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Abstract 

The problem of CO2 mitigation on a small and medium scale can be resolved by developing a 

combined system of CO2 capture and its consecutive conversion into valuable products. The 

first stage of CO2 looping, however, should be reliable, effective and easy to control and 

radiofrequency heating, as a new advanced technology, can be used to improve the process. 

CO2 absorption and desorption RF units can be installed within power plants and powered 

during the periods of low energy demand thus stabilizing the electrical grid. In this work, a 

CaO sorbent produced by template synthesis was studied as a sorbent for a CO2 looping system 

under RF heating which offers short start-up times, highly controlled operation, high degree of 

robustness and low price. The sorbent reached its stable CO2 capacity of 15.4 wt.% already 

after 10 temperature cycles (650/850 oC) under RF heating. Higher CO2 desorption rate and 

lower degree of the sorbent sintering was observed under RF heating as compared to 

conventional heating.  
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1. Introduction 

The problem of CO2 mitigation still causes serious concerns among different stakeholders and 

participants, such as public, environmental scientists, businessmen, and government and 

legislation agencies. As high as 80-95 % reduction in total CO2 emissions has been put by the 

Committee on Climate Change as a major target to be achieved by the year 2050 [1]. The main 

contributors to the CO2 emissions, such as power plants and transport, which could emit as 

high as 500-800 gCO2/kW (gas and oil power plant, for example), are put under enormous 

pressure for developing and adopting various CO2 capture technologies [2]. The main 

requirements for such a technology are high efficiency, low installation and maintenance costs, 

robustness and prolonged life cycle. 

In general, CO2 capture and storage, CCS, has been proposed as a useful approach for CO2 

[3,4]. Reverse absorptive methods are in this category and they can use either liquid (amine 

based solutions, for example) [5] or solid sorbents [6–9] in order to selectively capture emitted 

CO2 with the following desorption stage. In comparison to solvent scrubbing methods which 

require construction of spacious facilities and tanks to handle great quantities of amine-based 

solvents, solid oxide based reverse absorption methods are considered to be cost-effective 

alternative for the problem of CO2 mitigation. The technology of CaO looping is rapidly 

developing and its application in fluidised bed reactors has been extensively studied over the 

past few years on a pilot scale [10–13]. 

CaO as a solid sorbent for CO2 has been well studied in the calcium looping cycle and offers 

some benefits, such as cheap precursors and simplicity of the preparation procedure, high 

stability and absorption capacity [14–19]. The theoretical absorption capacity of CaO is 79 wt. 

% following the reaction:   

𝐶𝑎𝑂 + 𝐶𝑂!	↔	𝐶𝑎𝐶𝑂#			∆$𝐻!%&° =	−178	𝑘𝐽	𝑚𝑜𝑙() 
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The CaO looping cycle consists of two stages: carbonation and calcination. In the carbonation 

stage, CaO absorbs CO2 at 650-680 °C to form calcium carbonate. This temperature interval 

makes CaO-based materials a suitable sorbent for the treatment of hot post-combustion gases. 

The calcination step is usually performed in the range of 850-950 °C. The exposure to high 

temperature causes sintering of the CaO-based sorbents with time which eventually leads to 

significant loss in absorption capacity. The effect of loss-in-capacity over several cycles was 

found to be common for different types of CaO sorbents regardless of the type of the limestone 

precursor used for their synthesis [20]. This effect is considered to be the main hurdle in wider 

application of this sorbent and has been intensively studied. 

It was observed that the grain size has a profound effect on the thermal stability of the sorbent 

with smaller grains being responsible for faster sintering [21]. Doping of CaO with small 

cations, for example Al3+, or supporting it onto a thermostable support (such as alumina) could 

reduce the sintering kinetics [22,23]. Other doping elements (Zr, La, Mg) have been also 

studied [24]. New types of CaO based sorbents with unique cage-like spherical structure 

demonstrated theoretical CO2 capacity [25–27]. A template approach using polymeric 

microspheres provided CaO sorbents with enhanced recarbonation/decomposition 

performance due to their high total pore volume [28]. Thus, the sorbent stability can be 

substantially improved by chemical modification and/or by modification of its porous structure 

and grain size. Also, the choice of the precursor [29] and the granules abrasion in fluidised bed 

reactors [30] was found to influence the stability. It was also reported that irregular heating 

regimes and localised overheating could accelerate the sorbent sintering in fixed bed reactors 

[20].  

