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Abstract
We construct an Euler system associated to regular algebraic, essentially conjugate
self-dual cuspidal automorphic representations ofGL3 over imaginary quadratic fields,
using the cohomology of Shimura varieties for GU(2, 1).

1 Introduction

1.1 Overview of the results

Euler systems – families of global cohomology classes satisfying norm-compatibility
relations – are among the most powerful tools available for studying the arithmetic of
globalGalois representations. In particular,most of the known cases of theBloch–Kato
conjecture, and of the Iwasawa main conjecture, use Euler systems as a fundamental
ingredient in their proofs. However, Euler systems are correspondingly difficult to
construct; in almost all known cases, the construction uses automorphic tools, relying
on the motivic cohomology of Shimura varieties.
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Euler systems come in two flavours: full Euler systems, in which we have classes
over almost all of the ray class fields E[m], where E is some fixed number field; or
anticyclotomic Euler systems, where E is a CM field, and we restrict to ring class
fields (the anticyclotomic parts of ray class fields). Full Euler systems are the most
powerful for applications, but correspondingly hardest to construct.

In this paper, we’ll construct a new example of a full Euler system, associated
to Shimura varieties for the group G = GU(2, 1) (Picard modular surfaces). This
construction has some novel features compared with previous constructions, such as
the GSp4 case treated in [16]. Firstly, the field E (which is the reflex field of the
Shimura datum for G) is not Q, but an imaginary quadratic field, and so an Euler
system in this setting consists of classes over all of the abelian extensions of E (most of
which are not abelian overQ). Secondly, we introduce here a new strategy for proving
norm-compatibility relations, based on cyclicity results for local Hecke algebras; this
allows us to show that our classes are norm-compatible in the strongest possible sense,
i.e. as classes in motivic cohomology (whereas in [16] we only proved norm relations
for the images of Euler system classes in the étale realisation, after projecting to an
appropriate Hecke eigenspace). Such cyclicity results for Hecke algebras are closely
bound up with the theory of spherical varieties, and we believe that this connection
with spherical varieties should be a fruitful tool for studying Euler systems in many
other contexts.

Theorem A Let G = GU(2, 1), KG an open compact subgroup of G(Af), and�(KG)

the set of primes which ramify in E or divide the level of KG. Let c > 1 be an integer
coprime to 6�(KG); and let R be the set of squarefree products m of primes w of E
coprime to c�(KG) with the following property: if � = ww̄ is a split prime, then at
most one of w and w̄ divides m. Let 0 ≤ r ≤ a, 0 ≤ s ≤ b be integers.

Then there exists a family of motivic cohomology classes

c�
[a,b,r ,s]
mot,m ∈ H3

mot

(
YG(KG)×E E[m],Da,b{r , s}(2)

)

for all m ∈ R, where E[m] is the ray class field modulo m, with the following prop-
erties:

(1) If m, n ∈ R with m | n, then

normE[n]
E[m]

(
c�

[a,b,r ,s]
mot,m

)
=

( ∏

w| nm

P ′
w(σ

−1
w )

)
c�

[a,b,r ,s]
mot,m ,

where P ′
w(X) is a polynomial over the spherical Hecke algebra (which acts on

each eigenspace as anEuler factor atw), andσw ∈ Gal(E[m]/E) is the arithmetic
Frobenius at w.

(2) For any prime p of E not dividing�(KG)Nm(m), the image of the class c�
[a,b,r ,s]
mot,m

under the p-adic étale realisation map is integral (i.e. lies in the étale cohomology
with OE,p-coefficients).
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We refer the reader to §8 for the definition of the Shimura variety YG(KG), and
the relative Chow motive Da,b{r , s} over it. In the case (a, b, r , s) = (0, 0, 0, 0), this
motive is simply the trivial motive E(0), and our classes coincide with those consid-
ered in [23]; in particular, the main result of op.cit. shows that the images of these
classes under the Deligne–Beilinson regulator map, paired with suitable real-analytic
differential forms on YG(KG)(C), are related to the values L ′(π, 0) for cuspidal auto-
morphic representations π of G(A). This shows that our motivic cohomology classes
are non-zero in this trivial-coefficient case. (We expect that a complex regulator for-
mula similar to [23] should also hold for more general coefficient systems, but we
shall not treat this problem here.)

After passing to a Shimura variety with Iwahori level structure at p, we can also
obtain families of classes over all the fields E[mpt ] for t ≥ 1, satisfying a norm-
compatibility in bothm and t ; see Theorem 10.2.2 for the precise statement. Applying
the étale regulator map and projecting to a cuspidal Hecke eigenspace, we obtain Euler
systems in the conventional sense – as families of elements in Galois cohomology –
associated to cohomological automorphic representations of G(A). Combining this
with known theorems relating automorphic representations of G and of GL3 /E , we
obtain the following:

Theorem B Let � be a RAECSDC1 automorphic representation of GL3 /E which is
unramified and ordinary at the primes p | p. Let VP(�) be its associated Galois
representation, and suppose this representation is irreducible. Then there exists a
lattice TP(�)∗ ⊂ VP(�)∗, and a collection of classes

c�m ∈ H1
Iw

(
E[mp∞], TP(�)∗

)

for all m ∈ R coprime to pc, such that for all m | n we have

normn
m

(
c�n

) =
( ∏

w| nm
Pw(�, σ−1

w )
)
c�m,

where Pw(�, X) = det(1− X Frob−1
w : VP(�)(1)).

See Theorem 12.3.1 for a precise statement, and for some additional properties of
the classes c�m. Aswell as constructing these Euler systems,we also prove interpolation
results showing that their p-adic étale realisations are compatible with twisting by p-
adic families of algebraic Grössencharacters, and with variation in Hida families of
automorphic representations.

In future work, we will prove an explicit reciprocity law for this Euler system,
relating it to values of an appropriate p-adic L-function, and thus prove the Bloch–

1 See Definition 2.6.2
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Kato conjecture in analytic rank 0 for automorphic Galois representations arising from
G. However, in the present paper we shall focus solely on the construction of the Euler
system classes.

1.2 Outline of the paper

After some preliminary material presented in Sect. 2, Sects. 3–6 of this paper are
devoted to proving a certain purely local, representation-theoretic statement which
we call an “abstract norm relation” (Theorem 5.2.4). This states that, if Z is any map
from a certain space of local test data to a representation of G(Q�), satisfying an
appropriate equivariance property, then the values of Z on two particular choices of
the test data are related by a certain specific Hecke operator P . We prove this in
two stages. Firstly, in §4, we prove that such a Hecke operator P must exist (with-
out identifying the operator), using a cyclicity result for Hecke modules inspired by
work of Sakellaridis. Secondly, in §5 and §6 we use local zeta integrals to define a
directly computable, purely local example of a morphism z with the correct equivari-
ance property, which allows us to identify the relevant Hecke operator P explicitly.
We have developed this theory in some detail, since we expect that the strategy devel-
oped here will be applicable to many other Euler system constructions, and it might
also serve to clarify some possibly confusing details in earlier works of ours such as
[16].

In the second part of the paper, Sects. 7–9, we construct a second, much more
sophisticated example of a morphism to which the above theory applies: the “unitary
Eisenstein map” UE [a,b,r ,s] of Definition 9.2.3, taking values in the motivic coho-
mology of the GU(2, 1) Shimura variety. Applying the “abstract norm relation” to
this specific choice of morphism, we obtain a family of motivic classes satisfying
norm-compatibility relations, whose denominators are uniformly bounded in the étale
realisation. This is our Euler system.

In the final sections of the paper, we prove that these classes satisfy norm-
compatibility relations in a suitable tower of levels at p, and that their étale realisations
are compatible with certain p-adic moment maps arising from this tower. This can
be interpreted as stating that the étale Euler-system classes vary analytically in Hida
families for G; this is an important input for studying explicit reciprocity laws for the
Euler system, which will be the subject of a forthcoming paper. Finally, we briefly
discuss the Euler system for an individual automorphic Galois representation obtained
by projecting our classes to a cuspidal Hecke eigenspace.

2 The groupsG and H

2.1 Fields

Let E be an imaginary quadratic field, of discriminant −D, and let x 	→ x̄ be the
nontrivial automorphism. Let O be the ring of integers of E . We fix an identification
of E ⊗ R with C such that δ = √−D has positive imaginary part.
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2.2 The group G

Let J ∈ GL3(E) be the Hermitian matrix

J =
(

δ−1

1
−δ−1

)
∈ GL3(E), δ = √−D.

Definition 2.2.1 Let G be the group scheme over Z such for that a Z-algebra R

G(R) = {
(g, ν) ∈ GL3(O ⊗ R)× R× : t ḡ · J · g = ν J

}
.

We identify ZG with ResO/Z(Gm), via z 	→ (
( z

z
z

)
, zz̄). We write μ : G →

ResO/Z(Gm) for the character (g, ν) 	→ det ḡ
ν

, so μμ̄ = ν.

The real group G(R) is the unitary similitude group GU(2, 1); see e.g. [23, §2.2].
Note that G is reductive over Z� for all � � D (even if � = 2).

Lemma 2.2.2 Let BG ⊂ G be the upper-triangular subgroup. Then BG = TG � NG,
with

TG(R) =
{((

x
x
x

) ( zz̄
z̄
1

)
, x x̄ zz̄

)
: x, z ∈ (O ⊗ R)×

}

the diagonal torus and

NG(R) =
⎧⎨
⎩

⎛
⎝
⎛
⎝
1 δs t + εss̄

1 s̄
1

⎞
⎠ , 1

⎞
⎠ : s ∈ O ⊗ R, t ∈ R

⎫⎬
⎭ .

Here ε = 1+δ
2 if D is odd, and ε = δ

2 otherwise. Given s, t as above, we will write
t(x, z) ∈ TG(R) and n(s, t) ∈ NG(R) for the corresponding elements. We abbreviate
t(1, z) as t(z). Note that

t(z) · n(s, t) · t(z)−1 = n(zs, zz̄t).

We write B̄G and N̄G for the lower-triangular Borel and its unipotent radical.

Lemma 2.2.3 If R is anO[1/D]-algebra, the map i : O⊗Z R → R given by x⊗ y 	→
xy gives an isomorphism of group schemes

G ×Z R ∼= (GL3×Gm)/R, (g, ν) 	→ (i(g), ν).

2.3 The group G0

We define G0 = ker(ν) ⊂ G, so G0 is the group of unitary isometries (as opposed to
unitary similitudes) of J . Since g

μ(g) ∈ G0 for all g ∈ G, we have

G0(R)ZG(R) = G(R) (2.3.a)
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for all Z-algebras R.

2.4 The group H

Let H be the group scheme over Z such that for a Z-algebra R

H(R) = {(g, z) ∈ GL2(R)× (O ⊗ R)× : det(g) = zz̄}.

This can be identified with a subgroup of G:

ι : H ↪→ G, (
(
a b
c d

)
, z) 	→ (

(
a b
z

c d

)
, zz̄).

In particular we can regard μ as a character of H , by composition with ι, and we have
simply μ( (g, z) ) = z̄.

Note 2.4.1 If � is a prime split in E , and we fix a prime w | � of E as above, then w
gives an embeddingO[1/D] ↪→ Z�. So Lemma 2.2.3 gives an identificationG(Q�) ∼=
GL3(Q�) × Q×

� . We also have an isomorphism H(Q�) ∼= GL2(Q�) × Q×
� , given by

(γ, z) 	→ (γ, i(z)). Via these identifications, ι : H ↪→ G corresponds to the map
GL2×Gm → GL3×Gm given by

[(
a b
c d

)
, x

] 	→
[(

a b
x

c d

)
, ad − bc

]
.

��

2.5 Open orbits

The following relationship between G and H is crucial for our arguments:

Lemma 2.5.1 Let R be a Z[1/D]-algebra, and let Q0
H be the subgroup {(g, z) ∈ H :

g = (
� �
0 1

)}. Then there exists an element u ∈ NG(R) such that the map

Q0
H × B̄G → G, (h, b̄) 	→ hub̄

is an open immersion of R-schemes.

Proof We shall show that u = n(1, 0) has this property.
Clearly (h, b̄) 	→ hub̄ is an open immersion if and only if the translated map

ψ : (h, b̄) 	→ u−1hub̄ is an open immersion. Since Q0
H is contained in H ∩ BG , this

map ψ factors through the “big Bruhat cell” NG × TG × N̄G , which is well-known to
be open in G. So it suffices to show that ψ is an open immersion into the big Bruhat
cell, or, equivalently, that the composite

Q0
H

h 	→u−1hu−−−−−−→ BG � BG/TG = NG
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is an open immersion. After a mildly tedious matrix manipulation one sees that this
map is given by

(
( zz̄ y
0 1

)
, z) 	→ n

(
z − 1, y + (z̄ − 1)ε + (z − 1)ε̄

)
.

This clearly identifies Q0
H with the open subscheme of NG consisting of the n(s, t)

with s �= −1. ��
Remark 2.5.2 The openness of the image amounts to the claim that B̄G × Q0

H , or
equivalently BG × BH , has an open orbit on the homogenous (G × H)-varietyX =
H\(G × H) (where H is embedded diagonally in G × H ). In other words, X is a
spherical variety. This fact will play a crucial role in the norm-compatibility relations
for our Euler system, both in the “tame direction” (see Theorem 4.2.1) and the “p-
direction” (Theorem 10.2.5).

2.6 Base change and L-factors

Wenowrelate representations ofGwith representations of thegroupResE/Q(GL3×GL1).

Local case

For each prime � split in E/Q, and each prime w | � of E , the prime w determines an
isomorphism of G(Q�) with GL3(Q�)×Q×

� , as above.

Definition 2.6.1 Ifπ� is an irreducible smooth representation ofG(Q�), we let bcw(π�)
denote the representation of GL3(Q�)×Q×

� obtained from π� via this isomorphism.
If τw�ψw = bcw(π�), thenwewriteBCw(π�) for the representation τw⊗(ψw◦det)

of GL3(Q�), and Lw(π�, s) for the L-factor L(BCw(π�), s).

If v is a place which does not split (including the infinite place), and w the place
above v in E , then there is also a base-changemap bcw taking tempered representations
of G(Qv) to tempered representations of (GL3×GL1)(Ew); this is a consequence of
the local Langlands correspondence for unitary groups due to Mok [20, Theorem
2.5.1]. (See [23, Definition 3.5] for explicit formulae when � � D and π� is spherical.)
As in the split case, if bcw(πv) = τw � ψw, we use the notation Lw(πv, s) for
L(τw ⊗ ψw, s).

In either casewewrite L(πv, s) = ∏
w|v Lw(πv, s),which is the L-factor associated

to πv and the natural 6-dimensional representation of the L-group of G.

Global case

(The definitions in this section will not be used until §12.) We recall the following
definition (see e.g. [2, §1]):

Definition 2.6.2 A “RAECSDC” (regular algebraic, essentially conjugate self-dual,
cuspidal) automorphic representation ofGL3 /E is a pair (�,ω), where� is a cuspidal
automorphic representation of GL3 /E and ω is a character of A×/Q×, such that:
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• �∞ is regular algebraic (or, equivalently, cohomological)
• �c ∼= �∨ ⊗ (ω ◦NE/Q), where NE/Q is the norm map, and�c the composite of
� and the involution x 	→ x̄ on GL3(AE ).

We say � is RAECSDC if there exists some ω such that (�,ω) is RAECSDC.

