀u ∈ L2(Ω), ∀v ∈ Vh,
‖πhu‖L2(Ω) ≤ ‖u‖L2(Ω), ∀u ∈ L2(Ω),

and the Scott-Zhang interpolant πsz : H1(Ω) → Vh, that preserves vanishing Dirichlet

boundary conditions. Both operators have the following stability and approximation prop-

erties, see Appendix A,

‖phu‖H1(Ω) ≤ C‖u‖H1(Ω), ∀u ∈ H1(Ω), (4.5)

‖u− phu‖Hm(Ω) ≤ Chk−m‖u‖Hk(Ω), ∀u ∈ Hk(Ω), (4.6)

where ph ∈ {πh, πsz}, k = 1, 2 and m = 0, k − 1.

Following the approach presented in Chapter 3, the regularisation on the discrete

level will be based on the L2-control of the gradient jumps over element faces using the

continuous interior penalty bilinear form on Vh

Jh(uh, vh) :=
∑
F∈Fi

�
F
hJ∇uh · nKF J∇vh · nKF ds,

where Fi is the set of all interior faces. We recall the following trace inequality, see (A.2)
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in Appendix A,

‖v‖L2(∂K)≤ C(h−
1
2 ‖v‖L2(K)+h

1
2 ‖∇v‖L2(K)), ∀v ∈ H1(K), (4.7)

Lemma 4.1. There exists C > 0 such that all uh ∈ Vh, v ∈ H1
0 (Ω), w ∈ H2(Ω) and h > 0

satisfy

(∇uh,∇v)L2(Ω) ≤ CJh(uh, uh)1/2(h−1‖v‖L2(Ω) + ‖∇v‖L2(Ω)). (4.8)

Proof. This result was proven in [24, Lemma 2] and we include the proof for completeness.

For the first inequality, let us begin by integrating by parts and using that ∆uh = 0 on each

element K to write

(∇uh,∇v)L2(Ω) =
∑
K∈Th

�
K
∇uh · ∇v dx = h−

1
2

∑
F∈Fi

�
F
h

1
2 J∇uh · nKF v ds.

By the Cauchy-Schwarz inequality and the trace inequality (4.7) we obtain that

(∇uh,∇v)L2(Ω) ≤ CJh(uh, vh)
1
2 (h−1‖v‖L2(Ω) + ‖∇v‖L2(Ω)).

We denote, for brevity, the standard inner product (·, ·)L2(Ξ) by (·, ·)Ξ, and we

introduce the bilinear form

ah(u, z) := (∇u,∇z)Ω − k2(u, z)Ω.

The weak formulation of the underlying Helmholtz equation ∆u+k2u = −f reads as follows:

find u ∈ H1(Ω) such that

ah(u, z) = (f, z)Ω, for any z ∈ H1
0 (Ω).

As discussed in Chapter 3, our approach is to rewrite the unique continuation

problem as a PDE-constrained minimisation with weakly consistent regularisation leading

to a well-posed discrete system. To be more precise, we aim to find the saddle points of the

Lagrangian functional

L(uh, zh) := 1
2‖uh − uω‖

2
ω + 1

2s(uh, uh)− 1
2s
∗(zh, zh) + ah(uh, zh)− (f, zh)Ω,

where s and s∗ are discrete regularising terms for the primal and dual variables that should
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also be consistent and vanish at optimal rates. The optimality conditions for the saddle

points (uh, zh) ∈ Vh ×Wh of the Lagrangian L give rise to the following system{
ah(uh, wh)− s∗(zh, wh) = (f, wh)Ω,

ah(vh, zh) + s(uh, vh) + (uh, vh)ω = (uω, vh)ω,
∀(vh, wh) ∈ Vh ×Wh.

This discrete system can be written as

A[(uh, zh), (vh, wh)] = (uω, vh)ω + (f, wh)Ω, ∀(vh, wh) ∈ Vh ×Wh, (4.9)

where A is the symmetric but indefinite bilinear form

A[(uh, zh), (vh, wh)] := (uh, vh)ω + s(uh, vh) + ah(vh, zh)− s∗(zh, wh) + ah(uh, wh).

The stabilisation must control certain residual quantities representing the data of the error

equation. The primal stabiliser s will be based on the continuous interior penalty given by

Jh. It must also take into account the low order term of the Helmholtz operator. Notice that

when the PDE-constraint is satisfied, it follows trivially that the stabiliser s∗ is consistent

since zh = 0 is the solution for the dual variable of the saddle point. We make the following

choice

s(uh, vh) := γJh(uh, vh) + γh2k4(uh, vh)Ω,

where the low order term is the only remaining part for piecewise affine functions of a

Galerkin least squares stabilisation γh2(Luh,Lvh)Ω, and

s∗(zh, wh) := (∇zh,∇wh)Ω.

The parameter γ > 0 does not depend on the wave number and can be set empirically. It

does not influence the convergence order of the method and will be absorbed in the generic

constants. We define on Vh and Wh, respectively, the norms

‖uh‖Vh := s(uh, uh)1/2, uh ∈ Vh, ‖z‖Wh
:= s∗(zh, zh)1/2, zh ∈Wh,

together with the norm on Vh ×Wh defined by

‖(uh, zh)‖2s := ‖uh‖2Vh + ‖uh‖2ω + ‖zh‖2Wh
.

Since A[(uh, zh), (uh,−zh)] = ‖uh‖2ω + ‖uh‖2Vh + ‖zh‖2Wh
we have the following inf-sup con-
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dition

sup
(vh,wh)∈Vh×Wh

A[(uh, zh), (vh, wh)]

‖(vh, wh)‖s
≥ C‖(uh, zh)‖s (4.10)

that by Theorem 1.4 guarantees a unique solution in Vh×Wh for the discrete problem (4.9).

4.2 Error estimates

The strategy is to first prove an optimal bound for the stabilising quantity

‖(uh − πhu, zh)‖s

and then to obtain a bound for the residual ah(u−uh, ·). Combining this with the conditional

stability in Section 2.4 we thus obtain error estimates in the L2- and H1-norms.

We start by deriving some lower and upper bounds for the norm ‖ · ‖Vh . For

uh ∈ Vh and z ∈ H1
0 (Ω), we use (4.8) to bound

a(uh, z) = (∇uh,∇z)L2(Ω) − k2(uh, z)L2(Ω)

≤ CJh(uh, uh)1/2(h−1‖z‖L2(Ω) + ‖z‖H1(Ω)) + k2‖uh‖L2(Ω)‖z‖L2(Ω),

and hence

a(uh, z) ≤ C‖uh‖Vh
(
h−1‖z‖L2(Ω) + ‖z‖H1(Ω)

)
. (4.11)

For u ∈ H2(Ω), from (4.6) and the weak consistency Lemma 3.3 combined with the stability

of the L2-projection we have that

‖πhu‖2Vh = Jh(πhu, πhu) + ‖hk2πhu‖2L2(Ω) ≤ C
(
h2‖u‖2H2(Ω) + ‖hk2u‖2L2(Ω)

)
,

obtaining that

‖πhu‖Vh ≤ Ch(‖u‖H2(Ω) + k2‖u‖L2(Ω)) = Ch‖u‖∗, (4.12)

where the star norm is defined by

‖u‖∗ := ‖u‖H2(Ω) + k2‖u‖L2(Ω).

Lemma 4.2. Assume that u ∈ H2(Ω) is a solution to (4.1) and let (uh, zh) ∈ Vh ×Wh be

the solution to (4.9). Then there exists C > 0 such that for all h ∈ (0, 1)

‖(uh − πhu, zh)‖s ≤ Ch‖u‖∗.
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Proof. Due to the inf-sup condition (4.10) it is enough to prove that for (vh, wh) ∈ Vh×Wh,

A[(uh − πhu, zh), (vh, wh)] ≤ Ch‖u‖∗‖(vh, wh)‖s.

The discrete weak form (4.9) gives that

A[(uh − πhu, zh), (vh, wh)] = (u− πhu, vh)ω + ah(u− πhu,wh)− s(πhu, vh).

Using (4.6) we bound the first term to get

(u− πhu, vh)ω ≤ Ch2‖u‖H2(Ω)‖vh‖ω.

For the second term we use the L2-orthogonality property of πh, and (4.6) to obtain

ah(u− πhu,wh) = (∇(u− πhu),∇wh)L2(Ω) ≤ Ch‖wh‖Wh
‖u‖H2(Ω),

while for the last term we employ (4.12) to estimate

s(πhu, vh) ≤ ‖πhu‖Vh‖vh‖Vh ≤ Ch‖u‖∗‖vh‖Vh .

Theorem 4.3 (L2-error estimate). Let ω ⊂ B ⊂ Ω be defined as in Corollary 2.13. Assume

that u ∈ H2(Ω) is a solution to (4.1) and let (uh, zh) ∈ Vh ×Wh be the solution to (4.9).

Then there exist C > 0 and κ ∈ (0, 1) such that for all k, h > 0 with kh . 1

‖u− uh‖L2(B) ≤ C(hk)κkκ−2‖u‖∗.

Proof. Consider the residual 〈r, w〉 = ah(uh − u,w) = ah(uh, w) − (f, w)Ω, for w ∈ H1
0 (Ω).

Taking vh = 0 in (4.9) we get ah(uh, wh) = (f, wh)Ω + s∗(zh, wh), wh ∈ Wh which implies

that

〈r, w〉 = ah(uh, w)− (f, w)Ω − ah(uh, πszw) + ah(uh, πszw)

= ah(uh, w − πszw)− (f, w − πszw)Ω + s∗(zh, πszw), w ∈ H1
0 (Ω).
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Using (4.11) and (4.6) we estimate the first term

ah(uh, w − πszw) ≤ C‖uh‖Vh(h−1‖w − πszw‖L2(Ω) + ‖w − πszw‖H1(Ω))

≤ C‖uh‖Vh‖w‖H1(Ω) ≤ Ch‖u‖∗‖w‖H1(Ω),

since, due to Lemma 4.2 and (4.12)

‖uh‖Vh ≤ ‖uh − πhu‖Vh + ‖πhu‖Vh ≤ Ch‖u‖∗.

The second term is bounded by using (4.6)

(f, w − πszw)Ω ≤ ‖f‖L2(Ω)‖w − πszw‖L2(Ω) ≤ Ch‖f‖L2(Ω)‖w‖H1(Ω)

and the last term by using Lemma 4.2, the Poincaré inequality and the H1-stability (4.5)

s∗(zh, πszw) ≤ ‖zh‖Wh
‖πszw‖Wh

≤ Ch‖u‖∗‖w‖H1(Ω).

Hence the following residual norm estimate holds

‖r‖H−1(Ω) ≤ Ch(‖u‖∗ + ‖f‖L2(Ω)) ≤ Ch‖u‖∗.

Using the continuum estimate in Lemma 2.15 for u − uh we obtain the following error

estimate

‖u− uh‖L2(B) ≤ C(‖u− uh‖L2(ω) + ‖r‖H−1(Ω))
κ‖u− uh‖1−κL2(Ω).

By (4.6) and Lemma 4.2 we have the bounds

‖u− uh‖L2(ω) ≤ ‖u− πhu‖L2(ω) + ‖uh − πhu‖L2(ω)

≤ Ch‖u‖H1(Ω) + Ch‖u‖∗
≤ Ch‖u‖∗
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and

‖u− uh‖L2(Ω) ≤ ‖u− πhu‖L2(Ω) + ‖uh − πhu‖L2(Ω)

≤ Ch2‖u‖H2(Ω) + Ch−1k−2‖uh − πhu‖Vh
≤ C

(
(h2 + k−2)‖u‖H2(Ω) + ‖u‖L2(Ω)

)
≤ Ck−2‖u‖∗

thus leading to the conclusion.

Theorem 4.4 (H1-error estimate). Let ω ⊂ B ⊂ Ω be defined as in Corollary 2.13. Assume

that u ∈ H2(Ω) is a solution to (4.1) and let (uh, zh) ∈ Vh ×Wh be the solution to (4.9).

Then there exist C > 0 and κ ∈ (0, 1) such that for all k, h > 0 with kh . 1

‖u− uh‖H1(B) ≤ C(hk)κ‖u‖∗.

Proof. We employ a similar argument as in the proof of Theorem 4.3 with the same estimates

for the residual norm and the L2-errors in ω and Ω, only now using the continuum estimate

in Corollary 2.14 to obtain

‖u− uh‖H1(B) ≤ Ck(‖u− uh‖L2(ω) + ‖r‖H−1(Ω))
κ(‖u− uh‖L2(Ω) + ‖r‖H−1(Ω))

1−κ

≤ Ckhκ(k−2 + h)1−κ‖u‖∗,

which ends the proof.

Let us remark that under the assumption k2h . 1, the estimate in Theorem 4.4

becomes

‖u− uh‖H1(B) ≤ C(hk2)κk−1‖u‖∗,

and combining Theorems 4.3 and 4.4 we obtain the following result.

Corollary 4.5. Let ω ⊂ B ⊂ Ω be defined as in Corollary 2.13. Assume that u ∈ H2(Ω)

is a solution to (4.1) and let (uh, zh) ∈ Vh ×Wh be the solution to (4.9). Then there exist

C > 0 and κ ∈ (0, 1) such that for all k, h > 0 with k2h . 1

k‖u− uh‖L2(B) + ‖u− uh‖H1(B) ≤ C(hk2)κk−1‖u‖∗.

Comparing this with the well-posed boundary value problem (4.2) and the sharp

bounds (4.3) and (4.4), we note that the k−1‖u‖∗ term in the above estimate is analogous
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to the well-posed case term ‖f‖L2(Ω).

4.2.1 Data perturbations

The analysis above can also handle the perturbed data

ũω := uω + δu, f̃ := f + δf,

with the unperturbed data uω, f in (4.1), and perturbations δu ∈ L2(ω), δf ∈ H−1(Ω)

measured by

δ(ũω, f̃) := ‖δu‖L2(ω) + ‖δf‖H−1(Ω).

The saddle points (uh, zh) ∈ Vh ×Wh of the correspondingly perturbed Lagrangian satisfy

A[(uh, zh), (vh, wh)] = (ũω, vh)ω + 〈f̃ , wh〉H−1, H1
0
, ∀(vh, wh) ∈ Vh ×Wh. (4.13)

Lemma 4.6. Assume that u ∈ H2(Ω) is a solution to the unperturbed problem (4.1) and

let (uh, zh) ∈ Vh ×Wh be the solution to the perturbed problem (4.13). Then there exists

C > 0 such that for all h ∈ (0, 1)

‖(uh − πhu, zh)‖s ≤ C(h‖u‖∗ + δ(ũω, f̃)).

Proof. Proceeding as in the proof of Lemma 4.2, the weak form gives

A[(uh − πhu, zh), (vh, wh)] = (u− πhu, vh)ω + ah(u− πhu,wh)− s(πhu, vh)

+ (δu, vh)ω + 〈δf, wh〉.

We bound the perturbation terms by

(δu, vh)ω + 〈δf, wh〉 ≤ ‖δu‖ω‖vh‖ω + C‖δf‖H−1(Ω)‖wh‖Wh

≤ Cδ(ũω, f̃)‖(vh, wh)‖s

and we conclude by using the previously derived bounds for the other terms.

Theorem 4.7 (L2-error estimate). Let ω ⊂ B ⊂ Ω be defined as in Corollary 2.13. Assume

that u ∈ H2(Ω) is a solution to the unperturbed problem (4.1) and let (uh, zh) ∈ Vh ×Wh

be the solution to the perturbed problem (4.13). Then there exist C > 0 and κ ∈ (0, 1) such
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that for all k, h > 0 with kh . 1

‖u− uh‖L2(B) ≤ C(hk)κkκ−2(‖u‖∗ + h−1δ(ũω, f̃)).

Proof. Following the proof of Theorem 4.3, the residual satisfies

〈r, w〉 = ah(uh, w − πszw)− (f, w − πszw)Ω + s∗(zh, πszw) + 〈δf, πszw〉, w ∈ H1
0 (Ω)

and

‖r‖H−1(Ω) ≤ C(‖uh‖Vh + h‖f‖L2(Ω) + ‖zh‖Wh
+ ‖δf‖H−1(Ω)).

Bounding the first term in the right-hand side by Lemma 4.6 and (4.12)

‖uh‖Vh ≤ ‖uh − πhu‖Vh + ‖πhu‖Vh ≤ C(h‖u‖∗ + δ(ũω, f̃))

and the third one by Lemma 4.6 again, we obtain

‖r‖H−1(Ω) ≤ Ch(‖u‖∗ + ‖f‖L2(Ω)) + Cδ(ũω, f̃) ≤ C(h‖u‖∗ + δ(ũω, f̃)).

The continuum estimate in Lemma 2.15 applied to u− uh gives

‖u− uh‖L2(B) ≤ C
(
h‖u‖∗ + δ(ũω, f̃)

)κ
‖u− uh‖1−κL2(Ω),

where ‖u− uh‖L2(ω) was bounded by using Lemma 4.6 and (4.6). Then the bound

‖u− uh‖L2(Ω) ≤ ‖u− πhu‖L2(Ω) + ‖uh − πhu‖L2(Ω)

≤ C(h2‖u‖H2(Ω) + h−1k−2‖uh − πhu‖Vh)

≤ C(h2‖u‖H2(Ω) + k−2‖u‖∗ + h−1k−2δ(ũω, f̃))

≤ Ck−2(‖u‖∗ + h−1δ(ũω, f̃))

concludes the proof.