The problem of localised overheating can be resolved by using precise temperature control 

during temperature transitions under radiofrequency (RF) heating [31].  Although currently 
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rarely used on a large scale, RF heating has a great potential to become highly competitive 

heating method in the near future. One of the main advantages of RF heating is its high 

efficiency within 65 - 85 % in comparison to only 55 % for conventional (transient) operation 

methods [32]. The technology has proved to be highly efficient with low installation costs when 

first was used by DuPont researchers for a continuous production of hydrogen cyanide over a 

Pt group metal catalyst at 1000 °C [33]. Nowadays due to its high efficiency, safety and fast 

heating times [34,35], the RF heating technology, is increasingly being used in various 

industries, such as in metallurgy, in civil and medical applications, melting technology, 

hypothermia and many others [36].  

In this paper we studied the sintering behavior of two optimized CaO sorbents prepared via 

template synthesis [28]. The effect of precise temperature control onto the sorbents dynamic 

capacity and the structural changes has been studied. 

 

2. Experimental 

2.1 Materials  

The CaO sorbents were prepared using template synthesis. Template beads were produced 

using emulsifier-free emulsion polymerization method at 90 °C as described in [37]. The 

obtained polystyrene (PS) spheres were isolated from the reaction mixture by centrifugation, 

washed with ethanol and dried in air until constant weight. The average size of the synthesized 

polystyrene beads was confirmed by SEM analysis. 

The CaO sorbents were prepared by the technique described in details elsewhere [28]. The 

precursor for the CaO sorbent was obtained from the micron sized CaCO3 powder (99 wt.%, 

ReaChem, Russia) which was heated in air at 900 °C for 3 h in an oven. The product was 

ground in a mortar and carefully mixed with the PS spheres. The PS beads were mixed with 

CaO in desired ratio to obtain a template loading of 20 and 40 wt.%. A ductile paste was 
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prepared by addition of a water-ethanol solution under vigorous stirring and grinding in a 

mortar. The paste was extruded using a plunger extruder equipped with a 3 mm extrusion die. 

The extrudates were cut into equal parts, and obtained pellets were calcined at 900 °C for 3 h. 

Two sorbents with a loading of 20 and 40 wt.% of polystyrene template will be referred to as 

S-20 and S-40 hereafter. Despite very small size of the template particles of 180 nm, the final 

pores diameters in the CaO particles appeared to be much higher (> 300 nm) and within a 

broader range of sizes due to strong particle agglomeration that occurs during the polymer 

evaporation stage. This morphology provides high surface area and large inter porous spacing 

resulting in better sorption capacity for CO2 over prolonged periods of time. 

2.2 Reactor set-up  

The CaO sorbent (400 mg, 300-600 µm fraction) was positioned in the center of the Inconel 

reactor (6.0 mm i.d., 7.0 mm o.d., 250 mm length, Corrotherm international) between two 

layers of SiC particles of the same size which were used for thermal insulation. The reactor 

was placed inside a 4-turn RF coil connected to an RF-generator (Easyheat Ambrell). An 

alumina tube (10 mm i.d., 16 mm o.d., Almath crucibles) was used as insulation. A 10 mm 

circular opening in the alumina tube allowed to measure the temperature on the surface of the 

inconel tube by a FLIR A655sc infrared camera. A tubular quartz reactor (8 mm i.d., 10 mm 

o.d.) was used in the experiments under conventional heating. The heating was provided by a 

electrical heating jacket and the temperature was monitored at the surface of the sorbent bed 

by a thermocouple. Both reactors [31] were able to operate with direct and reverse flow of N2 

in desorption mode relative to that in the absorption mode. The CO2 concentration was 

continuously measured at the outlet by a mass spectrometer (Pfeiffer GSD 320 O3) and an IR 

CO2 detector (Dynament). 