Theorem 2.6.3 (Mok) Let (�,ω) be a RAECSDC automorphic representation of
GL3 /E. Then there exists a unique globally generic, cuspidal automorphic repre-
sentation π of G such that BCw(πv) = �w for every prime w of E, where v is the
place of Q below w, and π has central character χc

π/(ω ◦ NE/Q). Moreover, π is
essentially tempered for all places v, and π∞ is cohomological for G(R); and π has
multiplicity one in the discrete spectrum of G.

Proof We briefly indicate how to deduce this from the results of [20] (which are
formulated for G0 rather than G). Let ψ be the character χ�/(ω ◦ NE/Q). Then
the representation τ = � ⊗ ψ−1 is regular algebraic and conjugate self-dual; so by
Example 2.5.8 of op.cit. it descends to a generic L-packet forG0, all ofwhosemembers
have multiplicity one in the discrete spectrum of G0. In particular, this L-packet has
a unique generic member π0. From the compatibility with local base-change, one
computes that the central character of π0 has to be the restriction ofψc to ZG0 . Hence,
by (2.3.a), the representation π0 extends uniquely to a representation π of G with
central character ψc, whose base-change is τ � ψ ; and π has multiplicity one in the
discrete spectrum of G by the argument of [3, §1.1]. ��
Remark 2.6.4 Our definitions are chosen in such a way that twisting π by α ◦ μ, for
α a character of A×

E/E
×, corresponds to twisting� by α ◦ det (and replacing ω with

ω · α|A×
Q
). This is the motivation for the apparently rather arbitrary definition of the

character μ.

Definition 2.6.5 We say that a cohomological automorphic representation π of G(A)
is non-endoscopic if it arises from the above construction for some RAECSDC rep-
resentation (�,ω) (or, equivalently, if π is globally generic and BC(π) is cuspidal).

Remark 2.6.6 Note that not all regular algebraic cuspidal representations of G arise
from this construction: there are other “endoscopic” representations, arising by func-
toriality from U (1, 1) × U (1) or U (1)3, which are cuspidal but have non-cuspidal
base-change to GL3. However, these representations are not interesting from the per-
spective of constructing Euler systems, since they correspond to globally reducible
Galois representations.

3 Formalism of equivariant maps

3.1 Definitions

Let S be a nonempty set of (rational) primes and let QS denote the restricted direct
product of the Q� for � ∈ S. We let GS = G(QS) and similarly HS .
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Let L be any field of characteristic 0, and write S(GS, L) for the space2 of
compactly-supported, locally-constant L-valued functions on GS . We write S(Q2

S, L)
for the space of Schwartz functions on Q2

S .

Definition 3.1.1 Let V be a smooth L-linear (left) representation of GS . We shall say
an L-linear map

Z : S(0)
(
Q2

S, L
)
⊗L S (GS, L) → V

is GS×HS-equivariant if it is equivariant for the following (left) actions of GS×HS :

• GS acts on the left-hand side by g · (φ⊗ ξ) = φ⊗ ξ((−)g), and on the right-hand
side by its given action on V;

• HS acts on the left-hand side by h · (φ⊗ ξ) = φ((−)h)⊗ ξ(h−1(−)), and trivially
on the right-hand side.

Equivalently, these are the GS-equivariant maps I(GS, L) → V , where I(GS, L) is
the HS-coinvariants of S

(
Q2

S, L
)⊗L S (GS, L).

We can make similar definitions with S replaced with the space S0(Q2
S, L) of

Schwartz functions vanishing at (0, 0); we write I0(GS, L) for the HS-coinvariants
of S0

(
Q2

S, L
) ⊗L S (GS, L). In order to avoid unnecessary repetition, we adopt the

following notational shortcut:

Notation We write S(0)
(
Q2

S, L
)
to denote a statement which is valid for either S or

S0, and correspondingly I(0).
As in [16, §3.9], once aHaarmeasure onGS is chosen, one can identify I(0)(GS, L)

with the compact induction cIndGS
HS
(S(0)(Q2

S, L)). It then follows from Frobenius reci-
procity that GS-equivariant maps I(0)(GS, L) → V biject with H -invariant bilinear
forms S(0)

(
Q2

S, L
) ⊗ V∨ → L , where V∨ is the smooth dual of V as a GS-

representation. (However, this bijection is not entirely canonical, since it depends
on a choice of Haar measure on GS .)

Definition 3.1.2 Let U be an open compact subgroup of GS . We shall write
I(0)(GS/U ,Q) for the image in I(0)(GS,Q) of the U -invariants S(0)

(
Q2

S, L
) ⊗

S(GS/U , L).

3.2 Integrality

Let us fix a Haar measure volH ,S on HS , which we suppose to be Q-valued.

Definition 3.2.1 We shall say an element of I(0)(GS/U ,Q) is primitive integral at
level U if it can be written in the form φ ⊗ ch(gU ) for some φ ∈ S(0) and g ∈ GS ,
and the function φ takes values in the fractional ideal CZ, where we define

C = 1

volH ,S
(
gUg−1 ∩ stabHS (φ)

) .

2 This is the “Hecke algebra” of GS , but the algebra structure depends on a choice of Haar measure on G,
and we shall avoid making a choice for the moment and thus not use the algebra structure yet.
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An element of I(0)(GS/U ,Q) is said to be integral at level U if it is a sum of primitive
integral elements at levelU ; and we write the set of such elements as I(0)(GS/U ,Z).

Clearly, any element of I(0)(GS/U ,Q) can be scaled into I(0)(GS/U ,Z). More
generally, we can replace Q with a number field L , and Z with OL [1/�] for any set
of primes � of L .

Remark 3.2.2 This definition may seem bizarre at first sight; its motivation is the
following. Later in this paper, we shall construct GS × HS-equivariant maps into the
motivic and étale cohomology of Shimura varieties for G, analogous to the “Lemma–
Eisenstein map” considered in [16] for the GSp4 case. However, the definition of these
maps involves various volume factors, so it is far from obvious a priori which input
data give rise to classes in the integral étale cohomology. The above notion of “integral
elements” is designed for exactly this purpose.

Note that the definition of integrality depends on the level U , but we have the
following compatibilities. For any U ′ ⊆ U open compacts, we have an inclu-
sion S(G/U ,Q) ↪→ S(G/U ′,Q), and a trace map S(G/U ′,Q) → S(G/U ,Q)
mapping ξ to

∑
γ∈U/U ′ ξ((−)γ ). Tensoring with the identity of S(0)(Q2

S) gives
maps I(0)(GS/U ,Q) ↪→ I(0)(GS/U ′,Q) (“pullback”) and I(0)(G/U ′,Q) →
I(0)(G/U ,Q) (“pushforward”), whose composite is multiplication by [U : U ′] on
I(0)(GS/U ,Q).

Proposition 3.2.3 Theabovemaps restrict tomapsI(0)(GS/U ,Z) ↪→ I(0)(GS/U ′,Z)
and I(0)(G/U ′,Z) → I(0)(G/U ,Z) respectively.

Proof Evidently, it suffices to check either statement on primitive integral elements.
For the trace map this is selfevident, as the trace sends a coset ch(gU ′) to ch(gU ), and
the corresponding normalising factors C ′ and C satisfy C ′ | C , so primitive integral
elements map to primitive integral elements. The reverse-direction map is a little more
intricate, and follows by considering the orbits of the group V = gUg−1 ∩ stabHS (φ)

on the U ′-cosets contained in a given U -coset. ��

Remark 3.2.4 One can interpret the system of abelian groups I(0)(GS/U ,Z), for vary-
ing U , as a “Cartesian cohomology functor” in the sense of [14].

4 Spherical Hecke algebras and cyclicity

4.1 Where we are going

Let � be an odd prime unramified in E , and set G� = G(Q�) and H� similarly. We
normalise the Haar measures by volH�

(H0
� ) = 1, where H0

� = H(Z�), and similarly
for G. For w | � a prime of E , we define

G0
�[w] = {g ∈ G0

� : μ(g) = 1 mod w}.
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We would like to prove the following statement (an “abstract norm relation”): if
δ0 = ch(Z2

�) ⊗ ch(G0
�) is the natural spherical vector of I(G�/G0

�,Z), then there
exists an element

δw ∈ I
(
G�/G

0
�[w],Z

)
such that norm

G0
�[w]

G0
�

(δw) = P ′
w(1) · δ0,

where P ′
w (to be defined below) is a certain polynomial over the spherical Hecke

algebra, related to local Euler factors. What we shall actually prove, as Theorem 5.2.4
below, is something a little weaker than this, but still sufficient for applications: δw

is only integral up to powers of �, and if � is inert, the equality norm
G0
�[w]

G0
�

(δw) =
P ′
w(1) · δ0 only holds up to inverting a certain element in the centre of the Hecke

algebra.
We shall prove this statement in two stages. Firstly, we shall show that for any open

U ⊆ G0
� and any δ ∈ I (G�/U ,Z), there exists an element Pδ lying in (a localisation

of) the spherical Hecke algebra of G� such that normU
G0
�

(δ) = Pδ · δ0. This relies
crucially on a cyclicity result for Hecke algebras due to Sakellaridis (Theorem 4.2.1).

Secondly, we shall write down a candidate for δw and verify that it is integral at level

G0
�[w] up to powers of �. The aforementioned results then show that norm

G0
�[w]

G0
�

(δw) is

the image of δ0 under someHecke operatorPδw . Via a lengthy but routine computation
with local zeta integrals, we show that this Hecke operator must be equal to P ′

w(1).
This completes the proof.

4.2 Preliminaries

As in the previous section, let � � D be a prime. From here until the end of Section 4,
all Schwartz spaces and Hecke algebras are overC and we omit this from the notation.

4.2.1 Hecke algebras

Let HG,� denote the Hecke algebra, whose underlying vector space is S(G�) and
whose algebra structure is given by convolution with respect to some choice of Haar
measure dx :

(ξ1�ξ2)(x) =
∫

g∈G�

ξ1(g)ξ2(g
−1x) dg =

∫

g∈G�

ξ1(xg
−1)ξ2(g) dg.

Any smooth left representation of G� can be regarded as a left HG,�-module, via
the action

ξ�v =
∫

G�

ξ(g) (g · v) dg.

In particular, if ξ = ch(gK ) for some subgroup K , and g is K -invariant, then ξ�v =
vol(K )g · v. Similar constructions apply to right modules; and these constructions are
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compatible with the (HG,�,HG,�)-bimodule structure of HG,� itself, if we define

g1 · ξ · g2 = ξ
(
g−1
1 (−)g−1

2

)
.

The same constructions apply likewise with H� in place of G�. Since a smooth
G�-representation is in particular a smooth H�-representation by restriction, we can
regard such representations as modules over eitherHG,� orHH ,�, and if necessary we
write �G or �H to distinguish between the two convolution operations.

If ξ ∈ HG,�, we write ξ ′ for its pullback via the involution g 	→ g−1 of G�, and
similarly for HH ,�.

4.2.2 Spherical Hecke algebras

Let G0
� = G(Z�) and H0

� = H(Z�). These are hyperspecial maximal compacts of G�

and H�, respectively. We suppose that the Haar measures on G�, H� are chosen such
that G0

� and H0
� have volume 1. The associated spherical Hecke algebras

H0
G,� = Cc(G

0
�\G�/G

0
�), H0

H ,� = Cc

(
H0
� \H�/H

0
�

)
.

are commutative rings, and can be described (via the Satake isomorphism) as Weyl-
group invariant polynomials in the Satake parameters.

4.2.3 Equivariant maps

We write [−] for the quotient map from S(Q2
�)⊗HG,� to its H�-coinvariants I(G�),

with the actions as given in Definition 3.1.1. An easy unravelling of definitions shows
that

[φ ⊗ (ξ1�Gξ2)] = ξ ′2�G [φ ⊗ ξ1]

for all φ ∈ S(Q2
�), ξ1, ξ2 ∈ HG,�, and

[(χ�Hφ)⊗ ξ ] = [
φ ⊗ (χ ′�H ξ)

]

for all φ ∈ S(Q2
�), ξ ∈ HG,�, χ ∈ HH ,�.

4.2.4 Cyclicity

We can consider the space

H = S(H0
� \G�/G

0
�),

of smooth, compactly supported functions G� → C that are left H0
� -invariant and

right G0
�-invariant. This is evidently a (H0

H,�
,H0

G,�)-bimodule, via the convolution
operations �H and �G .
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Theorem 4.2.1 H is cyclic as an (H0
H,�

,H0
G,�)-bimodule, generated by the charac-

teristic function ξ0 = ch(G0
�) of G

0
� . That is, every ξ ∈ H can be written as a finite

sum
∑

i αi�Hβi , for αi ∈ H0
H,�

and βi ∈ H0
G,�.

If � is split, this can be deduced from Corollary 8.0.4 of [27], applied to the group
G = G × H , acting by right-translation on the quotient X = H\(G × H), where
H embeds into G × H via (ι, id). It follows easily from Lemma 2.5.1 that X is
spherical as a G -variety, i.e. the Borel subgroup BG = BG × BH has an open orbit
on X . Sakellaridis’ result shows that for any split reductive group G over Z� and
spherical G -variety X satisfying a certain list of conditions, the space of G (Z�)-
invariant Schwartz functions on X (Q�) is cyclic as a module over the unramified
Hecke algebra of G , generated by the characteristic function ofX (Z�); applying this
to our G and X gives the theorem.

However, since the hypotheses of Sakellaridis’ general result are not entirely
straightforward to verify in our setting, and Sakellaridis’ argument does not cover
the non-split case, we shall give a direct proof in an appendix; see Theorem A.1.1.

Remark 4.2.2 This theorem implies, in particular, that if π� and σ� are irre-
ducible unramified representations of G� and H� respectively, then any element of
HomH�

(π� ⊗ σ�,C) is uniquely determined by its value on the spherical vectors, so
the Hom-space has dimension ≤ 1. This relates our present approach to that of [16],
where a “multiplicity ≤ 1” statement of this kind was taken as a starting-point for
proving norm relations.

4.3 Hecke action on Schwartz functions

Definition 4.3.1 Let us write A for the torus H ∩ ι−1(ZG), and zA : Gm
∼=−→ A the

map sending x 	→ (
(
x
x
)
, x).

The spherical Hecke algebra H0
A,�, with respect to the (unique) maximal compact

A0
� = A(Z�) ∼= Z×

� , is isomorphic to C[X , X−1], where X = ch(zA(�)A0
�).

Definition 4.3.2 We let �G and �H be the maps H0
A,� → H0

G,� and H0
A,� → H0

H ,�

mapping zA(�t )A(Z�) to zA(�t )G(Z�) and zA(�t )H(Z�) respectively.

These maps are both injective, and their images are central subalgebras of H0
G,�

and H0
H ,� respectively.

Lemma 4.3.3 Let φ0 = ch(Z2
�). There exists a unique homomorphism

ζH : H0
H ,� → H0

A,�

such that

ξ · φ0 = (�H ◦ ζH )(ξ) · φ0
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for all ξ ∈ H0
H ,�, where we let H� act on the space S(Q2

�) via the natural projection
H� → GL2(Q�).

Proof We first define a map ζ : H0
GL2,�

→ H0
A,�. It is well known that H0

GL2,�
∼=

C[T�, S±1
� ] where T� and S� are the double cosets of

(
� 0
0 1

)
and

(
� 0
0 �

)
. We define ζ by

ζ(T�) = X + �, ζ(S�) = X ,

where X = ch(zA(�)A0
�) as above. Now we extend this map to H�, by compos-

ing with the natural map H0
H ,� → H0

GL2,�
which sends a coset ch(H0

� (γ, z)H
0
� ) to

ch(GL2(Z�)γ GL2(Z�)). ��
Proposition 4.3.4 Let s(Q2

�) denote the H�-submodule of S(Q2
�) generated by the

spherical vector φ0. If � is split in E, then we have s(Q2
�) = S(Q2

�)
A0
� . If � is inert,

then the quotient S(Q2
�)

A0
� /s(Q2

�) is annihilated by �H (zA(�)+ �).