Theorem 4.8 (H1-error estimate). Let ω ⊂ B ⊂ Ω be defined as in Corollary 2.13. Assume

that u ∈ H2(Ω) is a solution to the unperturbed problem (4.1) and let (uh, zh) ∈ Vh ×Wh

be the solution to the perturbed problem (4.13). Then there exist C > 0 and κ ∈ (0, 1) such

that for all k, h > 0 with kh . 1

‖u− uh‖H1(B) ≤ C(hk)κ(‖u‖∗ + h−1δ(ũω, f̃)).



Chapter 4. Helmholtz equation 66

Proof. Following the proof of Theorem 4.7, we now use Corollary 2.14 to derive

‖u− uh‖H1(B) ≤ Ck(‖u− uh‖L2(ω) + ‖r‖H−1(Ω))
κ(‖u− uh‖L2(Ω) + ‖r‖H−1(Ω))

1−κ

≤ Ck
(
h‖u‖∗ + δ(ũω, f̃)

)κ(
(k−2 + h)(‖u‖∗ + h−1δ(ũω, f̃))

)1−κ

≤ Ckhκ(k−2 + h)1−κ(‖u‖∗ + h−1δ(ũω, f̃)),

which ends the proof.

Analogous to the unpolluted case, if k2h . 1 the above result becomes

‖u− uh‖H1(B) ≤ C(hk2)κk−1(‖u‖∗ + h−1δ(ũω, f̃)),

and combining Theorems 4.7 and 4.8 gives the following.

Corollary 4.9. Let ω ⊂ B ⊂ Ω be defined as in Corollary 2.13. Assume that u ∈ H2(Ω)

is a solution to the unperturbed problem (4.1) and (uh, zh) ∈ Vh×Wh be the solution to the

perturbed problem (4.13). Then there exist C > 0 and κ ∈ (0, 1) such that for all k, h > 0

with k2h . 1

k‖u− uh‖L2(B) + ‖u− uh‖H1(B) ≤ C(hk2)κk−1(‖u‖∗ + h−1δ(ũω, f̃)).

4.3 Numerical examples

We illustrate the above theoretical results for the unique continuation problem

(4.1) with some numerical examples. The implementation of our method and all the com-

putations have been carried out in FEniCS [2]. The domain Ω is the unit square, and the

triangulation is uniform with alternating left and right diagonals. Various numerical exper-

iments indicate that for the stabiliser s the parameter γ = 10−5 is a near-optimal value for

different kinds of geometries and solutions. We show in Figure 4.2 an example of the effect

of this parameter on the approximation error for a homogeneous solution.

In the light of the convexity assumptions in Section 2.4, we shall consider two

different geometric settings: one in which the data is continued in the convex direction,

inside the convex hull of ω, and one in which the solution is continued in the non-convex

direction, outside the convex hull of ω.
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(a) Convex direction (4.14).
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(b) Non-convex direction (4.15).
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(c) Non-convex direction (4.16).

Figure 4.1: Computational domains for Example 4.11. Data set ω (grey) and error mea-
surement regions B (dotted).

In the convex setting, given in Figure 4.1a, we take

ω = Ω \ [0.1, 0.9]× [0.25, 1], B = Ω \ [0.1, 0.9]× [0.95, 1]. (4.14)

This example does not correspond exactly to the specific geometric setting in Corollary 2.13,

but all the theoretical results are valid in this case as proven in the following.

Example 4.10. Let ω ⊂ B ⊂ Ω be defined by (4.14) (Figure 4.1a). Then the stability

estimates in Corollaries 2.13 and 2.14, and Lemma 2.15 hold true.

Proof. Consider an extended rectangle Ω̃ ⊃ Ω such that the unit square Ω is centred horizon-

tally and touches the upper side of Ω̃, and ω̃ ⊃ ω and B̃ ⊃ B are defined as in Corollary 2.13.

Choose a smooth cutoff function χ such that χ = 1 in Ω \ ω and χ = 0 in Ω̃ \ Ω. Applying

now Corollary 2.13 for ω̃, B̃, Ω̃ and χu we get

‖u‖H1(B\ω) ≤ C‖χu‖H1(B̃\ω̃) ≤ C(‖χu‖H1(ω̃) + ‖∆(χu) + k2χu‖L2(Ω̃))
κ‖χu‖1−κ

H1(Ω̃)

≤ C(‖u‖H1(ω) + ‖∆u+ k2u‖L2(Ω))
κ‖u‖1−κH1(Ω),

where we have used that the commutator [∆, χ]u is supported in ω. A similar proof is valid

for the estimates in Corollary 2.14 and Lemma 2.15.
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(a) k = 10.
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(b) k = 50.

Figure 4.2: Varying the stabilisation parameter γ for u(x, y) = sin(kx/
√

2) cos(ky/
√

2) in
the convex direction (4.14) and mesh size h ≈ 0.005.

We will give results for two kinds of solutions: a Gaussian bump, that is indepen-

dent of the wave number, centred on the top side of the unit square, Ω given in Example 4.11,

and a variation of the well-known Hamadard solution given in Example 4.12.

Example 4.11. Let the Gaussian bump

u(x, y) = exp

(
−(x− 0.5)2

2σx
− (y − 1)2

2σy

)
, σx = 0.01, σy = 0.1,

be a non-homogeneous solution of (4.1) with f = −∆u− k2u and uω = u|ω.

Figure 4.3a shows that for Example 4.11, when k = 10, the numerical results

strongly agree with the convergence rates expected from Theorems 4.3 and 4.4, respectively,

and Lemma 4.2, i.e. sub-linear convergence for the relative error in the L2- and H1-norms,

and quadratic convergence for Jh(uh, uh).
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(a) k = 10.
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(b) k = 50.

Figure 4.3: Convergence in B for Example 4.11 in the convex direction (4.14).

Although in Figure 4.3b we do obtain smaller errors and better than expected

convergence rates when k = 50, various numerical experiments indicate that the behaviour

of this example when increasing the wave number k is rather an exception. For oscillatory

solutions, such as those in Example 4.12, with fixed n, or the homogeneous solution u(x, y) =

sin(kx/
√

2) cos(ky/
√

2), we have noticed that the stability deteriorates when increasing the

wave number as shown in Figures 4.4 and 4.5 for unstructured meshes with 512 elements

on a side.

(a) k = 10. (b) k = 50.

Figure 4.4: Absolute errors for u(x, y) = sin(kx/
√

2) cos(ky/
√

2) in the convex direction
(4.14). Mesh size h ≈ 0.0025.
.
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(a) k = 10. (b) k = 50.

Figure 4.5: Absolute errors for u(x, y) = sin(kx/
√

2) cos(ky/
√

2) in the non-convex direction
(4.16). Mesh size h ≈ 0.0025.
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(a) Non-convex direction (4.15).
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(b) Non-convex direction (4.16).

Figure 4.6: Convergence in B for Example 4.11, k = 10.

In the non-convex setting we let

ω = (0.25, 0.75)× (0, 0.5), B = (0.125, 0.875)× (0, 0.95), (4.15)

and the concentric discs

ω = B((0.5, 0.5), 0.25), B = B((0.5, 0.5), 0.45), (4.16)

respectively shown in Figures 4.1b and 4.1c, and we see in Figure 4.6 that the convergence
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order decreases, especially for (4.15). In Figure 4.7 we considered an unstructured mesh

with 512 elements on a side and we notice that the stability strongly deteriorates when one

continues the solution outside the convex hull of ω.

(a) Convex direction (4.14). (b) Non-convex direction (4.15).

Figure 4.7: Absolute errors in Ω for Example 4.11, k = 10. Mesh size h ≈ 0.0025.

Let us recall from Chapter 1 that the stability estimates for the unique continuation

problem are closely related to those for the severely ill-posed Cauchy problem. It is thus of

interest to consider the following variation of the well-known Hadamard’s Example 1.11.

Example 4.12. Let n ∈ N and consider the Cauchy problem
∆u+ k2u = 0 in Ω = (0, π)× (0, 1),

u(x, 0) = 0 for x ∈ [0, π],

uy(x, 0) = sin(nx) for x ∈ [0, π],

whose solution for n > k is given by u(x, y) = 1√
n2−k2

sin(nx) sinh(
√
n2 − k2y), for n = k

by u(x, y) = sin(kx)y, and for n < k by u(x, y) = 1√
k2−n2

sin(nx) sin(
√
k2 − n2y).

It can be seen in Figure 4.8a that the convergence rates are better than predicted

for the convex setting

ω = Ω \ [π4 ,
3π
4 ]× [0, 0.25], B = Ω \ [π4 ,

3π
4 ]× [0, 0.95], (4.17)

i.e. sub-linear convergence for the relative error in the L2- and H1-norms. We observe

quadratic convergence for the jump stabiliser Jh(uh, uh), although one can notice that its
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values visibly increase compared to Example 4.11.
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(a) Convex direction (4.17).
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(b) Non-convex direction (4.18).

Figure 4.8: Convergence in B for Example 4.12, k = 10, n = 12.

When continuing the solution in the non-convex direction, the stability strongly

deteriorates and the numerical approximation doesn’t seem to reach the convergence regime,

as it can be seen in Figure 4.8b for the non-convex setting

ω = (π4 ,
3π
4 )× (0, 0.5), B = (π8 ,

7π
8 )× (0, 0.95). (4.18)

Data perturbations. We exemplify data perturbations by polluting f and uω

in (4.1) with uniformly distributed values in [−h, h], respectively [−h2, h2], on every node

of the mesh. In agreement with Theorems 4.7 and 4.8, it can be seen in Figure 4.9 that the

perturbations are visible for an O(h) amplitude, but not for an O(h2) one.

10−3 10−2

mesh size h

10−3

10−2

L2-error
H1-error

(a) Perturbation O(h).

10−3 10−2

mesh size h

10−3

10−2

L2-error
H1-error

(b) Perturbation O(h2).

Figure 4.9: Convergence in B when perturbing f and uω in Example 4.11 for (4.14), k = 10.
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We conclude by emphasising the role of geometry in the convergence of the method.

For unique continuation inside the convex hull of the data set, the continuum stability

estimate is robust in the wave number (or the stability constant grows linearly in the wave

number, depending on the norms), as discussed in Section 2.4, and we observe that the

discrete solution converges at a sub-linear rate that reflects the continuum Hölder stability.

When the solution is approximated outside the convex hull of the data set, the continuum

stability deteriorates since the stability constant might grow very fast in the wave number,

as shown in Example 2.10. In this case, we notice from the numerical experiments that the

convergence rate decreases and, in some cases, it might be hard to observe any convergence

unless very fine meshes are considered.



Chapter 5

Diffusion-dominated problems

In this chapter based on [22] we consider the unique continuation problem for the

convection–diffusion equation

Lu := −µ∆u+ β · ∇u = f in Ω, (5.1)

where Ω ⊂ Rn is open, bounded and connected, µ > 0 is the diffusion coefficient and

β ∈ [W 1,∞(Ω)]n is the convective velocity field. We assume that there exists a solution

u ∈ H2(Ω) satisfying (5.1). For an open and connected subset ω ⊂ Ω, define the perturbed

restriction ũω := u|ω+δu, where δu ∈ L2(ω) is an unknown function modelling measurement

noise. Here the coefficients µ and β are assumed to be known. Hence, given f ∈ L2(Ω) and

ũω ∈ L2(ω), the perturbed unique continuation problem we will consider consists in finding

u ∈ H2(Ω) such that −µ∆u+ β · ∇u = −f in Ω,

u = ũω in ω.

The aim is to design a finite element method for unique continuation with weakly

consistent regularisation following the approach described in Chapter 3. In the present

analysis we consider the regime where diffusion dominates and in the following Chapter 6

we treat the one with dominating convective transport. To make this more precise we recall

the Péclet number associated to a given length scale l by

Pe(l) :=
|β|l
µ
,

for a suitable norm |·| for β. If h denotes the characteristic length scale of the computation,

we define the diffusive regime by Pe(h) < 1 and the convective regime by Pe(h) > 1. It

74



Chapter 5. Diffusion-dominated problems 75

is known that the character of the system changes drastically in the two regimes and we

therefore need to apply different concepts of stability in the two cases. In this chapter we

assume that the Péclet number is small and we use an approach similar to that used in

Chapter 4 for the Helmholtz equation – we combine conditional stability estimates for the

physical problem with optimal numerical stability obtained using a bespoke weakly consis-

tent stabilising term. For high Péclet numbers on the other hand, we prove in Chapter 6

weighted estimates directly on the discrete solution, that reflect the anisotropic character

of the convection–diffusion problem.

In the case of optimal control problems subject to convection-diffusion problems

that are well-posed, there are several works in the literature on stabilised finite element

methods. In [27] the authors considered stabilisation using a Galerkin least squares ap-

proach in the Lagrangian. Symmetric stabilisation in the form of local projection stabil-

isation was proposed in [6] and using penalty on the gradient jumps in [37, 61]. The key

difference between the well-posed case and the ill-posed case that we consider herein is that

we can not use the stability of neither the forward nor the backward equations. Crucial

instead is the convergence of the weakly consistent stabilising terms and the stability of the

continuous problem. Such considerations lead to results both in the case of high and low

Péclet numbers, but the different stability properties in the two regimes lead to a different

analysis for each case.

5.1 Discretisation

As in Section 3.2, let Vh denote the space of piecewise affine finite element functions

defined on a conforming computational mesh Th = {K}. Th consists of triangular elements

K with diameter hK and the global mesh size is given by h = max
K∈Th

hK . We assume that

the family {Th} is quasi-uniform. The interior faces of the triangulation will be denoted by

Fi, the jump of a quantity across a face F by J·KF , and the unit normal by n.

Let β ∈ [W 1,∞(Ω)]n and adopt the shorthand notation

|β|:= ‖β‖[L∞(Ω)]n .

We consider the diffusion-dominated regime given by the low mesh Péclet number

Pe(h) :=
|β|h
µ

< 1. (5.2)

We recall from Section 2.3 that the constant of the stability estimate depends exponentially



Chapter 5. Diffusion-dominated problems 76

on P̃e = 1 + |β|
µ and we will also assume that P̃e is small. We will denote by C a generic

positive constant independent of the mesh size and the Péclet number. Let πh : L2(Ω) 7→ Vh

denote the standard L2-projection on Vh, which for k = 1, 2 and m = 0, k − 1 satisfies

‖πhu‖Hm(Ω) ≤ C‖u‖Hm(Ω), u ∈ Hm(Ω),

‖u− πhu‖Hm(Ω) ≤ Chk−m‖u‖Hk(Ω), u ∈ Hk(Ω),

see Appendix A. For convenience we recall the standard inner products with the induced

norms

(vh, wh)Ω :=

�
Ω
vhwh dx,

〈vh, wh〉∂Ω :=

�
∂Ω
vhwh ds,

and introduce the following bilinear form used in the weak formulation of (5.1)

ah(vh, wh) := (β · ∇vh, wh)Ω + (µ∇vh,∇wh)Ω − 〈µ∇vh · n,wh〉∂Ω.

As discussed in Chapter 3, the discrete regularisation will be driven by interior penalty, but

here we rescale it using the physical parameters µ and β, and define

Jh(vh, wh) := γ
∑
F∈Fi

�
F
h(µ+ |β|h)J∇vh · nKF J∇wh · nKF ds.

We consider the scaled inner product

sω(vh, wh) := ((µ+ |β|h)vh, wh)ω,

and then sum

s(vh, wh) := Jh(vh, wh) + sω(vh, wh).

For the dual stabilisers we define

s∗(vh, wh) := γ∗
( 〈

(µh−1 + |β|)vh, wh
〉
∂Ω

+ (µ∇vh,∇wh)Ω + Jh(vh, wh)
)
.

The parameters γ and γ∗ in Jh and s∗, respectively, are fixed at the implementation level

and we emphasize that our analysis covers the choice γ = 1 = γ∗ to avoid the proliferation

of constants.

Notice that here the interior penalty Jh and the inner product on ω are scaled by
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a factor of µ+ |β|h. After this scaling, the Poincaré-type inequality Lemma 3.2 becomes

‖(µ 1
2h+ |β| 12h 3

2 )vh‖H1(Ω) ≤ Cγ−
1
2 s(vh, vh)

1
2 , ∀vh ∈ Vh, (5.3)

and Lemma 3.3 gives the weak consistency inequality

Jh(πhu, πhu) ≤ Cγ(µ+ |β|h)h2|u|2H2(Ω), ∀u ∈ H2(Ω). (5.4)

We can then use the general framework in Chapter 3 to write the finite element

method for unique continuation as follows. Consider a discrete Lagrange multiplier zh ∈ Vh
and look for the saddle point of the functional

Lh(uh, zh) := 1
2sω(uh − ũω, uh − ũω) + ah(uh, zh)− (f, zh)Ω

+ 1
2Jh(uh, uh)− 1

2s
∗(zh, zh),

where we recall that ũω = u|ω+δu and u ∈ H2(Ω) is a solution to (5.1). The (primal)

stabiliser used for the discrete solution uh is the interior penalty Jh, and the (dual) stabiliser

used for zh is given by s∗. The optimality conditions for Lh lead to the following discrete

problem: find (uh, zh) ∈ [Vh]2 such that{
ah(uh, wh)− s∗(zh, wh) = (f, wh)Ω.

ah(vh, zh) + s(uh, vh) = sω(ũω, vh).
∀(vh, wh) ∈ [Vh]2, (5.5)

Notice that here the parameters γ and γ∗ are included in s and s∗. We observe that

by the ill-posed character of the problem, only the stabilisation operators Jh and s∗ provide

some stability to the discrete system, and the corresponding system matrix is expected to

be ill-conditioned. To quantify this effect we first prove an upper bound on the condition

number.

Proposition 5.1. The finite element formulation (5.5) has a unique solution (uh, zh) ∈
[Vh]2 and the Euclidean condition number K2 of the system matrix satisfies

K2 ≤ Ch−4.

