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ABSTRACT 

The objectives of the phase 2 stage in a drug development programme are to 

evaluate the safety and tolerability of different doses, select a promising dose 

range and look for early signs of activity.  At the end of phase 2 (EOP2), a 

decision to initiate phase 3 studies involves the commitment of considerable 

resources and associated costs.  This multi-factorial, critical business decision is 

made by balancing the current condition of a sponsor organisation’s portfolio, 

the future cost of development, the competitive landscape, and the expected 

safety and efficacy benefits of a new therapy.  The decision process needs to be 

efficient, effective and evidentially supported.   

This PhD presents a practical, formalised and quantitative approach for 

enhancing the EOP2 decision process.  This process ensures that a consistent 

and explicit evidence-based approach is used to inform decisions for new drug 

candidates.  Broadly following this process will help statisticians increase their 

strategic influence in drug development programmes.   

Embedded within the process is a predominantly bayesian approach to 

predicting the probability of efficacy success (PoS) in a future (frequentist) 

phase 3 programme at the end of phase 2.  Also included are early predictions 

of the outcomes of indirect treatment comparisons and future treatment ranking 

between the investigational treatment and alternative treatments either already 

approved or still in development.  Moreover, the incorporation of qualitative 

factors into the decision making process, and the implementation of a PoS 
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framework when limited or no prior clinical data is available is discussed. The 

entire process is illustrated using an example from the pancreatic cancer 

indication, with further supporting examples of predicting the PoS provided for 

gastric cancer, soft tissue sarcoma, non-small cell lung cancer and ovarian 

cancer.  Additionally, the utility of the PoS framework in practice is highlighted 

through a review of the PoS for 63 completed phase 3 studies.  
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IMPACT   

The research conducted for this PhD has led to the development of a practical, 

formalised and quantitative approach for enhancing the phase 2 decision 

process.  This process aims to ensure that a consistent and explicit evidence-

based approach is used to inform decisions for new drug candidates which, if 

broadly followed, will improve the quality of decisions made.  The research has 

already had considerable impact within the pharmaceutical industry.  The 

process developed received wide acceptance within Amgen Ltd and is now 

being followed for all drugs entering phase 2.  Similar quantitative approaches 

are being followed across other companies, including AstraZeneca and GSK.    

The EOP2 decision is a critical decision point during the drug development 

process.  Incorrect decisions result in a waste of resources and have major 

impact on company finances, cost of medicines and share-holder confidence.  

From the patient perspective, incorrect ‘go’ decisions lead to large numbers of 

patients being treated with an ineffective therapy and potentially missing out on 

other better treatment options.  Despite the criticality of this decision, the phase 

3 success rate, particularly within oncology, has historically remained low.  

Enhancing the quality of the EOP2 decision is therefore particularly impactful.    

The research performed starts by defining the key questions to be addressed 

when making an EOP2 decision and focuses on the systematic abstraction of 

relevant data from available literature.  This is then used to develop a novel 

statistical modelling approach for predicting the probability of efficacy success in 
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phase 3.  The model is also extended to compare and rank the expected 

efficacy of the investigational treatment to the current and other potential 

treatment options under development at the time when the new investigational 

product is expected to achieve market approval.  This extension greatly 

complements the modelling of the PoS and further enhances the EOP2 

decision.  Such information could be used to stop development of an 

investigational drug prior to investing in a costly phase 3 trial when it is unlikely 

to beat competing treatments and become profitable, despite having a high PoS 

in a future comparative phase 3 trial against the currently available standard of 

care.   

Additional research is also presented on the implementation of a PoS 

framework to enhance the decision to start phase 3 when limited or no prior 

clinical data is available; a situation that may arise as sponsors expand their 

medicines to include additional indications close to patent expiry.   

The process and methodology developed is highlighted using an example in 

pancreatic cancer.  This was particularly impactful as, not only has it supported 

EOP2 decisions, it also changed clinical perception within Amgen on the 

importance of progression free survival hazard ratio as a phase 2 outcome 

measure.  Moreover, the systematic review and modelling of the relationship 

between the phase 2 and 3 outcome measures has been utilised in discussions 

with regulatory agencies.  
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Broadly following the approaches developed enhances the strategic contribution 

and influence of statisticians in the EOP2 decision making process, ensuring 

key elements of proposed development plans are thoroughly investigated and 

decisions risk informed.   
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1. INTRODUCTION 

The development of new medicines is a long, complex and costly process.  It 

typically takes at least 10 years, with an average research and development 

spend of $1.8 to $2.6 billion, for a new medicine to make it onto the market 

following its initial discovery.  In Section 2.1 to 2.5, which follows, the clinical 

drug development process is defined. This implicitly highlights the many hurdles 

that need to be overcome, and the complex decisions that need to be taken 

before a drug reaches the market.   