Proof We show first that S(Q2
�)

A0
� is cyclic as a C[GL2(Q�)]-module. This is surely

well-known, but we give a sketch proof for completeness. It suffices to show that
the C[GL2(Q�)]-span of φ0 contains S0(Q2

�). We can decompose Q2
� − {0, 0} as

a disjoint union of countably many GL2(Z�)-invariant compact subsets Xn , where
Xn = {(x, y) : min(vp(x), vp(y)) = n}. Since (

1 0
0 �

)
gives a (continuous) bijection

between Xn and Xn+1, we are reduced to showing that S(X0)
A0
� = S(P1(Z�)) is

contained in the GL2(Q�)-span of φ0. However, for any t ≥ 1 this span contains the
vector

φt := ch(ptZp × Z×
p ) =

((
p−t 0
0 1

)
−

(
p−t 0
0 p−1

))
φ0 (4.3.a)

and these are the characteristic functions of a basis of neighbourhoods of (0 : 1)
in P1(Z�). As GL2(Z�) acts transitively on P1(Z�), the translates of the φt span
S(P1(Z�)).

Since H� surjects ontoGL2(Q�) for � split, this shows that s(Q2
�) = S(Q2

�)
A0
� in this

case. In the inert case, if we write GL2(Q�) = GL2(Q�)
+⊔

GL2(Q�)
− according

to the parity of the valuation of det g, then the image of H� is GL2(Q�)
+. By the

preceding paragraph, we can write any φ ∈ S(Q2
�)

A0
� in the form

(
ξ+ + ξ−

)
�φ0,

where ξ ? is supported on GL2(Q�)
?; and since �H (zA(�) + �) − T� annihilates φ0,

we have

�H (zA(�)+ �)�φ = (
ξ+��H (zA(�)+ �)+ ξ−�T�

)
�φ0,

and both ξ+��H (zA(�)+ �) and ξ−�T� are supported on GL2(Q�)
+ and hence in the

image of HH ,�. ��
Remark 4.3.5 This result is essentially best possible, since thequotientS(Q2

�)
A0
� /(zA(�)+

�) is isomorphic to the induced representation I (| · |−1/2, | · |−1/2). This is irreducible
as a GL2(Q�)-representation, but splits into two direct summands as a representation
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of GL2(Q�)
+, and the spherical vector is contained in one of the summands. So s(Q2

�)

consists precisely of the vectors whose projection to the non-spherical summand of
I (| · |−1/2, | · |−1/2) is 0.

Theorem 4.3.6 Let [δ0] = [φ0 ⊗ ξ0] ∈ I(G�/G0
�). If � is split, then we have

I(G�/G0
�) = H0

G,��[δ0]. If � is inert, the quotient I(G�/G0
�)/

(
H0

G,��[δ0]
)
is anni-

hilated by �G(zA(�)+ �).

Proof Let δ = φ⊗ ξ be a general element of I(G�/G0
�). If � is split, then Proposition

4.3.4 shows that we can find some θ ∈ H(H�/H0
� ) such that φ = θ�Hφ0. Hence in

I(G�/G0
�) we have

[φ ⊗ ξ ] = [(θ�Hφ0)⊗ ξ ] = [
φ0 ⊗ (θ ′�H ξ)

]
.

Let σ = θ ′�H ξ . Since θ is invariant under right-translation by H0
� , and ξ under

right-translation by G0
� , we conclude that σ ∈ H. By Theorem 4.2.1, we can express

σ (possibly non-uniquely) as a finite sum
∑

i αi�Hβi for αi ∈ H0
H ,� and βi ∈ H0

G,�.
We can then write

[
φ0 ⊗ (θ ′�H ξ)

] =
∑
i

[φ0 ⊗ (αi�Hβi )]

=
∑
i

[
(α′i�Hφ0)⊗ βi ]

]

=
∑
i

[(�H (ζi )�Hφ0)⊗ βi ]

=
∑
i

[
φ0 ⊗ (�H (ζi )

′�Hβi )
]

=
∑
i

[
φ0 ⊗ (�G(ζi )

′�Gβi )
]
,

where we write ζi = ζH (α
′
i ) ∈ H0

A,�. (The last equality follows since the actions of

H0
A,� onH0

G,� via�G and�H are the same: both are just the natural translation action
of A� on G�.)

So, if we set � = ∑
i �G(ζi )

′�Gβi ∈ H0
G,�, then we have

[φ ⊗ ξ ] = [φ0 ⊗�] = �′�G [φ0 ⊗ ξ0].

If � is inert, then we can still find θ such that θ�Hφ0 = �H (zA(�) + �)φ0, and the
same argument as above produces a � such that

�G(zA(�)+ �)�G[φ ⊗ ξ ] = �′�G [φ0 ⊗ ξ0],

showing that�G(zA(�)+�) annihilates the class of φ⊗ξ in I(G�/G0
�)/

(
H0

G,��[δ0]
)
.
��

123



D. Loeffler et al.

Corollary 4.3.7 (Abstract norm relation, version 1) Let U ⊆ G0
� be an open subgroup,

and δ ∈ I(G/U ). If � is split, there exists an element Pδ ∈ H0
G,� with the following

property:

For any smooth G�-representationV andG�×H�-equivariantmapZ : S (
Q2
�

)⊗
H (G�) → V , we have

Pδ�GZ(δ0) = normU
G0
�

(Z(δ)) .

If � is inert, then we can find an element Pδ ∈ H0
G,�

[
1

�G (zA(�)+�)
]
having the same

property for every V such that �G(zA(�)+ �) is invertible on VG0
� .

Proof Replacing δ with the sum of its translates by U/G0
� , we may assume U = G0

� ,
and the result is now obvious from the preceding theorem. ��

4.4 CharacterisingPı

Let π� be an irreducible spherical representation of G�. Then the Hecke algebra acts
on the 1-dimensional space (π�)G

0
� via a ring homomorphism �π� : H0

G,� → C
If � is inert in E , we suppose that the central character χπ� satisfies χπ�(zA(�)) �=−�−1, so that �G(zA(�) + �)′ acts invertibly on π�; hence �π� extends to

H0
G,�

[
1

�G (zA(�)+�)
]
.

Proposition 4.4.1 Let z ∈ HomH�
(S(Q2

�) ⊗ π�,C); and let U, δ, and Pδ be as in
Corollary 4.3.7. Write δ = ∑

i φi ⊗ ch(giU ); and let ϕ0 be a spherical vector of π�.
Then we have

∑
i

z(φi ⊗ giϕ0) = �π�(P ′
δ) · z(φ0 ⊗ ϕ0).

Proof As usual, we may assume U = G0
� . The homomorphism z determines a linear

map Z : S(Q2
�) ⊗ H(G�) → C sending φ ⊗ ξ to z(φ, ξ�Gϕ0). This map clearly

factors through I(G�/G0
�), and it isH0

G,�-equivariant if we let ξ ∈ H0
G,� act on C by

�π�(ξ
′).

If � is split, then we have [δ] = Pδ�G [φ0 ⊗ ξ0] as elements of I(G�/G0
�);

so we must have Z(δ) = �π�(P ′
δ)Z(δ0), which is exactly the formula claimed

in the proposition. If � is inert, then we replace I(G�/G0
�) with its localisation

I(G�/G0
�) [1/(zA(�)+ �)]. ��

5 Choice of the data

Let � � D be prime, and w a prime of E above �. Let q := Nm(w) = � or �2.
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5.1 The operatorPw

If π� is an irreducible unramified representation ofG�, we write�π� for the associated
character of the Hecke algebra H0

G,�, as in §4.4 above.

Lemma 5.1.1 There is a cubic polynomialPw ∈ H0
G,�[X ] such that for any irreducible

unramified representation π� of G�, we have �π�(Pw)(q−s) = Lw(π�, s)−1.

Proof This is immediate from the Satake isomorphism, since the coefficients of the
L-factor are Weyl-group-invariant polynomials in the Satake parameters. ��
Remark 5.1.2 One can check that Pw(X) has the form 1 − 1

q ch
(
G0
� t(�w)G0

�

)
X +

higher order terms, where �w is a uniformizer at w; however, for our arguments it is
actually not necessary to write down Pw explicitly.

5.2 The element ıw

Definition 5.2.1 For t ≥ 1, define φ1,t ∈ S(Q2
�,Z) as the function

φ1,t = ch
(
�tZ� × (1+ �tZ�)

)
.

Note that φ1,t is fixed by the action of the group

KH�,1(�
t ) := {(γ, z) ∈ H(Z�) : γ ≡ (

zz̄ �
0 1

)
mod �tZ�}.

Definition 5.2.2 We define an element ξw ∈ H(G�/G0
�[w]), and an integer nw, as

follows:

(i) Suppose � = ww̄ is split in E . Then we take ξw = ch(G0
�[w]) −

ch(n(a, 0)G0
�[w]), where a ∈ E ⊗ Q� has valuation −1 at w and ≥ 1 at w̄;

and we set

nw = �(�+ 1)(�− 1)2.

(ii) For � inert in E , we take ξ = ch(G0
�[w])−ch(n(a, 0)G0

�[w])where a ∈ E⊗Q�

has valuation −1; and we take

nw = (�2 − 1)2.

With these notations, in both cases we define

δw := nw · φ1,2 ⊗ ξw ∈ I(G�/G
0
�[w],Q).

Proposition 5.2.3 We have δw ∈ I (
G�/G0

�[w],Z[1/�]
)
.
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Proof A tedious explicit computation shows that the subgroup V = stabH�
(φ1,2) ∩

stabG�
(ξw) is given by {h ∈ KH�,1(�

2) : μ(h) = 1 mod w} if � is split, and {h ∈
KH�,1(�

2) : μ(h) = 1 mod �Z� + �2OE,�} if � is inert. So [H(Z�) : V ] = �2(� −
1)2(�+ 1) = �nw in the former case, and �3(�2 − 1)2 = �3nw in the latter case. Thus
nw ∈ C

�
Z, resp. C

�3
Z, where C = 1

vol(V ) = [H(Z�) : V ] is as in Definition 3.2.1. ��
Theorem 5.2.4 (Abstract norm relation, version 2) Let δw ∈ I(G�/G0

�[w],Z[1/�])
be the element defined in Definition 5.2.2. Let V be a smooth G�-representation and
Z : S(Q2

�)⊗HG,� → V a H� × G�-invariant homomorphism. If � is inert, suppose

also that �G(zA(�)+ �) acts bijectively on VG0
� . Then we have

norm
G0
�[w]

G0
�

(Z(δw)) = P ′
w(1)�Z(δ0).

Outline of proof. We need to show that if δ = δw, then the operator Pδ of Corollary
4.3.7 is P ′

w(1). We will do this using Proposition 4.4.1 to compare the images of
Pw(1) and P ′

δ under �π� , for a sufficiently dense set of unramified representations
π�. More precisely, for all unramified representations π� which are generic (admit a
Whittaker model), we shall construct below a non-zero, H(Q�)-equivariant bilinear
form z ∈ HomH�

(
π� ⊗ S(Q2

�),C
)
using zeta integrals, and show that for this z we

have

nwz
(
φ1,2 ⊗ (1− n(a, 0))ϕ0

)
= Lw(π�, 0)

−1z(φ0 ⊗ ϕ0) and z(φ0 ⊗ ϕ0) �= 0.

(5.2.a)

The left-hand side of this equality is Z(δw) in the notation of Proposition 4.4.1, so we
must have �π�(P ′

δw
) = Lw(π�, 0)−1. Thus P ′

δw
= Pw(1) modulo the kernel of �π� .

Since the characters�π� for which this construction applies are dense in the spectrum
of the Hecke algebra, we must in fact have P ′

δw
= Pw(1) as required. It remains only

to construct the homomorphism z and prove Eq. 5.2.a; this will be carried out in the
next section.

6 Zeta-integral computations

6.1 The zeta integral

Let � be a rational prime (for now we do not need to assume � � D). If e is an additive
character E⊗Q� → C×, we can extend it to a character of N (Q�) via n(s, t) 	→ e(s).
We fix a choice of e whose restriction to Ew is non-trivial for allw | �, and denote the
resulting character of N (Q�) by eN .

Definition 6.1.1 An irreducible representation π� of G� is said to be generic if it is
isomorphic to a space of functions on G� transforming by eN under left-translation
by N (Q�). If such a subspace exists, it is unique, and we call it the Whittaker model
W(π�).
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Definition 6.1.2 Let π� be a generic representation of G�. For everyW ∈ W(π�), and
s ∈ C, define

Z(W , s) :=
∫

(E⊗Q�)
×
W (t(z)) |Nm(z)|s−1 d×z,

where t(z) = (diag(zz̄, z̄, 1), zz̄) as above.

Proposition 6.1.3 (1) The integral converges for �(s) � 0, and has analytic contin-
uation as a rational function of qs .

(2) The functions Z(W , s) for varying W form a non-zero fractional ideal of
C[qs, q−s] containing the constant functions.

(3) Let h ∈ BH (Q�), and write h = (
(
a b
d

)
, z). Then we have

Z (ι(h)W , s) = χ(d)| da |s−1Z (W , s) ,

where χ = χπ� |Q×
�
. In particular this is independent of z.

Proof Parts (1) and (2) are standard facts. Part (3) is a simple explicit computation. ��

Definition 6.1.4 [Godement–Siegel sections]Letφ ∈ S(Q2
�,C).Wewrite f φ(−, χ, s)

for the function GL2(Q�) → C(�s, �−s) defined by

f φ(g, χ, s) = | det g|s
∫

Q×
�

φ((0, a)g)χ(a)|a|2s d×a.

This is a meromorphic section of the family of principal-series representations

IGL2

(
| · |s− 1

2 , χ−1| · | 12−s
)
, regular away from the poles of L(χ, 2s). See also [15,

§8.1].

Definition 6.1.5 For φ ∈ S(Q2
�,C), we define

z(W , φ, s) =
∫

(BH \H)(Q�)

Z(ι(h)W , s) f φ(h, χ, s) dh ∈ C(qs, q−s).

where the integral is well-defined by (3) above.

Remark 6.1.6 The zeta-integral z(. . . ) is denoted I�(. . . ) in [23, §3.3] (taking the
characters (ν1, ν2) loc.cit. to be (1, χ−1)). It is a variant of the zeta-integral for U(2, 1)
considered in [4, §3.6].

We expect that for any generic π�, the “common denominator” of the z(W , φ, s)
should coincide with the L-factor L(π�, s) defined using the local base-change lift-
ing as in §2.6. However, in the present work we only need this when � and π� are
unramified. Some ramified cases are established in [23, §3.6 & §8.3].
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6.2 Explicit formulae in the unramified case

We suppose henceforth that � � 2D, that π� is an irreducible unramified principal
series, and that the additive character e has conductor 1. Then π� is generic, and its
Whittaker modelW(π�) has a unique spherical vector Wπ�,0 such that Wπ�,0(1) = 1.

Proposition 6.2.1 We have Z(Wπ�,0, s) = L(π�,s)
L(χ,2s) , where χ = χπ� |Q×

�
as above, and

L(π�, s) is as in Section 2.6.