Proof. We write (5.5) as the linear system A[(uh, zh), (vh, wh)] = (f, wh)Ω + sω(ũω, vh), for

all (vh, wh) ∈ [Vh]2, where

A[(uh, zh), (vh, wh)] := ah(uh, wh)− s∗(zh, wh) + ah(vh, zh) + s(uh, vh).
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Since A[(uh, zh), (uh,−zh)] = s(uh, uh) + s∗(zh, zh), using (5.3) the following inf-sup condi-

tion holds

Ψh := inf
(uh,zh)∈[Vh]2

sup
(vh,wh)∈[Vh]2

A[(uh, zh), (vh, wh)]

‖(uh, zh)‖L2(Ω)‖(vh, wh)‖L2(Ω)
≥ Cµ(1 + Pe(h))h2.

This provides the existence of a unique solution for the linear system. We use [33, Theorem

3.1] to estimate the condition number by

K2 ≤ C
Υh

Ψh
, (5.6)

where

Υh := sup
(uh,zh)∈[Vh]2

sup
(vh,wh)∈[Vh]2

A[(uh, zh), (vh, wh)]

‖(uh, zh)‖L2(Ω)‖(vh, wh)‖L2(Ω)
.

We recall the discrete inverse inequality (A.1)

‖∇vh‖L2(K)≤ Ch−1‖vh‖L2(K), ∀vh ∈ P1(K). (5.7)

We also recall the continuous trace inequality (A.2)

‖v‖L2(∂K)≤ C(h−
1
2 ‖v‖L2(K)+h

1
2 ‖∇v‖L2(K)), ∀v ∈ H1(K), (5.8)

and the discrete one (A.3)

‖∇vh · n‖L2(∂K)≤ Ch−
1
2 ‖∇vh‖L2(K), ∀vh ∈ P1(K). (5.9)

Using the Cauchy-Schwarz inequality together with (5.9) and (5.7) we get

Jh(uh, vh) = γµ(1 + Pe(h))
∑
F∈Fi

�
F
hJ∇uh · nKF J∇vh · nKF ds

≤ Cµ(1 + Pe(h))h−2‖uh‖L2(Ω)‖vh‖L2(Ω),

hence

s(uh, vh) ≤ Cµ(1 + Pe(h))h−2‖uh‖L2(Ω)‖vh‖L2(Ω).

Combining this with the Cauchy-Schwarz inequality and the inequalities (5.7) and (5.8), we

obtain

−s∗(zh, wh) ≤ Cµ(1 + Pe(h))h−2‖zh‖L2(Ω)‖wh‖L2(Ω).
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Again due to the Cauchy-Schwarz inequality, and trace and inverse inequalities, we have

ah(uh, wh) = (β · ∇uh, wh)Ω + µ
∑
F∈Fi

�
F
hJ∇uh · nKFwh ds

≤ Cµ(1 + Pe(h))h−2‖uh‖L2(Ω)‖wh‖L2(Ω),

Collecting the above estimates we have Υh ≤ Cµ(1 + Pe(h))h−2, and we conclude by

(5.6).

5.2 Error estimates

The error analysis proceeds in two main steps:

• First we prove that the stabilising terms and the data fitting term must vanish at an

optimal rate for smooth solutions, with constant independent of the physical stability

(Proposition 5.4).

• Then we show that the residual of the PDE is bounded by the stabilising terms

and the data fitting term. Using this result together with the first step and the

continuous stability estimates in Section 2.3, we prove L2- and H1-convergence results

(Theorems 5.6 and 5.7).

To quantify stabilisation and data fitting for (vh, wh) ∈ [Vh]2 we introduce the norm

‖(vh, wh)‖2s:= s(vh, vh) + s∗(wh, wh).

We also define the “continuity norm” on H
3
2

+ε(Ω), for any ε > 0,

‖v‖]:= |β|
1
2 ‖h− 1

2 v‖Ω + µ
1
2 ‖∇v‖Ω + µ

1
2h

1
2 ‖∇v · n‖∂Ω,

which scales as a discrete H1-norm. Using standard approximation properties and the trace

inequality (5.8), we have

‖u− πhu‖]≤ C(µ
1
2h+ |β| 12h 3

2 )|u|H2(Ω).

Using (5.4) and interpolation

‖(u− πhu, 0)‖2s = s(u− πhu, u− πhu) = Jh(πhu, πhu) + sω(u− πhu, u− πhu)

≤ C(µh2 + |β|h3)|u|2H2(Ω),
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where we used that Jh(u, vh) = 0, since u ∈ H2(Ω). Hence it follows that for u ∈ H2(Ω)

‖(u− πhu, 0)‖s+‖u− πhu‖]≤ C(µ
1
2h+ |β| 12h 3

2 )|u|H2(Ω). (5.10)

Observe that, when Pe(h) < 1, the first term dominates and the estimate is O(h), whereas

when Pe(h) > 1 the bound is O(h
3
2 ). We note in passing that the same estimates hold for

the nodal interpolant.

Lemma 5.2 (Consistency). Assume that u ∈ H2(Ω) is a solution to (5.1) and let (uh, zh) ∈
[Vh]2 be the solution to (5.5), then

ah(πhu− uh, wh) + s∗(zh, wh) = ah(πhu− u,wh),

and

−ah(vh, zh) + s(πhu− uh, vh) = Jh(πhu− u, vh) + sω(πhu− ũω, vh),

for all (vh, wh) ∈ [Vh]2.

Proof. The first claim follows from the definition of ah, since

ah(uh, wh)− s∗(zh, wh) = (f, wh)Ω = (β · ∇u− µ∆u,wh)Ω = ah(u,wh),

where in the last equality we integrated by parts. The second claim follows similarly from

ah(vh, zh) + s(uh, vh) = sω(ũω, vh),

leading to

−ah(vh, zh) + s(πhu− uh, vh) = s(πhu, vh)− sω(Ũω, vh)

= Jh(πhu− u, vh) + sω(πhu− ũω, vh).

Lemma 5.3 (Continuity). Assume the low Péclet regime (5.2) and that |β|1,∞≤ C|β|. Let

v ∈ H2(Ω) and wh ∈ Vh, then

ah(v, wh) ≤ C‖v‖]‖(0, wh)‖s.
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Proof. Writing out the terms of ah and integrating by parts in the advective term leads to

ah(v, wh) = −(v, β ·∇wh)Ω−(v∇·β,wh)Ω+〈vβ · n,wh〉∂Ω+(µ∇v,∇wh)Ω−〈µ∇v · n,wh〉∂Ω .

Using the Cauchy-Schwarz inequality and the trace inequality (5.8) for v, we see that

〈vβ · n,wh〉∂Ω + (µ∇v,∇wh)Ω − 〈µ∇v · n,wh〉∂Ω ≤ C‖v‖]‖(0, wh)‖s.

By the Cauchy-Schwarz inequality and a Poincaré inequality for wh we bound

−(v∇ · β,wh)Ω ≤ C|β|1,∞‖v‖Ω‖wh‖Ω≤ C
|β|1,∞
|β| Pe(h)

1
2 ‖v‖]‖(0, wh)‖s.

Under the assumption |β|1,∞≤ C|β|, we get

−(v∇ · β,wh)Ω ≤ C Pe(h)
1
2 ‖v‖]‖(0, wh)‖s.

We bound the remaining term by

−(v, β · ∇wh)Ω ≤ |β|
1
2h

1
2 ‖v‖]‖∇wh‖Ω≤ C Pe(h)

1
2 ‖v‖]‖(0, wh)‖s.

Finally, exploiting the low Péclet regime Pe(h) < 1, we obtain the conclusion.

Proposition 5.4 (Convergence of regularisation). Assume the low Péclet regime (5.2) and

that |β|1,∞≤ C|β|. Assume that u ∈ H2(Ω) is a solution to (5.1) and let (uh, zh) ∈ [Vh]2 be

the solution to (5.5), then

‖(πhu− uh, zh)‖s≤ C(µ
1
2h+ |β| 12h 3

2 )(|u|H2(Ω)+h
−1‖δu‖ω).

Proof. Denoting eh = πhu− uh, it holds by definition that

‖(eh, zh)‖2s= ah(eh, zh) + s∗(zh, zh)− ah(eh, zh) + s(eh, eh).

Using both claims in Lemma 5.2 we may write

‖(eh, zh)‖2s= ah(πhu− u, zh) + Jh(πhu− u, eh) + sω(πhu− ũω, eh).

Lemma 5.3 gives the bound

ah(πhu− u, zh) ≤ C‖πhu− u‖]‖(0, zh)‖s.
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The other terms are simply bounded using the Cauchy-Schwarz inequality as follows

Jh(πhu− u, eh) + sω(πhu− ũω, eh) ≤ (‖(πhu− u, 0)‖s+(µ
1
2 + |β| 12h 1

2 )‖δu‖ω)‖(eh, 0)‖s.

Collecting the above bounds we have

‖(eh, zh)‖2s≤ C(‖πhu− u‖]+‖(πhu− u, 0)‖s+(µ
1
2 + |β| 12h 1

2 )‖δu‖ω)‖(eh, zh)‖s,

and the claim follows by applying the approximation (5.10).

Lemma 5.5 (Covergence of the convective term). Assume the low Péclet regime (5.2) and

that |β|1,∞≤ C|β|. Let u ∈ H2(Ω) be a solution to (5.1), (uh, zh) ∈ [Vh]2 the solution to

(5.5) and w ∈ H1
0 (Ω), then

(β · ∇uh, w − πhw)Ω ≤ C(µ+ |β|)(h‖u‖H2(Ω)+‖δu‖ω)‖w‖H1(Ω),

Proof. Denote by βh ∈ [Vh]n a piecewise linear approximation of β that is L∞-stable and

for which

‖β − βh‖0,∞≤ Ch|β|1,∞,

and recall the approximation estimate in [13, Theorem 2.2]

inf
xh∈Vh

‖h 1
2 (βh · ∇uh − xh)‖Ω≤ C

( ∑
F∈Fi

‖hJβh · ∇uhK‖2F

) 1
2

≤ C|β| 12Jh(uh, uh)
1
2 . (5.11)

We also use Proposition 5.4 and the jump inequality (5.4) to estimate

Jh(uh, uh)
1
2 ≤ Jh(uh − πhu, uh − πhu)

1
2 + Jh(πhu, πhu)

1
2

≤ C(µ
1
2h+ |β| 12h 3

2 )(|u|H2(Ω)+h
−1‖δu‖ω) + C(µ

1
2 + |β| 12h 1

2 )h|u|H2(Ω),

obtaining

Jh(uh, uh)
1
2 ≤ C(µ

1
2h+ |β| 12h 3

2 )(|u|H2(Ω)+h
−1‖δu‖ω). (5.12)

We now write

(β · ∇uh, w − πhw)Ω = (βh · ∇uh, w − πhw)Ω + ((β − βh) · ∇uh, w − πhw)Ω,
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and using orthogonality, (5.11), (5.12), interpolation and (5.2), we bound the first term by

(βh · ∇uh, w − πhw)Ω ≤ C|β|
1
2h−

1
2Jh(uh, uh)

1
2h‖w‖H1(Ω)

≤ C|β| 12h 1
2 (µ

1
2 + |β| 12h 1

2 )(h|u|H2(Ω)+‖δu‖ω)‖w‖H1(Ω)

≤ C(µ+ |β|h)(h|u|H2(Ω)+‖δu‖ω)‖w‖H1(Ω).

We now use the Poincaré-type inequality (5.3) and interpolation to bound the second term

((β − βh) · ∇uh, w − πhw)Ω ≤ Ch2|β|1,∞‖∇uh‖Ω‖w‖H1(Ω)

≤ Ch|β|1,∞(µ
1
2 + |β| 12h 1

2 )−1s(uh, uh)
1
2 ‖w‖H1(Ω)

≤ Ch|β|1,∞(h|u|H2(Ω)+‖u‖Ω+‖δu‖ω)‖w‖H1(Ω)

≤ Ch|β|1,∞(‖u‖H2(Ω)+‖δu‖ω)‖w‖H1(Ω)

since due to Proposition 5.4 and inequality (5.4)

s(uh, uh)
1
2 ≤ s(uh − πhu, uh − πhu)

1
2 + Jh(πhu, πhu)

1
2 + sω(πhu, πhu)

1
2

≤ C(µ
1
2 + |β| 12h 1

2 )(h|u|H2(Ω)+‖δu‖ω+‖u‖Ω).

Under the assumption |β|1,∞≤ C|β|, we collect the above bounds to get

(β · ∇uh, w − πhw)Ω ≤ C(µ+ |β|)(h‖u‖H2(Ω)+‖δu‖ω)‖w‖H1(Ω).

We now combine these results with the conditional stability estimates from Sec-

tion 2.3 to obtain error bounds for the discrete solution. For this purpose, we consider an

open bounded set B ⊂ Ω that contains the data region ω such that B \ ω does not touch

the boundary of Ω. Then the estimates in Lemma 2.7 and Corollary 2.9 hold true by a

covering argument, see e.g. [52], and we obtain local error estimates in B.

Theorem 5.6 (L2-error estimate). Assume the low Péclet regime (5.2) and that |β|1,∞≤
C|β|. Consider ω ⊂ B ⊂ Ω such that B \ ω ⊂ Ω. Assume that u ∈ H2(Ω) is a solution to

(5.1) and let (uh, zh) ∈ [Vh]2 the solution to (5.5), then there exists κ ∈ (0, 1) such that

‖u− uh‖L2(B)≤ ChκeCP̃e
2

(‖u‖H2(Ω)+h
−1‖δu‖ω),

where P̃e = 1 + |β|/µ.
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Proof. Let us consider the residual defined by 〈r, w〉 = a(uh, w) − 〈f, w〉, for w ∈ H1
0 (Ω).

Using (5.5) we obtain

〈r, w〉 = a(uh, w − πhw)− 〈f, w − πhw〉+ a(uh, πhw)− 〈f, πhw〉
= a(uh, w − πhw)− 〈f, w − πhw〉+ s∗(zh, πhw).

We split the first term in the right-hand side into convective and non-convective terms, and

for the latter we integrate by parts on each element K and use Cauchy-Schwarz followed

by the trace inequality (5.8) to get

(µ∇uh,∇(w − πhw))Ω − 〈µ∇uh · n,w − πhw〉∂Ω

=
∑
F∈Fi

�
F
µJ∇uh · nKF (w − πhw) ds

≤ Cµ(µ+ |β|h)−
1
2Jh(uh, uh)

1
2 (h−1‖w − πhw‖L2(Ω)+‖w − πhw‖H1(Ω)).

Using (5.12) and interpolation we obtain

(µ∇uh,∇(w − πhw))Ω − 〈µ∇uh · n,w − πhw〉∂Ω ≤ Cµ(h|u|H2(Ω)+‖δu‖ω)‖w‖H1(Ω).

We bound the convective term in a(uh, w − πhw) by Lemma 5.5, hence obtaining

a(uh, w − πhw) ≤ C(µ+ |β|)(h‖u‖H2(Ω)+‖δu‖ω)‖w‖H1(Ω).

The next term in the residual is bounded by

〈f, w − πhw〉 ≤ ‖f‖L2(Ω)‖w − πhw‖L2(Ω)≤ Ch‖f‖L2(Ω)‖w‖H1(Ω).

The last term left to bound from the residual is

s∗(zh, πhw) ≤ ‖(0, zh)‖s‖(0, πhw)‖s,

and using (5.9) for the jump term, together with the H1-stability of πh, we see that

‖(0, πhw)‖s ≤ C(µ
1
2 ‖∇(πhw)‖Ω+(µ

1
2 + |β| 12h 1

2 )‖∇(πhw)‖Ω+(µh−1 + |β|) 1
2 ‖πhw‖∂Ω)

≤ C(µ
1
2 + |β| 12h 1

2 )‖w‖H1(Ω),

where for the boundary term we used that w|∂Ω= 0 together with interpolation and (5.8).
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Bounding ‖(0, zh)‖s by Proposition 5.4, we get

s∗(zh, πhw) ≤ C(µ+ |β|h)(h|u|H2(Ω)+‖δu‖ω)‖w‖H1(Ω).

Collecting the above estimates we bound the residual norm by

‖r‖H−1(Ω) ≤ C(µ+ |β|)(h‖u‖H2(Ω)+‖δu‖ω) + Ch‖f‖L2(Ω)

≤ C(µ+ |β|)(h‖u‖H2(Ω)+‖δu‖ω).

We now use the stability estimate in Lemma 2.7 to write

‖u− uh‖L2(B)≤ CeCP̃e
2 (
‖u− uh‖L2(ω)+

1
µ‖r‖H−1(Ω)

)κ
‖u− uh‖1−κL2(Ω)

.

By Proposition 5.4 we have

‖u− uh‖L2(ω) ≤ ‖u− πhu‖L2(ω)+‖uh − πhu‖L2(ω)

≤ Ch2|u|H2(Ω)+Ch|u|H2(Ω)+C‖δu‖ω.
≤ C(h|u|H2(Ω)+‖δu‖ω).

Using (5.3) and Proposition 5.4 again, we bound

‖u− uh‖L2(Ω) ≤ ‖u− πhu‖L2(Ω)+‖uh − πhu‖L2(Ω)

≤ Ch2|u|H2(Ω)+C(µ
1
2h+ |β| 12h 3

2 )−1s(uh − πhu, uh − πhu)
1
2

≤ C(|u|H2(Ω)+h
−1‖δu‖ω).