Section 2.6 summarises the multi-disciplinary structure of typical governance 

bodies involved in drug development decision making and the key decision 

points along the drug development pathway.  Also provided is an appraisal of 

the publicly available literature on the phase to phase transition rates by 

therapeutic area over approximately the last two decades, and background data 

highlighting the financial impact of improving success rates. This literature 

clearly highlights that considerable attrition of investigational drug candidates 

occurs in late phase development (Kola and Landis 2004; Di Masi, Feldman, 

Seckler and Wilson 2010; Paul et al 2010; Arrowsmith 2011a,b; Thomas et al 

2016; Wong 2018; Dowden 2019), a situation which results in companies 

incurring the vast majority of the drug development costs.  This in turn translates 

to a higher cost of medicines and reduced overall profitability of the companies 

concerned.  
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Moreover, the literature review brings particular attention to the oncology 

therapeutic area where the big picture shows that over all oncology indications 

there is <10% chance that an oncology molecule entering clinical development 

will make it through to approval.    

The financial impact of improving success rates highlights that one of the most 

critical decisions to be made in this process is whether or not to progress onto 

extensive ‘within human’ clinical trials (i.e. moving from phase 2 to phase 3 (late 

phase) in the research and development process).  Incorrect decisions at this 

point result in a massive waste of resources and have a major impact on 

company finances and share-holder confidence.  The criticality of this decision 

is such that it needs to be risk-informed by exploring, developing and 

implementing methodologies that enable a quantitative assessment of the 

available efficacy evidence thereby ensuring the highest possible probability of 

reaching the correct decision for both the business and patients. 

The aims of this thesis are to: 

1. Define and examine the existing processes. 

2. Extend the decision making processes to include more sophisticated 

statistical and analytical techniques to enable the business to better 

understand the risks and thereby have greater confidence in the EOP2 

decision. 
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3. To provide a framework to pharmaceutical statisticians that will enable 

them to enhance their contribution and strategic influence in the critical 

drug development decision making process. 

To achieve these aims, this PhD thesis focuses on the development, evaluation 

and implementation of a practical quantitative process for enhancing drug 

development decisions which, when followed, will ensure that a more consistent 

and explicit evidence-based approach is used to make decisions for new drug 

candidates.   

The research carried out for this PhD has resulted in the production of three 

academic articles, two of which have already been published, whose authorship 

and subject matter was led by Antony Sabin.  These papers are listed at Annex 

E to this document and were released to ensure that the pharmaceutical 

industry profited from this research at the earliest possible opportunity.  Some 

text in this thesis may also be found in these articles.    

After understanding the key inputs into the entire clinical decision making 

process, target areas were selected which provided opportunities to enhance 

the quality of the decisions through either the development of new quantitative 

statistical approaches or the enhancement of existing methodologies in the 

selected areas.  The key research areas identified were: 

1. Enhancing the quality of the end of phase 2 decision using a practical model 

to quantify the probability of technical success (PoS) with respect to efficacy 

in phase 3 on completion of phase 2.  
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2. The incorporation of qualitative factors into the decision making process, and 

the implementation of a PoS framework in the situation where very limited or 

no prior clinical data is available. 

3. The determination of the expected efficacy of the investigational treatment 

and how this compares and ranks to the current and future treatment options 

available for patients. 

 

Key Research Area 1: 

The research conducted starts by describing for the first time the key questions 

that require addressing when making an EOP2 decision and focuses on the 

systematic abstraction of the associated relevant data from the literature.  This 

is then used in the development of a novel statistical modelling approach for 

predicting the probability of efficacy success in phase 3 at the end of phase 2 

and informing the choice of PoS threshold (Section’s 3.2 to 3.8).   

The PoS model developed synthesizes the relationships between phase 2 and 

phase 3 study outcome measures on the relative treatment difference scale, the 

influence of prognostic factors on the relationship, the treatment difference 

observed for the phase 2 outcome measure in the phase 2 study, the prior 

opinion of key decision makers for the treatment difference in the phase 2 

outcome measure, and knowledge of the proposed phase 3 study design.  

These results are used to predict the probability of success in a future phase 3 

study to be analysed using frequentist statistical methods.   
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Also introduced within Section 3.3 is new research to develop reasonable 

bounds of belief for the PoS, generated by running the model prediction 

incorporating a range of subjective prior opinions representing different attitudes 

of key decision makers for the treatment difference in the phase 2 outcome 

measure.  

Using the predicted PoS to inform a decision requires a threshold to be set, 

such that if the PoS is greater than this threshold a decision to move to phase 3 

may be made.  The selection of such a threshold will be specific to the 

funder/sponsor and their current portfolio.  To ensure an informed choice of 

threshold can be made, the predicted PoS needs to be put into context with the 

operating characteristics of the model employed.  This involves evaluating the 

probability of making a go decision and failing phase 3, and a go decision and 

being successful in phase 3 for a given development strategy based on different 

PoS commit to phase 3 decision thresholds.  A simulation process to determine 

these probabilities and help decide among different development strategies is 

described in Section’s 3.4 and 3.5.    