Proof The values ofWπ�,0 along the torus T are given by an explicit formula in terms
of the Satake parameters; see [28] for � split, and [4, §4.7] for � inert. The result
follows from these formulae by an explicit computation. ��
Corollary 6.2.2 If φ0 = ch(Z2

�), then we have z(Wπ�,0, φ0, s) = L(π�, s).

Proof We note that f φ0(−, χ, s) is a spherical vector with f φ0(1, χ, s) = L(χ, 2s),
and H(Z�) surjects onto (BH\H)(Q�). ��

6.3 Invariant bilinear forms

Theorem 6.3.1 ( [23, Theorem 7.11]) The limit

z(W , φ) := lim
s→0

z(W , φ, s)

L(π�, s)

exists for all W ∈ W(π�) and φ ∈ S(Q2
�), and defines a non-zero element of the space

HomH�
(S(Q2

�)⊗ π�,C) satisfying z(Wπ�,0, φ0) = 1.

Remark 6.3.2 Note that this is much stronger than we need for the proof of Theorem
5.2.4; it would suffice to know that there is some non-zero rational function P(s) such
that lims→0

z(W ,φ,s)
P(s) is well-defined and not identically 0.

6.4 Unipotent twists

We want to evaluate the above integrals on certain ramified test data (still assuming
π� itself to be unramified).

Definition 6.4.1 Letw be aprimeabove�, and leta ∈ E⊗Q� be such thatvw(a) = −1,
with vw̄(a) ≥ 1 if � is split. We define

η(a)w = n(a, 0) ∈ N (Q�).

Proposition 6.4.2 The value Z(η(a)w Wπ�,0, s) is independent of the choice of a, and is
given by

Z((1− η(a)w )Wπ�,0, s) = q
q−1 Lw̄(π�, s).
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Proof In the split case, Z((1− η
(a)
S )Wπ�,0, s) is given by

∫

(E⊗Q�)
×
(1− e(az))W0(t(z))|Nm(z)|s−1 d×z=

∑
m,n≥0

(∫

wm w̄nO×
(1− e(az)) d×z

)

×W0(t(�
m
w �

n
w̄))�

−(m+n)(s−1).

The bracketed integral is zero if m ≥ 1; if m = 0 it is �
�−1 . Since we have

∑
n≥0

W0(t(�
n
w̄))�

−n(s−1) = Lw̄(π�, s),

the result follows.The argument in the inert case is similar, using the fact that
∫
�nO×(1−

e(az)) d×z is 0 if n > 1 and �2

�2−1
if n = 0. ��

Remark 6.4.3 By the same methods, one can show that for a split prime � = ww̄ we
have

Z((1− η(a)w )(1− η
(ā)
w̄ )Wπ�,0, s) = �2

(�−1)2
.

��
Corollary 6.4.4 In the situation of Proposition 6.4.2, we have

z
(
(1− η(a)w )Wπ�,0, φ1,2

)
= 1

nw
· Lw (π�, 0)

−1 ,

where nw is as in Definition 5.2.2.

Proof As in [16, §3.10], for any W ∈ W(π�), the values �2t−2(�2 − 1) · z(W , φ1,t , s)
are independent of t for t � 0, and the limiting value is simply Z(W , s).

In our case, it suffices to take t = 2 since both �η
(a)
w and its inverse have

matrix entries in O ⊗ Z�, so the principal congruence subgroup modulo �2 fixes
(1− η

(a)
w )Wπ�,0. Since nw = q−1

q · �2(�2 − 1), the computation of the limiting value
is immediate from Proposition 6.4.2. ��

This completes the proof of (5.2.a), and hence of Theorem 5.2.4. ��

7 Algebraic representations and Lie theory

7.1 Representations of G and H

Since G and H are split over E , their irreducible representations over E are
parametrised by highest-weight theory.
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Definition 7.1.1 We write χi , i = 1 . . . 4, for the four characters of T/E mapping
diag

(
x, z, zz̄

x̄

)
respectively to x, x̄, xz

x̄ ,
x̄ z̄
x .

Note 7.1.2 The characters χ1 and χ2 are the highest weights (with respect to BG) of
the natural 3-dimensional representation V of G and its conjugate V̄ . The characters
χ3 and χ4 factor through the abelianisation of G: we have χ3 = det

ν
= μ̄ and χ4 = μ,

where μ = det/ν as above. Moreover, χ3χ4 = ν.

Definition 7.1.3 (1) For a1, a2 ≥ 0, denote by V a1,a2 the representation of G of
highest weight a1χ1 + a2χ2.

(2) For b1 ≥ 0, letWb1 denote the representation Symb(std) of H , where std denotes
the pullback to H of the defining representation of GL2.

(3) If V is any representation of G or H , we write V {a3, a4} for its twist by χa3
3 χ

a4
4 .

Thus every irreducible representation of G has the form V a1,a2{a3, a4} for some
a1, . . . , a4 ∈ Z with a1, a2 ≥ 0; and every irreducible representation of H has the
form Wb1{b2, b3} for b1, . . . , b3 ∈ Z with b1 ≥ 0.

Note 7.1.4 We have

(V a1,a2)∗ ∼= V a2,a1{−a1 − a2,−a1 − a2}.

This representation will play an important role in the following, and we shall write it
as Da1,a2 .

7.2 Branching laws

The restriction of G-representations to H is described by a branching law, which is
equivalent to the usual branching law for GL2 ⊂ GL3 (see e.g. [5, Theorem 8.1.1]).
The statement we need is the following:

Proposition 7.2.1 The representation Da1,a2{b1, b2} has a non-zero Q0
H -invariant

vector if and only if 0 ≤ bi ≤ ai . In this case, there is a unique such vector up
to scaling, and it is the highest-weight vector of the unique H-subrepresentation iso-
morphic to Wn{−n,−n}, where n = a1 + a2 − b1 − b2.

Remark 7.2.2 The representationsWn{−n,−n} are important since they are the coef-
ficient systems for which we can construct motivic Eisenstein classes; see Sect. 9.2
below.

We fix normalisations for these Q0
H -invariant vectors using Lemma 2.5.1. Let u ∈

NG(Z[1/D]) be a choice of element satisfying the conclusion of that lemma.

Proposition 7.2.3 Suppose 0 ≤ r ≤ a, 0 ≤ s ≤ b are integers, and let d[a,b] be a
choice of highest-weight vector of Da,b. Then there exists a unique vector

br[a,b,r ,s] ∈
(
Da,b{r , s}

)Q0
H
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with the following property: the projection of u−1 · br[a,b,r ,s] to the highest-weight
space of Da,b{r , s} is d[a,b]{r , s}.

Proof Let λ be the highest weight of D[a,b]{r , s}. We use the Borel–Weil presentation
of D[a,b]{r , s}: it is isomorphic to the space of polynomial functions on G which
transformviaλ under left-translation by B̄G . This space has a canonical highest-weight
vector f hw, whose restriction to the big Bruhat cell is given by f hw(n̄tn) = λ(t).

If f H denotes the polynomial corresponding to br[a,b,r ,s], then f H must transform
via λ under left-translation by B̄G , and trivially under right-translation by Q0

H . Since
B̄Gu−1Q0

H is open, we must have f H (u−1) �= 0, so we can normalise such that
f H (u−1) = 1.
Since projection to the highest-weight subspace is proportional to evaluation at the

identity, and both u−1 f H and f hw take the value 1 at the identity, this shows that
u−1 · f H has the same highest-weight projection as f hw. ��

For F an extension of E , we write Da,b
F {r , s} for the base-extension of Da,b

F {r , s}
to F , which is an irreducible representation of G/F . If F = Ew for a prime w | D,
then G is a Chevalley group (a reductive group scheme) over OE,w, so we have the
notion of admissibleOE,w-lattices in the Ew-vector space Da,b{r , s}⊗E Ew; see [13]
for an overview. We are chiefly interested in themaximal admissible lattice, which we
shall denote by Da,b

OE,w
{r , s}.

Proposition 7.2.4 The vector br[a,b,r ,s] lies in Da,b
OE,w

{r , s} for all primes w � D.

Proof As shown in [13, §2.3], the maximal lattice can be constructed explicitly via the
Borel–Weil description of D[a,b]{r , s}: it is the intersection of D[a,b]

Ew
{r , s} ⊂ Ew[G]

with the integral coordinate ring OEw [G]. So we must show that the polynomial f H

in Proposition 7.2.3 lies in OEw [G].
Let Fw be the residue field of Ew. Then f H is regular on G/Ew ; and it is also

regular on a dense open subscheme of G/Fw . So it is regular on a subset of G/OE,w of
codimension ≥ 2. Since G/OE,w is smooth, it is a normal scheme. It follows that f H

is regular everywhere on G/OE,w (see e.g. Stacks Project tag 031T). ��

8 Shimura varieties

8.1 The Shimura varieties YG and YH

8.1.1 The Shimura variety YG

Let S = ResC/R Gm , and consider the homomorphism

h : S → G/R, h(z) = ( 1
a2+b2

( a b
z

−b a

)
, 1
a2+b2

), z = a + ib ∈ S(R) = C×.
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We write XG for the space of G(R)-conjugates of h; we can identify XG as the
unbounded Hermitian symmetric domain

{(z, w) ∈ C× C : �(z)− ww̄ > 0}, (g, ν) · h 	→ (a/c, b/c) where g ·
[
i
1
1

]
=

[ a
b
c

]
.

Then (G, h,XG) is a Shimura datum.

Remark 8.1.1 Our choice of Shimura datum is a little non-standard; it is more common
to use the alternative Shimura datum defined by h′(z) = h(1/z̄), which is the image
of h under the automorphism of G given by (g, ν) 	→ (ν−1g, ν−1). However, using
h rather than h′ gives simpler formulae for motivic Eisenstein classes. Compare [16,
Remark 5.1.2].

The reflex field of this Shimura datum is E (viewed as a subfield of C via our
chosen identification of E ⊗ R with C). We let YG be the canonical model over E
of the Shimura variety associated with this datum. For any open compact subgroup
K ⊂ G(Af) we let YG(K ) = YG/K be the quotient by K ; this is a quasi-projective
variety over E . If K is sufficiently small, it is smooth (it suffices to take K to be neat
in the sense of [22]; see [6, §2.3]). We recall that theC-points of YG(K ) have a natural
description as

YG(K )(C) = G(Q)\[XG × G(Af)/K ].

8.1.2 The Shimura variety YH

The homomorphism h factors as ι ◦ hH , where hH : S → H/R is the Shimura datum

z = a + ib 	→
(

1
a2+b2

(
a b−b a

)
, z̄−1

)
.

We let XH be the H(R)-conjugacy class of hH . Then (H , h,XH ) is also a Shimura
datum, and its reflex field is also E . We let YH be the canonical model over E of the
associated Shimura variety. For an open compact K ′ ⊂ H(Af), the C points of the
quasi-projective variety YH (K ′) are naturally described as

YH (K
′)(C) = H(Q)\[XH × H(Af)/K

′].

8.1.3 Functoriality

The inclusion ι : H ↪→ G induces an E-morphism YH → YG . In particular, if
K ⊂ G(Af) and K ′ ⊂ H(Af) are such that K ′ ⊂ K ∩ H(Af), then there is a finite
morphism of E-varieties YH (K ′) → YG(K ) that on C-points is just the map

H(Q)\[XH × H(Af)/K
′] → G(Q)\[XG × G(Af)/K ], [h′, h f ] 	→ [ι ◦ h′, ι(h f )].

We also have the projection map π : H → GL2 (forgetting z). The composite π ◦h
is a Shimura datum for GL2, which coincides with the one used in [16, §5.1]; again,
this differs from the “standard” Shimura datum by an automorphism of GL2.
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8.2 The component groups of YG and YH

The set π0(YG) of connected components of YG can be described as follows. Let
μ = det/ν : G → ResE/Q(Gm), so that the composite μ ◦ h is given by z 	→ z−1.

Then the map

YG(K )(C)
π0→ E×\(E ⊗ Af)

×/μ(K ), π0([h, g f ]) 	→ μ(g f ),

identifies the set of geometrically connected components π0(YG(K )) of YG(K ) with
E×\(E ⊗ Af)

×/μ(K ). So

π0(YG) = E×\(E ⊗ Af)
×.

The action of Gal(Ē/E) on π0(YG) can be described by the reciprocity law: if

ArtE : E×\(E× ⊗ Af)
× ∼→ Gal(Ē/E)ab

is the Artin reciprocity map of class field theory, normalized so that geometric Frobe-
nius elements are mapped to uniformizers, then the map π0(YG) ∼= E×\(E× ⊗Af)

×
is Gal(Ē/E)-equivariant if we let σ ∈ Gal(Ē/E) act on E×\(E× ⊗ Af)

× as multi-
plication by ArtE (σ )−1. The same analysis applies also to YH in place of YG , since ι
identifies H/[H , H ] with G/[G,G].

We can regard G as a subgroup of G × ResE/Q Gm , via the map (id, μ). If K is
any open compact in G(Af), and K [m] = {k ∈ K : μ(k) = 1 mod m} for an ideal m
of E , then this gives an open-and-closed embedding

YG(K [m]) ↪→ YG(K )×Spec E Spec E[m]. (8.2.a)

Note that this intertwines the action of aHecke operator [K [m]gK [m]] on the left-hand
side with [KgK ] × ArtE (μ(g))−1 on the target.

8.3 Sheaves corresponding to algebraic representations

LetG temporarily denote any of the three groups {GL2, H , G}, and let F be a number
field. As in [16, §6], we can define a category of G (Af)-equivariant relative Chow
motives on the infinite-level Shimura variety YG , with coefficients in F ; an object of
this category is a collectionV = (VU )U of F-linear relativeChowmotives overYG (U )

for all sufficiently small open compacts U ⊂ G (Af), satisfying compatibilities under
pullback and translation by G (Af). We denote this category by CHMF (YG)G (Af ). If
V is an object of this category, its motivic cohomology

H∗
mot(YG ,V ) = lim−→

U

H∗
mot(YG (U ),VU ),

is naturally a smooth F-linear (left) representation of G (Af).
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Theorem 8.3.1 ( [1, Theorem 8.6]) There is an additive functor

AncG : RepF (G ) → CHMF (YG )
G (Af )

with the following properties:

(i) AncG preserves tensor products and duals.
(ii) if ν denotes the multiplier map G → Gm, then AncG (ν) is the Lefschetz motive

F(−1)[−1], where [−1] denotes that the G (Af)-equivariant structure is twisted
by the character ‖ν‖−1.

(iii) for any prime v of F and G -representation V , the v-adic realisation of AncG (V )
is the equivariant étale sheaf associated to V ⊗F Fv , regarded as a left G(Qp)-
representation where p is the prime below v.

We shall always take the coefficient field F to be E , and frequently drop it from
the notation.

Proposition 8.3.2 ( [29, Corollary 9.8]) There is a commutative diagram of functors

Rep(G) CHM(YG)G(Af )

Rep(H) CHM(YH )
H(Af )

AncG

ι∗ ι∗
AncH

where the left-hand ι∗ denotes restriction of representations, and the right-hand ι∗
denotes pullback of relative motives.

