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ABSTRACT. The paper pursues three objectives. First, we provide an expanded version of
the spectral analysis of self-adjoint Toeplitz operators, initially built by M. Rosenblum in the
1960’s. We offer some improvements to Rosenblum’s approach: for instance, our proof of the
absolute continuity, relying on a weak version of the limiting absorption principle, is more
direct. Secondly, we study in detail Toeplitz operators with finite spectral multiplicity. In par-
ticular, we introduce generalized eigenfunctions and investigate their properties. Thirdly, we
develop a more detailed spectral analysis for piecewise continuous symbols. This is necessary
for construction of scattering theory for Toeplitz operators with such symbols.
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1. INTRODUCTION

It is known [9] that the spectrum o (T) of a self-adjoint Toeplitz operator T = T(w) with a
real semi-bounded symbol w({) on the unit cirlce T coincides with the interval

(1.1) o(T) = [y1,72] where 71 = ess-inf w, ¥, = ess-sup w,

and that it is absolutely continuous [16] unless w is a constant. If v, = oo, then by [y1, 72| we
understand the interval [y7, c0). We note also the papers [11, 18] where the multiplicity of the
spectrum o (T) was found, and [17, 18] where a spectral representation of T was constructed. A
presentation of the spectral theory for self-adjoint Toeplitz operators can be also found in [19,
Chapter 3, Examples and Addenda]. For the analysis of general Toeplitz operators see, e.g., the
books [2, 12, 13, 14].

Our ultimate objective is to construct (in the forthcoming paper [20]) a scattering theory
for Toeplitz operators T(w) with piecewise continuous symbols w. The case of symbols w with
jump discontinuities seems to be particularly interesting because for such symbols scattering
theory becomes multichannel. In the current paper we present a spectral analysis of self-adjoint
Toeplitz operators adapted for this application.

Our starting point is M. Rosenblum’s papers [16, 17, 18]. Since Rosenblum’s presentation
is rather condensed and sometimes sketchy, we believe that interested specialists would benefit
from a more detailed exposition of the relevant results. Thus the first aim of the present pa-
per is to a large extent methodological — to provide an expanded and detailed spectral analysis
of general self-adjoint Toeplitz operators, see Sections 2, 3. Although we mostly follow Rosen-
blum’s construction, our proof of the absolute continuity of T in Theorem 3.5 is more direct
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compared to [16] or [19]. It relies on a weak version of the limiting absorption principle, which
is established via a straightforward application of Jensen’s inequality.

The second aim of the paper is to study Toeplitz operators with finite spectral multiplicity.
In this case the general results of Sect. 3 can be made more explicit. In particular, we introduce
generalized eigenfunctions and study their properties. The eigenfunctions are used to construct
a unitary operator that diagonalizes T, i.e. realizes a spectral representation of T, see Theorem
4.14.

The third aim of the paper is to derive a convenient formula for the (finite) spectral mul-
tiplicity of Toeplitz operators with piecewise continuous symbols. This result is crucial for our
construction of a scattering theory in [20].

To summarize, this paper supplements Rosenblum’s articles [16, 17, 18], and it is a prereq-
uisite for [20].

The more detailed plan of the paper is as follows. Sect. 2 contains basic definitions and a
convenient formula for the bilinear form of the resolvent (T — z)~!. In Sect. 3 we prove the ab-
solute continuity of T and provide a formula for the spectral family of T. From Sect. 4 onwards,
we impose Condition 4.1 which ensures that the spectrum of T on a fixed interval A C R is of
finite multiplicity. In this case the general results of Sect. 3 can be made more explicit. In partic-
ular, we introduce generalized eigenfunctions (or the continuous spectrum eigenfunctions) of
the Toeplitz operator and produce a formula (see Theorem 4.6) for its spectral family in terms
of these functions. The latter are used to construct a unitary operator that diagonalizes T, see
Theorem 4.14. Properties of eigenfunctions of Toeplitz operators are studied in Sect. 5 where we
establish a link with the Riemann-Hilbert problem, see [7] for information on Riemann-Hilbert
problems. Here we also discuss two examples of symbols for which the eigenfunctions can be
found explicitly.

The final Sect. 6 is devoted to Toeplitz operators with piecewise continuous symbols. In
this case Condition 4.1, which guarantees that the multiplicity is finite, is satisfied and the mul-
tiplicity is expressed via the number of intervals of monotonicity and number of jumps of the
symbol, see Theorem 6.6.

To conclude the introduction we make some notational conventions. The unit circle T is
equipped with the normalized Lebesgue measure dm({) = (27i{)~'d{ where { € T. For any
01,02 € T, we denote by ({1, {2) the open arc joining {7 and {, counterclockwise. For general
information on functions analytic on the unit disk D, we refer, for example, to the books [5] or
[10]. In particular, the notation HP = HP(T), p > 0, stands for the classical Hardy spaces. By
| - |, we denote the standard norm in HP. The space H? C L?(T) is considered as a subspace of
L?(T), with inner product

(£,9) = [ F@©RE)dm(2).
T

The orhogonal projection onto H? is denoted by P. By E(X) with a Borel set X C R we denote the
spectral family of a self-adjoint Toeplitz operator T. We also use the standard notation E(A) =
E((—o0,A)), A € R. For a set B, we denote its closure by clos B.

Throughout the paper we assume that w is a non-constant function on T.
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2. TOEPLITZ OPERATORS, THEIR QUADRATIC FORMS AND RESOLVENTS

2.1. BASIC DEFINITIONS. Let us first recall the precise definition of Toeplitz operators. If w €
L*(T), then the Toeplitz operator T = T(w) is defined on the space H? by the formula
Tf =P(wf), feH
We always suppose that the symbol w is real-valued, so that T(w) is self-adjoint, and use the
notation 7; = ess-inf w, ¥ = ess-sup w, asin (1.1).
If w is unbounded, we define the operator T(w) via the sesqui-linear form

1) 11,8l = [ @(@)f(@5@)dm )
T

where f, g are polynomials (or f,g € H®). The form is well-defined under the following condi-
tion.

CONDITION 2.1. (i) w is real valued and w € L(T),
(i) 71 > —oo.

This condition ensures that the form (2.1) is semi-bounded from below and, as we will see,
that it is closable.
Let us introduce the Schwarz kernel

2.2) H@z) =12 ;e
11—z
Then
1 oy 1 1—12 B
(23) ERE H(T’e ) — EW —- fP(?’, 9), r < 1,

is the Poisson kernel. Obviously,
T
2.4) P(r,6) > 0 and / P(r,0)d0 =1, Vr<1.
-7
The function

(2.5) K,(z) zeD, uéeclosh,

T 1wz

is known as the reproducing kernel. It follows from the formula

26 0k = [ LE @) = i, few?
T

that the set {K,, u € D} is total in the space H?, that is, the set X = span {K,,u € D} is dense
in this space. Clearly, the set X consists of all rational functions with simple poles lying in the
exterior of closID and tending to zero at infinity. Let us also note the identities K, (z) = K;(u)
and

2.7) H(iiz) + H(vz) = 2(1 — @o|z|*)Ky (2) Ko (2),

valid for all z,u,v € .
For A < 71, we introduce an outer function (see, e.g., [10] for basic properties of such
functions)

2 B2 = exp (5 [ 1n (@(@) = ) HEDm (D))
T
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of z € D, associated with the function (w(Z) — A)/2 of { € T.Since w € L!(T), we have Fy € H?
and

(2.9) w(@)—A=R(QP ae (€T
Thus, the quadratic form (2.1) can be written as

(2.10) T(f, gl = (FAf, Frg) + A(f.8),

where F, is the operator of multiplication by F) in H2. Since the operator F, is closed on the
domain D(F,) := {f € H? : F,f € H?}, the form T[f, f] is well defined and closed on the
domain D[T] := D(F,). This allows one (see, e.g., [1, Ch. 10]) to define T = T(w) via this form.