The following procedure was followed for a single CO2 absorption/desorption cycle: the reactor 

was flushed with N2 and then preheated to 650 °C. After temperature stabilization, a mixture 
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of 30 vol. % CO2 in N2 was fed to the reactor at a flow rate of 10 mL/min (STP). Once the CO2 

CO2 concentration started to increase, the CO2 flow was stopped and the temperature was raised 

to 850 °C to start the CO2 desorption. The experiments were stopped when no more changes 

(within the experimental error) in the dynamic capacity was observed in five consecutive 

cycles. The dynamic sorption capacity is determined as kg of CO2 absorbed per kg sorbent and 

expressed in wt. %. 

 

2.3 Sorbent characterization 

The morphology of the sorbents was studded before and after CO2 absorption with SEM using 

a Zeiss Sigma microscope (Carl Zeiss Ltd., Welwyn Garden City, UK) operated at 2 kV. The 

samples were mounted on a sample holder with a double sided carbon tape and coated with a 

carbon layer (40 sec, 15 nm estimated coating thickness) using a K450X Carbon Coater 

(Quorum Technologies, UK). Nitrogen adsorption isotherms before and after the experiments 

were obtained at −196 °C using a Micromeritics ASAP2020 apparatus. The specific surface 

area was calculated from the N2 adsorption data according to the Brunauer-Emmett-Teller 

(BET) method using P/P0 values in the range of 0.05–0.20. XRD analysis of the samples was 

carried out using a PANalytical Empyrean X-Ray Diffractometer with CoKα radiation (λ = 

1.78901 Å) at 45 kV and 40 mA in the 5-75 o range of 2θ. 

 

3. Results 

3.1 Temperature profiles  

Conventional heating with electric current is a common method for heating bench scale 

reactors. Such heating however cannot provide uniform heat flux along the length of the tube 

and leads to localized hot-spots or cold zones. Due to large thermal inertia of the reactor, it is 
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difficult to provide near-isothermal conditions during absorption and desorption cycles under 

conventional heating (Figure 1a). The rather large thermal inertia leads to overheating of the 

reactor by 20 °C. The heating requires a slow approach to the set-point which takes about 6 

min. The cooling part of the cycle requires ca. 10 min and a constant overshoot to lower 

temperature by 17 °C is observed. The overall heat transfer coefficient determines the heating 

and cooling rates with the highest thermal resistance in the boundary layer between the hot air 

around the reactor and the reactor wall. A large thermal gradient of around 60 °C between the 

oven and the reactor is required. This requires several optimisation cycles to improve the 

temperature control loop in the conventional reactor. Yet, a simple PID controller could not 

provide a near-isothermal behaviour and a more advance control mechanism (such as feed 

forward) is needed to reduce the temperature overshoot in both heating and cooling cycles 

without increasing the cycle time.  

However under RF heating (Figure 1b), none of the above mentioned problems have been 

observed, so that the step change in temperature was accurate, there was no time lag, and no 

overshoot to higher or lower temperatures was noticed. Small temperature oscillations of 0.5 

°C around the set-point were observed under RF heating. However they are considered to be 

insignificant in comparison to the reactor performance under conventional heating. Thus RF 

heating has proved to be a precise and accurate method of heating with fully reproducible 

temperature cycles. 

A typical absorption/desorption cycle is 25 min under RF heating. This extends to 40 min under 

conventional heating due to much slower transient steps of heating and cooling according to 

the temperature profiles depicted in Figure 1. It has been also proved that the RF heating mode 

reduces the heat loss by 4 times [31].  

Insert Figure 1 here 
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Two typical absorption-desorption cycles under conventional and RF heating are shown in 

Figure 2. During the first few minutes, when CO2 is absorbed by CaO at 650 °C, a zero CO2 

signal is observed in the outlet mixture. Here, two regions can be seen: (i) fast absorption as 

the result of the reaction of CaO with CO2 and then (ii) slower absorption hindered by the CO2 

diffusion through the CaCO3 layer on the surface of CaO [8,38]. Close to the total CO2 capacity 

of the sorbent, the outlet CO2 concentration starts to increase and finally levels off at the value 

corresponding to its inlet concentration. Then, the flow of CO2 is stopped and the temperature 

increases to 850°C. An asymmetric peak of the desorbed CO2 is observed at this stage 

corresponding to the decomposition of CaCO3.  