9 Construction of the unitary Eisenstein classes

9.1 Pushforwards in motivic cohomology

Let 0 ≤ r ≤ a, 0 ≤ s ≤ b be integers. We use script letters V a,b, Da,b{r , s} etc for
the images of the corresponding algebraic representations under Ancona’s functor. For
n ≥ 0, we writeH n = AncH (Wn{−n,−n}). Taking n = a+ b− r − s, Proposition
8.3.2 gives us maps of equivariant relative Chow motives on YH

H n ↪→ ι∗
(
D [a,b]{r , s}

)
, (9.1.a)

where the latter map is normalised to send the highest-weight vector of Wn{−n,−n}
to the vector br[a,b,r ,s] ∈ Da,b{r , s} of Proposition 7.2.3. If we fix an open compact
subgroup U ⊂ G(Af), and an element g ∈ G(Af)/U , then we have a finite map

ιgU : YH (H ∩ gUg−1) −→ YG(U ),

given by the composite of ι : YH (H ∩ gUg−1) → YG(gUg−1) and translation by g.
Since motivic cohomology is covariantly functorial (with a shift in degree) for finite

123



An Euler system for GU(2, 1)

morphisms of smooth varieties, we obtain from (9.1.a) a homomorphism

ι
[a,b,r ,s]
gU ,� : H1

mot

(
YH (H ∩ gUg−1),H n(1)

)
−→ H3

mot

(
YG(U ),Da,b{r , s}(2)

)

for each U . Exactly as in [16, §8.2], we have:

Proposition 9.1.1 Let vol denote a choice of E-valued Haar measure on H(Af). Then
there is a unique map

ι[a,b,r ,s]� : H1
mot

(
YH ,H

n) ⊗E H(G(Af); E) → H3
mot

(
YG ,D

a,b{r , s}(2)
)

characterised as follows: if U is an open compact in G, g ∈ G(Af), and x ∈
H1
mot (YH (V ),H n(1)) where V = H ∩ gUg−1, then we have

ι[a,b,r ,s]� (x ⊗ ch(gU )) = vol(V ) · ι[a,b,r ,s]gU ,� (x).

��
Remark 9.1.2 The proof that thismap iswell-defined ultimately reduces to the compat-
ibility of pushforward and pullback in Cartesian diagrams; it therefore carries over to
the general setting ofCartesian cohomology functors forG and H , in the sense of [14].
For a careful proof of the well-definedness using this formalism, see [7, Proposition
5.9].

9.2 Eisenstein classes and the unitary Eisensteinmap

Definition 9.2.1 (Siegel, Beilinson) For k ∈ Z≥0, the motivic Eisenstein symbol of
weight k is the GL2(Af)-equivariant map

S(0)(A2
f , E) → H1

mot

(
YGL2 ,H

k(1)
)
, φ 	→ Eiskmot,φ,

described in [16, Theorem 7.2.2]. Here S(0) signifies S if k ≥ 1 and S0 if k = 0.

Remark 9.2.2 This map can be characterised via its residue at∞, or via its composite
with the de Rham realisation functor; see loc.cit. for explicit formulae. When k = 0
and φ is the characteristic function of (α, β)+ Ẑ2, for α, β ∈ Q/Z not both zero, we
have H1

mot

(
YGL2 ,H

k(1)
) = H1

mot

(
YGL2 , E(1)

) = O(YGL2)
× ⊗ E , and Eiskmot,φ is

the Siegel unit gα,β in the notation of [9].

Composing the Eisenstein symbol with pullback along the projection YH → YGL2

defines an H(Af)-equivariant map S(0)(A2
f ; E) → H1

mot

(
YH ,H k(1)

)
which we

denote by the same symbol.

Definition 9.2.3 We define the unitary Eisenstein map

UE [a,b,r ,s] : S(0)(A2
f ; E)⊗H(G(Af); E) → H3

mot

(
YG ,D

a,b{r , s}(2)
)
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by UE [a,b,r ,s](φ ⊗ ξ) = ι
[a,b,r ,s]∗

(
Eisa+b−r−s

mot,φ ⊗ξ
)
, where ι

[a,b,r ,s]∗ is the map of

Proposition 9.1.1.

By construction, this map is G(Af)× H(Af)-equivariant in the sense of Definition
3.1.1.

9.3 Choices of the local data

Weshall nowfixchoices of the input data to the abovemapUE [a,b,q,r ], in order to define
a collection of motivic cohomology classes satisfying appropriate norm relations (a
“motivic Euler system”). We shall work with arbitrary (but fixed) choices of local data
at the bad primes; it is the local data at good primes which we shall vary, depending
on a choice of a parameter m.

Definition 9.3.1 Let S be a finite set of (rational) primes, containing all primes dividing
2d. LetR denote the set of square-free idealsm ofO, coprime to S, with the following
property: for each prime � = ww̄ split in E , at most one of {w, w̄} divides m.

We choose an arbitrary element δS ∈ S(0)(QS, E) ⊗H(G(QS), E), and an open
compact subgroup KG,S ⊂ G(QS) fixing δS .We use these to define a collection of ele-
ments (δ[m])m∈R of S(0)

(
A2
f , E

)⊗H(G(Af), E), given by δ[m] = δS ·⊗�/∈S δ�[m],
where:

• if � /∈ S and (�,m) = 1, then δ�[m] is the unramified element ch(Z2
�)⊗ ch(G0

�);• ifm is divisible by some primew | �, then δ�[m] is the element δw = nwφ1,2⊗ ξw
defined in Definition 5.2.2.

Thus ξ [m] is preserved under right-translation by the open compact subgroup
KG[m] = KG,S × {g ∈ G(ẐS) : μ(g) = 1 mod m} of G(Af). Moreover, if
we suppose that δS ∈ I(GS/KG,S,Z), then for all m ∈ R we have δ[m] ∈
I (G(Af)/KG[m],Z[1/Nm(m)]).

9.4 The“motivic Euler system”

Definition 9.4.1 We set

Z [a,b,r ,s]
mot,m (δS) := UE [a,b,r ,s] (δ[m]) ∈ H3

mot

(
YG [m],Da,b{r , s}(2)

)
.

Note that this depends (HS×GS)-equivariantly on δS (for fixedm and (a, b, r , s)).
We shall frequently omit δS from the notation.

Remark 9.4.2 Note that YG [m] has a smooth integral model over O[S−1,Nm(m)−1],
which we denote by YG [m]. One verifies easily that the relative motiveDa,b{r , s} and
the cohomology class Z [a,b,r ,s]

mot,m (φS, ξS) both have natural extension to this smooth
model.
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Theorem 9.4.3 Let m, n ∈ R with m | n. If prnm denotes the natural map YG [n] →
YG [m], then we have

(
prnm

)
�

(
Z [a,b,r ,s]
mot,n

)
=

( ∏

w| nm

P ′
w(1)

)
· Z [a,b,r ,s]

mot,m ,

where P ′
w(1) is the Hecke operator appearing in Theorem 5.2.4.

Proof It clearly suffices to assume that n = mw for a prime w. The result is now
a direct consequence of Theorem 5.2.4, with � the prime below w. Fixing the input
data away from the prime �, we can regard UE [a,b,r ,s] as an H� × G�-invariant map
S(Q2

�)×HG,� → V where V denotes the representation

V = lim−→
U�⊂G�

H3
mot

(
YG(K

(�)
G [m] ×U�),D

a,b
E {r , s}(2)

)
.

Wenote that this V does satisfy the auxiliary hypothesis on the action of the torus A:
as a representation of A(Q�), V is a direct sum of eigenspaces associated to characters
of Q×

� of the form x 	→ |x |nχ(x) with χ of finite order and n = a + b − r − s ≥ 0.
Thus zA(�) + � is bijective on V . The corollary now gives an equality between two
values of this H� × G�-invariant map on different input data, and these are precisely
the local input data used to define Z [a,b,r ,s]

mot,m and the pushforward of Z [a,b,r ,s]
mot,n . ��

We can give an alternative interpretation of these classes via Eq. 8.2.a. We denote
by �

[a,b,r ,s]
mot,m (δS) the pushforward of Z(. . . ) to an element of H3

mot

(
YG [1]E[m],

Da,b{r , s}(2)); again, we frequently omit δS .

Definition 9.4.4 For w � m a prime of E , let σw denote the arithmetic Frobenius at w,
as an element of Aut(E[m]/E).

One checks that (8.2.a) intertwines the action ofP ′
w(1) on the source withP ′

w(σ
−1
w )

on the target, so we can write the norm-compatibility relation as

normE[n]
E[m]

(
�
[a,b,r ,s]
mot,n

)
=

( ∏

w| nm

P ′
w(σ

−1
w )

)
·�[a,b,r ,s]

mot,m . (9.4.a)

9.5 Étale realisation and integrality

It would be desirable to have an “integral” version of this theory, with coefficients in
O-modules, but this appears to be difficult for general coefficients (we do not know
if the functors AncG (−) can be defined integrally). So we shall instead work with
the p-adic étale realisation, for a fixed prime p. In this section, we will fix values of
[a, b, r , s] and omit them from the notation.

Let p be a (rational) prime, and p | p a prime of E . We define

Zét,m(δS) := ret
(Zmot,m(δS)

) ∈ H3
ét

(
YG [m],Da,b

Ep
{r , s}(2)

)
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where Da,b
Ep

is the étale sheaf of Ep-vector spaces corresponding to Da,b ⊗E Ep, and
similarly �ét,m(δS).

For simplicity, we assume here that p /∈ S (similar, but more complicated, state-
ments can be formulated if p ∈ S). If c is a prime, coprime to 6m and not in S, we
shall write 〈c〉 for the action of zA(�c), where �c is a uniformizer of Qc. We extend
this multiplicatively to all integers c > 1 coprime to 6Nm(m)S. Then we define

cZét,m(δS) := (c2 − c−n〈c〉) · Zét,m(δS),

c�ét,m(δS) := (c2 − c−n〈c〉σc) ·�ét,m(δS),

where σc in the latter formula is the arithmetic Frobenius. (These definitions are
consistent with one another, since the map YG [m] → YG[1]×E E[m] intertwines 〈c〉
on the source with 〈c〉σc on the target.)

Definition 9.5.1 We write Da,b
OE,p

for the maximal admissible OE,p-lattice in Da,b ⊗
Ep, and Da,b

OE,p
for the corresponding étale sheaf.

Proposition 9.5.2 Suppose δS ∈ I(GS/KG,S,OE,(p)). Then, for every m ∈ R
coprime to p and every c > 1 coprime to 6mS, the classes cZét,m(δS) and c�ét,m(δS)

lie in the image of the cohomology of the integral coefficient sheaf Da,b
OE,p

{r , s}.

Proof Since the local terms δ�[m] for primes � | Nm(m) are integral away from � by
construction, we can replace S with S ∪ {� : � | Nm(m)}, and thus reduce to the case
m = 1. Let us abbreviate KG[1] simply by KG .

We may also suppose δS = φS ⊗ ch(gKG,S) is a primitive integral element in
the sense of Definition 3.2.1. Let VS = stabHS (φS) ∩ gKG,Sg−1, and write V =
VS · H(ẐS). By assumption, the values of φS land in C ·OE,(p), where C = 1

vol VS
.

We note that the Eisenstein class Eisnét,φ (the étale realisation of Eisnmot,φ) has an
integral variant c Eisnét,φ , taking values in the cohomology of YH (V )with values in the

minimal admissible lattice in H n . The branching map br[a,b,r ,s] maps this into the
pullback of the maximal admissible lattice in Da,b{r , s} (compare [16, Proposition
4.3.5]). SinceC−1φ isOE,(p)-valued,we conclude that the imageofC−1

c Eisnét,φ under

pushforward to H3
ét(YG(gKGg−1),Da,b{r , s}(2)) lifts (canonically) to the cohomol-

ogy of the integral coefficient sheaf. Since C−1 = volH (V ) is the normalising factor
in the definition of the unitary Eisenstein class, this shows that cZét,m(δS) lifts to the
integral cohomology, as required. ��

10 Norm relations at p

We now consider norm-compatibility relations in the “p-direction”. We let p and p
be as in the previous section, and we add the additional assumption that c is coprime
to p.
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10.1 Choice of local data

Definition 10.1.1 Let τ = [
diag(p2, p, 1), p2

] ∈ TG(Qp). For t ≥ 1, define

• KGp (p
t ) = {

g ∈ G(Zp) : τ r gτ−r ∈ G(Zp) and g (mod pt ) ∈ NG(Z/pt )
}
.

• ξp,t = ch
(
uτ t · KGp (p

t )
)
, where u is an element of G(Zp) satisfying the condi-

tions of Lemma 2.5.1.
• φp,t = ch((p2tZp)× (1+ p2tZp)) if t ≥ 1, and ch(Z2

p) if t = 0.
• finally, n p,t denotes the index in H(Zp) of the subgroup

Vp,t = KHp,1(p
2t ) ∩ uτ t KGp (p

t )(uτ t )−1,

given for t ≥ 1 by

n p,t =
{
p6t−4(p − 1)3(p + 1) if p split

p6t−4(p − 1)2(p + 1)2 if p inert.

We then set δp,t = n p,tφp,t ⊗ ξp,t ∈ I(G0
p/KGp (p

t ),Z).

Remark 10.1.2 Explicitly, we have

KGp (p
t ) =

⎧⎨
⎩(g, ν) ∈ G(Zp) : g =

⎛
⎝
a � �

b c �

d e f

⎞
⎠ ,

a ≡ c ≡ f ≡ 1 mod pt ,
b ≡ e ≡ 0 mod pt ,
d ≡ 0 mod p2t .

⎫⎬
⎭ .

(These conditions also entail ν = 1 mod pt .) The subgroup Vp,t consists of all
(
(
a b
c d

)
, z) ∈ H(Zp) with c = 0, d = 1 mod p2t , z = 1 mod pt , and b satisfy-

ing a certain somewhat messy congruence modulo p2t (whose precise form depends
on the choice of u).

Now let us choose arbitrary δS ∈ I(G/KG,S, E) as before. For t ≥ 0, and m ∈ R
coprime to p, we can define δ[m, pt ] = δS · δp,t ·∏�/∈S∪{p} δ�[m], so that ξ [m, pt ] is
fixed by the right action of the group KG[m, pt ] = KG,S · KGp (p

t ) · {g ∈ G(ẐS) :
μ(g) = 1 mod m}.
Definition 10.1.3 With the above notations, we set

Z [a,b,r ,s]
mot,m,pt (δS) := p(r+s)tUE [a,b,r ,s] (δ[m, pt ]) ∈ H3

mot

(
YG(KG [m, pt ]),Da,b{r , s}(2)

)
.

Since this definition is a special case of Definition 9.4.1, these elements satisfy
the norm-compatibility in m of Theorem 9.4.3; and it also clearly depends (G(QS)×
H(QS))-equivariantly on the test data δS at the bad primes. For the rest of this section
we regard δS as fixed, and drop it from the notation.

Similarly, we can introduce p-level structure to the classes �mot,m as follows. Let
YIh denote the Shimura variety of level KG,S · Ihp · G(ẐS∪{p}), where Ihp = {g ∈
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G(Zp) : g mod p ∈ BG(Fp)} is the upper-triangular Iwahori3 at p. Then we have a
natural map

YG(KG[m, pt ]) −→ YIh×
E
E[mpt ].

We let

�
[a,b,r ,s]
mot,m,pt ∈ H3

mot

(
YIh×

E
E[mpt ],Da,b{r , s}(2)

)

be the image of Z [a,b,r ,s]
mot,m,pt under pushforward along this map.

10.2 Norm-compatibility in t

We now observe that these classes satisfy norm-compatibility in t .

Definition 10.2.1 Let U ′
p denote the Hecke operator acting on YG(KG[m, pt ]), with

coefficients in Da,b{r , s}, given by p(r+s)
[
KGp (p

t )τ−1KGp (p
t )
]
.