DEFINITION 2.2. The self-adjoint operator T is correctly defined on a dense set D(T) C
DI[T] by the relation

(2.11) (Tf,g) =TI[f, 8], VfeD(T), VgeD[T].
The operator T is semi-bounded from below by 1. Comparing equalities (2.10) and (2.11),
we see that

(T=2A)f,8) = (Eaf,Fag), Vf,g € D(T).
By the definition of the adjoint operator, it follows that F, f € D(F}) for all f € D(T) and
(2.12) (T—A)f =FiF,f, VfeD(T), A<m.
In view of (2.9), |FA(¢)|*> > 11 — A for all { € T, whence Fj 1 ¢ H™. This implies that for all
A< 1,
(2.13) KerF, = {0}, RanF, = H?,
and the inverse F;l is a bounded operator on H?. Since the operator F, is closed, its adjoint F}
is densely defined and F;* = F,. Now (2.13) implies that Ker F; = {0} and closRanF} = H2.
The inverse operator (FX)’1 is defined on Ran F}“L and (see, e.g., [1, Theorem 3.3.6])

(F3) " = (Fy )"

In particular, (F;)~! extends to a bounded operator on the whole space H>.
Recall that the function K, u € D, is defined by formula (2.5). According to (2.6) we have

(Faf, Ku) = FA(u)(f,Ku), Vf € D(F,).

Thus the adjoint operator F3 acts on K, by the formula

(FiKy)(z) = FA(u)Ky(z), z €D,
whence
(2.14) (F3) 'Ky = (Fy(u)) 'K
2.2. RESOLVENT. Here we find an explicit formula for the sesqui-linear form ((T — A) 'K, K;)

of the resolvent of the operator T for all u,v € ID. Suppose first that A < 7;. We proceed from
factorization (2.12) which implies

(T— 1) = ()
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Using also (2.14), we find that

((T - A)ilKur Kv) = ((FX)AKW (F}k\)ilKv)

= (FA(u)) " (Fu(0)) ™ (Ku, Ko) = (1= T0) " (Fy (1)) 7 (Fu(0))

In view of definition (2.8) this yields
(215) ((T—=A)"' Ky, Ky)

= (1—uv) Lexp ( — %/ln (w(g) —A) (H(vQ) —I—H(ug))dm(g)).
T

Here A < 11, but, by analyticity of both sides, this equality extends to complex A. We have
chosen the principal branch of the logarithm: arg (w({) — A) = 0 for A < ;. Then arg (w({) —
A) € (=m,0) forImA > 0 and arg (w({) — A) € (0,7) for InA < 0. In particular, if 7, < oo,
then arg (w({) — A Fi0) = F7t for A > 7,. Note also that

/ (H(vg) + H@g))dm({) =2, Vu,v € D.
T

This implies that the limit values of the right-hand side of (2.15) for A +i0 and A — i0 are the
same if A > 7, and hence this function is analytic in the half-plane Rez > 5.
Let us state the result obtained.

PROPOSITION 2.3. Let Condition 2.1 be satisfied, and let the functions K, (z) be defined by for-

mula (2.5). Then formula (2.15) is true for all u,v € D and all A in the complex plane with a cut along
(71, 72)-

We emphasize that this result is not new; see [3] and [16], for original proofs. Our deriva-
tion is an expanded version of Rosenblum’s argument from [17].

3. SPECTRAL PROPERTIES OF GENERAL TOEPLITZ OPERATORS

3.1. ABSOLUTE CONTINUITY. We proceed from the following abstract result (see, e.g., [15, The-
orem XIII] or [21, Proposition 1.4.2]), which can be interpreted as a weak form of the limiting
absorption principle. It shows that the absolute continuity is a consequence of the existence of
appropriate boundary values of the resolvent.

PROPOSITION 3.1. Let A be a self-adjoint operator on a Hilbert space H with the spectral measure
E4(-), and let X C R be a compact interval. Suppose that for some element § € H there is a number
p > 1 such that

sup [ [Im ((A— A —ie) g, g)|PdA < co.

Then the measure (E4(-)g, §) is absolutely continuous on the interval X.

Let us return to Toeplitz operators T = T(w). Recall that w(() is always assumed to be a
non-constant function.
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~ LEMMA 3.2. Let Condition 2.1 be satisfied, and let P(r,0) be the Poisson kernel (2.3). For z =
re? r<1,0¢ (—m, 7], set
(3.1) u(t) =u(t;z) = / P(r,0 —1)dr, teR

TG(t—TL’,TL’]
w(e'T)<t

Then p(t) is non-decreasing, p(t) = 0 for t < vy, u(t) =1 fort > vy, and

(3.2) (1= )[((T = A —ie) " Kz, Ko)| = exp (—/”mt—A—isldu(t)),
m

forall e # 0.

Proof. The equality u(t) = 0,t < 74, is obvious, and the fact that y(t) = 1fort > yyisa
consequence of (2.4).
It follows from formulas (2.3) and (2.15) that

33)  (1-)|(T—A—ie) K., Kz) :exp(— /1n1w(eif)—A—isy?(r,e—r)dr>.

Using the change of variables t = w(eiT), we can (see, e.g., [8, §39, Theorem C]) rewrite (3.3) as
(3.2). 1

LEMMA 3.3. Suppose that Condition 2.1 is satisfied. Then for all t € (y1,72) and all z € D, we

have the strict inequalities
0<u(tz) <1

Proof. Let us check, for example, that p(t) < 1.If u(t) = 1 for some t < 5, then according

to the definition (3.1) we have
/ P(r,0 —T)dT = 0.
w(e;T)Zt

Since P(r,6 — T) > 0, it follows that the Lebesgue measure [{¢'T € T : w(e'™) > t}| = 0.

However, this measure is positive for every t < 7, by the definition of ;. The inequality p(t) >
0 can be verified quite similarly. 1

Now we are in a position to establish a weak form of the limiting absorption principle for
Toeplitz operators.

THEOREM 3.4. Let the symbol w of a Toeplitz operator T = T(w) satisfy Condition 2.1. Then for
every compact interval X C R and all z € D there exists a number p > 1 such that

(3.4) sup [ |((T(w) — A —ie) LKy, Kp) [P dA < 0.
e€(0,1] X

Proof. We proceed from Lemma 3.2. Note first that ; < 7 because w is non-constant.
Suppose that X = [a,b] where a < 71 < b < ;. Choose some by € [b, 2] and split the integral
in (3.2) into two integrals — over (1, by) and over (by, 72):

35 (1—=r)P|((T = A —ie) Kz, Kz)[P

72 . bo .
:exp<—p/h0 ln‘t—)\—zs|dy(t)) exp(—p/71 ln|t—)\—1£|dy(t)).
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Ift e (bo,”yz), then
[t—A—ig] >t—A>bp—b andhence —In|t—A—ie] < —In(by—Db).

It follows that the first factor on the right-hand side of (3.5) is bounded by (by — b)?(#(t0)=1)
uniformly in &€ > 0.