Hence we conclude by

‖u− uh‖L2(B) ≤ CeCP̃e
2 (
h‖u‖H2(Ω)+‖δu‖ω

)κ (|u|H2(Ω)+h
−1‖δu‖ω

)1−κ
≤ CeCP̃e

2

hκ(‖u‖H2(Ω)+h
−1‖δu‖ω),

where we have absorbed the P̃e = 1 + |β|/µ factor into the exponential factor eCP̃e
2

.

Theorem 5.7 (H1-error estimate). Assume the low Péclet regime (5.2) and that |β|1,∞≤
C|β| and ess supΩ∇ · β ≤ 0. Consider ω ⊂ B ⊂ Ω such that B \ ω ⊂ Ω. Assume that

u ∈ H2(Ω) is a solution to (5.1) and let (uh, zh) ∈ [Vh]2 the solution to (5.5), then there
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exists κ ∈ (0, 1) such that

‖u− uh‖H1(B)≤ ChκeCP̃e
2

(‖u‖H2(Ω)+h
−1‖δu‖ω),

where P̃e = 1 + |β|/µ.

Proof. Letting eh = u−uh, we combine the proof of Theorem 5.6 with the stability estimate

in Corollary 2.9 to obtain

‖eh‖H1(B) ≤ CeCP̃e
2(
‖eh‖L2(ω) + 1

µ‖r‖H−1(Ω)

)κ(
‖eh‖L2(Ω) + 1

µ‖r‖H−1(Ω)

)1−κ

≤ CeCP̃e
2

hκ(‖u‖H2(Ω)+h
−1‖δu‖ω).

5.3 Numerical examples

We illustrate the theoretical results with some numerical examples. The imple-

mentation of the stabilised FEM (5.5) has been carried out in FreeFem++ [36] on uniform

triangulations with alternating left and right diagonals. The mesh size is taken as the in-

verse square root of the number of nodes. The parameters in Jh and s∗ are set to γ = 10−5

and γ∗ = 1. We also rescale the boundary term in s∗ by a factor of 50, drawing on results

from different numerical experiments. In this section we denote eh = πhu− uh.

We consider Ω to be the unit square and the exact solution with global unit L2-

norm

u(x, y) = 30x(1− x)y(1− y).

We take the diffusion coefficient µ = 1 and investigate two cases for the convection field:

the coercive case of the constant field

βc = (1, 0),

and the case

βnc = 100(x+ y, y − x),

plotted in Figure 5.2, for which ∇ · β = 200 and ‖β‖0,∞= 200. In this case the boundary

value problem in Example 3.1 is strongly non-coercive with a medium high Péclet num-

ber. This example was also considered in [14] for numerical experiments on a non-coercive

convection–diffusion equation with Cauchy data.
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We consider the following domains for unique continuation, shown in Figure 5.1,

ω = (0.2, 0.45)× (0.2, 0.45), B = (0.2, 0.45)× (0.55, 0.8), (5.13)

ω = (0, 0.125)× (0.4, 0.6) ∪ (0.875, 1)× (0.4, 0.6), B = (0.25, 0.75)× (0.4, 0.6), (5.14)

ω = Ω \ [0, 0.875]× [0.125, 0.875], B = Ω \ [0, 0.125]× [0.125, 0.875]. (5.15)

0 1

1

0.2 0.45

0.2

0.45

0.55

0.8

ω

B

(a) Domains in (5.13).

0 1

1

0.125 0.25 0.75 0.875

0.4

0.6

ω ωB

(b) Domains in (5.14).

0 1

1

0.125 0.875

0.125

0.875

ωB

(c) Domains in (5.15).

Figure 5.1: Computational domains. Data set ω (grey) and error measurement regions B
(dotted).

The condition number upper bound in Proposition 5.1 is illustrated for a particular

case in Figure 5.2, where we plot the condition number K2 versus the mesh size h, together

with reference dotted lines proportional to h−3 and h−4. For five meshes with 2N elements

on each side, N = 3, . . . , 7, the approximate rates for K2 are −3.03, −3.16, −3.2, −3.34.

10−4 10−3 10−2 10−1 100 101

107

108

109

1010
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K 2
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ch−4

0 1
0

1

x

y

0

50

100

150

200

‖βnc‖

Figure 5.2: Left: condition number K2 for domains (5.13), β = βc. Right: convection field
βnc.
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The results in Figure 5.3 for the domains (5.13) strongly agree with the convergence

rates expected from Theorems 5.6 and 5.7 for the relative errors in B computed in the L2-

and H1-norms, and with the rates for ‖(eh, zh)‖s given in Proposition 5.4.

The numerical approximation improves when considering the setting in (5.14),

in which data is given both downstream and upstream, as reported in Figure 5.4. The

convergence is almost linear and the size of the errors is considerably reduced in the non-

coercive case.

10−24× 10−3 6× 10−3

log of meshsize

10−3

10−2

10−1

lo
g

(a) Circles: H1-error, rate ≈ 0.45; Squares: L2-

error, rate ≈ 0.56; Up triangles: s(eh, eh)
1
2 , rate

≈ 1.1; Down triangles: s∗(zh, zh)
1
2 , rate ≈ 1.33.

10−24× 10−3 6× 10−3

log of meshsize

10−4
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10−2

10−1

lo
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(b) Circles: H1-error, rate ≈ 0.29; Squares: L2-

error, rate ≈ 0.42; Up triangles: s(eh, eh)
1
2 , rate

≈ 1.32; Down triangles: s∗(zh, zh)
1
2 , rate ≈ 1.34.

Figure 5.3: Convergence for domains (5.13). Left: β = βc. Right: β = βnc.
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(a) Circles: H1-error, rate ≈ 0.8; Squares: L2-

error, rate ≈ 0.94; Up triangles: s(eh, eh)
1
2 , rate

≈ 1.24; Down triangles: s∗(zh, zh)
1
2 , rate ≈ 1.2.
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10−3
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(b) Circles: H1-error, rate ≈ 1.02; Squares: L2-

error, rate ≈ 1.07; Up triangles: s(eh, eh)
1
2 , rate

≈ 1.3; Down triangles: s∗(zh, zh)
1
2 , rate ≈ 1.25.

Figure 5.4: Convergence for domains (5.14). Left: β = βc. Right: β = βnc.

Comparing the geometries in (5.13) and (5.14) we also expect to see different effects

of the two convective fields βc and βnc. Notice that for both geometries the horizontal
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magnitude of βnc is greater than that of βc. In (5.13) the solution is continued in the

crosswind direction for both βc and βnc, and a stronger convective field is not expected

to improve the reconstruction. On the other side, in (5.14) information is propagated

both downstream and upstream, and a stronger convective field can improve the resolution,

despite the increase in the Péclet number. Indeed, we can see in Figure 5.3 that for the

geometry in (5.13) the numerical approximation is better for βc than for βnc, while Figure 5.4

shows better results for βnc than for βc in the case of (5.14), especially for the L2-error.

The resolution increases all the more when data is given near a big part of the

boundary ∂Ω, as for the computational domains (5.15) considered in Figure 5.5. In this

configuration of the set ω, for both convective fields βc and βnc, the L2-errors decrease below

10−4 with superlinear rates on the same meshes considered in Figures 5.3 and 5.4.

10−24× 10−3 6× 10−3

log of meshsize

10−4

10−3

10−2

lo
g

(a) Circles: H1-error, rate ≈ 1; Squares: L2-

error, rate ≈ 1.81; Up triangles: s(eh, eh)
1
2 ,

rate ≈ 1.04; Down triangles: s∗(zh, zh)
1
2 , rate

≈ 1.52.
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(b) Circles: H1-error, rate ≈ 1; Squares: L2-

error, rate ≈ 1.13; Up triangles: s(eh, eh)
1
2 ,

rate ≈ 1.30; Down triangles: s∗(zh, zh)
1
2 , rate

≈ 1.16.

Figure 5.5: Convergence for domains (5.15). Left: β = βc. Right: β = βnc.

Data perturbations. To exemplify the noisy data Ũω = u|ω+δu, we perturb

the restriction of u to ω on every node of the mesh with uniformly distributed values

in [−h 1
2 , h

1
2 ], respectively [−h, h]. Recall that by the error estimates in Section 5.2 the

contribution of the perturbation δu is bounded by h−1‖δu‖ω. It can be seen in Figure 5.6

that the perturbations are strongly visible for an O(h
1
2 ) amplitude, but not for an O(h)

one.



Chapter 5. Diffusion-dominated problems 90

10−24× 10−3 6× 10−3

log of meshsize

10−3

10−2

10−1

lo
g

(a) Noise amplitude O(h
1
2 ).
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(b) Noise amplitude O(h).

Figure 5.6: Convergence for perturbed ũω in domains (5.13), β = βc.



Chapter 6

Convection-dominated problems

In this chapter we consider the unique continuation problem for the convection–

diffusion equation

Lu := −µ∆u+ β · ∇u = f in Ω ⊂ Rn, (6.1)

when convection dominates, that is, 0 < µ� |β|. We assume that Ω ⊂ Rn is open, bounded

and connected, and there exists a solution u ∈ H2(Ω) to (6.1). The problem under study

is to approximate the solution u given the source f in Ω and the perturbed restriction

ũω = u|ω+δu of the solution to an open subset ω ⊂ Ω. The perturbation δu is taken in

L2(ω). This chapter is based on [23].

We have seen in Chapter 2 (Lemma 2.7) that for an open bounded set B ⊂ Ω

that contains the data region ω such that B \ ω does not touch the boundary of Ω, and for

u ∈ H1(Ω), the following conditional stability estimate holds for µ > 0 and β ∈ L∞(Ω)n,

‖u‖L2(B) ≤ Cst
(
‖u‖L2(ω) + 1

µ‖Lu‖H−1(Ω)

)κ
‖u‖1−κL2(Ω), (6.2)

where the Hölder exponent κ ∈ (0, 1) depends only on the geometric setting. In the case of

simple geometric configurations, e.g. when ω, B, Ω are three concentric balls, the exponent

κ ∈ (0, 1) can be given explicitly, see Remark 2.8. The stability constant Cst is given

explicitly in terms of the physical parameters

Cst = C1 exp
(
C2(1 + |β|

µ )2
)
, |β|:= ‖β‖L∞(Ω)n , (6.3)

with constants C1,2 > 0 depending only on the geometry. Note that the continuum estimate

(6.2) is valid in both the diffusion-dominated and convection-dominated regimes, and that

the stability constant Cst is uniformly bounded when diffusion dominates. However, when

91
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convection dominates Cst grows exponentially, rendering the stability estimate ineffective

in practice.

The prototypical effect of dominating diffusion is shown in Figure 6.1, where the

problem is set in the unit square and absolute error contour plots are shown for unique

continuation from a centred disc of radius 0.1. One can notice that the errors oscillate and

grow in size away from the data region towards the boundary in all directions. The plot

is not symmetric due to the presence of the convective term. The exact solution in this

example is u(x, y) = 2 sin(5πx) sin(5πy) where the factor 2 is taken to make its L2-norm

unitary. For the computation we used an unstructured mesh with 512 elements on a side

and mesh size h ≈ 0.0025.

Figure 6.1: Contour plot in the diffusion-dominated case, µ = 1, β = (1, 0). Unit square
domain, data given in a centred disc of radius 0.1, exact solution u = 2 sin(5πx) sin(5πy).

Since the behaviour of the physical system changes fundamentally when convection

dominates and

Pe(h)� 1,

we reconsider the numerical method discussed in Chapter 5 and provide an error analysis

that captures and exploits the governing transport phenomenon. To illustrate this, let us

consider the example in Figure 6.1 and gradually decrease the diffusion coefficient µ in

Figure 6.2. We see a transition from a diffusion-dominated regime towards a convection-

dominated regime through an intermediate one. We first observe the intermediate regime
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in Figure 6.2a with a clear asymmetry between downstream and upstream regions. Down-

stream, the impact of the convection is stronger and the errors decrease along the charac-

teristics through the data region. Upstream, the impact of the diffusion is stronger and the

errors still oscillate. Then in Figure 6.2b we see the convection-dominated regime in which

the approximation greatly improves both downstream and upstream from the data region

(with no difference between the two directions), but it severely deteriorates in the crosswind

direction away from the data region. We aim to obtain sharper local error estimates along

the characteristics of the convective field through the data region. Even though the error

analysis that we perform herein is different in nature to the one in Chapter 5, the numerical

method itself is only slightly changed (see Remark 6.1 below). For the error localisation

technique we draw on ideas used for the streamline diffusion method in [46], continuous

interior penalty in [17], and non-coercive hyperbolic problems in [15].

From the definition of the Péclet number we see that the regime will also depend

on the resolution of the computation besides the physical parameters. We can therefore

expect the method to change behaviour as the resolution increases and Pe(h) decreases.

This phenomenon was already observed computationally in [14] and can now be explained

theoretically.

(a) µ = 10−2. (b) µ = 10−6.

Figure 6.2: Contour plot when convection becomes dominant, β = (1, 0). Unit square
domain, data given in a centred disc of radius 0.1, exact solution u = 2 sin(5πx) sin(5πy).

To make the presentation as simple as possible we consider a model case in the

unit square Ω with constant convection

β := (β1, 0), β1 ∈ R,
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and the solution given in the subset

ω := (0, x)× (y−, y+), with x > h and y+ − y− > h.

For the subset ωβ ⊂ Ω covered by the characteristics of β that go through ω, we introduce

the stability region ω̊β ⊂ ωβ by cutting off a crosswind layer of width O(h
1
2 |ln(h)|) (see Sec-

tion 6.1.1 for more details). We separate the convection-dominated and diffusion-dominated

regimes by introducing a constant Pelim > 1 such that

Pe(h) > Pelim > 1.

To reduce the number of constants appearing in the analysis, we will write this as Pe(h) & 1.

As suggested by Figure 6.2, we expect different results for unique continuation downstream

vs upstream in an intermediate regime. We prove in Theorem 6.12 weighted error estimates

that for β1 > 0 essentially take the following form

‖u− uh‖L2(ω̊β)≤ C
(
|β| 12h 3

2 |u|H2(Ω)+|β|
1
2h−

1
2 ‖δu‖L2(ω)

)
, when Pe(h) & 1.

This is similar to the typical error estimates for piecewise linear stabilised FEMs for

convection-dominated well-posed problems, such as local projection stabilisation, dG meth-

ods, continuous interior penalty or Galerkin least squares. On general shape-regular meshes

these methods have an O(h
1
2 ) gap to the best approximation convergence order. Taking

this into account, our result is thus quasi-optimal. For a recent overview of challenges and

open problems in the well-posed case, see e.g. [45] and [54].

When going against the characteristics, i.e. β1 < 0, we prove in Theorem 6.16 first

the pre-asymptotic bound

‖u− uh‖L2(ω̊β)≤ C(|β| 12h|u|H2(Ω)+h
−1‖δu‖L2(ω)), when 1 . Pe(h) < h−1,

followed by

‖u− uh‖L2(ω̊β)≤ C(|β| 12h 3
2 |u|H2(Ω)+h

− 1
2 ‖δu‖L2(ω)), when Pe(h) > h−1.

It follows that when solving the unique continuation problem against the flow, the diffusivity

reduces the convergence order in an intermediate regime. Only for very small diffusion coef-

ficients µ < |β|h2 do we get quasi-optimal bounds. This asymmetry of the error distribution

for moderate Péclet numbers is clearly visible in the left plot of Figure 6.2.
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6.1 Discretisation

We use the notation from Section 3.2 and recall it briefly. Let Vh ⊂ H1(Ω) be the

conforming finite element space of piecewise affine P1 functions defined on a computational

mesh Th that consists of shape-regular triangular elements K with diameter hK . The mesh

size h is the maximum over hK and we will assume that h < 1. The interior faces of all

the elements are collected in the set Fi and the jump of a quantity across such a face F is

denoted by J·KF . We denote by n the unit normal.

We recall the standard inner products with the induced norms

(vh, wh)Ξ :=

�
Ξ
vhwh dx, 〈vh, wh〉∂Ξ :=

�
∂Ξ
vhwh ds,

and introduce the bilinear form in the weak formulation of (6.1)

ah(vh, wh) := (β · ∇vh, wh)Ω + (µ∇vh,∇wh)Ω − 〈µ∇vh · n,wh〉∂Ω.

Following Chapters 3 and 5, we will use for stabilisation the continuous interior penalty

Jh(vh, wh) := γ
∑
F∈Fi

�
F
h(µ+ |β|h)J∇vh · nKF · J∇wh · nKF ds,

which acts on the discrete solution penalising the jumps of its normal gradient across interior

faces, and

s∗(vh, wh) := γ∗
( 〈

(|β|+µh−1)vh, wh
〉
∂Ω

+ (µ∇vh,∇wh)Ω + Jh(vh, wh)
)
,

where γ and γ∗ are positive constants that can be heuristically chosen at implementation.

As discussed before, they do not play a role in the convergence of the method and most of

the time we will include them in the generic constant C. For the data term we consider the

scaled inner product in the data set ω given by

sω(vh, wh) := ((|β|h−1 + µh−ζ)vh, wh)ω, ζ ∈ [0, 2].

To this we add the stabilising interior penalty term Jh to define

s(vh, wh) := Jh(vh, wh) + sω(vh, wh),

As discussed in Chapter 3, the idea behind the computational method is to first
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discretise and then formulate the unique continuation problem as a PDE-constrained opti-

misation problem with additional stabilising terms. For an approximation uh ∈ Vh and a

discrete Lagrange multiplier zh ∈ Vh, we consider the Lagrangian functional

Lh(uh, zh) := 1
2sω(uh − ũω, uh − ũω) + ah(uh, zh)− (f, zh)Ω

+ 1
2Jh(uh, uh)− 1

2s
∗(zh, zh),

where the first term is measuring the misfit between uh and the known perturbed restriction

ũω = u|ω+δu, the next two terms are imposing the weak form of the PDE (6.1) as a

constraint, and the last two terms have stabilising role and act only on the discrete level.