This operator preserves the integral étale cohomology, because pr+s bounds the
denominator of τ−1 on the integral lattice Da,b

OE,p
{r , s}; this is also the reason for the

factor p(r+s)t in the definition of the element.

Theorem 10.2.2 (Wild norm relation) For t ≥ 1 we have

pr
KGp [m,pt+1]
KGp [m,pt ]

(
Z [a,b,r ,s]
mot,m,pt+1

)
= U ′

p · Z [a,b,r ,s]
mot,m,pt ,

and similarly,

normE[mpt+1]
E[mpt ]

(
�
[a,b,r ,s]
mot,m,pt+1

)
= σ−1

p U ′
p ·�[a,b,r ,s]

mot,m,pt .

Note 10.2.3 Here σp is the image of p−1 ∈ (E ⊗ Qp)
× under the global Artin map,

i.e. the unique element of Gal(E[mpt ]/E[pt ]) mapping to the arithmetic Frobenius
at p in Gal(E[m]/E).
Proof This is a consequence of the general machinery developed in the paper [14],
which proves a general norm-compatibility statement for elements defined by means
of a “pushforward map of Cartesian cohomology functors” in the sense of §2.3 of
op.cit., which is a formalism designed specifically for applications to the cohomology
of Shimura varieties and other symmetric spaces.

More precisely, we take the groups G and H of op.cit. to be the Qp-points of the
groups G and H of the present paper; then the motivic cohomology groups of the
Shimura varieties for G and H , and the pushforward maps ι[a,b,r ,s]U ,� between them,

3 We use the abbreviation “Ih” rather than “Iw” to avoid confusion with Iwasawa.
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described in §9.1 (for varying levels U ), satisfy the axioms for a pushforward map of
the required type. (Compare the case of étale cohomology treated in [14, §3.4]).

So we may apply the machinery of §4 of op.cit., with the parabolic subgroups QG

and QH taken to be the Borel subgroups BG and BH , and open-orbit representative
u taken be the one denoted by the same letter in Lemma 2.5.1 above. Then the first
assertion of the theorem is exactly Proposition 4.5.2 of op.cit.; and the second assertion
of the theorem follows from the first using (8.2.a). ��
Remark 10.2.4 Since the operator U ′

p is invertible in the Hecke algebra of level Ihp,

this shows that the classes σ t
p(U ′

p)
−t�

[a,b,r ,s]
mot,m,pt for varying t and m form a “motivic

Euler system” over all the abelian extensions E[mpt ], form ∈ R and t ≥ 1. However,
these classes typically will not have bounded denominators with respect to t in the
étale realisation, as will become clear from the analysis below.

As noted above, these classes extend naturally to the canonical integral model
of YG(KG[m, pt ]) over O[S−1,Nm(m)−1], which we denote by Ypt . Their étale
realisations are also integral in another, separate sense: namely, they arise from an
integral lattice in the coefficient sheaf, as we now explain. We suppose δS lies in
I(GS/KG,S,OE,(p)); and we choose an integer c > 1 coprime to 6pS.

Theorem 10.2.5 (Wild norm relation, integral étale form) There exists a collection of
elements

cZ [a,b,r ,s]
ét,m,pt ∈ H3

ét

(
Ypt ,D

a,b
OE,p

{r , s}(2)
)

for all t ≥ 0 and m ∈ R coprime to c, such that:

(a) the image of zt after inverting p and restricting to the generic fibre is (c2 −
c−n〈c〉)Z [a,b,r ,s]

ét,m,pt .

(b) For t ≥ 1 we have the norm relation prYt+1
Yt

(zt+1) = U ′
p · zt (exactly, not just

modulo torsion).

Proof The integrality of these classes follows by the same argument as Proposition
9.5.2, with a slight modification: we now need to consider ξ = ch(gKG) where g is
not a unit at p, so the pushforward g� : YG(gKGg−1) → YG(KG) may not respect
the integral lattice Da,b

OE,p
. However, we are taking gp to be a unit multiple of τ t , and

the denominator of (τ t )� (which corresponds to the action of τ−t on Da,b) is bounded
by p(r+s)t , which is exactly the normalising factor appearing in the definition of the
classes. The fact that these classes are norm-compatible again follows from the norm-
compatibility machine developed in [14], applied to the integral étale cohomology of
the two Shimura varieties, rather than motivic cohomology as in Theorem 10.2.2. ��

Note that the groups H3
ét

(
Yt ,D

a,b
OE,p

{r , s}(2)
)
are finitely-generated over OE,p

(this is an advantage of working with the integral modelYt ). In particular, the operator

e′p = limk→∞
(
U ′
p

)k!
is defined on these spaces, and acts as an idempotent. So we
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can define a class

cZ [a,b,r ,s]
ét,m,p∞ =

(
(U ′

p)
−t e′p · cZ [a,b,r ,s]

ét,m,pt

)
t≥1 ∈ e′p · H3

ét,Iw

(
Y∞,Da,b

OE,p
{r , s}(2)

)
,

(10.2.a)

where the right-hand side is the “Iwasawa cohomology”

Hi
ét,Iw

(
Y∞,Da,b

OE,p
{r , s}(2)

)
:= lim←−

t

H i
ét

(
Yt ,D

a,b
OE,p

{r , s}(2)
)
.

Similarly, we have a version of this for the � classes (where we preserve only the
“abelian part” of the level tower at p): if R denotes the ring O[1/S, 1/Nm(m)], and
Rmpt its integral closure in E[mpt ], then we have a class

c�
[a,b,r ,s]
ét,m,p∞ ∈ e′p · H3

ét,Iw

(
YIh ×R Rmp∞ ,D

a,b
OE,p

{r , s}(2)
)
,

where YIh is the R-model of YIh.

Remark 10.2.6 (1) It is natural to ask how the classes �[a,b,r ,s]
mot,m,pt for t ≥ 1 (living at

Iwahori level) are related to the classes �[a,b,r ,s]
mot,m of the previous section (which

live at prime-to-p level). Using Corollary 4.3.7, it is clear that the pushforward of
�
[a,b,r ,s]
mot,m,p1

along YIh⊗ E[pm] → YG [1]⊗ E[m] is given byQp ·�[a,b,r ,s]
mot,m where

Qp is some (computable) Hecke operator. Similarly, one can compute Hecke

operators relating �
[a,b,r ,s]
mot,m to the projections of �[a,b,r ,s]

mot,m,p1
to U ′

p-eigenspaces,
much as in [11, §5.7].

(2) For p = pp̄ split in E , we can similarly define a family of classes c�
[a,b,r ,s]
ét,m,p∞

over the tower of ray class fields modulo mp∞, which only requires us to impose
ordinarity at p (rather than at p, which is a stronger condition). The same also
holds with p and p̄ interchanged. These results can be obtained in the same way
as above, simply replacing the parabolic subgroup BG ⊂ G with one of the two
non-minimal proper parabolics in G/Qp and running the machinery of [14].

��

11 Momentmaps and twist-compatibility

11.1 Momentmaps for G

Fix an arbitrary subgroup K (p)
G ⊂ G(A(p)

f ) unramified outside�, andwrite KG(pn) =
K (p)
G × KGp (p

n). We assume that KG(pt ) is sufficiently small for all t ≥ 1. Let
a, b, r , s be integers with a, b ≥ 0 (we do not need to assume 0 ≤ r ≤ a, 0 ≤ s ≤ b
at this point).

Proposition 11.1.1 Let da,b{r , s}be the standardhighest-weight vector in Da,b
OE,p

{r , s};
and let da,bt {r , s} be its reduction modulo pt . Then the vector da,bt {r , s} is stable under
KGp (p

t ).
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Proof This is clear since the image of KGp (p
t ) modulo pt is NG(Z/pt ), which acts

trivially on the highest-weight vector by definition. ��

It follows that da,bt {r , s} defines a class in H0
ét(Yt ,D

a,b
t {r , s}), where Da,b

t is the
mod pt coefficient sheaf, and Yt is the smooth model of YG(KG(pt )) over O[1/�]
(where� somefinite set of primeswhich is sufficiently large, but finite and independent
of t). Cup-product with da,b{r , s} therefore defines a map

H3
ét(Yt ,OE,p(2)) → H3

ét(Yt ,D
a,b
t {r , s}(2))

for each t ≥ 1, and hence a map

mom[a,b,r ,s]
G,t : H3

ét,Iw(Y∞,OE,p(2)) → H3
ét(Yt ,D

a,b
OE,p

{r , s}(2)),

mapping an element (xT )T≥1 to the element

(
prTt (xT ∪ da,bT {r , s})

)
T≥t ∈ lim←−

T≥t
H3
ét(Yt ,D

a,b
T {r , s}(2)) = H3

ét(Yt ,D
a,b
OE,p

{r , s}(2)).

Note that these maps are compatible with the action of the Hecke operatorU ′
p, since

τ−1 acts trivially on the highest-weight vector da,b.

11.2 Twist-compatibility forZ ’s

Nowlet us suppose δS is somechoice of local data at Swhich lies inI(GS/KG,S,OE,(p)),
as in Section 10.2.

Theorem 11.2.1 Let m ∈ R be coprime to c. There exists an element

cZmp∞(δS) ∈ H3
ét,Iw(Ymp∞,OE,p(2))

with the following interpolating property: for all integers t ≥ 1, 0 ≤ r ≤ a and
0 ≤ s ≤ b, we have

mom[a,b,r ,s]
G,t

(
cZmp∞

) = U−t
p e′ord · cZ [a,b,r ,s]

ét,m,pt .

Proof We shall define cZmp∞ to be the class cZ [0,0,0,0]
ét,m,p∞ of (10.2.a). So we need to

show that

mom[a,b,r ,s]
G,t

(
cZ [0,0,0,0]

ét,m,p∞
)
= U−t

p e′ord · cZ [a,b,r ,s]
ét,m,pt .

This is true by construction for (a, b, r , s) = (0, 0, 0, 0); our aim is to show that this
holds for all possible values of (a, b, r , s).
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If we reduce the coefficients modulo pT on both sides, for some T ≥ t , then the
equality to be proved is

prTt
(
U−T
p e′ordcZ [0,0,0,0]

ét,m,pT
∪ da,bT {r , s}

)
= U−t

p e′ord · cZ [a,b,r ,s]
ét,m,pt .

Since the classes on the right are norm-compatible in t (integrally), we can reduce to
the case T = t , so it will suffice to prove that

cZ [0,0,0,0]
ét,m,pt ∪ da,bt {r , s} = cZ [a,b,r ,s]

ét,m,pt mod pt

as elements of H3
ét(Yt ,D

a,b
t {r , s}(2)).

Let uswrite Ỹt for the Shimura variety of level τ r KG[m, pt ]τ−r . Then pushforward
along τ gives an isomorphism Ỹt → Yt , but the map of sheaves on Ỹt ,

Da,b
t {r , s} → τ ∗

(
Da,b

t {r , s}
)
,

corresponds to the action of τ−t on Da,b
t , which factors through projection to the

highest-weight vector.
Now, both cZ [0,0,0,0]

ét,m,pt ∪ da,bt {r , s} andcZ [a,b,r ,s]
ét,m,pt are in the image of pushforward

along Ỹt → Yt : they are the images, respectively, of

(u� ◦ ιgU ,�)
(
c Eis

0
ét,φ[mpt ]

)
∪ da,bt {r , s} and u�

(
ι
a,b,q,r
gU ,�

(
c Eis

n
ét,φ[mpt ]

))
.

(11.2.a)

The Eisenstein series in the latter class, of weight n = a + b − r − s, is congruent
modulo pt (indeed modulo p2t ) to the cup-product of c Eis0ét,φ[mpt ] with the highest-

weight vector of H n mod pt . This highest-weight vector maps to br[a,b,r ,s] ∈ Da,b,
so the latter of our two classes on Ỹt can be written as

(u� ◦ ιgU ,�)
(
c Eis

0
ét,φ[mpt ]

)
∪ u� br

[a,b,r ,s] .

Since the classes u� br[a,b,r ,s] = u−1 ·br[a,b,r ,s] and da,bt {r , s} have the same image
in the highest-weight quotient by Proposition 7.2.3, they have the same image on Yt ,
and the proof is complete. ��

11.3 Twist-compatibility for4’s

Now let (a, b) be given integers ≥ 0. The same construction as above gives maps

mom[r ,s]
t : H3

ét,Iw

(
YIh ×R Rmp∞ ,D

a,b
OE,p

(2)
)
→ H3

ét,Iw

(
YIh ×R Rmpt ,D

a,b
OE,p

{r , s}(2)
)

for any r , s ∈ Z and t ≥ 1.
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Corollary 11.3.1 Under the same hypotheses as the previous theorem, for any integers
a, b ≥ 0, there is a class

c�
[a,b]
mp∞ ∈ H3

ét,Iw(YIh ×R Rmp∞ ,D
a,b
OE,p

(2)),

such that for all (r , s, t) with 0 ≤ r ≤ a, 0 ≤ s ≤ b, t ≥ 1, we have

mom[r ,s]
t

(
c�

[a,b]
mp∞

)
= σ t

pU−t
p e′ord · c�[a,b,r ,s]

ét,m,pt .

Proof Immediate from the previous theorem. ��

11.4 Cohomological triviality

Lemma 11.4.1 We have

lim←−
t

H0
(
R[mpt ], H3

ét(YIh,Q,D
a,b
OE,p

(2))
)
= 0.

Proof This follows from the fact that H3
ét(YIh,Q,D

a,b
OE,p

(2)) is a finitely-generated

OE,p-module, and E[mp∞]/E is a positive-dimensional p-adic Lie extension. ��

It follows that there is a map

H3
ét,Iw

(
YIh ×R R[mp∞],Da,b

OE,p
(2)

)
→ H1

Iw

(
R[mp∞], H2

ét(YIh,Q,D
a,b
OE,p

(2))
)
,

and we may regard c�
[a,b]
mp∞ as an element of H1

Iw

(
R[mp∞], H2

ét(YIh,Q,D
a,b
OE,p

(2))
)

via this map. We can freely replace R[mp∞] with E[mp∞], since any class in the
Iwasawa H1 is automatically unramified outside the primes above p (see e.g. [26,
Corollary B.3.4]).

12 Mapping to Galois cohomology

We now show that the classes c�
[a,b]
mp∞ , projected to a specific Hecke eigenspace, form

an “Euler system” in the usual sense for the Galois representation associated to a
RAECSDC automorphic representation of GL3 /E . The arguments in this section are
very closely parallel to [16, §10.1–10.5] in the GSp4 case.

Remark 12.0.1 In this section wewon’t use the classes cZmp∞ . However, these classes
can be used to show that the constructions below are compatiblewith variation inHida-
type families; this will be pursued further elsewhere.
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12.1 Automorphic Galois representations

We recall some results on automorphic Galois representations of GL3 /E , following
[2]. Let� be a RAECSDC automorphic representation of GL3 /E ; and for each prime
w of E such that�w is unramified, let Pw(�, X) ∈ C[X ] denote the polynomial such
that

Pw(�,Nm(w)−s)−1 = L(�w, s).

Proposition 12.1.1 ( [2, Theorem 1.2]) The coefficients of the polynomials Pw(�, X)
lie in a finite extension F� of E independent of w; and for each place P | p of F�,
there is a 3-dimensional F�,P-linear representation VP(�) of Gal(Ē/E), uniquely
determined up to semisimplification, with the property that ifw is a prime not dividing
p for which �w is unramified, we have

det(1− X Frob−1
w : VP(�)) = Pw(�, qX).