Next, consider the integral over t € (71,bg). By Lemma 3.3, we have pu(by) < 1. Let us
now apply Jensen’s inequality to the normalized measure u(by) ~'du(t) on (1, bg). Then

b b
exp (—p/ﬂy%n‘t—)x—is]dy(t)) < (ko) ! LO ]t—/\—is]_p”(b())dy(t).
1 gt

Therefore it follows from the equality (3.5) that

)
/|((T—A—is)*1 K., K:)|PdA < c/ </|t—A|P”(b°)dA>dy(t).
X 7 X

The right-hand side here is finite as long as pp(bg) < 1.

Thus, we have proved (3.4) for X = [a,b] where a and b are arbitrary numbers such that
a <91 <b < g If yp = oo, this concludes the proof. If 9, < oo, then we additionally have to
consider intervals X = [a,b] such that 71 < a < 72 < b. Now we split the integral in (3.2) into
two integrals over (y1,a9) where 1 < ag < a and over (ag, 7). Similarly to the first part of the
proof, the integral over t € (y1,ap) is bounded uniformly in € > 0. For t € (ag,y,) we use the
fact that y(ag) > 0 and apply Jensen’s inequality again. 1

According to Proposition 3.1 it follows from Theorem 3.4 that the measures (E( - )K;, K;)
are absolutely continuous on R for all z € D. Therefore the measures (E( - )g,g) are also ab-
solutely continuous for all g € X. Since the set X is dense in H, we arrive at the following
theorem.

THEOREM 3.5. Let the symbol w of a Toeplitz operator T = T(w) satisfy Conditions 2.1 and be
non-constant. Then the operator T is absolutely continuous.

In passing, we note that for matrix-valued analytic symbols w, the limiting absorption
principle was established in [4] via the Mourre method.

3.2. SPECTRAL FAMILY. Our next step is to find a convenient formula for the spectral family
E(A) of the operator T = T(w). We proceed from Proposition 2.3 and use the following elemen-
tary but important fact.

LEMMA 3.6 ([17]). Under Condition 2.1, the inclusion
(3.6) Injw(-)—A| € LY(T)

holds for a.e. A € R, and for this set of the points A, the function In|w( - ) — A — ig| converges to
In|w(-)—A|in LY(T)ase — 0.

Proof. Write

/Tln (@(2) — A — ie)dm(Q) = J(A +ie) + o
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with
J(A + ie) / In | —ig) — %ln (w(g)*+1)]dm(7),
=3 / In (w(Z)? +1)dm(Z).

Introducing the measure

we can rewrite J(A + ig) as (see, e.g., [8, §39, Theorem C])

Jvrie) = [ [Inf(e=A—ie) = 3 In (P +1)]dv(e),

S 1 t
_/foo [t—)\—ie_ t2—|—1}/(t)dt

where we have integrated by parts. The limit as € | 0 of the right-hand side exists and is finite
for a.e. A € R, and hence so does the limit

(3.7) lim Re ] (4 + ic) = lim /T In|w(Z) — A — ie]dm(Z) — o

The function In |w () — A — ie| converges as ¢ — 0 monotonically to In |w({) — A|. The Mono-
tone Convergence Theorem now ensures that the limit on the right-hand side of (3.7) equals
JrIn|w(Z) — Aldm(Z) which is thus finite for a.e. A. &

Recall that for every z € D, formula (2.8) defines Fy(z) and F)(z)~! as functions of A
analytic in the complex plane with a cut along [y1, 72]. Let us set

Fr(z) "' = &(z;A) exp (iA(z;A)),

where
(3.8) E(zA) = exp( / In|w(C A|H(z§)dm(§)>
and
1 _
(3.9) AzA) = =5 [ arg (@(0) = ) HE)dm(E).

Note that ¢(z;A) = &(z;A) and A(z;A) = —A(z; A). With the functions ¢ and A, representation
(2.15) can be rewritten as follows:

(3.10) (T —AFie) 'Ky, Ky) = (1 —70) "}
X E(u; A £ie)&(v; A £ ie) exp(i(A(vj:is) +A(uﬂ:is))>.

Now we can describe the boundary values of the functions §(z,A) and A(z, A) on the cut. Intro-
duce the subset (see Figure 1)

(3.11) T(A) ={eT:w(l) <A}
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FIGURE 1. Set I'(A)

of T and observe that
+rr, (eTr(A),
0, E&T(A).

We emphasize that I'(A) is defined up to a set of measure zero on T.
The following assertion is a direct consequence of definitions (3.8), (3.9) and Lemma 3.6.

lsifgarg(w(g) —Atie) = {

LEMMA 3.7. Fora.e. A € Randall z € D, the functions {(z; A + i) and A(z; A + i) have limits
as e — £0. The limit

&(z;A) :=E&(zA+10) = &(z; A —i0)
is given by the formula (3.8) and
A(zA) = A(z A +1i0) = —A(z; A —i0)
(3.12) == / H(z)dm(7).
The next fact follows from (3.10) and Lemma 3.7.
LEMMA 3.8. Fora.e. A € R, we have the representation

lim ((T — A Fie) 'Ky, Ky)
el0

(3.13) = (1—70) E(u; M)E(v; A) exp ( +i(AA) + A; A))),
where ¢(z; A) and A(z; A) are given by (3.8) and (3.12) respectively.
Putting the representation (3.13) together with the Stone formula,

d
27'[15( (A)Ku, Ky)

= 11&1 (((T — A —ie) 'Ky, Ko) — ((T — A +1ie) 'Ky, Ky)),
€
we obtain

THEOREM 3.9. Suppose that w satisfies Condition 2.1. Define the functions ¢(z; A) and A(z; A)
by formulas (3.8) and (3.12), respectively. Then for all u,v € D and a.e. A € R, the spectral family E(A)
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of the Toeplitz operator T satisfies the formula

d 1
ﬁ (E(A)KM,KU) == %

Recall that 71 and 7, are defined in (1.1).

(3.14) (1 —0) " 1&(1; A)&(v; A) sin (A(u,- 1)+ A(v;/\)).

COROLLARY 3.10. The spectrum of the operator T coincides with the interval [7y1, y2).
Proof. By the definition (2.1), we have

nllfI? < TIf £ < vllfI%

whence (T) C [y1,72]- Conversely, it follows from (3.12) that
A(0;4) = Zm(I(1)
fora.e. A € (71, 72)- By (3.14), this means that
d(E(A)Ko, Ko)
dA
because 0 < m(I'(A)) < 1. Consequently, A € ¢(T) so that [y1,72] C o(T). 1

_ %|§(O;)\)|zsin (Tm(I'(A))) >0

4. TOEPLITZ OPERATORS WITH FINITE SPECTRAL MULTIPLICITY

4.1. AUXILIARY FUNCTIONS. Here we fix an interval A C (71, 72) and assume the following
condition.

CONDITION 4.1. Fora.e. A € A, the set I'(A) defined by (3.11) is a union of finitely many
open arcs, whose closures are pairwise disjoint:

4.1) r(\) = 6 (aj(A), Bj(A)), m < c.

Our goal is to diagonalize the operator T using formula (3.14). This will be done locally,
on the interval A. In particular, we will see that the spectral multiplicity of the Toeplitz operator
T = T(w) on A equals m.

First we calculate the function A(z; A) defined by (3.12). We often omit the dependence of
various objects on A.

LEMMA 4.2. Under Condition 4.1, for all z € D and a.e. A € A, we have the representation

42 AzA) = FmT ) + -3 -2
@2) () = g+ Lon g =S

where the function In(1 + u) is analytic for u € D and In1 = 0.