We look for the saddle points of the Lagrangian Lh and analyse their convergence

to the exact solution. Using the optimality conditions we obtain the finite element method

for unique continuation subject to (6.1), which reads as follows: find (uh, zh) ∈ [Vh]2 such

that {
ah(uh, wh)− s∗(zh, wh) = (f, wh)Ω

ah(vh, zh) + s(uh, vh) = sω(ũω, vh)
, ∀(vh, wh) ∈ [Vh]2. (6.4)

Notice that the exact solution u ∈ H2(Ω) (with noise δu ≡ 0) and the dual variable z ≡ 0

satisfy (6.4) since the gradient of the exact solution has no jumps across interior faces.

Remark 6.1. The same finite element method (6.4) has been proposed in Chapter 5 for

the diffusion-dominated case; Jh and s∗ are exactly the stabilising terms introduced there.

However, herein we have increased the penalty coefficient in the data term sω from |β|h+µ

to |β|h−1 + µh−ζ . We note that the bounds in Chapter 5 hold also for this stronger penalty

term, but the sensitivity to perturbations in data increases by a factor of h−1.

Proposition 6.2. The finite element method (6.4) has a unique solution (uh, zh) ∈ [Vh]2

and the Euclidean condition number K2 of the system matrix satisfies

K2 ≤ Ch−4.

Proof. The proof given in Proposition 5.1 holds verbatim.

6.1.1 Stability region and weight functions

We will exploit the convective term of the PDE to obtain stability in the zone that

connects through characteristics to the data region ω. The objective is to obtain weighted

L2-estimates in this region that are independent of µ (but not of the regularity of the exact

solution) with the underlying assumption that µ � |β|. To this end we first define the



Chapter 6. Convection-dominated problems 97

Ω

0 x

y−

y+

ẙ−

ẙ+

ω

(β1, 0)

O(h
1
2 log(1/h))

Figure 6.3: Data set ω (grey) and the stability region ω̊β (light grey).

subdomain where we can obtain stability (see Figure 6.3 for a sketch) and some weight

functions that will be used to define weighted norms. These can be given in explicit form

in the simple framework where β = (β1, 0) and

ω := (0, x)× (y−, y+), with x > h and y+ − y− > h.

Let ωβ denote the closed set of all the points p ∈ Ω̄ that can be reached through

characteristics from ω, i.e. for which there exists s ∈ R such that p + sβ ∈ ∂ω. Similarly

to the classical work [46], we define the stability region ω̊β by cutting off a crosswind layer

from ωβ, namely

ω̊β :=
{
p ∈ ωβ : dist(p,Ω \ ωβ) ≥ cλh

1
2 ln(1/h)

}
, (6.5)

with the constant cλ to be made precise in the following. In our setting, we simply have

that ω̊β = [0, 1]× [̊y−, ẙ+] for some ẙ+ > ẙ− > 0.

We will consider different weight functions depending on the direction of the con-

vection field. In the downstream case we let

ψ1(x, y) := e−x, when β1 > 0,

and in the upstream case

ψ1(x, y) := −e−x, when β1 < 0.
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In both cases we have that ∇ψ1 = (−ψ1, 0). Let then ψ2 ∈W 1,∞(Ω) be a function satisfying

ψ2 =

{
1 in ω̊β,

O(h3) in Ω \ ωβ,
β · ∇ψ2 = 0, |∇ψ2|≤ Ch−

1
2 . (6.6)

Such a function can be obtained by taking a positive constant λ that will be specified later

and letting

ψ2(x, y) :=


exp

(
ẙ+−y
λh

1
2

)
, y > ẙ+

1, (x, y) ∈ ω̊β
exp

(
y−ẙ−

λh
1
2

)
, y < ẙ−.

Note that ψ2 is only piecewise continuously differentiable. For ψ2 to decrease sufficiently

rapidly to O(h3) outside of ωβ, we can take

dist(ω̊β,Ω \ ωβ) = min(y+ − ẙ+, ẙ− − y−) ≥ 3λh
1
2 ln( 1

h),

which corresponds to cλ = 3λ in the definition of ω̊β given in (6.5). We thus have that

|∇ψ2|≤ λ−1h−
1
2 ,

and in the subsequent proofs the constant λ will be taken large enough.

We now define the weight function ϕ ∈W 1,∞(Ω) that will be used in the weighted

norms. For the downstream case we take in Section 6.2.1

ϕ := ψ1ψ2 ∈ (0, 1), when β1 > 0, (6.7)

and for the upstream case in Section 6.2.2,

ϕ := ψ1ψ2 ∈ (−1, 0), when β1 < 0. (6.8)

Using the product rule and the fact that β · ∇ψ2 = 0, it follows that in both cases we have

β · ∇ϕ = −|β||ϕ|, (6.9)

and

|∇ϕ|≤ (1 + λ−1h−
1
2 )|ϕ|. (6.10)

We will denote the inflow and outflow boundaries by ∂Ω− and ∂Ω+, i.e. β · n < 0

on ∂Ω− and β · n > 0 on ∂Ω+. We will also assume that β · n = 0 can only hold on the
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boundary of Ω \ ωβ, and that µ ≤ Pe−1
lim|β · n|h when β · n 6= 0. This is straightforward to

verify in the model case of the unit square that we are considering.

We recall for convenience several inequalities that will be used repeatedly: the

standard discrete inverse inequality (A.1)

‖∇vh‖L2(K)≤ Ch−1‖vh‖L2(K), ∀vh ∈ P1(K), (6.11)

the continuous trace inequality (A.2)

‖v‖L2(∂K)≤ C(h−
1
2 ‖v‖L2(K)+h

1
2 ‖∇v‖L2(K)), ∀v ∈ H1(K), (6.12)

and the discrete trace inequality (A.3)

‖∇vh · n‖L2(∂K)≤ Ch−
1
2 ‖∇vh‖L2(K), ∀vh ∈ P1(K). (6.13)

As in Chapter 5, we will use the Poincaré-type inequality Lemma 3.2 which now reads as

‖(µ 1
2h+ |β| 12h 3

2 )vh‖H1(Ω)≤ Cγ−
1
2 s(vh, vh)

1
2 , ∀vh ∈ Vh, (6.14)

and Lemma 3.3 that gives

Jh(πhu, πhu)
1
2 ≤ Cγ 1

2 (µ
1
2h+ |β| 12h 3

2 )|u|H2(Ω), ∀u ∈ H2(Ω). (6.15)

We also recall that for a Lipschitz domain K – and hence for any element K ∈ Th
– a function ϕ is Lipschitz continuous if and only if ϕ ∈ W 1,∞(K). This follows from the

proof in [34, Theorem 4, p. 294] where the extension operator in the third step of the proof

is replaced by the extension operator in [57, Theorem 5, p. 181]. This equivalence holds

for more general domains satisfying the minimal smoothness property in [57, p. 189]. The

proof in [34, Theorem 4, p. 294] also shows that the mean value theorem holds and for any

x, y ∈ K,

|ϕ(x)− ϕ(y)|≤ CexhK |ϕ|W 1,∞(K), (6.16)

where the constant Cex > 0 is the norm of the extension operator used. We adopt the

notation ‖ϕ‖∞,K := ‖ϕ‖L∞(K) and |ϕ|W 1,∞(K):= ‖∇ϕ‖L∞(K).
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Lemma 6.3. For all vh ∈ Vh and K ∈ Th, the following inequalities hold

‖ϕ‖∞,K‖vh‖K ≤ C‖vhϕ‖K , (6.17)

‖vhϕ‖∂K ≤ Ch−
1
2 ‖vhϕ‖K , (6.18)

assuming that (h+ λ−1h
1
2 ) is small enough.

Proof. Let x∗ ∈ K be such that |ϕ(x∗)|= ‖ϕ‖∞,K . Using the triangle inequality we may

write

‖ϕ‖∞,K‖vh‖K≤ ‖ϕvh‖K+‖(ϕ(x∗)− ϕ)vh‖K .

By the mean value theorem (6.16) we have that

|ϕ(x∗)− ϕ|≤ Cexh|ϕ|W 1,∞(K),

and by (6.10) together with the assumption that Cex(h+ λ−1h
1
2 ) < 1

2 we get

Cexh|ϕ|W 1,∞(K)≤ Cex(h+ λ−1h
1
2 )‖ϕ‖∞,K≤

1

2
‖ϕ‖∞,K .

It follows that

‖ϕ‖∞,K‖vh‖K≤ ‖ϕvh‖K+1
2‖ϕ‖∞,K‖vh‖K ,

from which the claim (6.17) is immediate. Considering now (6.18), using the standard

element-wise trace inequality (6.12) we have

‖h 1
2 vhϕ‖∂K≤ C(‖vhϕ‖K+h‖∇(vhϕ)‖K).

We bound the gradient term using (6.10) and the inverse inequality (6.11),

h‖∇(vhϕ)‖K ≤ h‖vh∇ϕ‖K+h‖ϕ∇vh‖K
≤ (h+ λ−1h

1
2 )‖ϕ‖∞,K‖vh‖K+C‖ϕ‖∞,K‖vh‖K .

We conclude by collecting the terms and using (6.17).

6.1.2 Discrete commutator property

We denote by ih the Lagrange nodal interpolant. We herein consider a Lipschitz

weight function and prove the following super approximation result, also known as the

discrete commutator property. This result will be essential to derive local weighted estimates
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and is similar to the one proven in [8] for smooth compactly supported weight functions.

Lemma 6.4. Let vh ∈ Vh and K ∈ Th. Then for any weight function ϕ ∈W 1,∞(K), there

holds

‖vhϕ− ih(vhϕ)‖K+h‖∇(vhϕ− ih(vhϕ))‖K≤ Ch|ϕ|W 1,∞(K)‖vh‖K .

Proof. We will first show the L2-norm estimate

‖vhϕ− ih(vhϕ)‖K≤ Ch|ϕ|W 1,∞(K)‖vh‖K .

Let x∗ ∈ K be such that |ϕ(x∗)|= ‖ϕ‖∞,K and let Rϕ = ϕ− ϕ(x∗). Note that

‖(1− ih)(vhϕ)‖K= ‖(1− ih)(vhRϕ)‖K .

Observe that ih(vhϕ) = ih(vhihϕ) and therefore

‖(1− ih)(vhRϕ)‖K= ‖vhRϕ − ih(vhihRϕ)‖K .

By the triangle inequality

‖ih(vhihRϕ)− vhRϕ‖K≤ ‖ih(vhihRϕ)− vhihRϕ‖K+‖vh(ihRϕ −Rϕ)‖K .

For the first term, since vhihRϕ ∈ H1(K) we have by standard interpolation that

‖ih(vhihRϕ)− vhihRϕ‖K≤ Ch‖∇(vhihRϕ)‖K

and then

‖∇(vhihRϕ)‖K≤ |ihRϕ|W 1,∞(K)‖vh‖K+‖ihRϕ‖∞,K‖∇vh‖K .

By inserting ∇ϕ and ϕ, respectively, and using the interpolation estimate (A.4) and the

mean value theorem (6.16) we have the following approximation

h|ihRϕ|W 1,∞(K)+‖ihRϕ‖∞,K≤ Ch|ϕ|W 1,∞(K).

Combined with the previous estimate and the inverse inequality (6.11) this gives that

‖∇(vhihRϕ)‖K≤ C|ϕ|W 1,∞(K)‖vh‖K . (6.19)



Chapter 6. Convection-dominated problems 102

For the second term, using again interpolation (A.4) we have

‖vh(ihRϕ −Rϕ)‖K≤ ‖ihRϕ −Rϕ‖∞,K‖vh‖K≤ Ch|ϕ|W 1,∞(K)‖vh‖K ,

and thus we have shown that

‖vhϕ− ih(vhϕ)‖K≤ Ch|ϕ|W 1,∞(K)‖vh‖K .

The approximation estimate for the gradient follows by the same arguments. Indeed,

‖∇(1− ih)(vhϕ)‖K = ‖∇(1− ih)(vhRϕ)‖K= ‖∇(vhRϕ)−∇ih(vhihRϕ)‖K
≤ ‖∇(vhRϕ)−∇(vhihRϕ)‖K+‖∇(vhihRϕ)−∇ih(vhihRϕ)‖K .

We first use interpolation and the inverse inequality (6.11) to get

‖∇(vh(Rϕ − ihRϕ))‖K ≤ ‖vh∇(Rϕ − ihRϕ)‖K+‖(Rϕ − ihRϕ)∇vh‖K
≤ C|ϕ|W 1,∞(K)‖vh‖K .

Then we use an inverse inequality followed by interpolation and (6.19) to obtain

‖∇(vhihRϕ)−∇ih(vhihRϕ)‖K≤ C‖∇(vhihRϕ)‖K≤ C|ϕ|W 1,∞(K)‖vh‖K .

6.2 Error estimates

We recall the following consistency result that holds exactly as in the diffusion-

dominated case, see Lemma 5.2.

Lemma 6.5 (Consistency). Assume that u ∈ H2(Ω) is a solution to (6.1) and let (uh, zh) ∈
[Vh]2 be the solution to (6.4), then

ah(πhu− uh, wh) + s∗(zh, wh) = ah(πhu− u,wh),

and

−ah(vh, zh) + s(πhu− uh, vh) = sΩ(πhu− u, vh) + sω(πhu− ũω, vh),

for all (vh, wh) ∈ [Vh]2.
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We now introduce the stabilisation norm on [Vh]2 by combining the primal and

dual stabilisers

‖(vh, wh)‖2s:= s(vh, vh) + s∗(wh, wh),

and the “continuity norm” defined on H
3
2

+ε(Ω), for any ε > 0,

‖v‖]:= ‖|β|
1
2h−

1
2 v‖Ω+‖|β| 12h 1

2∇v‖Ω+‖h 1
2µ

1
2∇v · n‖∂Ω.

From the jump inequality (6.15), standard approximation bounds for πh and the trace

inequality (6.12), it follows that for u ∈ H2(Ω)

‖(u− πhu, 0)‖s+‖u− πhu‖]≤ C(µ
1
2h+ |β| 12h 3

2 )|u|H2(Ω). (6.20)

In the high Péclet regime, µ
1
2h ≤ |β| 12h 3

2 and the second term in the right-hand side

dominates. We also define the orthogonal space

V ⊥h := {v ∈ H2(Ω) : (v, wh)Ω = 0, ∀wh ∈ Vh}.

Lemma 6.6 (Continuity). Let v ∈ V ⊥h and wh ∈ Vh, then

ah(v, wh) ≤ C‖v‖]‖(0, wh)‖s.

Proof. Integrating by parts in the convective term of ah and using ∇ · β = 0 leads to

ah(v, wh) = −(v, β · ∇wh)Ω + 〈vβ · n,wh〉∂Ω + (µ∇v,∇wh)Ω − 〈µ∇v · n,wh〉∂Ω .

For the first term we recall the discrete approximation estimate that holds for any piecewise

linear β, see e.g. [13, Theorem 2.2],

inf
xh∈Vh

‖h 1
2 (β · ∇wh − xh)‖Ω ≤ C

∑
F∈Fi

‖hJβ · ∇whK‖2F

 1
2

≤ C|β| 12γ− 1
2Jh(wh, wh)

1
2 (6.21)

and use orthogonality to obtain

−(v, β · ∇wh)Ω ≤ ‖h−
1
2 v‖Ω inf

xh∈Vh
‖h 1

2 (β · ∇wh − xh)‖Ω≤ C‖v‖]‖(0, wh)‖s.
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For the remaining terms, applying the Cauchy-Schwarz inequality we see that

〈vβ · n,wh〉∂Ω + (µ∇v,∇wh)Ω − 〈µ∇v · n,wh〉∂Ω ≤ C‖v‖]‖(0, wh)‖s.

The above continuity estimate holds for any divergence-free piecewise linear ve-

locity field β. For a general velocity field β ∈ W 1,∞(Ω) we can use a similar argument

by considering its piecewise linear approximation as in Lemma 5.5. The continuity con-

stant would be proportional to Pe(h)
1
2 |β|1,∞/‖β‖∞. Assuming that β is divergence-free,

the constant becomes hPe(h)
1
2 |β|1,∞/‖β‖∞.

We now prove optimal convergence for the stabilising and data terms.

Proposition 6.7. (Convergence of regularisation). Assume that u ∈ H2(Ω) is a solution

to (6.1) and let (uh, zh) ∈ [Vh]2 be the solution to (6.4), then there holds

‖(πhu− uh, zh)‖s≤ C(µ
1
2h+ |β| 12h 3

2 )(|u|H2(Ω)+h
−2‖δu‖ω).

Proof. Denoting eh = πhu− uh we have that

‖(eh, zh)‖2s= ah(eh, zh) + s∗(zh, zh)− ah(eh, zh) + s(eh, eh).

Using both claims in Lemma 6.5 we may write

‖(eh, zh)‖2s= ah(πhu− u, zh) + Jh(πhu− u, eh) + sω(πhu− ũω, eh).

Since πhu− u ∈ V ⊥h we have by Lemma 6.6 that

ah(πhu− u, zh) ≤ C‖πhu− u‖]‖(0, zh)‖s.

We bound the other terms using the Cauchy-Schwarz inequality

Jh(πhu− u, eh) + ω(πhu− ũω, eh) ≤
(
‖(πhu− u, 0)‖s+(|β|h−1 + µh−ζ)

1
2 ‖δu‖ω

)
‖(eh, 0)‖s.