Moreover, when interpreting the observed results from a phase 2 study, 

decision makers will carefully investigate the robustness of evidence provided.  

One key area of evaluation will focus on the similarity of the observed phase 2 

control response with that which was expected from prior knowledge.  An 

innovative approach to adjust for any potential discordance is described in 

Section 3.7 whereby the variance of the treatment difference in the phase 2 
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outcome measure in inflated as the observed phase 2 control group response 

departs from the expected. 

To highlight the utility of a bayesian framework to predict PoS in practice, 

Section 3.10 discusses the factors influencing the formation of the framework 

and the practical advantages. Also evaluated is the PoS values for 63 

completed phase 3 studies spanning the oncology, respiratory and 

cardiovascular portfolio that started after 2015 at AstraZeneca. This includes an 

assessment of the predicted PoS and observed phase 3 success rate for 

studies that used a bayesian framework, and those that used a more 

quantitative framework as discussed in key research area 2.    

A wide ranging and interesting body of work that focuses on methodologies and 

models to predict the probability of success in phase 3 have been published 

over the last 15 years.  A summary of this body of literature is described in 

Section 3.1.1.   

Key Research Area 2:  

Section 3.9 discusses the need to include additional qualitative considerations 

into the end of phase 2 decision, and also explores the development of a PoS 

framework in the situation where very limited or no prior clinical data is 

available.  Such a situation may arise in the life cycle management (broadening 

the use of the drug into new lines of therapies or disease indications) of 

oncology products that target patients with specific genes or biomarker targets.  

An example from the 1st line ovarian cancer setting in presented. 
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Key Research Area 3: 

For the third key area studied, new research is presented that builds on the 

methodology and framework developed in research area 1 to enable early 

predictions (to be used as part of the EOP2 decision) of the expected efficacy of 

the investigational treatment at the end of a successful phase 3 study and how 

this will compare and rank to the current and future successful treatment options 

available for patients (Section 3.11).   

Following regulatory approval of a new treatment, applications for 

reimbursement need to be made in many geographical regions.  If the 

application is approved this allows a drug company to be paid for all or part of a 

prescription.  If the treatment is considered to have a high cost or a significant 

budget impact on the health care system, this application may require a form of 

pharmacoeconomic assessment called a Health Technology Appraisal (HTA) to 

take place.  Part of this assessment usually requires making effectiveness 

comparisons between treatments not already compared in head to head trials 

(indirect treatment comparisons).  The research therefore enables predictions of 

the outcomes of these indirect comparisons to be made at the end of phase 2.  

This includes enabling indirect treatment comparisons with all of the currently 

available marketed treatments and also with potential competitor treatments that 

are still in development.  Moreover, the research enables the predicted 

treatment ranking to be established, for example, this could be the predicted 

probably of being ranked 1st, 2nd or 3rd amongst all of the treatment options that 
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will be available at the time the new drug would be ready to launch.  This 

therefore greatly complements the modelling of the PoS and further supports 

the EOP2 decision.  Such information could, for example, be used to stop the 

development of an investigational drug prior to investing in a costly phase 3 trial 

where it is unlikely to beat the competitors and become profitable.  This could be 

despite having a high probability of success in a phase 3 trial designed to show 

superiority against the currently available standard of care. A summary of the 

prior published literature surrounding this research topic is discussed in Section 

3.1.1. 

The utility and benefits of the processes developed for this PhD are 

predominantly highlighted throughout by the use of an illustrative example from 

the pancreatic cancer indication (Section’s 3.6 and 3.11).   However, to further 

illustrate the utility of the methodology additional examples for gastric cancer, 

soft tissue sarcoma, non-small cell lung cancer and ovarian cancer are 

highlighted in Section’s 3.8 and 3.9. 
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2. OVERVIEW OF DRUG DEVELOPMENT PROCESSES 

2.1. Introduction 

Developing new medicines is a long, complex and costly business.  It typically 

takes at least 10 years for a new medicine to make it onto the market following 

its initial discovery, with the average cost of research and development 

(incorporating the cost of the many thousands of molecules that are rejected 

along the way) being in the region of $1.8 to $2.6 billion.  The drug development 

process can be divided up into five steps, these being discovery research, pre-

clinical research, clinical research, filing an application to market the drug, and 

post-approval research and safety monitoring (Figure 2.1).  The process begins 

with the setting of the drug developer’s vision for the company.  For example, a 

company may wish to focus solely on discovering and developing innovative 

therapies to treat serious illnesses, such as cancer or inflammation diseases.  