Proof. It suffices to check (4.2) for the case when I' consists of only one arc and then to take
the sum of the results obtained. Let I' = (, 8), « = ¢/, B = ¢® where 0 < a < b < 271. We have
to check that

el 4 7 L T—ze
The easiest way to do it is to observe that both sides equal zero for 2 = b and that their deriva-
tives, for example, in the variable b, coincide. 1
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COROLLARY 4.3. Forallz € Danda.e. A € A,

L(z;A) =it Lexp ( —2iA(z; 7))
mo1—zap(A)
i=11—2zB;(A)

In particular, we see that L(z; A) is an analytic function of z in the complex plane C with
simple poles at the points B;(A),j=1,...,m
Let us collect together some elementary identities needed below.

LEMMA 44. Let I' = (a,8) C T. Then

(4.4) =i Lexp ( — im(I'(A)))

(4.5) B = exp(2mim(I)),

(4.6) ie=™m() (1 - pa) = |B —

and

4.7) e ™I (1 — @) (1—¢B) =17 —al|g— B!

forall & (a,B).

Proof. Leta = ¢/, B = ¢'*. Then, by the definition of the measure m(T"), both sides of (4.5)
equal ¢’ i(b—a),

According to (4.5) the left-hand side of (4.6) equals

b— .
2sintm(I") = ZSinTa = |lb=2) —q]

which coincides with its right-hand side.
Finally, (4.7) follows from (4.6) if we apply it to the pairs &, { and B, { instead of the pair
a, B and take into account that («,{) = (a, ) U [B,0). 1

Recall that H(z) is the Schwarz kernel defined by formula (2.2).

LEMMA 4.5. Forallz € Canda.e. A € A, the function (4.4) admits a representation

@s) L(zi2) = Lo (MH(EFN) + 7 cos (mm(T(1),
f
where
1/ .
49) (M) :E(Elﬁlw_“’ )(gus] M| 1) >0, j=12,...,m.
Proof. First we note that
(4.10) D] (zB)) +

with some complex constants Cjs j=1,2,...,m,and a. Indeed, both sides of equality (4.10) are
rational functions with the same simple poles at the points ; and both of them have finite limits
at infinity. We have to show that ¢; is given by (4.9) and to find an expression for the constant a.
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The residue of the right-hand side of (4.10) at the point z = ; equals —2c;f;. Calculating
the residue of the function (4.4) at this point and using equality (4.10), we find that

(4.11) 2c; =im texp (— mim(I))(1-Ba) [ | i — 'BJE
14 1= Bipi

Put I; = («;j, B;). According to (4.6) we have

i(1 - i) = ™™g —ajl,
and it follows from (4.7) for a = a;, p = By and { = B;,j # [, that

(1= B (1= B~ = ™™ By — 1B — pi| .

Substituting these expressions into the right-hand side of (4.11) and using that

m(I') =m(I1)+---+m(Ly),
we obtain formula (4.9) for the coefficients c;.

Equality (4.10) implies that
m m
L(0) = Ecﬁ—a and L(co) = — Zc]-—i-a,

j=1 j=1

whence
2a = L(0) + L(c0).
It follows from (4.4) that
i R . i i
L _ * ,—mim(I) d L _ L ,—mim(I) 7 - mim(T)
(0) e an (o0) e gﬁ]a] e
where at the last step we used equality (4.5). Therefore
i
= — r).
a = —cos (mm(T))

Substituting this expression into (4.10), we conclude the proof of (4.8). 1
4.2. SPECTRAL FAMILY AND EIGENFUNCTIONS. Now we are in a position to introduce eigen-
functions of Toeplitz operators and to rewrite Theorem 3.9 in their terms.

THEOREM 4.6. Let w satisfy Condition 2.1, and let Condition 4.1 be satisfied on some interval
AC (71,72)- Forj=1,...,manda.e. A € A, denote

(4.12) Pi(zA) = pj(M)E(ZA) (1 - 28,(0) ﬁ (1— 2z (0) 2 (1 — 2Bi0) 2,

where the function {(z; A) is defined by (3.8) and p;(A) = \/c;(A) with the numbers c;(A) given by
(4.9). Then

d(E(VK,,K,) o
4.13) <(;1)=Z%WM%WM

forallu,v € Dandae A € A.
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Proof. Let us proceed from representation (3.14). Using notation (4.4) we see that
sin(A(u) + A(0)) = (2i) 1A AL (24T _ o=2A())
(4.14) = 27 A=A (L) + L(0))
It follows from (4.8) that

L(u) + L(v) = i cj(H(ap;) + H(vB;)),

j=1
where according to (2.7),
H(ap;) + H(vp;) = 2(1 — 7iv)Kg, (1)K, (0).
Substituting these expressions into (4.14), we find that

(4.15) sin(A(u) + A(v)) = meA®e 1A (1 — 70 ):cKﬁ] u)Kg, (0).

Putting (3.14) and (4.15) together, we get representation (4.13) with

(4.16) ¢j(z) = e‘”im(r)/ijﬁ(z)Kﬁj (z)et4(3),
In view of the definition (2.5) and formula (4.2), the relation (4.16) coincides with (4.12). Thus
the representation (4.13) holds, as claimed. 1

COROLLARY 4.7. Forallz € Dandj=1,...,m, we have
(4.17) pi(z;-) € L*(A).

Proof. Indeed, it follows from (4.13) that

¥ [ loepar = [ SR 0 < e

which implies (4.17). &

In view of the absolute continuity of T established in Theorem 3.5, we can also state

COROLLARY 4.8. For an arbitrary bounded function g : R — C with support in A, and all
u,v € D, we have

m

(4.18) (8(T)Ku, Ky) /g Zq)] u; A)@j(v; A) dA.
j=1

Note the special case m = 1,i.e. I'(A) = (a(A),B(A)) for a.e. A € A. In this case

(4.19) d(E()\gli”’Kz’) = o(u; M) p(v;A)

forall u,v € D and a.e. A € A, with the function
—-1/2 —-1/2
(4.20) p(z:A) = p(A) (1—2/a(A) "2 (1-2/p(1) " e(z:0),

where, according to (4.9),

(4.21) p(A) = \/ 5B —a(d)].
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REMARK 4.9. The functions ¢; in the right-hand side of the representation (4.13) are not
defined uniquely. In particular, we can obtain a representation similar to (4.13) but with the
roles of #; and B; reversed. Indeed, let I' = I'(A) = T \ I'(A) be the complement of I'(A), that is,

f: (Bi-1,%j),  Po:= Pm,

> TCs

set of measure zero. Define ( z) by the formula (3.12) with I" replaced by I'. Then
A(z) = g — A(z), and hence

sin (A(u) + A(v)) = sin (A(u)+ A@)).

Therefore the representation (3.14) holds with A( - ) replaced by A( - ). Implementing this
change throughout the proof of Theorem 4.6, we obtain the representation of the form (4.13)
with the functions ¢; given by

7i(51) = (V@A) A — 2B0) 11— 2Bi0)H (1 -z ()

=1
and (cf. (4.9)):

e | ) (o)

I=1 I#j

4.3. DIAGONALIZATION. Now we are in a position to construct a unitary operator
@, Er(A)H? — L2(A;CM),

such that

(4.22) (®ATF)(A) = A(@af)(A), A€ A,

These formulas mean that @, diagonalizes the operator TE(A) and the spectrum of T on the
interval A has multiplicity m. First we construct a bounded operator

@ : H? — L2(A;CM),
which is defined on the set {K;,z € D}, total in H?, by the formula
(4.23) (PK,)(A) = {q)]-(z,‘)\)}}":l, VzeD, ae. A€A,
where ¢;(z; A) are functions (4.12). The norm and the inner product in the space L?(A, C™) are
denoted | - | and ( -, - ), respectively.