Collecting the above bounds we have

‖(eh, zh)‖2s ≤ C
(
‖πhu− u‖]+‖(πhu− u, 0)‖s+(|β|h−1 + µh−ζ)

1
2 ‖δu‖ω

)
‖(eh, zh)‖s

and the claim follows by applying the approximation inequality (6.20).
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Remark 6.8. Compared to the result in Proposition 5.4 for the diffusion-dominated, the

sensitivity to data perturbations has increased by a factor of h−1. This is due to the stronger

penalty in the data term sω (c.f. Remark 6.1).

6.2.1 Downstream estimates

In this case we consider β = (β1, 0) with β1 > 0 and the data set

ω = (0, x)× (y−, y+)

touching part of the inflow boundary ∂Ω−. We aim to obtain control of the following

weighted triple norm defined on Vh,

|||vh|||2ϕ := ‖|β| 12 vhϕ
1
2 ‖2Ω+‖µ 1

2∇vhϕ
1
2 ‖2Ω+‖|β · n| 12 vhϕ

1
2 ‖2∂Ω+ , (6.22)

where ϕ is given by (6.7). Since ϕ ∈ (0, 1), we will often use that ‖·ϕ‖Ω≤ ‖·ϕ
1
2 ‖Ω. We first

consider vhϕ as a test function in the weak bilinear form ah and obtain the following bound.

Lemma 6.9. There exist α > 0 and h0 > 0 such that for all h < h0 and vh ∈ Vh we have

α|||vh|||2ϕ ≤ ah(vh, vhϕ) + C‖(vh, 0)‖2s.

Proof. We start with the convective term. Since ∇ · β = 0, the divergence theorem leads to

2(β · ∇vh, vhϕ)Ω = 〈vhβ · n, vhϕ〉∂Ω − (vh, vhβ · ∇ϕ)Ω.

Then combining with (6.9) we have that

(β · ∇vh, vhϕ)Ω = 1
2

(
〈vhβ · n, vhϕ〉∂Ω + |β|‖vhϕ

1
2 ‖2Ω

)
.

We split the boundary term into inflow and outflow

〈vhβ · n, vhϕ〉∂Ω = −‖|β · n| 12 vhϕ
1
2 ‖2∂Ω−+‖|β · n| 12 vhϕ

1
2 ‖2∂Ω+ ,

and write

1

2
(‖|β · n| 12 vhϕ

1
2 ‖2∂Ω++|β|‖vhϕ

1
2 ‖2Ω) = (β · ∇vh, vhϕ)Ω +

1

2
‖|β · n| 12 vhϕ

1
2 ‖2∂Ω− .

Splitting now the inflow boundary with respect to the closed set ωβ and using the discrete
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trace inequality (6.12) in ω, and the weight decay (6.6) together with a standard global

trace inequality for H1 functions outside, we have that

‖|β · n| 12 vhϕ
1
2 ‖∂Ω− ≤ C|β|

1
2 (‖vhϕ

1
2 ‖∂Ω−∩ωβ+‖vhϕ

1
2 ‖∂Ω−\ωβ )

≤ C|β| 12h− 1
2 ‖vh‖ω+C|β| 12h 3

2 ‖vh‖H1(Ω)

≤ Cγ− 1
2 ‖(vh, 0)‖s,

(6.23)

where in the last step we used the Poincaré-type inequality (6.14). Hence we obtain control

over the convective terms in the triple weighted norm

1
2(‖|β · n| 12 vhϕ

1
2 ‖2∂Ω++|β|‖vhϕ

1
2 ‖2Ω) ≤ (β · ∇vh, vhϕ)Ω + Cγ−1‖(vh, 0)‖2s. (6.24)

Let us consider the terms in ah(vh, vhϕ) corresponding to the diffusion operator, starting

with

(µ∇vh,∇(vhϕ))Ω = ‖µ 1
2∇vhϕ

1
2 ‖2Ω+(µ∇vh, vh∇ϕ)Ω,

which we rearrange as

‖µ 1
2∇vhϕ

1
2 ‖2Ω= (µ∇vh,∇(vhϕ))Ω − (µ∇vh, vh∇ϕ)Ω.

Bounding ∇ϕ by (6.10) and using Cauchy-Schwarz together with µ ≤ |β|h we have that

|(µ∇vh, vh∇ϕ)Ω| ≤ µ(|∇vh · ∇ϕ|, vh)Ω

≤ µ(1 + λ−1h−
1
2 )(|∇vh|ϕ

1
2 , vhϕ

1
2 )Ω

≤ 1
3‖µ

1
2∇vhϕ

1
2 ‖2Ω+C(h+ λ−2)|β|‖vhϕ

1
2 ‖2Ω.

We split the boundary term 〈µ∇vh · n, vhϕ〉∂Ω into inflow and outflow again. Similarly to

(6.23) we have that

〈µ∇vh · n, vhϕ〉∂Ω− ≤ Chγ−1‖(vh, 0)‖2s.

For the outflow boundary term we use Cauchy-Schwarz and a trace inequality to obtain

〈µ∇vh · n, vhϕ〉∂Ω+ ≤ ‖µ
1
2∇vh · nϕ

1
2 ‖∂Ω+‖µ 1

2 vhϕ
1
2 ‖∂Ω+

≤ Ch− 1
2 ‖µ 1

2∇vhϕ
1
2 ‖ΩPe

− 1
2

lim h
1
2 ‖|β · n| 12 vhϕ

1
2 ‖∂Ω+

≤ 1
3‖µ

1
2∇vhϕ

1
2 ‖2Ω + Pe−1

lim ‖|β · n|
1
2 vhϕ

1
2 ‖2∂Ω+ .

We denote the part of the boundary where β · n = 0 by ∂Ω0 and use the assumption that
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∂Ω0 is away from ωβ, meaning that the weight function ϕ is O(h3) there. Together with

the trace inequalities (5.9) and (5.8), the Poincaré-type inequality (6.14) gives that

〈µ∇vh · n, vhϕ〉∂Ω0 ≤ Cµh2‖∇vh‖Ω‖vh‖Ω≤ Cγ−1‖(vh, 0)‖2s.

Collecting the above bounds we obtain that

1
3‖µ

1
2∇vhϕ

1
2 ‖2Ω≤ (µ∇vh,∇(vhϕ))Ω − 〈µ∇vh · n, vhϕ〉∂Ω

+ C(h+ λ−2 + Pe−1
lim)(‖|β| 12 vhϕ

1
2 ‖2Ω+‖|β · n| 12 vhϕ

1
2 ‖2∂Ω+) + Cγ−1‖(vh, 0)‖2s.

We conclude by combining this with (6.24) and assuming that h is small enough, and λ and

Pelim are large enough (thus absorbing the convective terms from the rhs into the lhs).

Now we refine the control over the triple norm |||vh|||ϕ by taking the projection

πh(vhϕ) ∈ Vh as a test function.

Corollary 6.10. There exist α > 0 and h0 > 0 such that for all h < h0 and vh ∈ Vh we

have

α|||vh|||2ϕ ≤ ah(vh, πh(vhϕ)) + C‖(vh, 0)‖2s.

Proof. Since

ah(vh, πh(vhϕ)) = ah(vh, (πh − 1)(vhϕ)) + ah(vh, vhϕ),

we must bound ah(vh, (πh − 1)(vhϕ)) in a suitable way. Writing out the terms we have

ah(vh, (πh − 1)(vhϕ)) = (β · ∇vh, (πh − 1)(vhϕ))Ω + (µ∇vh,∇(πh − 1)(vhϕ))Ω

− 〈µ∇vh · n, (πh − 1)(vhϕ)〉∂Ω = I + II + III.

Let us consider the convection term first, and use orthogonality combined with (6.21)

I = (β · ∇vh, (πh − 1)(vhϕ))Ω ≤ C|β|
1
2γ−

1
2 ‖(vh, 0)‖sh−

1
2 ‖(πh − 1)(vhϕ)‖Ω

≤ C|β| 12γ− 1
2 ‖(vh, 0)‖sh−

1
2 ‖(ih − 1)(vhϕ)‖Ω.

Integrating by parts and using that ∆vh = 0 on every element K we obtain by the trace
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inequality (6.12) and the assumption Pe(h) > 1 that

II + III =
∑
F∈Fi

�
F
µJ∇vh · nK(πh − 1)(vhϕ) ds

≤ C|β| 12γ− 1
2Jh(vh, vh)

1
2 (h−

1
2 ‖(πh − 1)(vhϕ)‖Ω+h

1
2 ‖∇(πh − 1)(vhϕ)‖Ω).

Notice that ih(vhϕ) = πh(ih(vhϕ)) and the stability of the projection gives

‖∇(πh − ih)(vhϕ)‖Ω= ‖∇πh(1− ih)(vhϕ)‖Ω≤ C‖∇(1− ih)(vhϕ)‖Ω, (6.25)

and hence

h
1
2 ‖∇(πh − 1)(vhϕ)‖Ω ≤ h

1
2 (‖∇(πh − ih)(vhϕ)‖Ω+‖∇(ih − 1)(vhϕ)‖Ω)

≤ Ch 1
2 ‖∇(ih − 1)(vhϕ)‖Ω.

(6.26)

Since

h−
1
2 ‖(πh − 1)(vhϕ)‖Ω≤ Ch−

1
2 ‖(ih − 1)(vhϕ)‖Ω,

collecting the contributions above we see that

I + II + III ≤ C|β| 12γ− 1
2 ‖(vh, 0)‖s

(
h−

1
2 ‖(ih − 1)(vhϕ)‖Ω+h

1
2 ‖∇(ih − 1)(vhϕ)‖Ω

)
︸ ︷︷ ︸

IV

,

and hence

ah(vh, (πh − 1)(vhϕ)) = I + II + III ≤ Cγ−1‖(vh, 0)‖2s+|β|(IV )2.

The discrete commutator property Lemma 6.4 together with the ϕ-bounds (6.10) and (6.17)

give that

IV ≤ Ch 1
2 ‖∇ϕ‖∞,Ω‖vh‖Ω≤ C(h

1
2 + λ−1)‖vhϕ‖Ω. (6.27)

Since ϕ ∈ (0, 1) and ϕ < ϕ
1
2 , it follows that for h small enough and λ large enough, given

some α > 0 we have

|β|IV 2 ≤ α
2 |||vh|||

2
ϕ. (6.28)

Collecting the estimates for ah(vh, (πh − 1)(vhϕ)) and using Lemma 6.9 we see that

ah(vh, πh(vhϕ)) = ah(vh, (πh − 1)(vhϕ)) + ah(vh, vhϕ) ≥ α
2 |||vh|||

2
ϕ − Cγ−1‖(vh, 0)‖2s,
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from which we conclude by renaming α/2 as α.

Lemma 6.11. For all vh ∈ Vh there holds

‖(0, πh(vhϕ))‖2s≤ C(|||vh|||2ϕ + ‖(vh, 0)‖2s).

Proof. First note that by triangle inequalities we have that up to a constant

‖(0, πh(vhϕ))‖s≤ ‖µ
1
2∇(πh − 1)(vhϕ))‖Ω+‖µ 1

2∇(vhϕ))‖Ω
+ (|β|+µh−1)

1
2 (‖(πh − 1)(vhϕ)‖∂Ω+‖vhϕ‖∂Ω)

+ Jh(πh(vhϕ), πh(vhϕ))
1
2 .

We bound these terms line by line. Using (6.26), (6.27), (6.10) and (6.17) we bound the

first line by

|β| 12h 1
2 ‖∇(ih − 1)(vhϕ)‖Ω+‖µ 1

2∇vhϕ‖Ω+2|β| 12 (h
1
2 + λ−1)‖vhϕ‖Ω≤ C|||vh|||ϕ.

For the second line, using the trace inequality (6.12) and again the discrete commutator

property through the bounds (6.26) and (6.27) we have that

(|β|+µh−1)
1
2 ‖(πh − 1)(vhϕ)‖∂Ω≤ C|β|

1
2 ‖vhϕ

1
2 ‖Ω

Splitting the boundary into inflow and outflow, we use the trivial bound ϕ ≤ ϕ
1
2 , and by

(6.23) for the inflow term we have that

(|β|+µh−1)
1
2 ‖vhϕ‖∂Ω ≤ C|β|

1
2 ‖vhϕ

1
2 ‖∂Ω−+C‖|β · n| 12 vhϕ

1
2 ‖∂Ω+

≤ C‖(vh, 0)‖s+C|||vh|||ϕ.

For the contribution of the jump term, we insert ih and bound

Jh(πh(vhϕ), πh(vhϕ))
1
2 ≤ Jh((πh − ih)(vhϕ), (πh − ih)(vhϕ))

1
2

+ Jh((ih − 1)(vhϕ), (ih − 1)(vhϕ))
1
2

+ Jh(vhϕ, vhϕ)
1
2 .

(6.29)
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We first observe that using (6.13) and (6.25), we can bound the first term by

Jh((πh − ih)(vhϕ), (πh − ih)(vhϕ))
1
2 ≤ |β| 12h 1

2 ‖∇(πh − ih)(vhϕ)‖Ω
≤ |β| 12h 1

2 ‖∇(ih − 1)(vhϕ)‖Ω
≤ C|β| 12h 1

2 ‖∇ϕ‖∞,Ω‖vh‖Ω
≤ C|β| 12 (h

1
2 + λ−1)‖vhϕ‖Ω,

where for the last two inequalities we used the discrete commutator property Lemma 6.4

together with the ϕ-bounds (6.10) and (6.17). Since ϕ is Lipschitz continuous on K, ϕ|F is

also Lipschitz continuous, and so ϕ|F∈ W 1,∞(F ). The restriction of the nodal interpolant

on K onto F gives the nodal interpolant on F , hence applying Lemma 6.4 to F instead of

K we have the discrete commutator estimate

h‖n · ∇(ih − 1)(vhϕ)‖F≤ Ch|ϕ|W 1,∞(K)‖vh‖F≤ C(h
1
2 + λ−1)‖vhϕ‖K ,

where in the last step we used (6.10) and (6.17) together with a discrete trace inequality.

After summation we have that

Jh((ih − 1)(vhϕ), (ih − 1)(vhϕ))
1
2 ≤ C|||vh|||ϕ.

Finally we use the trivial bound (since |ϕ|< 1)

Jh(vhϕ, vhϕ)
1
2 ≤ Jh(vh, vh)

1
2 .

We conclude the proof by summing up the above contributions.

We can now prove in the downstream case β = (β1, 0), β1 > 0, the following error

estimate showing that in the zone ω̊β where we have stability, the convergence in the L2-

norm is of order O(h
3
2 ) on unstructured meshes, which is known to be optimal. We also

obtain that in this region the convergence in the H1-seminorm is O(h).

Theorem 6.12. Assume that u ∈ H2(Ω) is a solution to (6.1) and let (uh, zh) ∈ [Vh]2 be

the solution to (6.4). Then there exists h0 > 0 such that for all h < h0 with Pe(h) & 1 there

holds

|||u− uh|||ϕ ≤ C(|β| 12h 3
2 |u|H2(Ω)+|β|

1
2h−

1
2 ‖δu‖ω).

Proof. Let eh = πhu− uh ∈ Vh, then u− uh = u− πhu+ eh. By Corollary 6.10 there exists
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α > 0 such that

α|||eh|||2ϕ ≤ ah(eh, πh(ehϕ)) + Cγ−1‖(eh, 0)‖2s.

By Cauchy-Schwarz combined with Lemma 6.11 and Young’s inequality

−s∗(zh, πh(ehϕ)) ≤ Cε−1
1 ‖(0, zh)‖2s+ε1(|||eh|||2ϕ + ‖(eh, 0)‖2s),

for some 0 < ε1 < α/2, hence

α
2 |||eh|||

2
ϕ ≤ ah(eh, πh(ehϕ)) + s∗(zh, πh(ehϕ)) + Cε−1

1 ‖(0, zh)‖2s+C‖(eh, 0)‖2s.

Applying the first equality of the consistency Lemma 6.5 we obtain

α

2
|||eh|||2ϕ ≤ ah(πhu− u, πh(ehϕ)) + Cε−1

1 ‖(0, zh)‖2s+C‖(eh, 0)‖2s. (6.30)

Since πhu− u ∈ V ⊥h we may apply Lemma 6.6 to bound

ah(πhu− u, πh(ehϕ)) ≤ C‖πhu− u‖]‖(0, πh(ehϕ))‖s.

From Lemma 6.11 and Young’s inequality we thus have that for some ε2 > 0,

ah(πhu− u, πh(ehϕ)) ≤ C((1 + ε−1
2 )‖πhu− u‖2]+‖(eh, 0)‖2s+ε2|||eh|||2ϕ).

Taking ε2 < α/4 and combining the above bound with (6.30) we see that

α
4 |||eh|||

2
ϕ ≤ C((1 + ε−1

2 )‖πhu− u‖2]+(1 + ε−1
1 )‖(eh, zh)‖2s).

Since ε1,2 are independent of h we can absorb them in the generic constant C and using the

approximation inequality (6.20) together with Proposition 6.7, we conclude that

|||eh|||ϕ ≤ C(µ
1
2h+ |β| 12h 3

2 )(|u|H2(Ω)+h
−2‖δu‖ω)

≤ C(|β| 12h 3
2 |u|H2(Ω)+|β|

1
2h−

1
2 ‖δu‖ω),

where we used that Pe(h) > 1.
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6.2.2 Upstream estimates

In this case we consider β = (β1, 0) with β1 < 0 and the data set

ω = (0, x)× (y−, y+)

touching part of the outflow boundary ∂Ω+. We must choose the weight function differently

and this time we take a negative ϕ given by (6.8)

ϕ := ψ1ψ2 ∈ (−1, 0).