Once this is agreed the process of discovery research can begin.    

 

Figure 2.1: Overview of Drug Development 
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2.2. Discovery Research 

The development of a new medicine begins in discovery research.  Here 

researchers will first aim to understand the mechanism behind the disease and 

identify biological targets that hopefully will interact with a potential medicine to 

produce a clinically beneficial effect to patients.  This will generally be done by 

conducting studies in cells, tissues and/or animal models.  After learning about 

the mechanism and possible drug targets, depending upon the disease area, 

biotechnology or pharmaceutical chemistry may be used to identify potential 

proteins (large molecules) or small molecules respectively to treat disease.  As 

the research progresses, the number of molecules is reduced from many 

thousands to a few hundred promising candidates that are further explored in 

pre-clinical testing.  Such decisions are generally made using a combination of 

advanced computer modelling techniques and automated high-throughput 

screening facilities.  Other considerations that also need to be taken into 

account in the decisions include: 

 Can a quality assured manufacturing process and delivery technology be 

developed to produce the molecule in sufficient quantities? 

 Does the molecule remain pure and stable under certain conditions and 

with time? 

 What are the molecules components and impurities?    

  



Page 25 of 198 
 

2.3.  Pre-Clinical Research 

Prior to testing a drug in humans, the safety and biological effectiveness of a 

molecule must be first established.  Pre-clinical research is designed to: 

 Validate animals as predictive of the human condition 

 Establish a therapeutic window (the safety margin between therapeutically 

effective and toxic effects) 

 Establish the toxicology in several animal species 

 Understand the relationship between response and metabolism 

 Optimise the formulation, dose range and frequency of administration. 

During the pre-clinical research stage the promising molecules go through a 

series of tests to evaluate the pharmacodynamics (what the drug does to the 

body), pharmacokinetics (to determine how the molecule is absorbed in the 

body, distributed, metabolised and excreted) and toxicology of the drug (the 

safety in animal and cellular models). 

Such investigations are normally performed in living cells (in-vitro), in animal 

models (in-vivo) or via computational modelling.  At this time the researchers will 

again look to reduce the pool of candidate molecules, the successful ones 

selected based upon their pharmacokinetic properties, the balance between the 

maximum well-tolerated and minimum effective dose, the expected cost of 

goods and the commercial landscape.  Molecules that pass these hurdles may 

then undergo further molecular optimisation and subsequent testing to improve 
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their safety and effectiveness.  The end result will be a lead and a selection of 

backup molecules that will be put forward for clinical research in humans.   

2.4.  Clinical Research 

Clinical research in human trials can only begin once the pre-clinical package 

has been reviewed and approved by the regulatory authorities.  Companies 

wishing to perform studies in the US or EU must therefore successfully file for 

an Investigational New Drug (IND) application and/or a Clinical Trial 

Authorisation (CTA) respectively for any new candidate molecule.  In addition to 

the regulatory approval, in order to ensure the patients are appropriately 

protected, all clinical trials must be approved by ethics committees at the 

establishments where the trials will take place.  Clinical research is typically 

divided up into three phases which are described below. 

2.4.1.   Phase 1 Clinical Research 

The aim of phase 1 clinical trials is to understand the biological characteristics of 

the molecule.  Typically, this is where the molecule will be tested for the first 

time in humans.  The studies are generally conducted in a small number (20 to 

100) of normal healthy subjects, with the principal aim of evaluating the 

pharmacological response with increasing dose.  Occasionally these may be 

done in patients when the potential toxicity excludes the use of healthy subjects. 

(e.g. refractory patients are often used in the oncology setting when studying 

cytotoxic drugs).  Moreover, in addition to providing initial data on the safety, 

tolerability and activity, the human pharmacokinetics of the drug are evaluated.  
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On completion, the evidence gained from phase 1 studies is used by the drug 

company to decide if the molecule has a suitable therapeutic window (in terms 

of a dose range and schedule of dosing) with an acceptable safety, tolerability, 

activity and cost of goods profile for study in phase 2.          

2.4.2.   Phase 2 Clinical Research 

Phase 2 studies look to investigate the effectiveness of a new molecule in a 

moderate number of patients with the targeted disease.  Early phase 2 studies 

(often called proof of concept studies) look for preliminary evidence of efficacy 

(often in intermediary endpoints as opposed to those used in phase 3) and 

short-term safety.  Multiple doses (and dosing schedules) may be explored in an 

attempt to identify the minimum and maximum effective safe dose range.  

Around this point in development the criteria for clinical and commercial success 

become better defined.  Additional phase 2 trials are subsequently conducted to 

support the downstream regulatory filing, ideally mirroring the target population 

and control groups.  Such studies provide evidence to determine the probability 

of meeting the clinical and statistical success criteria in phase 3.  Those 

molecules meeting the end of phase 2 success criteria will move into the 

confirmatory phase 3 studies.    