Definition (4.23) allows us to rewrite relation (4.18) for the characteristic function 1x(A) of
a Borel subset X C A as

(4.24) (E(X)Ky, Ky) = (LxPKy, PKoy),
whence
(4.25) (E(X)f,g) = (1x@f, Pg)

forall f,g € X = span {K;,z € D}. In particular, we have
|Df] = [E(A)fIl, VfeX,
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so that @ extends to a bounded operator on the whole space H?. This operator is isometric on
the subspace E(A)H? and equals zero on its orthogonal complement.
The construction of the adjoint operator @* is quite standard.

LEMMA 4.10. Forall g = (g1,...,9m) € L*(A;C™), the operator &* : L?(A;C™) — H? is
given by the formula

(4.26) (P*g)(z) = i/(pj(z,‘)t)g]-(/\)d/\, zeD.

Proof. We first note that the right-hand side here is well-defined according to (4.17). By the
definition (4.23), we have

(g, PK;) = Z/(p]zx\g]
j=1%
for all z € D. At the same time, using (2.6) we find that
(8 PK;) = (P78, K:) = (@7g)(2).
Putting these two equalities together, we get (4.26). 1
Next, we verify the intertwining property.
LEMMA 4.11. For every Borel subset X C A we have
(4.27) PE(X) = 1x.
Proof. Observe that
(PE(X) — 1x®)"(PE(X) — 1xP)
= (E(X)®*PE(X) — E(X)®*1xP) + (— P*1xPE(X) + P 1xP).

Both terms on the right are equal to zero because, according to (4.25), ?*1x® = E(X) and, in
particular, ®*® = E(A). 1

Now we define the operator @, : E(A)H? — L?(A;C™) by the formula
(4.28) Duf = Of, f € E(A)H.

This operator is isometric, and, due to (4.27), it satisfies (4.22). It remains to show that the map-
ping @, is surjective and hence unitary.

LEMMA 4.12. We have Ran @5 = L?(A; C™).

Proof. Supposing the contrary, we find an element g = (g1, ..., gm) € L?(A; C™) such that
(g, P(E(X)K;)) = 0 for all Borel sets X C Aand all z € D. By the definition (4.23) and by (4.27),
this can be rewritten as

/Eg] )@i(z;A)dA = 0.

Since X is arbitrary, this implies that

M

giMgj(zA) =0

j=1
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fora.e. A € A. It now follows from definition (4.16) that

AiAZ:A) ip]g] 1—2%)_120.
Since by definition (3.8) {(z;A) # 0, and exp(iA(z; A)) # 0, we see that
(4.29) (1-2zB(A) Z pigi(A)(1—zB;(A)) 1 =0

forallz € D,alll =1,...,mand a.e. A € A. Passing here to the limit z — B;(A), we find that
0181(A) = 0 and hence g;(A) = 0 because p; # 0, foralll =1,...,m. 1

REMARK 4.13. The set of A € A where relation (4.29) is satisfied might depend on z. This
difficulty is however inessential for our construction because it suffices to work on a subset
Ko C X of linear combinations of functions K, with rational z € ID. The set X remains dense
in H?, but it is countable. Therefore (6.2) is satisfied on a set of A € A of full measure which is
independent of rational z. Then it suffices to pass in (6.2) to the limit z — B;(A) by a sequence
of rational z.

Let us summarize the results obtained.

THEOREM 4.14. Let w satisfy Condition 2.1, and let Condition 4.1 be satisfied on some interval
A C (71,72) with some finite number m. Define the operators @ : H? — L2(A;C™) and ®p :
E(A)H? — L2(A;C™) by formulas (4.23) and (4.28) respectively. Then

P P =E(A), PpPH=1
and
PAE(X) = 1xPp

for all Borel subsets X C A. Thus the spectral representation of the operator TE(A) is realized by the
unitary operator @ 5, and the spectrum of T on the interval A has multiplicity m.

4.4. THE OPERATOR @. The operator @ defined by formula (4.23) on the dense set X, can be
extended to the whole space H? by the following natural formula.

PROPOSITION 4.15. Let Condition 4.1 hold, and let ¢;(z; A) be functions (4.12). For all f € H?
and r € (0,1), consider the integral

(4.30) (@ f);(A) :/f(g)(pj(rg;A)dm(g), i=12,...,m ae AcA

Then
(i) The formula (4.30) defines a contraction @) : H? — L?(A;C™);
(ii) The family ®\") converges strongly to the operator & as r — 1.
Proof. By definition (4.30), for all f € H? we have

s 100 = [ [F@F0 | L [ 9T gm0 [am@)imin),
A\
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where all integrals without indication of the domain are taken over T. By (4.23), (4.24), the
integral in the square brackets equals

where u = r{, v = 1. Taking into account that K, (c) = K;s(17), and using (2.6) we can now
rewrite the right-hand side of (4.31) as

[ @ [k | [ F0)RosTiridm(n] dm()am()

— /f(g)[/(E(A)Krg)(a)f(m)dm(tf)]dm(é)-

With the notation f,(0) = f(r0), the integral in o equals (E(A)K, fr) = (Ki;, E(A)fy) =
(E(A)fy)(rl) where we have applied (2.6) again. Thus it follows from (4.31) that

20| /f (E(A)fr) (r0)dm(Z) < [If | I(E(A)fo)rll

Since || || < ||k| for every h € H?, the right-hand side does not exceed | f|| ||E(A) || < || f]I>-
Hence ||@(")|| < 1, as required.

Proof of (ii). It suffices to check the strong convergence of @) on the dense set XK. For
f = Ky and arbitrary u € D, we have

((D(r)Ku)j(/\) =

i(rg; A)dm(Z)

1—ul
Zm/C i (15 M)A = 9;(ru; A) = (@Kur); (),

where we have used the definition (4.23). Since K, — K, in H? as r — 1 and @ is bounded, we
conclude that @K, — @K, for all u € . This completes the proof.

5. EIGENFUNCTIONS OF TOEPLITZ OPERATORS

Functions (4.12) do of course not belong to the space H2. Nevertheless we check here that,
in a natural sense, they satisfy the equation T(w)@;(A) = A@;(A). We recall that the numbers

pj(A) = /cj(A) in (4.12) were defined by formula (4.9), but in this section they are inessential.

Afterwards we also discuss two examples of Toeplitz operators with simple spectrum for
which the eigenfunctions can be found explicitly.

5.1. RIEMANN-HILBERT PROBLEM. Let us start with precise definitions. Let A consist of
functions ¢(z) analytic in the unit disk ) and having radial limits ¢({4) = lim,_,;_¢ ¢(7{) for
ae. { € T. Similarly, A(®Y consists of functions (&) (z) analytic in C \ closD, satisfying an
estimate ¢(®Y (z) = O(|z|~!) as |z| — co and having limits (V) (¢_) = lim,_,1,¢ ¢® (r{) for
ae. 0 eT.
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DEFINITION 5.1. A function ¢ € A is a generalized eigenfunction of the Toeplitz op-
erator T(w) corresponding to a spectral point A if the function (w({) — A)¢({) belongs to the
class A&V, that is, if there exists @&t € AV such that

(5.1) (@() = A)e(g+) = 9=V (-)
fora.e. € T.