The absorption and desorption stages yielded similar patterns with some minor differences 

under RF and conventional heating. The desorption peak is characterised by an extended tail 

which corresponds to a stage when slower desorption is observed due to diffusion limitations. 

Firstly, CO2 desorbs from the surface of the CaCO3 grains. In this case, the desorption rate is 

determined solely by the reaction rate of CaCO3 decomposition. Secondly, CO2 desorbs from 

the inner layers of the grains but the desorption rate at this stage is reduced by slow diffusion 

of the CO2 from the core to the surface of the grain. As the result, the desorption peak is highly 

asymmetric in both heating methods. However, somewhat prolonged CO2 desorption observed 

under conventional heating. The amount of CO2 in the tail part of the desorption peak obtained 

in the first two absorbtion-desorption cycles is listed in Table 1. This increases the duration of 

cycle under conventional heating.   

The initial desorption rate of 14.3 vol.% CO2 min-1 was a factor of 2.7 higher under RF-heating 

as compared with conventional heating. Shorter heating time under RF heating allows to reduce 

the total duration of the cycle by 7 %.  

Insert Figure 2 here 
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Insert Table 1 here 

 

3.2 Study of CO2 dynamic sorption capacities under RF and conventional heating 

A CaO sorbent without using the PS spheres was prepared and its properties have been 

described in Ref [28]. Briefly, the macroporous structure formed after the template removal 

significantly increases the rate of both recarbonation and decomposition reactions. The 

decomposition rate of the sorbent produced from a 40% templated composite was an order of 

magnitude higher than the rate of a reference sample produced in the absence of the template. 

Therefore the non-templated sample was not studied in the present work. Figure 3 shows the 

comparison between the dynamic capacity of the S-20 and S-40 sorbents under RF and 

conventional heating. Firstly, a similar total capacity for both samples was observed which 

indicates that both sorbents behave uniformly regardless of the heating mode.  However, a 

significant difference was observed for the time to reach the equilibrium capacity. Under RF 

heating, the samples achieved the equilibrium capacity within 15 cycles in comparison to as 

many as 40 cycles required under conventional heating. Time wise, the difference amounts to 

more than 6 hours between RF and conventional heating. On a large scale this would 

correspond to a one operator shift difference between the two regimes demonstrating higher 

monetary and time benefits of the RF heating mode. 

Insert Figure 3 here 

Under conventional heating, the sorption capacity of S-20 was higher than that of S-40 (14.2 

and 11.0 wt.%, respectively, see Figures 3 a and b). However under RF-heating, the sorption 

capacity (based on the amount of CO2 absorbed) of S-20 was lower than that of S-40 (10.9 and 
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15.5 wt.% CO2 respectively, see Figures 3 c and d). The final dynamic capacity of both samples 

decreases by ca 2 wt.% when calculated from the desorption signal. 

Overall, S-40 sample performed better in comparison to S-20 under RF heating. Thus, the final 

capacity of S-40 was higher. The stabilization time over S-40 was 10 cycles as compared to 15 

cycles for S-20, mainly due to different initial morphology of these samples.  

The XRD patterns showed that the CaO core is covered with a layer of portlandite (calcium 

hydroxide) to the depth of the X-ray penetration (< 200 µm) in both S-20 and S-40. Its 

characteristic peaks can be observed at 18.1, 28.7, 34.2, 47.2 and 54.6o 2-theta corresponding 

to (001), (100), (101), (102) and (111) planes, respectively (Figure 4a, b).  The portlandite layer 

is formed by the interaction of CaO with water vapour present in the air [27, 39]. The 

portlandite layer is present onto the surface of the CaO pellets as thin interconnected grains as 

confirmed by the SEM image of S-40 (Figure 5a). The XRD peaks of portlandite are broader 

indicating that its crystallite size is smaller as compared to that of CaO. The S-40 sample 

demonstrated an XRD pattern which is characteristic of CaO with less than 30 wt.% calcium 

hydroxide (Figure 4b). The S-20 sample, however, demonstrated much greater coverage with 

calcium hydroxide (no CaO XRD peaks were observed to the depth of the analysis) and this 

higher initial coverage of S-20 with portlandite contributed to lower dynamic CO2 capacity. 