2.4.3.   Phase 3 Clinical Research 

Phase 3 studies are typically large-scale definitive studies enrolling patients 

from sites globally.  The aim of phase 3 is to confirm the findings of phase 2 and 
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prove the drug is suitable for registration by demonstrating both short- and long-

term safety and efficacy (benefit-risk).   

The study designs must withstand scrutiny by regulatory authorities and are 

therefore often conducted as randomised, double-blind studies to minimize 

potential bias, and ideally go head to head against the current standard of care 

to prove their superiority.  

The results of these studies form the pivotal information for marketing 

applications.  The benefit-risk profile provides the basis for product labelling, 

which includes the diseases and patient population the drug is licensed for, the 

side effect profile, the doses schedule, and if there are any contra-indicated 

marketed drugs with which the new molecule may negatively interact.     

2.5. Market Application 

2.5.1.   Introduction 

Following a successful phase 3 programme, companies wishing to file for 

marketing applications follow the New Drug Application (NDA), or Biologic 

License Application (BLA) process in the US.  The equivalent process in the EU 

is the Marketing Authorisation (MAA) or Common Technical Document (CTD).  

The filings contain the results from all of the research conducted on the new 

molecule.  This is reviewed by the regulatory authorities who make a decision 

whether or not to give the drug a marketing licence based on its risk-benefit 

profile.  
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2.5.2.   Post-Marketing Research and Safety Monitoring  

After successfully obtaining marketing authorisation, the research on a new 

molecule continues to monitor safety and long-term side effects.  This is done 

as long as the medicine is on the market, with periodic safety and tolerability 

reports provided to regulatory authorities.  Often marketing authorisation will be 

granted under the proviso that the company fulfils certain conditions.  These 

conditions are typically of the form that requires additional post marketing 

research.  For example, it may be of interest to evaluate the risk benefit in 

specific subgroups of patients, or to obtain real world evidence on the clinical 

effectiveness and patterns of routine clinical use and toxicity management of the 

new molecule. Such studies typically are labelled phase 4 or Medical Affairs 

Studies. 

2.5.3.    Reimbursement 

In many countries obtaining marketing approval does not automatically translate 

into gaining access to the market.  In countries such as the UK where the 

healthcare system is primarily public funded (~80% of funding coming from 

taxation), the independent body NICE (National Institute for Health and Clinical 

Experience) selects certain new treatments for cost-effectiveness evaluation (a 

Health Technology Appraisal, HTA).  Selection is generally based upon the 

following key criteria: 
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 Is the new treatment likely to result in a significant health benefit to 

patients of the National Health Service (NHS) as a whole? 

 Is the new treatment likely to significantly impact on other government 

policies (e.g. reduction in health inequality)? 

 Is the new treatment likely to have a significant impact on NHS 

resources? 

 Can NICE add value by issuing national guidance over the interpretation 

of clinical evidence or cost effectiveness? 

There are two types of HTA; (1) A multiple technology appraisal which examines 

the disease area or class of drugs incorporating the evidence from the new 

treatment, or (2) a single technology appraisal to provide early guidance on new 

drugs targeting a single indication.  

As it is a mandatory requirement for National Health Authorities within England 

and Wales to fund treatments recommended by NICE, this appraisal process 

influences the uptake of a new treatment onto the market.  This guidance is also 

known to influence the marketing decisions of other countries across the globe 

as it is often available ahead of approval in other countries.  The outcome is that 

market access decisions are heavily influenced by cost-effectiveness and cost-

containment arguments, as opposed to using purely safety and efficacy guided 

decisions.  The likelihood of achieving reimbursement therefore plays an 

important role in the decisions made during the drug development process. 
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2.6. Decision Making During Drug Development 

Implicitly highlighted in the drug development process described through 

Section 2, are the many hurdles a new molecule has to overcome before it 

reaches the market.  Many, and often complex, decisions need to be taken 

along the way by multi-disciplinary flexible governance teams.  For example, a 

typical governance body accountable for decisions across early and late 

development may include flexible representation and input from: 

 Chief Executive Officer 

 Head of Research of Development 

 Early Stage Clinical   

 Late Stage Clinical  

 Drug Discovery 

 Pharmaceutical Sciences 

 Clinical Pharmacology 

 Precision Medicine 

 Safety Sciences / Pharmacovigilance  

 Portfolio Management 

 Biometrics / Statistics 

 Finance 

 Regulatory 

 Legal 

 Chief Medical Officer 
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 Commercial leaders across various regional areas 

 Development Operations. 

The principal aim of clinical drug development decision making is to stop the 

development of non-viable treatments as soon as possible.  This avoids 

administering unsafe or ineffective medicines to patients, mitigates the drug 

development costs and makes both resources and patients available for the 

development of other potentially more promising treatments.   