This definition would reduce to the standard definition of an eigenfunction of the operator
T(w) if A and A could be replaced by H? and H? , respectively. Indeed, if there had been
found functions 0 # ¢ € H2 and ¢®%) ¢ H2, satisfying (5.1), then the function ¢ would have
satisfied the relation T(w)¢ = Ag, i.e., it would have been a proper eigenfunction of T(w).

The relation (5.1) looks like a standard homogeneous Riemann-Hilbert problem with the
coefficient w({) — A but, in contrast to the classical presentation (see, e.g., the book [7]), the func-
tion w is not assumed to be even continuous. However the worst complication comes from zeros
of the function w({) — A. As explained in [7, §15], even for smooth coefficients, the presence of
roots makes the problem essentially more involved.

We will check that the functions ¢;(z, A) defined by formula (4.12) are generalized eigen-
functions of the Toeplitz operator T(w) in the sense of Definition 5.1. In this subsection we fix
some A € (71, 72) and assume that inclusion (3.6) and the relation (4.1) are satisfied.

Let us first consider the function §(z; A) defined for all z € C\ T by formula (3.8) and set

52) Q(z:4) = [ Infw(@) = AlH(z0)dm(C).
Then
(5.3) ¢(z:4) = exp(=Q(z,14)/2).

The integral in (5.2) is convergent so that Q(z; A) is an analytic function of z € C\ T. Let us find
the boundary values of &(z; A) on the circle T.

LEMMA 5.2. Under assumption (3.6) for a.e. { € T, there exist the limits

(54) §(CxiA) = (g Mw(§) —A[T?
where the function
(55)  o(l,A) = exp (;/Tlnku( ~ Aldm(y) — 5o [ inlwotn) =l -0)- 1d;7>

is the same for interior and exterior limits.

Proof. Since
(5.6) H(zi)dm () = —dm(y) + (i)~ (i — 2)~'dy,
we see that
1 -1
— [ inleo(n) = Aldm() + = [ Infw() - Ay —=) an.
The first term on the right does not depend on z, and by the Sokhotski-Plemelj formula, we have

lim [ nfew(y) = Al(y =)'y = 0. [ Infw(y) = Al(n =)'y = 7ilnfw(Z) — A
r—1F0 T

for a.e. ¢ € T. This yields the limits Q({+;A). In view of (5.3), we obtain relation (5.4). &
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COROLLARY 5.3. Fora.e. { € T, we have the relation

(5.7) ¢(0—5A) = |w(@) = ME(G+;2)-
Lemma 5.2 leads also to the following result.

THEOREM 5.4. Let 0((, A) be defined by (5.5). Then for j =1,...,mand a.e. { € T the boundary
values on the unit circle of the functions (4.12) are given by the relation

0i(0:A) = p;(M)o(Z,A) [w(Q) — A|7V2 (1~ g (A)
x f{ (1- o) (1 - L BM) .
=1

Nf—=

(ext)

We will now define the function ¢ J (z; A) by the formula

58) 9™ (z:4) = (D20, ()i (5 ) (1 - 2B (0) 1A, [z > 1,

where A(z; A) is given by formula (3.12). Equations (4.16) and (5.8) look the same but the first
of them applies for |z| < 1 while the second one - for |z| > 1. Let us calculate the function ¢/4(?)
for |z| > 1. Instead of (4.3) we now have the identity

belf 4z o 1—¢lt/z
(59) /a el9_zd9 = a*b+21h’1m, |Z| > 1,
whence
- s 1—ay/z
H d = -m(I' IV n =%
J HEDdm(@) = —m(r) +in ! Y=g

According to (3.12) this yields

SiA() _ p—mim(I)/2 ﬁ(l /2" V2( = By
=1

In view of (5.6) it follows from the Sokhotski-Plemelj formula that
A(l4)—A(l-)=mnfor el and A({4+)— A(l-)=0for{ &T.

whence

¢ ACH) = sign (w(Q) — A)e ), ae. g €T,
Putting this equality together with (5.7), we obtain the following result. Recall that the function
¢(z; A) was defined by relations (5.2) and (5.3) forallz € C\ T.

THEOREM 5.5. Let w satisfy Condition 2.1, and let (3.6) and (4.1) hold for some point A €
(Y1,72). Then forall j =1, ..., m, the equality

(@(Z) ~ N)gj(G+,A) = 9™ (T, 1),
is satisfied with the functions ¢;(z; A) and (p](eXt) (z; A) defined by formulas (4.12) and
9 (5:4) = pj(V)e TN g (2:2) (1 25 ()
<10 - w(3)/2) 20~ i) /2) 7,
=1

respectively.
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COROLLARY 5.6. Let m = 1. Then ¢(z; A) is given by formula (4.20) and

PV (z;1) = —p(A) e mmEMEA) gz 71 (2; 1)
(5.10) x (1—a(A)/z) V21— B(A)/2)" V2

REMARK 5.7. In the construction above, we used only that the functions ¢;(z; A) are ana-
lytic in D and have boundary values on T for a.e. { € T. In the next subsection we will see that,
actually, ¢;(-;A) € HP for every p < 1and a.e. A € (71,72)-

REMARK 5.8. In the spirit of Definition 5.1, Theorem 5.5 states that ¢j,j = 1,2,...,m,

are generalized eigenfunctions of the operator T(w). We certainly do not claim that the pairs

or go](.EXt) give all solutions of the Riemann-Hilbert problem (5.1). For example, other solutions

(ext)
j
mon factor (z — o) " where the point { € T is arbitrary and n = 1,2,.. ..

can be obtained by multiplying the functions ¢;(z) and ¢; "’ (z) constructed above by a com-

5.2. UNIFORM ESTIMATES NEAR THE UNIT CIRCLE. The first assertion supplements Lemma 5.2.
Its proof does not require Condition 4.1.

LEMMA 5.9. Let the function ¢(z) = ¢(z;A) be defined for a.e. A € R by (3.8). Then for any
p < 2 and any bounded interval X C R the estimate

(5.11) sup [ |E(z;A)|PdA < o0
zeD /X

holds.
Proof. According to (2.3) and (3.8), for z = re? we have

etein) =exp( 5 [ inlae®) = A7(,0 - ).

Therefore, arguing as in the proof of Lemma 3.2, we obtain

en)l =exp(~3 [ inle = Aldp(s2)).

1

with the measure (t;z) defined in (3.1). Since p(t;z) is normalized, it follows from Jensen’s
inequality that for any p > 0 we have the bound

72
S@AP < [ It =1 bdp(sz2)
T

uniformly in z € D. Integrating it over a finite interval X C R, we see that
x e /g

512 Jieanrars [P [1-a-ta )i <G,
X M

with a constant C,, = C,(X) > 0, if p < 2. This leads to (5.11). 1

COROLLARY 5.10. For every p < 2 the function &( - ; A) belongs to HP for a.e. A, and its norm,
as a function of A belongs to Lf oc
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Proof. Set
= [ [ieegnrame)]’
T

Integrating the inequality (5.12) where z = r{, r € (0,1), over { € T and exchanging the order
of integration, we see that

(5.13) [ My(riayar < .

According to [5, Ch.1, Theorem 1.5], the function My(r;A) is non-decreasing in r € (0,1).
Therefore, by the Monotone Convergence Theorem, the bound (5.13) remains true for the limit
Mp(1;A) := lim,_;_og Mp(r; A). Thus Mp(1;A) < oo for a.e. A, so that §( - ;A) € HP for ae. A,
and its norm M, (1; - )isin L] . n

Now we consider the eigenfunctions of the operator T.