��
Remark 12.1.2 If we fix � and let p vary, then [30, Theorem 2] shows that there is a
density 1 set of rational primes p such that VP(�) is irreducible for all P | p (and
hence unique up to isomorphism).

Weights

Since � is regular algebraic, it has a well-defined weight at each embedding τ :
E ↪→ F�, which is a triple of integers aτ,1 ≥ aτ,2 ≥ aτ,3 (see [2, §1]). Since
�c is a twist of �∨, aτ,i + aτ̄ ,4−i is independent of i . Thus, up to twisting by an
algebraic Grössencharacter if necessary, we can (and do) assume that the weight of�
is (a+b, b, 0) at the identity embedding, and (a+b, a, 0) for the conjugate embedding,
for some integers a, b ≥ 0.

Proposition 12.1.3 The representation VP(�) is de Rham at the primes above p, and
has Hodge numbers4 {0, 1 + b, 2 + a + b} at the identity embedding E ↪→ FP,
and {0, 1 + a, 2 + a + b} at the conjugate embedding. Moreover, the coefficients of
Pw(�, qX) are algebraic integers for all w.

Proof This follows from part (4) of [2, Theorem 1.2]. ��

Ordinarity

Let p | p be a prime of E such that�p is unramified. Then VP(�)|Gal(Ep/Ep)
is crys-

talline, and the eigenvalues of the linear map ϕ[Ep:Qp] on Dcris

(
VP(�)|Gal(Ep/Ep)

)

are the reciprocal roots of Pp(�, qX), by [2, Theorem 1.2(3)].

4 Negatives of Hodge–Tate weights, so the cyclotomic character has Hodge number −1.
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Definition 12.1.4 We say � is ordinary at the prime p | p (with respect to the prime
P | p of F�) if the polynomial Pp(�, qX) has a factor (1− αpX) with vP(αp) = 0.

A standard argument using p-adic Hodge theory (see [2, Lemma 2.2]) shows that
� is ordinary at p if and only if VP(�) has a 1-dimensional subspace invariant under
Gal(Ep/Ep)with the Galois group acting on this subspace by an unramified character.
If this holds, then dually VP(�)∗ has a codimension 1 subspaceF1

pVP(�)∗, such that
VP(�)∗/F1

p is unramified, with arithmetic Frobenius Frobp acting on this quotient
by αp.

Remark 12.1.5 Since� is conjugate self-dual up to a twist, one checks that VP(�) has
a 1-dimensional invariant subspace at p if and only if it has a 2-dimensional invariant
subspace at p̄. So if � is ordinary at all the primes above p, then VP(�) and its dual
preserve a full flag of invariant subspaces at each prime above p. (We will not use this
fact directly in the present paper, but it may be relevant to future work relating the
Euler system constructed here to Selmer groups and p-adic L-functions.)

12.2 Realisation via Shimura varieties

We add the further assumption that VP(�) be irreducible. We now realise this repre-
sentation in the étale cohomology (with compact support) of the infinite-level Shimura
variety YG = lim←−K

YG(K ). Let π be the automorphic representation ofG correspond-
ing to� (and some choice of ω such that (�,ω) is RAECSDC) as in Theorem 2.6.3.

Theorem 12.2.1 The module H2
ét,c(YG,Q̄,V

a,b
Ep

)⊗ FP, considered as a representation

of Gal(E/E)⊗ G(Af), has a direct summand isomorphic to VP(�)⊗ πf .

Proof The computation of the intersection cohomology IH2
ét of the Baily–Borel com-

pactification of the Picard modular surface is the main result of the volume [12]; see in
particular §4.3 of [25] for an overview. This computation shows that the intersection
cohomology has a direct summand isomorphic to VP(�) ⊗ πf . There is a natural
map from H2

ét,c of the open modular surface to IH2
ét of the compactification; and the

Hecke eigensystems appearing in the kernel and cokernel of this map are associated to
non-cuspidal automorphic representations of GL3 /E . So the map is an isomorphism
on the generalised eigenspace for the spherical Hecke algebra associated to πf , which
gives the result. ��

We can thus interpret any v ∈ πf as a homomorphism of Galois representations
VP(�) → lim−→K

H2
ét,c, or dually as a homomorphism

pr�,v : H2
ét(YG,Q̄,D

a,b
Ep

(2)) → VP(�)∗,

which we can consider as a “modular parametrisation” of the Galois representation
VP(�)∗. This homomorphism factors through projection to YG(K ) for any level K
which fixes v.
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12.3 An Euler system for VP(5)

We now choose the following data:

• A finite S of primes, an open compact KG,S ⊆ G(QS), and an element δS ∈
I(GS/KG,S,Z), as in Section 9.3;

• A non-zero vector v ∈ πf stable under the group KG,S · Ihp ·G(ẐS∪{p}).
• An integer c coprime to 6pS.

We suppose that � is ordinary above p, and we let αp = ∏
p|p αp where αp is as

in Definition 12.1.4. Then the generalised Up-eigenspace of (πp)
Ihp with eigenvalue

αp is 1-dimensional, where Up denotes the double-coset operator [Ihp τ Ihp] acting
on the Ihp-invariants (this is easily checked from the explicit formulae for Whittaker
functions in §6; compare [16, §3.5.5] in the GSp4 case).We shall choose v to lie in this
eigenspace. Then the projection map pr�,v factors through the U ′

p = αp eigenspace,
and hence through the ordinary idempotent e′p of Sect. 10.2.

Theorem 12.3.1 (Theorem B) There exists a lattice TP(�)∗ ⊂ VP(�)∗, and a col-
lection of classes

c�m ∈ H1
Iw

(
E[mp∞], TP(�)∗

)

for all m ∈ R coprime to pc, with the following properties:

(i) For m | n we have

normn
m

(
c�n

) =
( ∏

w| nm
Pw(�, σ−1

w )
)
c�m.

(ii) For any Grössencharacter η of conductor dividing mp∞ and infinity-type
(s, r) [sic], with 0 ≤ r ≤ a and 0 ≤ s ≤ b, the image of c�n in
H1

(
E[mp∞], VP(�)∗ ⊗ η−1

)
is the étale realisation of a motivic cohomology

class.
(iii) For all p | p, the projection of locp(c�m) to the group H1

Iw

(
Ep ⊗E E[mp∞],

VP(�)∗/F1
p

)
is zero.

Proof The choice of δS , KG,S , and c determines a collection of Iwasawa cohomology
classes c�

[a,b]
mp∞ , for all m ∈ R coprime to pc, taking values in the e′p-ordinary part of

H2
ét(YIh,Q,D

a,b
Ep

(2)). Moreover, these classes all land in a lattice independent of m.

The modular parametrisation map pr�,v sends this lattice in H2
ét(YIh,Q,D

a,b
Ep

(2))
to a lattice in VP(�)∗, and we take TP(�)∗ to be this lattice. Then we may define

c�m = pr�,v

(
c�

[a,b]
mp∞

)
∈ H1

Iw(E[mp∞], TP(�)∗).

We now prove the properties (i)–(iii). Property (i) follows from the tame norm
relation Eq. 9.4.a, but the argument is a little delicate. Since v ∈ πf is unramified
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outside S ∪ {p}, the homomorphism pr�,v factors through the eigenspace where the
Hecke-algebra-valued polynomial P ′

w(X) acts as Pw(�, X) for allw � pS. So (9.4.a)
shows that the Iwasawa cohomology class

h = normn
m

(
c�n

)−
( ∏

w| nm
Pw(�, σ−1

w )
)
c�m

projects to zero in the cohomology of VP(�)∗ at each finite level in the tower
E[mp∞]. Hence its image in the cohomology of the integral lattice TP(�)∗ lies
in the torsion submodule. Since we are assuming VP(�)∗ to be irreducible, we have
H0(E[mp∞], VP(�)∗) = 0, and hence H0(E[mp∞], TP(�)∗ ⊗Qp/Zp) is a finite
group. So the exponent of this finite group annihilates the torsion submodule of
H1(E[mpt ], TP(�)∗) for all t , and passing to the inverse limit, we deduce that h
is annhilated by a finite power of p. Since the Iwasawa cohomology of an infinite
p-adic Lie extension is p-torsion-free, we must have h = 0, which proves part (i) of
the theorem.

The remaining properties are somewhat simpler. For property (ii), we use the com-
patibility with moment maps (Corollary 11.3.1), and we note that for any η of∞-type
(s, r) and conductor dividingmpt , the twist VP(�)∗ ⊗η−1 can be realised as a direct
summand of IndEE[mpt ] H

2
ét(YIh,Q,D

a,b{r , s}(2)), exactly as in the case of Heegner
points described in §3.4 of [8]. (The switch in ordering of r and s arises because the
character μ : G → ResE/Q GL1 corresponds to μ4, not μ3, in our parametrisation of
algebraic weights.)

Finally, the local Selmer condition (iii) at the primes above p follows from part (ii),
since any class in the image of motivic cohomology must lie in the Bloch–Kato H1

g
subspace at primes above p; and this subspace projects to 0 in the cohomology of the
quotient (compare [16, Proposition 11.2.2]). ��

12.4 Concluding remarks

Remark 12.4.1 The Euler system of Theorem B depends on choices of local data at
the primes in S: the vector v ∈ πf defining the modular parametrisation, and the
element δS ∈ I(GS/KG,S,Z). It should be possible to check that the Euler systems
obtained for different choices of these data are proportional to each other, with the
proportionality factor being essentially the local zeta integral of Sect. 6; compare [19,
§6.6].

Remark 12.4.2 For part (ii) of TheoremB, we are identifying ηwith a Galois character
via the Artin map. Thus η−1 has Hodge–Tate weights (−s,−r); so the range of ∞-
types considered in (ii) is precisely the range for which VP(�)∗ ⊗ η−1 has one
Hodge–Tate weight ≤ 0 and two Hodge–Tate weights ≥ 1 at each of the embeddings
E ↪→ FP. In particular, VP(�)∗ ⊗ η−1 is “1-critical” in the sense of [18, §6],
and satisfies the “rank 1 Panchishkin condition” of [op.cit., Definition 7.2], with the
subspaces F1

p being the Panchishkin submodules. So the above theorem is consistent
with the general conjectures formulated in op.cit..
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It is interesting to note that VP(�)∗⊗η−1 is also 1-critical if a+1 ≤ r ≤ a+b+1
and s ≤ −1 (or symmetrically if r ≤ −1 and b+1 ≤ s ≤ a+b+1). We do not know
how to construct interesting motivic cohomology classes for twists in this range.

Remark 12.4.3 If we assume in addition that p is split in E , then we can use the 2-
variable Perrin-Riou logarithm map constructed in [17] to define two “motivic p-adic
L-functions” associated to π , as measures on the group Gal(E[p∞]/E) (which is
isomorphic to the product of Z2

p and a finite group). More precisely, we have one
of these for each prime pi above p, interpolating the images of twists of locpi

(
c�1

)
under the Bloch–Kato logarithm and dual-exponential maps. Forthcoming works by
members of our research groups will explore the relation between these “motivic” p-
adic L-functions and two other kinds of p-adic L-function attached toπ : “analytic” p-
adic L-functions interpolating critical values of complex L-functions, and “algebraic”
p-adic L-functions defined as characteristic ideals of appropriate Selmer groups. We
hope that it will be possible to formulate an Iwasawa main conjecture in this setting,
and prove one divisibility towards this conjecture, by methods similar to those of [19].

The case of inert p is more mysterious; in this case, E[p∞] is a height 2 Lubin–
Tate extension at the primes above p, and our understanding of local Iwasawa
theory for such representations seems insufficient to construct motivic p-adic L-
functions as measures on Gal(E[p∞]/E). However, it may be possible to construct
“signed” motivic p-adic L-functions as measures on the cyclotomic Galois group
Gal(E(μp∞)/E), using the methods of [24] applied to the induction of π ⊗ η to
GL6 /Q.
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Appendix A. Cyclicity of Heckemodules

In this section we sketch an explicit proof of the cyclicity theorem 4.2.1; our argument
is inspired by the proofs of the uniqueness of Whittaker and Shintani functions in the
papers [10,21] of Murase, Sugano, and Kato.
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A. 1. Hecke algebras and the cyclicity theorem

Let � � 2D be a prime. Let K = G(Z�) and U = H(Z�). These are hyperspecial
maximal compacts of G(Q�) and H(Q�), respectively. There are associated spherical
Hecke algebras:

H0
G = Cc(K\G(Q�)/K ), H0

H = Cc(U\H(Q�)/U ).

The multiplication on these is, of course, just convolution with respect to fixed Haar
measures dg and dh on G(Q�) and H(Q�), respectively (we can fix the choices by
requiring that K and U both have volume 1 under the corresponding measures, but
that is not needed below). Both H0

G and H0
H are commutative rings.

We also consider the space

H = Cc(U\G(Q�)/K )

of smooth, compactly supported functions f : G(Q�) → C that are left U -invariant
and right K -variant. We endow H with the structure of a left H0

H ⊗ H0
G-module as

follows: for χ ⊗ ξ ∈ H0
H ⊗H0

G and f ∈ H,

(χ ⊗ ξ) ∗ f (x) =
∫

H(Q�)

∫

G(Q�)

χ(h) f (hxg−1)ξ(g)dh dg.

The main result of this appendix is:

Theorem A.1.1 As anH0
H ⊗H0

G-module,H is cyclic and generated by the character-
istic function f0 = ch(K ) of K .

There are two cases to consider: � split in E and � inert in E . We give details for
each case. Our proofs are disappointingly explicit.

A.2. The split case

Suppose that � splits in E : � = ww̄. Recall that there is a natural isomorphism
G(Q�)

∼→ GL3(Q�)×Q×
� under which K is identified with GL3(Z�)×Z×

� . Similarly,
H(Q�) is identified with GL2(Q�) × Q×

� and U with H(Z�) × Z×
� . Hereon we will

conflate the algebraic groups H and G with their Q�-points. We let G0 = GL3(Q�)

and K0 = GL3(Z�).
Under the above identifications, the inclusion of H into G becomes

H =GL2(Q�)×Q×
� ↪→ GL3(Q�)×Q×

� = G

(
(
a b
c d

)
, x) 	→ (

(
a 0 b
0 x 0
c 0 d

)
, ad − bc).

(A.2.a)

Furthermore, these identifications induce ring isomorphismsH0
G = H0

G0
⊗H0

GL1
and

H0
H = H0

GL2
⊗ HGL1 as well as a compatible isomorphism H = H′ ⊗ H0

GL1
with

H′ = Cc(U\G0/K0).
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A.2.1. A simple reduction

Consider H = GL2(Q�) × Q×
� as a subgroup of G0 via projection to the first factor

in the embedding (A.2.a). Under this embedding we can view H′ as an H0
H ⊗H0

G0
-

module. To avoid ambiguities, we write � for the convolution action ofH0
H ⊗H0

G0
on

H′.

Lemma A.2.1 IfH′ is a cyclicH0
H⊗H0

G0
-module generated by ch(K0), then Theorem

4.2.1 is true.

Proof Let f = f1 ⊗ f2 ∈ H′ ⊗H0
GL1

. Suppose there exist elements ti = (ai , xi ) ∈
GL2(Q�)×Q×

� and t ′i ∈ G0, i = 1, ..., r , such that

f1 =
∑
i

(ch(UtiU )⊗ ch(K0t
′
i K0))� ch(K0).