There are a number of decision points within the clinical drug development 

process, the key ones being: 

 The decision to go into humans for the first time 

 The transition to phase 2 after gaining evidence of biological activity 

  The decision to initiate phase 3 (herein referred to as the end of phase 2 

(EOP2) decision) after completion of dose ranging and finding  

 The commitment to file with regulatory bodies  

 Commitment to launch into the market.   

These critical decision points are shown diagrammatically in Figure 2.2 below: 
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FIH: First in Human; P2: Phase 2; EOP2: End of Phase 2. 

Figure 2.2: Critical Decision Points within the Clinical Drug 

Development Pathway 

It is well documented that considerable attrition of potential drug candidates 

occurs in late phase development, with lack of efficacy being the main reason 

for failing phase 3 (Kola and Landis 2004; Di Masi, Feldman, Seckler and 

Wilson 2010; Paul et al 2010; Arrowsmith 2011a,b; Thomas et al 2016; Wong 

2018; Dowden 2019).  This is not a good scenario for patients or drug 

development companies.  It results in companies incurring the majority of the 

drug development costs which, in turn, translates to a higher cost of medicines 

and reduced overall profitability of the companies concerned.   

The oncology therapeutic area is a particularly noteworthy example, where 

success rates for transitioning between development phases have been lower 

than other therapeutic areas, with success rate in phase 3, arguably, being 

unacceptably low.  The data shown in in Figure 2.3 (Kola and Landis 2004) was 

published in 2004 where we see that of the oncology products that successfully 

make it through phase 1 and 2 only 40% are successful in phase 3.  Moreover, 

the overall success rate of oncology products entering phase 1 and achieving 

registration was approximately 5% (with phase transition rates of 60% success 
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in phase 1, 30% in phase 2, 40% in phase 3 and 70% of successful phase 3’s 

achieving registration).   

 

Figure 2.3: Success by Phase and Therapeutic Area (Kola and 

Landis, 2004) 

Data collected between 2006 and 2015 (Thomas et al 2016), which is the 

largest study of clinical success rates conducted to-date, showed the overall 

success rate in oncology to have remained very consistent at 5%.  Table 2.1 

highlights the phase to phase successful transition rate during this period.  A 

comparison to the 2004 survey shows there to be a decrease in the percentage 

of studies successfully passing phase 2 (a change from 30% to 24.6%), no 

change in the percentage of successful phase 3 studies at 40%, and an 
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increase in the number of phase 3 successfully achieving registration (from 70 

to 84.2%).   

 Phase 1 Phase 2 Phase 3 Registration Overall

Cardiovascular 58.9 24.1 55.5 84.2 6.6 

Infectious dis. 69.5 42.7 72.7 88.7 19.1 

Oncology 62.8 24.6 40.1 82.4 5.1 

Opthalmology 84.8 44.6 58.3 77.5 17.1 

Metabolic 61.1 45.2 71.4 77.8 15.3 

Urology 57.1 32.7 71.4 85.7 11.4 

All indication 63.2 30.7 58.1 85.3 9.6 

Data obtained from Thomas et al (2016) 

Table 2.1: Success rate by phase and therapeutic area 2006-2015  

The Oncology therapeutic area is by nature very diverse, and phase 3 success 

rates have been shown to vary widely across indications.  Thomas et al (2016), 

showed the indication with the lowest phase 3 success rate during 2006-2015 to 

be pancreatic cancer where only 13.3% of phase 3 studies were successful.  In 

contrast to this 66.2% of chronic lymphocytic leukemia / small cell lymphoma 

phase 3 studies were successful which is more in line with non-oncology 

indications.  Figure 2.4 shows the phase 3 success rates for a variety of 

oncology indications using data derived from Thomas et al (2016).  
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Data obtained from Thomas et al (2016) 

Figure 2.4: Phase 3 success rates by Oncology Indication 

The results produced by Thomas et al (2016) were also consistent with the 

findings of Wong et al (2018) with an average overall PoS of 4.1% over the time 

interval between 2005 and 2015.  While these results did not incorporate the 

probability of registration, Wong also presented an estimate of the overall 

success rate in oncology each year (Figure 2.5). The data showed a success 

rate of 6.3% in 2005, with a slow and consistent decline to 1.7% in 2012, before 

increasing to 2.5% in 2014, followed by a jump to 8.3% in 2015.  The increase in 

2015 being largely driven by an increase in predicted success rate in phase 3 

from 41.9% to 78.1% between 2014 and 2015. 
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Data obtained from Wong (2018) 

Figure 2.5: Oncology success rates by phase 2005-2015 

Dowden (2019) present data from CMR international who operate with a 

consortium of biopharmaceutical companies to compare R&D performance on a 

like for like basis.  The data presented ranged over a period of 2010 to 2017 and 

indicated an average success rate of 59% in phase 3 oncology trials, with an 

average overall success rate for oncology molecules entering phase 1 and 

achieving approval to be 9%.   