THEOREM 5.11. Let Condition 4.1 be satisfied for some interval A C (7y1,72). Then the function
@;( - ;A) defined by formula (4.12) belongs to the space HP for every p < 1and a.e. A € A.

Proof. Denote

m

hi(z;A) = (1-2B;(0) T (1 -z (A) N - 2B ()2,

I=1

N\H

so that ¢;(z;A) = p(A)&(z; A)hi(z; A).

Fix a p < 1. Then by Corollary 5.10, ||( - ;A)[l; < 00,9 = 2p < 2 for a.e. A € A. Further-
more, it follows directly from the definition that also [|hj(-;A)|lg < oo fora.e. A € A. Thus,ona
subset of A of full measure, we have, by Holder’s inequality,

i3 My < (MG Mgl (-5 A g < oo,

as required. 1

In contrast to Corollary 5.10, we cannot say anything about integrability of the norms
l@;j(-;A)lp, g = 2p,in A, since ||h;( - ;A)||; are not bounded if the singularities of the function
hi( - ;A) merge as A varies.

5.3. A SMOOTH (REGULAR) SYMBOL. Let us now discuss two explicit examples. Both of them
were mentioned in [17]. First we consider the regular symbol

wi(§) = (C+¢71)/2

By Theorem 3.5 and Corollary 3.10 the spectrum of T, = T(w;) is absolutely continuous and
coincides with [—1,1]. For every A € (—1,1) we set

(5.14) a=A+iV1-2A2, B=a=A—iV/1-A2

so I'(A) = (a, B). In particular, we see that, by Theorem 4.14, the spectrum of T; is simple.
Let us calculate the function ¢ = ¢, defined in (4.20).

LEMMA 5.12. Let w = wy, as defined above. Then for every A € (—1,1) we have

2 (-9l
(5.15) or(zA) = \/;1—2)tz+z2
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Proof. Let us find functions (5.2) and (5.3) for the symbol w = w;. Note that 2|w;({) — A| =
8(¢;A)|, where

gGA) =2 =220 +1=({—a)(C — p).

The function g(z; A) is analytic in D, g(z;A) # 0 and g(0; A) = 1 so that the function Ing(z; A),
fixed by the condition Ing(0; A) = 0, is also analytic in D for every A € (—1,1). Let us rewrite
(5.2) as

i - {+z
Q(zA) = / (ng(gA) +Ing(GA) —21n2) (s
This integral can be easily calculated by residues at the points { = z and { = 0. The first term
containing In ¢({; A) equals In g(z; A) and the third term containing —21In 2 equals — In 2. In the
second integral we use that ¢({;A) = ¢(Z; A) and make the change of variables { — {1

{+z 1+(z
/1nggA(g 7= /1ggA( e

This integral equals zero because { = 0 is the only pole of the integrand in D and g(0,A) = 1. It
follows that

477i

Q(z;A) =Ing(z;A) —1In2,

2
@) =\ T2

The coefficient p(A) in (4.20) is found from (4.21) and (5.14):

p(1) =/ 5=la— = n 1 - 221,

Substituting these formulas into (4.20), we obtain (5.15) . 1

and hence according to (5.3)

Clearly, equation (5.1) for function (5.15) is satisfied with
_1 1
1™ (2) = (2m) 2 (1- 4Dz

Recall (see formula (10.11.31) in the book [6]) that the function (z2 —2Az 4+ 1)~! is the

generating function of the Chebyshev polynomials U}, of second kind. This means that
1 [ee]
R — u,(Az", Ae(-1,1), D.
e S BUUGLUAR A RS

Set pu(z) = z". Since

i Zl’l@i’l —
n=0
the relation (4.19) together with (5.15) implies that

(B WP ) = ZVI= R UNUn(), A (-11)

foralln,m = 0,1,.... This formula agrees with the expression for the spectral projection of the
discrete Laplacian on 2(Z.) (see, e.g., [22, Corollary I11.12]), which is unitarily equivalent to T;.

Note that T; is the unique (up to trivial changes of variables) Toeplitz operator that is
unitarily equivalent to a Jacobi operator.
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5.4. A SINGULAR SYMBOL. The simplest singular symbol is given by the indicator ws(J) =
Lz, 0,)(0) of anarc (¢1,42) C T, ($1,42) # T, so that

F(/\) = (éz,gl) forall A€ (0,1),

and hence the spectrum of the operator Ts = T(ws) is simple and it fills the interval [0, 1]. The
eigenfunctions of this operator are calculated in the next lemma. Recall that the branch of the
function In(1 + z) analytic for z € D is fixed by the conditionIn1 = 0.

LEMMA 5.13. For all A € (0,1), the eigenfunctions (4.12) of the operator Ty are given by the
formula

(5.16) (PS(Z; /\) — p(A)e—na(A) m({q, 52)(1 _ Z/C1) —1/2—ic A)( Z/C ) l/2+ia()x)[
where
1
o(A) = = In(A 1)

and the numerical coefficient p(A) is given by (4.21).
Proof. For the symbol w = ws, the function (5.2) is given by

0 4]
A =In(1—a) [ &2 ttz
(5.17) Q(zA) = In(1 )\)C/ o dm()+ ln/\C/ -
It follows from (4.3) that
&)
{4z i 1-2z/0
g_zdm(C) m((1,82) — 1_2/51
where 27tm ({1, () is the length of the arc ({1, {2), and
4]
f+z 1-2/0
? ﬁdm(g) (él/ gZ) 1 — Z/é'l

Consequently, the right-hand side of (5.17) equals
Q(z;A) =In(1 = A)m(Zy,02)+ InA (1 —m(Zy,02))

. 17‘2@—1
—7’1(1n(1—)\)—1n)\)1n1_2€j_1
_ngl
(5.18) = InA +270(A)m(Zy, §o) — 2ic(A) In ngl'
1-2g;

This yields the expression
E(z;A) = )\—%e—mf(A)m(CpCz)(l _ 2/51)‘1"’(”(1 _ z/gz)i”(’\)

for function (5.3). The coefficient p(A) is found from (4.21). Substituting these formulas into
(4.20) we obtain (5.16). 1
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Note that the functions ¢ are in H? for all p < 2, whereas the functions ¢; are in H? for
p < 1only.

Finally, we find an explicit expression for the function qogexw (z;A). Suppose that |z| > 1.

Then instead of (4.3) we use the identity (5.9), and hence, quite similarly to (5.18), we find that
_ 1
Q(zA) = —InA — 2720(A)Ym(Zy, o) + 2i(A) In -2 &1
1-— Z_lgz
This yields an expression
E(zA) = /\%erm()\)m(él,gz) (1 _ Zfl&)fia()\)(l _ Zfléz)ia(/\)
for function (5.3). Substituting this expression into (5.10) and taking into account that

efm'm(éz,él) _ _enim(Clréz),

we find that
(Pgext) (Z,' )L) —_ p(A)A1/2er{(v(/\)+i)m(é],@)glzfl(1 _ gl/z)fl/Zfio’()\)(l _ gZ/Z)*l/ZJrio’()\).

6. PIECEWISE CONTINUOUS SYMBOLS

In this section we focus on piecewise continuous symbols w. The results obtained here are
used in [20]. For such symbols, Condition 4.1 can be verified for appropriate spectral intervals A
and spectral multiplicity can be expressed via the counting functions of intervals of monotonic-
ity and of the jumps of w. The resulting adaptation of Theorem 4.14 is stated as Theorem 6.6.

6.1. EXCEPTIONAL SETS. First we explain in exact terms what we mean by a piecewise contin-
uous symbol w. Below we adopt the notation ' (g) = dw(e’?) /d6 where { = ¢',0 € R.