Let χ = ∑
i ch(UtiU ) ⊗ (ch(K0t ′i K0) ⊗ f2(det(ai )−1(·)) ∈ H0

H ⊗H0
G . Then it

easily follows that χ ∗ ch(K0) = f1 ⊗ f2. ��
So it suffices to prove the cyclicity hypothesis of this lemma. The rest of the proof

of Theorem 4.2.1 in the split case will therefore focus on proving:

Proposition A.2.2 H′ is a cyclic H0
H ⊗H0

G0
-module generated by ch(K0).

For the proof of this proposition it is more convenient to adjust the embedding of H
into G0. Conjugating by an element of K0 we may view H more naturally as a block
diagonal subgroup of G0 via the embedding that maps (A, x) ∈ GL2(Q�)×Q×

� = H
to diag(A, x) ∈ GL3(Q�) = G0.

Our proof of Proposition A.2.2 begins with two key lemmas.

A.2.2. First key lemma

For m = (m1,m2,m3) ∈ Z3, let t(m) = diag(�m1 , �m2 , �m3) ∈ G0. Let

� = {(μ, λ) ∈ Z3 × Z3 : μ1 ≥ μ2, λ1 ≥ λ2 ≥ 0 = λ3}.

Let

n0 =
(
1 0 1
0 1 1
0 0 1

)
.

Lemma A.2.3 G0 = ∪(μ,λ)∈�Ut(μ)n0t(λ)K0.

Remark A.2.4 This decomposition is a disjoint union, but we do not prove this as it is
not needed here.

Proof This essentially comes from [21].
The group H is identified with the Levi subroup of a standard parabolic P of

G0 = GL3(Q�) (corresponding to the partition 3 = 2+1). Write P = HN with N =
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{
(
1 ∗
0 1 ∗
0 0 1

)
} the unipotent radical. By Iwasawa decomposition, G0 = PK0 = HNK0.

As H = �m∈Z3,m1≥m2
Ut(m)U and U normalizes N , we have

G0 = ∪m∈Z3,m1≥m2
Ut(m)NK .

In particular, every double coset UgK ⊂ G0 is represented by some element of the
form

t(m)

(
1 0 �−n1

0 1 �−n2
0 0 1

)
, n1, n2 ≥ 0, m1 ≥ m − 2.

We consider such a double coset and representative.
Suppose n2 > n1. Then

(
�m1 0 0
0 �m2 0
0 0 �m3

)(
1 0 �−n1+�−n2

0 1 �−n2
0 0 1

)
=

(
1 �m1−m2 0
0 1 0
0 0 1

) (
�m1 0 0
0 �m2 0
0 0 �m3

)(
1 0 �−n1

0 1 �−n2
0 0 1

)( 1 −1 0
0 1 0
0 0 1

)

also belongs to the same double coset. In particular, we can always choose the repre-
sentative with n1 ≥ n2 ≥ 0.

Suppose m1 − n1 < m2 − n2, put n′2 = n1 − m1 + m2 (so n2 < n′2 ≤ n1). Then

(
�m1 0 0
0 �m2 0
0 0 �m3

)(
1 0 �−n1

0 1 �−n2+�−n′2
0 0 1

)
=

(
1 0 0
1 1 0
0 0 1

) (
�m1 0 0
0 �m2 0
0 0 �m3

)(
1 0 �−n1

0 1 �−n2
0 0 1

)( 1 0 0
−�m1−m2 1 0

0 0 1

)

also represents the double coset. So we may choose the representative such that m1−
n1 ≥ m2 − n2.

For such a representative with n1 ≥ n2 and m1 − n1 ≥ m2 − n2 we have

(
�m1 0 0
0 �m2 0
0 0 �m3

)(
1 0 �−n1+�−n2

0 1 �−n2
0 0 1

)
= t((m1 − n1,m2 − n2,m3)n0t(n1, n2, 0)

with μ = (m1 − n1,m2 − n2,m3) and λ = (n1, n2, 0) such that (μ, λ) ∈ �. ��

A.2.3. Second key lemma

The second key lemma is about the support of certain Hecke operators.

Lemma A.2.5 Let (μ, λ), (μ′, λ′) ∈ � with (μ, λ) �= (μ′, λ′) . Suppose

Ut(μ)−1K0t(λ)
−1K0 ∩Ut(μ′)−1t n−1

0 t(λ′)−1K0 �= ∅.

Then λ′1 ≤ λ1, and if λ′1 = λ2 then (μ′
1 −μ′

2)+ (λ′1 − λ′2) ≤ (μ1 −μ2)+ (λ1 − λ2),
with equality holding only if (μ′

1 − μ′
2) < (μ1 − μ2).
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Proof Our proof is inspired by the proof of [10]. We proceed by considering the �-adic
valuations of values of various weight functions in Z[GL3(Q�)].

Let I , J ⊂ {1, 2, 3} be two sets of the same cardinality. Define

�I ,J (g) = det((gi, j )i∈I , j∈J ),

and

f I ,J (g) =
m∏

r=1

(gir , jr ), I = {i1, ..., im}, J = { j1, ..., jm}, i1 < i2 < · · · < im , j1 < · · · jm .

Then it is easy to see that

�I ,J (xyz) =
∑
I ′,J ′

f I ,I ′(x)�I ′,J ′(y) f J ′,J (z). (A.2.b)

The idea is to chose suitable I , J and evaluate � = �I ,J on t(μ′)−1t n−1
0 t(λ′)−1.

For the chosen I , J , the �-adic valuation of �(t(μ′)−1t n−1
0 t(λ′)−1) can be easily

expressed in terms of (μ′, λ′). On the other hand, by hypothesis

t(μ′)−1t n−1
0 t(λ′)−1 = ut(μ)−1k1t(λ)

−1k2, (A.2.c)

for some u ∈ U and k1, k2 ∈ K . We use (A.2.b) with x = u, y = t(μ)−1k1t(λ)−1,
and z = k2 to obtain a lower bound on the �-adic valuation in terms of (μ, λ). This
yields various inequalities that must be satisfied by (μ, λ) and (μ′, λ′), from which
we deduce the lemma.

We apply this first with I = J = {1}. Then

ord�(�(t(μ
′)−1t n−1

0 t(λ′)−1)) = −(μ′
1 + λ′1).

On the other hand, using (A.2.b) and (A.2.c),�(t(μ′)−1t n−1
0 t(λ′)−1) can be expressed

as a sum of terms of the form f I ,I ′(u)�I ′,J ′(t(μ)−1k1t(λ)−1) f J ′,J (k2). Let I ′ = {i ′}
and J ′ = { j ′}. The �-adic valuation of such a term is at least−(mui ′ +λ j ′). As u ∈ U
and I = 1, f I ,I ′(u) �= 0 only if i ′ ∈ {1, 2}. It follows that

ord�(�(t(μ
′)−1t n−1

0 t(λ′)−1)) ≥ min
1≤i ′≤2,1≤ j ′≤3

{−(μi ′ + λ j ′)} = −(μ1 + λ1).

Hence,

μ′
1 + λ′1 ≤ μ1 + λ1. (A.2.d)

Taking I = {3} and J = {1}, a similar analysis yields

μ′
3 + λ′1 ≤ μ3 + λ1. (A.2.e)
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Taking I = J = {1, 2} yields

μ′
1 + μ′

2 + λ′1 + λ′2 ≤ μ1 + μ2 + λ1 + λ2. (A.2.f)

Taking I = {1, 3} and J = {1, 2} yields

μ′
1 + μ′

3 + λ′1 + λ′2 ≤ μ1 + μ3 + λ1 + λ2. (A.2.g)

And taking I = J = {1, 2, 3} (that is, comparing determinants) yields

μ′
1 + μ′

2 + μ′
3 + λ′1 + λ′2 = μ1 + μ2 + μ3 + λ1 + λ2. (A.2.h)

Comparing (A.2.f) and (A.2.h) shows that

μ′
3 ≥ μ3. (A.2.i)

And comparing this with (A.2.e) yields

λ′1 ≤ λ1 and that λ′1 = λ1 "⇒ μ′
3 = μ3. (A.2.j)

Suppose λ′1 = λ1. Then μ′
3 = μ3 by (A.2.j). Combining this with (A.2.d) and

(A.2.h) yields

(μ′
1 − μ′

2)+ (λ′1 − λ′2) ≤ (μ1 − μ2)+ (λ1 − λ2), with equality iff μ′
1 = μ1.

(A.2.k)

Supposing further that (μ′
1−μ′

2)+(λ′1−λ′2) ≤ (μ1−μ2)+(λ1−λ2), soμ′
1 = μ1

by (A.2.k). It then follows from (A.2.g) that

λ′2 ≤ λ2,

while it then follows from (A.2.h) that μ′
2 − μ2 = λ2 − λ′2 − λ′2. In particular, if

λ′2 = λ2, thenμ2 = μ′
2 and so (μ

′, λ′) = (μ, λ). So it must be that λ′2 < λ2 and hence
that μ′

2 > μ2. The last equality then implies that μ′
1 − μ′

2 = μ1 − μ′
2 < μ1 − μ2.

This completes the proof of the lemma. ��

A.2.4. Proof of Proposition A.2.2

Let H′′ = (H0
H ⊗ H0

G0
)� ch(K0). Let n1 = t n−1

0 . By Lemma A.2.3, G0 =
∪(μ,λ)∈�U t(μ)−1n1t(λ)−1K0. So it suffices to show that for each (μ, λ) ∈ �,

ch(Ut(μ)−1n1t(λ)
−1K0) ∈ H′′. (A.2.l)

Let (μ, λ) ∈ �. We define μ̃ = (μ1 − μ2) and λ̃ = (λ1 − λ2). Our proof is by
induction on the set S of ordered triples s(μ, λ) = (λ1, μ̃ + λ̃, μ̃) of non-negative
integers. The set S is well-ordered under the lexicographic ordering.
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The base case of the induction is the inclusion (A.2.l) for all (μ, λ) with s(μ, λ) =
(0, 0, 0). For such a (μ, λ), λ = (0, 0, 0) and so

ch(Ut(μ)−1n1t(λ)
−1K0) = ch(Ut(μ)−1K0) = ch(Ut(μ)U )� ch(K0) ∈ H′′.

This proves the base case of the induction.
Suppose (μ, λ) ∈ �. Let χ = ch(Ut(μ)U ) ∈ H0

H and ξ = ch(K0t(λ)−1K0) ∈
H0

G0
. The support of χ�ξ = (χ ⊗ ξ)� ch(K0) ∈ H′′ is exactlyUt(μ)−1K0t(λ)−1K0.

Let �(μ, λ) ⊂ � be the set of (μ′, λ′) such that

Ut(μ)−1Kt(λ)−1K ∩Ut(μ′)−1n1t(λ
′)−1K0 �= ∅.

It follows from Lemma A.2.3 that χ�ξ can be expressed as a sum over the (μ′, λ′) ∈
�(μ, λ) of scalar multiples of the functions ch(Ut(μ′)−1n1t(λ′)−1K0). So to show
that the particular class ch(Ut(μ)−1n1t(λ)−1K0) is in H′′, it suffices to show that
ch(Ut(μ′)−1n1t(λ′)−1K0) ∈ H′′ for all (μ′, λ′) ∈ �(μ, λ) with (μ′, λ′) �= (μ, λ).
But for such a (λ′, μ′), Lemma A.2.5 implies that

s(μ′, λ′) = (λ′1, μ̃′ + λ̃′, μ̃′) < (λ1, μ̃+ λ̃, μ̃) = s(μ, λ) (A.2.m)

in the lexicographic ordering. The induction step follows easily.

A.3. The inert case

Suppose that � is inert in E . Our proof of Theorem A.1.1 in this case follows the same
lines as in the split case and is even slightly simpler. As in the split case, we begin by
proving two key lemmas, the analogs of Lemmas A.2.3 and A.2.5.

A.3.1. First key lemma

For m = (m1,m2) ∈ Z2 we let t(m) = diag(�m1 , �m2 , �2m2−m1) ∈ T . We let

� = {(μ, λ) ∈ Z2 × Z2) : μ1 ≥ μ2, λ1 ≥ 0 = λ2}.

Using the parametrisation of NG(Q�) as {n(x, y) : x ∈ O ⊗ Z�, y ∈ Z�} given in
Lemma 2.2.2, for s ∈ Z we set

ns = n(�s, 0) ∈ NG(Q�).

Lemma A.3.1 G = ∪(μ,λ)∈�)Ut(μ)n0t(λ)K.

Proof Let N0 = NG(Z�), and for r ≥ 1 let Nr be the kernel of reduction mod �r on
NG(Z�). Let

w =
( 0 0 1

0 1 0−1 0 0

)
.
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This represents the longest element (in this case, the non-trivial) Weyl element. Let
N̄r = wNrw

−1. Let T0 = T (Z�). Then the Iwahori subgroup (with respect to the
upper-triangular Borel B) is just the group KB = T0N0 N̄1 = T0 N̄1N0, and the
Iwahori decomposition of K is just

K = KB � KBwN0 = T0 N̄1N0 � T0N0wN0.

From this we deduce that

K = Kw = T0wN1 N̄0 � T0N0 N̄0. (A.3.a)

Let T+ = {t(m) : m ∈ Z2,m1 ≥ m2}. By Iwasawa decomposition, G = KT+K ,
so by (A.3.a)

G = T0wN1 N̄0T
+K ∪ T0N0 N̄0T

+K .

As N̄r T+K = T+K and T0, T0w ⊂ U , it follows that

G = UN0T
+K . (A.3.b)

The elements n(x, 0), for x ∈ O⊗Z�, give coset representatives for (U ∩ N0)\N0.
Since may rescale x by elements of (O⊗Z�)

× using the commutation relation in the
Lemma 2.2.2, it follows from (A.3.b) that every double cosetUgK has a representative
of the form nst(m) with s ≥ 0 and m1 ≥ m2. As nst(m) = t(m)ns−m1+m2 , it
follows that t(m)ns′ , s′ = min{0, s −m1 +m2} also represents the double coset. But
t(m)ns′ = t(μ)n0t(λ), μ = (m1 + s′,m2), λ = (−s′, 0). That (μ, λ) ∈ � follows
from s ≥ 0 and the definition of s′. ��

A.3.2. Second key lemma

Lemma A.3.2 Let (μ, λ), (μ′, λ′) ∈ � with (μ, λ) �= (μ′, λ′) . Suppose
(
Ut(μ)−1Kt(λ)−1K

)
∩
(
Ut(μ′)−1 t n−1

0 t(λ′)−1K
)
�= ∅.

Then λ′1 ≤ λ1, and if λ′1 = λ1 then μ′
1 − μ′

2 < μ1 − μ2.

Proof The proof is much the same as before, exploiting the functions �I ,J . Taking
I = J = {1} yields

μ′
1 + λ′1 ≤ μ1 + λ1. (A.3.c)

Taking I = 2, J = {1} yields

μ′
2 + λ′1 ≤ μ2 + λ1. (A.3.d)
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Comparing similitude factors gives

μ′
2 = μ2. (A.3.e)

From (A.3.d) and (A.3.e) we conclude that

λ′1 ≤ λ1. (A.3.f)

If λ′1 = λ1, then (A.3.c) implies that μ′
1 ≤ μ1, from which it follows that μ′

1 − μ′
2 =

μ′
1 −μ2 ≤ μ1 −μ2 with equality only if μ′

1 = μ1 (in which case (μ′, λ′) = (μ, λ)).
��

A.4. Proof of Theorem A.1.1

The theorem follows easily from induction on the ordered pairs (λ1, μ1 − μ2) of
non-negative integers, in exact analogy with the proof of Proposition A.2.2.
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