It seems that in this case we can not simultaneously get control of the L2-norm and the

weighted H1-norm and we have to sacrifice the latter since it is not uniform in µ. We now

take the weighted triple norm to be

|||vh|||2ϕ := ‖|β| 12 vh|ϕ|
1
2 ‖2Ω + ‖|β · n| 12 vh|ϕ|

1
2 ‖2∂Ω− , (6.31)

and rederive the results obtained in Section 6.2.1, aiming for a local error estimate. Since

ϕ ∈ (−1, 0), we will use that ‖·ϕ‖Ω≤ ‖·|ϕ|
1
2 ‖Ω.

We start with an analogue of Lemma 6.9 by taking vhϕ as a test function in the

weak bilinear form ah and notice that since ϕ < 0 we now have that

1

2

(
‖|β · n| 12 vh|ϕ|

1
2 ‖2∂Ω−+|β|‖vh|ϕ|

1
2 ‖2Ω

)
= (β · ∇vh, vhϕ)Ω +

1

2
‖|β · n| 12 vh|ϕ|

1
2 ‖2∂Ω+ .

Arguing as previously in (6.23) but now for the outflow boundary, we obtain the bound

‖|β · n| 12 vh|ϕ|
1
2 ‖∂Ω+ ≤ C|β| 12 (‖vh|ϕ|

1
2 ‖∂Ω+∩ωβ+‖vh|ϕ|

1
2 ‖∂Ω+\ωβ )

≤ C|β| 12h− 1
2 ‖vh‖ω+C|β| 12h 3

2 ‖vh‖H1(Ω)

≤ Cγ− 1
2 ‖(vh, 0)‖s,

(6.32)

and thus

1

2

(
|β|‖vh|ϕ|

1
2 ‖2Ω+‖|β · n| 12 vh|ϕ|

1
2 ‖2∂Ω−

)
≤ (β · ∇vh, vhϕ)Ω + Cγ−1‖(vh, 0)‖2s. (6.33)

For the diffusion term we no longer have any positive contribution due to the change in sign

of the weight function ϕ, since now

(µ∇vh,∇(vhϕ))Ω = −‖µ 1
2∇vh|ϕ|

1
2 ‖2Ω+(µ∇vh, vh∇ϕ)Ω.



Chapter 6. Convection-dominated problems 113

We must therefore control this entirely using the stabilisation. Integrating by parts and

using the weighted trace inequality (6.18)

(µ∇vh,∇(vhϕ))Ω − 〈µ∇vh · n, vhϕ〉∂Ω =
∑
F∈Fi

�
F
µJ∇vh · nK vhϕ ds

≤ Cγ− 1
2Jh(vh, vh)

1
2µ

1
2h−1‖vhϕ‖Ω

≤ Cγ− 1
2Jh(vh, vh)

1
2µ

1
2h−1‖vh|ϕ|

1
2 ‖Ω.

To bound this by the triple norm we can simply use that |ϕ|< 1 and µ ≤ |β|h, giving that

µ
1
2h−1|ϕ| 12≤ |β| 12h− 1

2 . Hence we have that for some ε > 0,

|(µ∇vh,∇(vhϕ))Ω − 〈µ∇vh · n, vhϕ〉∂Ω | ≤ Cε−1γ−1h−1Jh(vh, vh) + Cε|||vh|||2ϕ.

However, when Pe(h)h > 1 one can obtain a better estimate due to µ
1
2h−1|ϕ| 12≤ |β| 12 , which

gives that

|(µ∇vh,∇(vhϕ))Ω − 〈µ∇vh · n, vhϕ〉∂Ω | ≤ Cε−1γ−1Jh(vh, vh) + Cε|||vh|||2ϕ.

Summing these contributions we obtain the following result corresponding to Lemma 6.9.

Lemma 6.13. There exists α > 0 such that for all vh ∈ Vh we have

α|||vh|||2ϕ ≤ ah(vh, vhϕ) + Ch−1‖(vh, 0)‖2s, when 1 . Pe(h) < h−1,

and

α|||vh|||2ϕ ≤ ah(vh, vhϕ) + C‖(vh, 0)‖2s, when Pe(h) > h−1.

Again, we can refine the control over the triple norm |||vh|||ϕ by taking the projec-

tion πh(vhϕ) ∈ Vh as a test function and we obtain corresponding results.

Corollary 6.14. There exists α > 0 such that for all vh ∈ Vh we have

α|||vh|||2ϕ ≤ ah(vh, πh(vhϕ)) + Ch−1‖(vh, 0)‖2s, when 1 . Pe(h) < h−1,

and

α|||vh|||2ϕ ≤ ah(vh, πh(vhϕ)) + C‖(vh, 0)‖2s, when Pe(h) > h−1.

Proof. The argument in the proof of Corollary 6.10 remains valid with the remark that we

now use the inequality |ϕ|< |ϕ| 12 .
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Lemma 6.15. For all vh ∈ Vh there holds

‖(0, πh(vhϕ))‖2s ≤ C(h−1|||vh|||2ϕ + ‖(vh, 0)‖2s), when 1 . Pe(h) < h−1,

and

‖(0, πh(vhϕ))‖2s ≤ C(|||vh|||2ϕ + ‖(vh, 0)‖2s), when Pe(h) > h−1.

Proof. We follow the proof of Lemma 6.11 and we focus on the bounds that are now different.

As before, by the triangle inequality we have that up to a constant

‖(0, πh(vhϕ))‖s≤ ‖µ
1
2∇(πh − 1)(vhϕ))‖Ω+‖µ 1

2 vh∇ϕ‖Ω+‖µ 1
2∇vhϕ‖Ω

+ (|β|+µh−1)
1
2 (‖(πh − 1)(vhϕ)‖∂Ω+‖vhϕ‖∂Ω)

+ Jh(πh(vhϕ), πh(vhϕ))
1
2 .

The first two terms can be bounded by C|||vh|||ϕ as previously. For the third one, we can

use the inverse inequality (6.11) and (6.17) to obtain

‖µ 1
2∇vhϕ‖Ω≤ Cµ

1
2h−1‖ϕ‖∞,Ω‖vh‖Ω≤ Cµ

1
2h−1‖vhϕ‖Ω≤ Cµ

1
2h−1‖vh|ϕ|

1
2 ‖Ω.

Hence we have that

‖µ 1
2∇vhϕ‖Ω≤ Ch−

1
2 |||vh|||ϕ, when 1 . Pe(h) < h−1,

and

‖µ 1
2∇vhϕ‖Ω≤ C|||vh|||ϕ, when Pe(h) > h−1.

Arguing as previously, we can bound the second line by C|||vh|||ϕ using (6.32) instead of

(6.23). We conclude the proof by recalling the estimate (6.29) for the jump term and the

subsequent bounds.

We now prove the weighted error estimate in the upstream case β = (β1, 0), β1 < 0,

showing that in the stability region ω̊β we have quasi-optimal convergence for high Péclet

numbers and a reduction of the convergence order by O(h
1
2 ) in an intermediate regime.

Theorem 6.16. Assume that u ∈ H2(Ω) is a solution to (6.1) and let (uh, zh) ∈ [Vh]2 be

the solution to (6.4), then there holds

|||u− uh|||ϕ ≤ C(|β| 12h|u|H2(Ω)+|β|
1
2h−1‖δu‖ω), when 1 . Pe(h) < h−1,
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and

|||u− uh|||ϕ ≤ C(|β| 12h 3
2 |u|H2(Ω)+|β|

1
2h−

1
2 ‖δu‖ω), when Pe(h) > h−1.

Proof. We combine Lemma 6.13, Corollary 6.14 and Lemma 6.15 as in the proof of The-

orem 6.12 and note that the argument holds verbatim when Pe(h) > h−1. Observe that

when 1 . Pe(h) < h−1 we similarly obtain for some α > 0 and 0 < ε1 < α/2,

α
2 |||eh|||

2
ϕ ≤ ah(πhu− u, πh(ehϕ)) + Cε−1

1 ‖(0, zh)‖2s+Ch−1‖(eh, 0)‖2s. (6.34)

Since πhu− u ∈ V ⊥h we may apply Lemma 6.6 to bound

ah(πhu− u, πh(ehϕ)) ≤ C‖πhu− u‖]‖(0, πh(ehϕ))‖s.

From Lemma 6.15 and Young’s inequality we thus have that for some ε2 > 0,

ah(πhu− u, πh(ehϕ)) ≤ C((1 + ε−1
2 h−1)‖πhu− u‖2]+‖(eh, 0)‖2s+ε2|||eh|||2ϕ).

Taking ε2 < α/4 and combining the above bound with (6.34) we see that

α
4 |||eh|||

2
ϕ ≤ C((1 + ε−1

2 h−1)‖πhu− u‖2]+ε−1
1 h−1‖(eh, zh)‖2s).

Since ε1,2 are independent of h we can absorb them in the generic constant C and conclude

the proof by using the approximation inequality (6.20) and Proposition 6.7 to obtain that

|||eh|||ϕ ≤ C(µ
1
2h

1
2 + |β| 12h)(|u|H2(Ω)+h

−2‖δu‖ω)

≤ C(|β| 12h|u|H2(Ω)+|β|
1
2h−1‖δu‖ω),

when 1 . Pe(h) < h−1.

6.3 Numerical examples

We let Ω be the unit square and illustrate the performance of the numerical method

(6.4) for different locations of the data domain ω and different regions of interest where we

measure the approximation error. The computational domains are given in Figure 6.4 and

the implementation is done using FEniCS [2]. In all the examples below we have used

uniform triangulations with alternating left and right diagonals. In the definition of Jh and

s∗ we have taken the parameters γ = 10−5 and γ∗ = 1, and ζ = 2 for sω. The effect of
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different combinations of γ and γ∗ on the L2-errors is shown in Figures 6.5 and 6.6 when

data is given in a centred disc. Similar results are obtained when the data set is near the

inflow/outflow boundary. Notice that our choice is empirically close to being optimal both

locally and globally.
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1

0.6

0.4

0.55

0.45

ω

(a) ω = (0, 0.2) × (0.4, 0.6), re-
gion (0.2, 1)× (0.45, 0.55) down-
stream.

0 0.4 0.6 1

1

0.6

0.4

0.55

0.45

ω

(b) ω = B((0.5, 0.5), 0.1), re-
gions both downstream and up-
stream.
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0.45

0.6

0.4

ω

(c) ω = (0.8, 1) × (0.4, 0.6), re-
gion (0, 0.8) × (0.45, 0.55) up-
stream.

Figure 6.4: Data set ω (grey) and error measurement regions (light grey).

(a) µ = 10−3. (b) µ = 10−2.

Figure 6.5: Varying the stabilisation parameters γ and γ∗. Absolute L2-errors downstream,
computational domains in Figure 6.4b. β = (1, 0), exact solution u = 2 sin(5πx) sin(5πy).
Similar results in the upstream case.
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(a) µ = 10−3. (b) µ = 10−2.

Figure 6.6: Varying the stabilisation parameters γ and γ∗. Absolute L2-errors globally,
computational domains in Figure 6.4b. β = (1, 0), exact solution u = 2 sin(5πx) sin(5πy).

We first show convergence plots both downstream and upstream from the data

set when varying the diffusion coefficient µ and keeping the convection field β fixed. As in

the case of well-posed convection-dominated problems, the observed L2-convergence order

is typically O(h2), surpassing by O(h
1
2 ) the weighted error estimates proven for general

meshes.

Data set near the inflow/outflow boundary. We consider the data set ω near

the inflow and outflow boundaries of Ω, as assumed in Section 6.1.1. We observe in Figure 6.7

that as diffusion is reduced the convergence order for the L2-errors increases, culminating

with quadratic convergence when convection dominates. Confirming the theoretical analysis

in Section 6.2.2, we note the presence of an intermediate regime for Péclet numbers in which

the upstream convergence orders are reduced and the upstream errors are typically larger.

This can also be seen in Figure 6.9 where we consider the diffusion coefficient µ = 10−2 and

an interior data set. The errors in the H1-seminorm are given in Figure 6.8 which shows

almost linear convergence, corresponding to an O(h
3
2 ) convergence order for the gradient

term in the triple norm (6.22).
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(a) Computational domains in Figure 6.4a.
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(b) Computational domains in Figure 6.4c.

Figure 6.7: Absolute L2-errors against mesh size h when varying the diffusion coefficient µ
for fixed β = (1, 0), exact solution u = 2 sin(5πx) sin(5πy).
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(a) Computational domains in Figure 6.4a.
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10−1
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101
1e-01
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1e-02
1e-03
1e-04
rate 1

(b) Computational domains in Figure 6.4c.

Figure 6.8: H1-errors against mesh size h when varying the diffusion coefficient µ for fixed
β = (1, 0), exact solution u = 2 sin(5πx) sin(5πy).
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upstream
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(a) Domains in Figure 6.4b.
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10−1
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upstream
rate 3/2
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(b) Domains in Figure 6.4a and Figure 6.4c.

Figure 6.9: L2-errors against mesh size h, downstream vs upstream for µ = 10−2, β = (1, 0),
exact solution u = 2 sin(5πx) sin(5πy).
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(a) Downstream.
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(b) Upstream.

Figure 6.10: L2-errors against mesh size h, computational domains in Figure 6.4b. Varying
the diffusion coefficient µ for fixed β = (1, 0), exact solution u = 2 sin(5πx) sin(5πy).

Interior data set. Next we consider the setting of the example discussed in

Figure 6.2, where data is given in the centre of the domain. We give the convergence of

the L2-errors in Figure 6.10 with the caveat that this location of the data set ω is not

rigorously covered by the theoretical analysis of the previous sections. Nonetheless, the

experiments are in agreement with the proven results. Notice that the L2-convergence is

faster as µ decreases and for high Péclet numbers (above 10) one has optimal quadratic

convergence both downstream and upstream, with the distinction that in the upstream

case the convergence order is reduced in an intermediate regime, in agreement with the

theoretical results. Also, as expected from the error estimates proven in Chapter 5, when
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diffusion is moderately small one can see the transition towards the diffusion-dominated

regime as the mesh gets refined – the convergence changes from almost quadratic to sub-

linear as the Péclet number decreases below 1. Figure 6.11 shows almost linear convergence

in the H1-seminorm which corresponds to order O(h
3
2 ) convergence for the gradient term

in the triple norm (6.22). We also remark almost no distinction between upstream and

downstream for this example, probably because the gradient term is controlled by the L2-

norm for small enough µ.

10−3 10−2 10−1 100
10−2

10−1

100

101 1e-01
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1e-03
1e-04
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(a) Downstream.

10−3 10−2 10−1 100
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10−1

100

101 1e-01
5e-02
2e-02
1e-02
1e-03
1e-04
rate 1

(b) Upstream.

Figure 6.11: H1-errors against mesh size h, computational domains in Figure 6.4b. Varying
the diffusion coefficient µ for fixed β = (1, 0), exact solution u = 2 sin(5πx) sin(5πy).

Data perturbations. We demonstrate the effect of data perturbations ũω =

u|ω+δu in a downstream vs upstream setting by polluting the restriction of u to each

node of the mesh in ω with uniformly distributed values in [−h2, h2], [−h, h] and [−h 1
2 , h

1
2 ],

respectively. Comparing first Figures 6.10 and 6.12 we see that perturbations of amplitude

O(h2) have no effect on the L2-errors, as expected.
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(a) Downstream, perturbation O(h2).
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(b) Upstream, perturbation O(h2).

Figure 6.12: L2-errors against mesh size h for perturbations in data, computational domains
in Figure 6.4b. Varying the diffusion coefficient µ for fixed β = (1, 0), exact solution
u = 2 sin(5πx) sin(5πy).

An O(h) noise amplitude exhibits in Figure 6.13 the difference – proven in The-

orems 6.12 and 6.16 – between the downstream and upstream scenarios. In the upstream

case the noise has a strong effect for moderate Péclet numbers and the errors stagnate. Only

for high Péclet numbers one has convergence of order O(h
1
2 ). In the downstream case one

observes lower errors, faster convergence and almost no noise effect for high Péclet numbers.

The difference is also very clear for perturbations of amplitude O(h
1
2 ) shown in Figure 6.14.

In the upstream case the errors stagnate and there seems to be no convergence, while in

the downstream case the errors still convergence for high Péclet numbers.
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(a) Downstream, perturbation O(h).
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(b) Upstream, perturbation O(h).

Figure 6.13: L2-errors against mesh size h for perturbations in data, computational domains
in Figure 6.4b. Varying the diffusion coefficient µ for fixed β = (1, 0), exact solution
u = 2 sin(5πx) sin(5πy).
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(a) Downstream, perturbation O(h
1
2 ).
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(b) Upstream, perturbation O(h
1
2 ).

Figure 6.14: L2-errors against mesh size h for perturbations in data, computational domains
in Figure 6.4b. Varying the diffusion coefficient µ for fixed β = (1, 0), exact solution
u = 2 sin(5πx) sin(5πy).