After the CO2 absorption, both samples were converted to CaCO3 (calcite) according to the 

obtained XRD patterns (Figure 4). However the presence of minor amounts of non-converted 

portlandite phase can be seen in both samples.  

Insert Figures 4 and 5 here 

The S-40 sample is characterised by somewhat higher pore size and total porosity (Table 2) 

[28] and, although the initial surface area for both samples is quite similar, higher voidage 
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secured better performance of the S-40 sample under fast heating regime. Moreover, under fast 

RF-heating, the sintering of S-40 is less pronounced therefore it reaches the equilibrium 

capacity much faster and it retains much higher CO2 sorption capacity. After 20 absorption 

cycles, the specific surface area of S-20 and S-40 reduced by 54 and 10%, respectively (Table 

2). Thus, the S-40 sorbent with higher porosity retains most of its initial porosity. 

Insert Table 2 here 

In addition, higher content of Ca(OH)2 on the surface of the S-20 sample also contributed to its 

inferior performance. Portlandite was reported to demonstrate similar to CaO or higher 

carbonation extent and somewhat faster CO2 absorption kinetics [40,41]. However, according 

to the obtained results small grains of Ca(OH)2 are more prone to sintering at high temperatures 

which eventually leads to the reduction in the CO2 absorption efficiency.  

 

4. Conclusions 

The sintering behavior of two CaO sorbents, prepared by template synthesis using emulsifier-

free emulsion polymerization method, has been compared under RF and conventional heating 

when absorbing CO2 from a 30 vol.% CO2/N2 mixture at 650 oC followed by its desorption at 

850 oC. The sorbent prepared with a template loading of 40 wt.% demonstrated lower surface 

area and higher average pore size as compared to the sorbent prepared with a 20 wt.% template 

loading. Shorter cycle and start-up times, highly controlled operation without temperature 

overshoots was observed under RF heating during both absorption and desorption. The sorbent 

reached its stable operation already after 10 absorbtion/desorption cycles under RF heating as 

compared to 35 cycles under conventional heating. The initial CO2 desorption rate was also 

increased a factor of  2.7 and a higher dynamic CO2 capacity of 15.4 % g CO2 per g of CaO 
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was observed under RF-heating for the sorbent with lower surface area. However under 

conventional heating, the sorbent with higher surface area (template loading of 20 wt.%) 

demonstrated a better performance, however its equilibrium  dynamic CO2 capacity of 14.2 % 

g CO2 per g of CaO was lower. 
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Tables 

 

Table 1. Total amount of CO2 desorbed under conventional and RF heating regimes. 

Heating 

mode 

Cycle Total amount of CO2 

desorbed (wt.%) 

Amount of CO2 desorbed in the 

tail part of the desorption peak 

(wt.%) 

Conventional 1 22.0 2.6 
 

2 21.7 2.2 

RF 1 21.5 0.4 
 

2 21.3 0.3 

 

 

Table 2. Surface area, pore volume and average pore size for the samples before and after the 

reaction. 

Sample code Surface area  

(m2/g) 

Pore volume 

(cm3/g) 

Average pore size 

(nm) 

S-20 fresh 28.6 0.045 4.3 

S-20 spent  13.0 0.015 4.1 

S-40 fresh 25.6 0.043 5.1 

S-40 spent 22.9 0.037 5.4 
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Figure captions 

Figure 1. Temperature profiles for conventional (a) and RF (b) heating regimes. 

Figure 2. Two absorption/desorption cycles for conventional (a) and RF (b) heating regimes 

(the initial CO2 desorption rate is represented by the gradient of the blue lines). Corresponding 

temperature profiles are added for clarity.  

Figure 3. Dynamic absorption capacities for conventional (a, b) and RF (c, d) heating regimes 

for CaO samples with S-20 (a, c) and S-40 (b, d) samples.   

Figure 4. XRD patterns of (a) S-20 and (b) S-40 samples before and after the 

absorption/desorption cycles. 

Figure 5. SEM images of S-40 sample before (a) and after (b) absorption/ desorption cycles 

under RF heating. 

 

 