It is possible the increase in oncology success rate seen in Wong (2018) and 

Dowden (2019) are simply an artefact of the data collected or the oncology 

indications targeted over the last few years. However, it could also be the result 

of an increased proportion of biomarker targeted drug candidates working their 

way through the drug development lifecycle, and to growth in the number of 

approvals of drugs for orphan indications and rare diseases.   While this latest 
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signal may be considered encouraging, the big picture remains that there is 

<10% chance that an oncology molecule entering clinical development makes it 

through to approval, and thereby there is room for improvement.     

Arrowsmith (2011a) highlights the financial impact that improving success rates 

could bring. On the x-axis is the average capitalised cost per launch which 

highlights the price paid for the drug, development and launch costs.  These 

costs are presented for various stages of the drug development process and the 

probability of technical success at each stage, as shown in the y-axis.  The plot 

indicates that the average capitalised cost per launch is over $2B assuming the 

probability of success in phase 3 is 60%.  The plot also shows the impact on 

cost associated with improving the phase 3 probability of success.  If the 

probability of phase 3 success is improved by 20% (from 60% to 80%) costs 

reduce by approximately $500M. Making good EOP2 decisions is therefore 

critical to a company’s profitability and the cost of medicines.  This is shown 

diagrammatically in Figure 2.6 below.  

The EOP2 decision is influenced by a number of factors, including the current 

condition of an organisation’s development portfolio, the expected future cost of 

development / return on investment, the competitive landscape, and the 

expected safety and efficacy benefit of a new therapy.  There is a pressing need 

to develop and implement methodologies and processes to enhance the EOP2 

decision making capabilities within the industry.   
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Figure 2.6: The Financial Impact of Improving Success Rates 

The EOP2 decision should involve a systematic quantitative assessment of the 

available evidence.  Statisticians with experience in systematic data reviews, 

quantitative modelling and experimental design have a fundamental role to play 

in the making of this vital decision which, if carried out successfully, will save 

considerable nugatory work and expense for their companies.  Without a 

quantitative assessment decision making becomes more qualitative, and 

thereby more subjective, less data driven, more inconsistent and less decisive. 

This is not to say qualitative factors should not be taken into account.  The 

results of such an approach may contain additional information that is not easily 

incorporated into quantitative assessment (e.g. company experience with 
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recruiting the desired population for a study). In practice combining both the 

qualitative and quantitative information will lead to the most appropriate 

decision.      
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3. A QUANTITATIVE PROCESS FOR ENHANCING EOP2 

DECISION MAKING 

3.1. Introduction 

In Section 3 the steps required to build the quantitative framework for any 

disease under investigation are described.  Firstly, an overview of the published 

background literature is described in Section 3.1.1.  Section 3.2 then introduces 

a set of core questions fundamental to the decision making process and the 

associated requirement to systematically review and abstract the relevant data 

from the literature to answer these questions.  Central to any EOP2 decision is 

the need to predict the treatment difference in the phase 3 study from the 

treatment difference observed in the phase 2 trial.  As the phase 2 outcome 

measures used for decision making are often different to the phase 3 regulatory 

outcome measures (particularly in the oncology setting) meta-regression 

techniques are used to model this relationship from the systematically 

abstracted data.  Moreover, in situations where a decision is made to use a 

different phase 3 population to that used in the phase 2 study the meta-

regression can be used to predict the phase 3 outcome in the planned phase 3 

population.      

A critical step in influencing the pharmaceutical decision makers to implement 

this framework in practice was incorporating the ability to take the prior belief of 

key decision makers into account.  Section 3.3 describes how, at the end of 

phase 2, this prior belief can be synthesized with the observed phase 2 outcome 
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and the meta-regression to predict a range of posterior distributions for the 

phase 3 outcome measure and population. 

Next in Section 3.3, the synthesis of the EOP2 posterior distributions in the 

phase 3 outcome measure with the proposed phase 3 design is described which 

enables the prediction of the probability of success in the phase 3 study.  This 

includes the development of bounds of belief for the PoS through the inclusion 

of sceptical and optimistic priors.  After showing how to determine the PoS, 

Section 3.4 then describes the selection of a PoS threshold (decision criteria) 

that if achieved would equate to a commit to phase 3 go decision.  The method 

of calculating the operational characteristics of the PoS decision criteria through 

the use of clinical trial simulation is presented.  Section 3.5 describes how the 

process can be used to further optimise the design of the phase 2 and 3 studies. 