Variable convective field. We note that this case is not rigorously covered

by the theoretical analysis presented above. We briefly mention that a potential way of

extending the analysis to this case could be to assume that β has no closed curves and

vanishes nowhere, and construct the weight functions and the stability region in terms of

the η function in [3, Assumption (H3)], for which β ·∇η ≥ C‖β‖L∞(Ω)n . We consider a unit

vector field βvar, shown in Figure 6.15, that rotates around the point (−0.1,−0.1) and is

given by

βvar(x, y) := 1√
(x+0.1)2+(y+0.1)2

(y + 0.1,−x− 0.1). (6.35)

0 1
0

1

0 1

1

0.4 0.65 0.85

0.4

0.65

0.85

ω

Figure 6.15: Left: unit vector field βvar in (6.35). Right: data set ω = (0.4, 0.6)2 (grey) and
error measurement regions (light grey).
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We consider an interior data set ω = (0.4, 0.6)2 and the exact solution with unit

L2-norm u = 30x(1−x)y(1−y). Without changing βvar, we decrease the diffusion coefficient

µ and present the absolute errors in Figures 6.16 and 6.17. We first see in Figure 6.16a that

the errors oscillate away from the data set when diffusion dominates. Then in Figure 6.16b

we notice the stronger impact of convection with a clear distinction between downstream and

upstream regions, similarly to the introductory example in Figure 6.2a. This intermediate

regime can still be observed in Figure 6.17a, while Figure 6.17b shows the convection-

dominated regime and a clear stability region with downstream–upstream symmetry.

(a) µ = 1. (b) µ = 10−2.

Figure 6.16: Absolute error for variable β in (6.35) and u = 30x(1−x)y(1− y). Data given
in the outlined square (0.4, 0.6)2 and mesh size h ≈ 0.005.

(a) µ = 10−3. (b) µ = 10−6.

Figure 6.17: Absolute error for variable β in (6.35) and u = 30x(1−x)y(1− y). Data given
in the outlined square (0.4, 0.6)2 and mesh size h ≈ 0.005.
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We report in Figure 6.18 the L2-convergence measured in the downstream and

upstream parts of the region shown in Figure 6.15. We notice a clear separation between a

diffusion-dominated regime with sub-linear convergence and a convection-dominated regime

with quadratic convergence. As expected, the regimes will also depend on the resolution of

the computation and we observe for µ = 10−3 that, as the mesh gets refined and the Péclet

number decreases, the convergence of the method changes from quadratic to sub-linear. We

also see that a smaller diffusion coefficient is needed in the upstream case to obtain optimal

convergence.

The annular downstream region is taken to be {(x, y) ∈ (0, 1)2 : 0.752 + 0.12 <

(x + 0.1)2 + (y + 0.1)2 < 0.952 + 0.12 and x − y < 0.2} and the upstream one {(x, y) ∈
(0, 1)2 : 0.752 + 0.12 < (x+ 0.1)2 + (y + 0.1)2 < 0.952 + 0.12 and x− y < −0.2}.
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(a) Downstream.
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(b) Upstream.

Figure 6.18: L2-errors against mesh size h. Varying the diffusion coefficient µ for fixed β in
(6.35), exact solution u = 30x(1− x)y(1− y) and computational domains in Figure 6.15.



Conclusions

In this thesis we have considered the unique continuation problem for second order

elliptic differential operators, focusing on the Helmholtz and convection–diffusion equations.

After discussing the ill-posedness of such problems in Chapter 1, conditional stability es-

timates that are explicit in the coefficients of the partial differential equation (PDE) have

been derived in Chapter 2. A methodology for designing numerical methods for such prob-

lems has been presented in Chapter 3, by first discretising the problem written in the form of

PDE-constrained optimisation, and then regularising on the discrete level using techniques

from stabilised finite element methods (FEMs). Based on continuous interior penalty stabil-

isation, piecewise linear FEMs have been proposed in Chapters 4 and 5 for Helmholtz and

diffusion-dominated problems. The error estimates are explicit in the physical parameters

and the convergence order matches the continuum stability of the problems. Convection-

dominated problems have been analysed in Chapter 6 where the numerical method was

proven to converge with quasi-optimal rates in local weighted norms.

In Chapters 4 and 5, continuum stability estimates were used for the approximation

error and bounding the residual in terms of the stabilisation was a key step in the error

analysis. Due to the a posteriori nature of these estimates, one direction for future work

could be to explore adaptive methods.

Since unique continuation is ill-posed and stability is only provided through the

discrete weakly consistent stabilisation, the ill-conditioning of the linear system becomes

a problem for fine meshes. A possible future area of development consists in devising

preconditioning techniques and efficient solvers for such systems.

Unique continuation problems for PDEs with coefficients that jump across an

internal interface could also be considered based on the methodology presented in this

thesis. Developing fitted and unfitted stabilised FEMs for this kind of ill-posed interface

problems would be another important extension.
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Appendix A

Finite element inequalities

We collect here some fundamental inequalities regarding finite element functions

and their approximation properties. Consider a domain Ω ⊂ Rn and let {Th} be a shape-

regular family of triangulations Th = {K} with elements K having maximal diameter h.

For a positive integer k we denote by Pk the set of polynomials of degree at most k.

Inverse and trace inequalities

We recall some inverse and trace inequalities, see e.g. [28, Section 1.4.3], starting

with the following inverse inequality

‖∇vh‖L2(K)≤ Ch−1‖vh‖L2(K), ∀vh ∈ Pk(K). (A.1)

We also recall the continuous trace inequality

‖v‖L2(∂K)≤ C(h−
1
2 ‖v‖L2(K)+h

1
2 ‖∇v‖L2(K)), ∀v ∈ H1(K), (A.2)

and the discrete trace inequality

‖∇vh · n‖L2(∂K)≤ Ch−
1
2 ‖∇vh‖L2(K), ∀vh ∈ P1(K). (A.3)

Approximation inequalities

We consider the conforming piecewise affine finite element space

Vh :=
{
u ∈ C(Ω̄) : u|K∈ P1(K),K ∈ Th

}
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and recall some approximation inequalities, see e.g. [32, Chapter 1]. Let πh : L2(Ω) → Vh

be the L2-projection that satisfies the orthogonality

(u− πhu, v)L2(Ω) = 0, ∀u ∈ L2(Ω), ∀v ∈ Vh.

The L2-projection is stable in the L2-norm

‖πhu‖L2(Ω) ≤ ‖u‖L2(Ω), ∀u ∈ L2(Ω),

and, if the family {Th} is quasi-uniform, it is also stable in the H1-norm

‖πhu‖H1(Ω) ≤ C‖u‖H1(Ω), ∀u ∈ H1(Ω).

see e.g. [32, Lemma 1.131]. The following approximation estimate holds

‖u− πhu‖L2(Ω) + h‖∇(u− πhu)‖L2(Ω) ≤ Chm|u|Hm(Ω), ∀u ∈ Hm(Ω), m = 1, 2.

We also recall the Scott-Zhang [56] interpolant πsz : H1(Ω)→ Vh which preserves vanishing

Dirichlet boundary conditions. It is stable in both the L2- and the H1-norm and enjoys the

same approximation error estimate

‖u− πszu‖L2(Ω) + h‖∇(u− πszu)‖L2(Ω) ≤ Chm|u|Hm(Ω), ∀u ∈ Hm(Ω), m = 1, 2.

Let ih be the nodal Lagrange interpolant on Vh. For any function v ∈W 1,∞(K) the following

approximation holds

‖v − ihv‖∞,K+h‖∇(v − ihv)‖∞,K≤ Ch‖∇v‖∞,K , (A.4)

see e.g. [32, Theorem 1.103].



Appendix B

Pseudodifferential operators

We briefly recall herein the definition of semiclassical pseudodifferential operators

and semiclassical Sobolev spaces. We then discuss the composition rule of two such opera-

tors, which is also called symbol calculus, and some estimates that are used in the proof of

Lemmas 2.7 and 2.15. This presentation is based on [62, Chapter 4] and [51, Section 2], to

which we refer the reader for more details.

We shall use the following standard notation. For ξ ∈ Rn we set 〈ξ〉 = (1 + |ξ|2)
1
2 ,

and for a multi-index α = (α1, . . . , αn) ∈ Nn let |α|= α1 + . . . αn, α! = α1! · · ·αn!, ξα =

ξα1
1 · · · ξαnn . Let also ∂α = ∂α1

x1
· · · ∂αnxn , D = 1

i ∂ and Dα = 1
i|α|
∂α. The Schwartz space S(Rn)

is the set of rapidly decreasing C∞ functions and its dual S ′(Rn) is the set of tempered

distributions. The semiclassical parameter h̄ > 0 can be taken arbitrarily small and we

assume that h̄ ∈ (0, 1).

The semiclassical Fourier transform is a rescaled version of the standard Fourier

transform. It is given by

Fh̄ϕ(ξ) :=

�
Rn
e−

i
h̄
x·ξϕ(x) dx

and its inverse is

F−1
h̄ ψ(x) := 1

(2πh̄)n

�
Rn
e
i
h̄
x·ξψ(ξ) dξ.

The following properties hold: Fh̄((h̄Dx)αϕ) = ξαFh̄ϕ and (h̄Dξ)
αFh̄ϕ(ξ) = Fh̄((−x)αϕ).

Symbol classes

For m ∈ R the symbol class Sm consists of functions a(x, ξ, h̄) ∈ C∞(Rn×Rn) such

that for all multi-indices α, α̃ ∈ Nn there exists a constant Cα,α̃ > 0 uniform in h̄ ∈ (0, 1)
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such that

|∂αx ∂α̃ξ a(x, ξ, h̄)|≤ Cα,α̃〈ξ〉m−|α̃|, x ∈ Rn, ξ ∈ Rn.

Symbols in Sm thus behave roughly as polynomials of degree m. We write that a ∈ h̄NSm
if

|∂αx ∂α̃ξ a(x, ξ, h̄)|≤ Cα,α̃h̄N 〈ξ〉m−|α̃|, x ∈ Rn, ξ ∈ Rn.

Lemma B.1 (Asymptotic series). Let m ∈ R and the symbols aj ∈ Sm−j for j = 0, 1, . . .

Then there exists a symbol a ∈ Sm such that a ∼
∞∑
j=0

h̄jaj, that is for every N ∈ N,

a−
N∑
j=0

h̄jaj ∈ h̄N+1Sm−N−1.

The symbol a is unique up to h̄∞S−∞, in the sense that the difference of two such symbols

is in h̄NS−M for all N,M ∈ R. The principal symbol of a is given by a0.

Operators

Using these symbol classes we can define semiclassical pseudodifferential operators

(ψDOs). For a symbol a ∈ Sm we define the corresponding semiclassical ψDO of order m,

Op(a) : S(Rn)→ S(Rn),

Op(a)u(x) := 1
(2πh̄)n

�
Rn

�
Rn
e
i
h̄

(x−y)·ξa(x, ξ, h̄)u(y) dydξ.

This is also called quantization of the symbol. Op(a) can be extended to S ′(Rn) and

Op(a) : S ′(Rn) → S ′(Rn) continuously. Note that Op(a)u(x) = F−1
h̄ (a(x, ·)Fh̄u(·)) and

that the operator corresponding to the symbol a(x, ξ) =
∑
|α|≤N aα(x)ξα is

Op(a)u =
∑
|α|≤N

aα(x)(h̄D)αu.

Notice that each derivative of this operator scales with h̄.

For the present paper the most important example is the second order differential

operator −h̄2∆+ h̄2∑n
j=1 βj(x)∂j . Its symbol is given by a(x, ξ, h̄) = |ξ|2+ih̄

∑n
j=1 βj(x)ξj ,

and its principal symbol is a0(x, ξ, h̄) = |ξ|2.



Appendix B. Pseudodifferential operators 130

Semiclassical Sobolev spaces

For s ∈ R the semiclassical Sobolev spaces Hs
scl(Rn) are algebraically equal to the

standard Sobolev spaces Hs(Rn) but are endowed with different norms

‖u‖Hs
scl(Rn) = ‖Jsu‖L2(Rn),

where the semiclassical Bessel potential is defined by Js = Op(〈ξ〉s). Informally,

Js = (1− h̄2∆)s/2, s ∈ R.

For example, ‖u‖2H1
scl(Rn) = ‖u‖2L2(Rn) + ‖h̄∇u‖2L2(Rn). A semiclassical ψDO of order m is

continuous from Hs
scl(Rn) to Hs−m

scl (Rn).

Composition

Composition of semiclassical ψDOs can be analysed using the following calculus.

Theorem B.2 (Symbol calculus). Let a ∈ Sm and b ∈ Sm′. Then Op(a)◦Op(b) = Op(a#b)

for a certain a#b ∈ Sm+m′ that admits the following asymptotic series

a#b(x, ξ, h̄) ∼
∑
α

h̄|α|i|α|

α! Dα
ξ a(x, ξ, h̄)Dα

x b(x, ξ, h̄).

The commutator and disjoint support estimates (2.14) and (2.13) follow, respec-

tively, from the following.

Corollary B.3 (Commutator and disjoint support). Let a ∈ Sm and b ∈ Sm′. Then

1. a#b− b#a ∈ h̄Sm+m′−1.

2. If supp(a) ∩ supp(b) = ∅, then a#b ∈ h̄∞S−∞, i.e. a#b ∈ h̄NS−M for all N,M ∈ R.

Proof. (1) The principal symbol of a#b, that is the first term in its asymptotic series, is

ab. The second term is h̄
i

∑n
j=1 ∂ξja(x, ξ, h̄)∂xjb(x, ξ, h̄). We thus have that the principal

symbol of the commutator [Op(a),Op(b)] = Op(a#b− b#a) is given by

h̄
i

n∑
j=1

(∂ξja∂xjb− ∂xja∂ξjb) ∈ h̄Sm+m′−1.

(2) If supp(a) ∩ supp(b) = ∅, then each term in the asymptotic series of a#b vanishes.
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[4] I. M. Babuška and S. A. Sauter. Is the pollution effect of the FEM avoidable for

the Helmholtz equation considering high wave numbers? SIAM J. Numer. Anal.,

34(6):2392–2423, 1997.

[5] D. Baskin, E. A. Spence, and J. Wunsch. Sharp high-frequency estimates for the

Helmholtz equation and applications to boundary integral equations. SIAM J. Math.

Anal., 48(1):229–267, 2016.

[6] R. Becker and B. Vexler. Optimal control of the convection-diffusion equation using

stabilized finite element methods. Numer. Math., 106(3):349–367, 2007.

[7] F. B. Belgacem. Why is the Cauchy problem severely ill-posed? Inverse Problems,

23(2):823, 2007.

[8] S. Bertoluzza. The discrete commutator property of approximation spaces. C. R. Acad.

Sci. Paris Sér. I Math., 329(12):1097–1102, 1999.

[9] M. Boulakia, E. Burman, M. A. Fernández, and C. Voisembert. Data assimilation

finite element method for the linearized Navier-Stokes equations in the low Reynolds

regime. Inverse Problems, 36:085003, 2020.



References 132

[10] L. Bourgeois. Convergence rates for the quasi-reversibility method to solve the Cauchy

problem for Laplace’s equation. Inverse problems, 22(2):413, 2006.

[11] L. Bourgeois and L. Chesnel. On quasi-reversibility solutions to the Cauchy problem

for the Laplace equation: regularity and error estimates. ESAIM Math. Model. Numer.

Anal., 54(2):493–529, 2020.

[12] A. N. Brooks and T. J. Hughes. Streamline upwind/Petrov-Galerkin formulations for

convection dominated flows with particular emphasis on the incompressible Navier-

Stokes equations. Comput. Methods Appl. Mech. Engrg., 32(1-3):199–259, 1982.

[13] E. Burman. A unified analysis for conforming and nonconforming stabilized finite

element methods using interior penalty. SIAM J. Numer. Anal., 43(5):2012–2033,

2005.

[14] E. Burman. Stabilized finite element methods for nonsymmetric, noncoercive, and ill-

posed problems. Part I: elliptic equations. SIAM J. Sci. Comput., 35(6):A2752–A2780,

2013.

[15] E. Burman. Stabilized finite element methods for nonsymmetric, noncoercive, and ill-

posed problems. Part II: hyperbolic equations. SIAM J. Sci. Comput., 36(4):A1911–

A1936, 2014.

[16] E. Burman, A. Feizmohammadi, and L. Oksanen. A finite element data assimilation

method for the wave equation. Math. Comp., 89(324):1681–1709, 2020.

[17] E. Burman, J. Guzmán, and D. Leykekhman. Weighted error estimates of the continu-

ous interior penalty method for singularly perturbed problems. IMA J. Numer. Anal.,

29(2):284–314, 2009.

[18] E. Burman and P. Hansbo. Edge stabilization for Galerkin approximations of

convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Engrg., 193(15-

16):1437–1453, 2004.

[19] E. Burman and P. Hansbo. Stabilized nonconforming finite element methods for data

assimilation in incompressible flows. Math. Comp., 87(311):1029–1050, 2018.

[20] E. Burman, P. Hansbo, and M. G. Larson. Solving ill-posed control problems by

stabilized finite element methods: an alternative to Tikhonov regularization. Inverse

Problems, 34:035004, 2018.



References 133

[21] E. Burman, M. Nechita, and L. Oksanen. Unique continuation for the Helmholtz

equation using stabilized finite element methods. J. Math. Pures Appl., 129:1–22,

2019.

[22] E. Burman, M. Nechita, and L. Oksanen. A stabilized finite element method for inverse

problems subject to the convection–diffusion equation. I: diffusion-dominated regime.

Numer. Math., 144(451–477), 2020.

[23] E. Burman, M. Nechita, and L. Oksanen. A stabilized finite element method for inverse

problems subject to the convection-diffusion equation. II: convection-dominated regime.

arXiv preprint arXiv:2006.13201, 2020.

[24] E. Burman and L. Oksanen. Data assimilation for the heat equation using stabilized

finite element methods. Numer. Math., 139(3):505–528, 2018.

[25] E. Burman, H. Wu, and L. Zhu. Linear continuous interior penalty finite element

method for Helmholtz equation with high wave number: one-dimensional analysis.

Numer. Methods Partial Differential Equations, 32(5):1378–1410, 2016.

[26] T. Carleman. Sur un problème d’unicité pour les systèmes d’équations aux dérivées
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