CONDITION 6.1. (i) w =@ € L*®(T) and w is not a constant function,

(ii) There exists a finite set S = {1} C T such that w € C!(T\ S),

(iii) The limits w(yx £0) = lim, 10 w(yxe’®) exist for all 7, € S. For every n; € S, either
w(nr +0) # w(ng —0) or w(ng +0) = w(nye — 0) but the derivative w’ is not continuous
at 7.
This condition is assumed to be satisfied throughout this section.
Let S(*) be the subset of those 77, € S for which

(W (i —0) —w(ie +0)) >0, g €S,
and let Sy be the set of those 77 where w (17 — 0) = w(ix + 0) but the derivative w’({) is not
continuous at the point ;. Thus S is the disjoint union
s=sHususy.

We associate with every discontinuity 7, € S(+)

(6.1) Ap = [w(ne£0), 0 F0)], 1 € S&.

Introduce the set S¢y C T\ S of critical points where w’({) = 0. The image Acr = w(Scr) of this
set consists of critical values of w. By Sard’s theorem, the Lebesgue measure |A¢| = 0.

We introduce also the “threshold” set Ay, which consists of all values w(nx £0), 1 € S,
and define the exceptional set

the interval (the “jump"):

Nexe = Aer U Ay
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Since the set Ay, is finite, |Aexc| = 0.
LEMMA 6.2. The set Aexc is closed.

Proof. Let A;, € Aexc and A, — Ag as n — co. We may suppose that A, € A and consider
a sequence of points (, € S¢r such that w(,) = A,. Extracting, if necessary, a subsequence,
we assume that {, — {pasn — oco. If {y € S, then w({p+0) € Ap- If {op € T\ S, we
use that w/(Z,) = 0 and that «w’({) is continuous at the point {o. Thus, w’({y) = 0, that is,
Ay = w(@o) ISIVAV R |

We need the following elementary fact about the roots of the equation w({) = A.

LEMMA 6.3. Forall A € (7y1,72) \ Aexc, the set

Ny ={CeT\S:w(f) =A},

is finite.

Proof. Suppose, on the contrary, that there exists an infinite sequence {, € T \ S such that

w(Cn) = A. We may assume that {,, — {p as n — oco. Since A ¢ Ay, we see that {p € T\ S
whence w(p) = A. Thus w(Z,) = w(lp) forall n. As w € C'(T\ 'S), we have

1y e @) —w(Zo)
w'(Go) = lim L

i.e., (o € Scr, which contradicts the assumption A € Ac. This proves the claim. 1
Along with N, define the sets
N = {2 e Ny F'(A) > 03,
and consider the counting functions
6.2) m=#{N ), ) = # N}, A ¢ A

According to Lemma 6.3 these functions take finite values.

6.2. COUNTING FUNCTIONS. Let us fix an interval A = (A1, A2) such that
(6.3) AC (r)/l/ 72) \Aexc

and consider its preimage w1 (A). According to (6.3) we have
w HA) C T\ (SUSe).

The open set w~!(A) is a union of disjoint open arcs such that w’() # 0 on each such arc 5. At
the endpoints of each J the function w takes the values A1 and A, and hence w(d) = A.
Denote by (5]£i) = (SIEi) (A),k=1,2,..., the arcs on which Fw’({) > 0 so that
n(+) n(*)
w A= (SISH vl 5,5_),
k=1 k=1
where
n®) = 1) (A) = #{5) (A)}.

As the next lemma shows, the number 1(*) (A) is finite.
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N

W 0w R
ti(A) 0(A) T

FIGURE 2. Example: w=1(A) = o7 (A) Usl ) (A); N7 = {g;(A)}, NP =
{22(M)}, S =5 (A) = {m}, ST = {2,113}, SD(A) = {3}

LEMMA 6.4. Let Condition 6.1 hold, and let the counting function n(f) be defined by formula

(6.2). Then
(6.4) n(t) = n#)(a)
forall A € A. In particular, the function ngi) is a finite constant on the interval A.

Proof. Since Fw'({) > 0 on each 5]9[), and w(élgi)) = A, each arc (5,Si> contains exactly one

point { € Ng\i) for every A € A. This implies equality (6.4). By Theorem 6.3 the set N&i) is finite,
and hence both sides of (6.4) are finite. 1

Consider now the singular points. Define the counting function Sf\i) of the intervals (6.1):
Sglj:) = #{Ak A€ AR € S(i)}

Since w(nx £0) ¢ A for all j; € S, each interval Ay either contains A or is disjoint from A.
Let S(A) C S be the set of those points 7, for which A C Ay. Introduce also the notation
S (A) = S(A) NS(H) and the counting function

(6.5) s (A) = #{sSH)(A)}.

()

It is clear that s, is constant on A and
(6.6) s =sH ), rea

Note that S(A) = S(+)(A) US(-)(A). All these objects are illustrated in Fig. 2 where {;(A),
k = 1,2, are the solutions of the equation w({) = A.

6.3. SPECTRAL MULTIPLICITY. For piecewise continuous symbols, the number m of arcs in (4.1)
can be calculated in terms of the counting functions.

THEOREM 6.5. Let Condition 6.1 hold, and let the interval A = (A1, Ay) satisfy condition (6.3).
Then for each A € A, the set I'(A) defined by (3.11) is the union (4.1) of finitely many open arcs
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B1(A) az(A) B2(A) ay(A)
FIGURE 3

(aj(A), Bj(A)) C T\ S(A) such that their closures are disjoint. The number m = m(A) of these arcs
does not depend on A € A and, for both signs “ £,

(6.7) m(A) = n®)(A) +sH)(A)
where n\F) (A) and s(¥) (A) are defined by (6.4) and (6.5), respectively.

Proof. Join the points (1, w(nx —0)) € T x R and (;, w(ne +0)) € T x R for all . €
S(+) US(-) with straight segments. These segments, together with the graph {({,w({)) : { €
T\S} C T x R, form a closed non-self-intersecting continuous curve C on the cylinder T x R.

Since A € A, the curve C crosses the straight line {({,A) : { € T} at the points of the sets
N, and S(A) only. As € is continuous, the points of intersection in the downward direction,
denoted by «;(A) € T, alternate with those in the upward direction, denoted by B;(A) € T,
see Fig. 3 for illustration. Therefore the quantities of the downward and upward points are the
same:

my =#{a;j(A),j=12,...} =#{B;j(A),j=1,2,... }.
It follows that up to a set of measure zero, the set I'(A) consists of m, disjoint open intervals
(aj(A), Bj(A)) with disjoint closures. It is easy to see that, for all A € A,

{0, } =N UsA) and {B1(A),f2(1),} =N ST (a).
These sets are finite and, by (6.4) and (6.6), they consist of n(t)(A) + s(*)(A) and n(-)(A) +
s(=)(A) points, respectively, whence

my = n*(A) +sF)(A)
for both signs. 1
In the example in Fig. 2 we have n(*) (A) = s(*)(A) = 1, so that m = 2.
Putting Theorems 4.14 and 6.5 together, we obtain our final result.

THEOREM 6.6. Suppose that w satisfies Condition 6.1, and that an interval A satisfies (6.3). Let
the number m be defined in (6.7). Then the spectral representation of the operator T restricted to the
subspace E(A)H? is realized on the space L>(A; C™). In other words, the spectral multiplicity of the
operator T on the interval A is finite, and it coincides with the number m.
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This result is crucial for our construction of scattering theory for piecewise continuous
symbols in [20].
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