Section 3.6 then goes through a worked example of the process described 

through Section 3.2 to 3.5, through application to the pancreatic cancer 

indication.  Additional examples in gastric cancer, soft tissue sarcoma and non-

small cell lung cancer are also provided in Section 3.8.  

Another key part in making the EOP2 decision is the degree of comfort decision 

makers have with the reliability of the phase 2 data.  If, for example, the control 

group response observed in the phase 2 was not as expected, this may cast 

doubt on the validity of using the treatment difference observed in the phase 2 

study results for prediction purposes. Section 3.7 presents a methodology 

extension to incorporate this uncertainty into the EOP2 decision making by 

taking the perspective that the observed treatment difference seen in the 
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randomized phase 2 study is the best unbiased estimate available, whilst 

inflating the variance of the phase 2 treatment difference as the observed phase 

2 control group response departs from the expected.   

In areas such as oncology where drug development times are long, there may 

be limited patent life remaining post the approval in the first indication.  In order 

to expand use into new additional indications prior to the patent expiry a 

decision may be required to initiate a phase 3 study with limited or no phase 2 

data in the target indication or population.  This situation, including an approach 

to determine a PoS, is discussed in Section 3.9. An example from 1st-line 

ovarian cancer is presented. 

Section 3.10 then further explores the utility of a bayesian framework to predict 

the PoS in practice. The key factors influencing the formation of the framework, 

and the practical advantages of taking such a modelling approach are 

discussed. This is followed by a review of the PoS values and the associated 

methodology used to calculate them (a benchmarking or bayesian modelling 

approach), for 63 completed phase 3 studies that started during or after 2015 at 

AstraZeneca.      

There are however additional considerations that pharmaceutical companies 

need to take into account above and beyond the predicted probability of the 

phase 3 trial being successful (PoS).  One extremely important consideration is 

the competitive landscape.  It is particularly important for the EOP2 investment 

decision to understand and predict how the new investigational treatment is 
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likely to compare with currently marketed and other potential treatment options 

being developed by other companies at the time that the new investigational 

drug is scheduled to reach the market.  To complement the PoS modelling at 

the EOP2, Section 3.11 therefore expands the modelling framework further to 

incorporate network meta-analysis to enable early predictions of indirect 

treatment comparisons in the phase 3 outcome measure and the probability of 

being highly ranked amongst the treatment options that will be available at the 

time of market approval.  The utility of this is shown through the expansion of 

the pancreatic cancer example introduced in Section 3.6. 

3.1.1.   Published Literature 

In this section prior published literature around the 3 key research areas 

included in this PhD are discussed. 

Key Research Area 1:   

 Enhancing the quality of the end of phase 2 decision using a practical 

model to quantify the probability of technical success (PoS) with respect 

to efficacy in phase 3 on completion of phase 2.  

A wide ranging and interesting body of work that focuses on methodologies and 

models to predict the probability of efficacy success in phase 3 has been 

published over the last 15 years.   

In 2005, O’Hagan, Stevens and Campbell (2005) introduced the important 

concept of assurance; an unconditional probability that a phase 3 trial will 
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achieve a specific outcome (e.g., a statistically significant result according to a 

standard frequentist significance test) based on prior knowledge for the 

unknown true treatment effect.  Here it is proposed that assurance should be a 

key measure of the practical utility of a proposed phase 3 study, suggesting that 

it may be more appropriate to choose the phase 3 sample size based upon a 

desired assurance rather than using a conventional power calculation.  

Conventional phase 3 sample size calculations are usually selected to achieve a 

desired power conditional on a pre-specified true underlying treatment effect.  

Given the uncertainty in this underlying assumption the power may therefore not 

accurately reflect the probability that the trial will be successful.  In this PhD, I 

use a combination of these approaches where the PoS (probability of achieving 

a ‘favourable’ statistically significant result) is used to make a go/no-go decision 

to conduct a traditionally powered (e.g. 80% or 90%) and sample sized study.  

Stallard, Whitehead and Cleall (2005) proposed a quantitative model-based 

approach in which the posterior probability that a future frequentist phase 3 

study will be successful is calculated and used to inform the decision to initiate 

phase 3 at either the interim and final analyses of a phase 2 trial.  In the paper 

the phase 2 outcome measure (PFS) was simply assumed to have the same 

hazard ratio as the phase 3 outcome measure (OS).  This differs from the 

approach taken in this PhD whereby the uncertainty between the phase 2 and 3 

outcome measures is incorporated using meta-regression techniques.  

The paper by Stallard, Whitehead and Cleall (2005) was complemented by the 

publication by De Ridder (2005) who published a case study with a drug for 
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symptom relief in a chronic condition whereby a parametric dose-response 

model for the clinical response was generated using individual data from two 

phase 2 studies. Modelling and simulation were then used to predict the range 

of possible outcomes from three ongoing phase 3 trials.  These outcomes were 

compared to the blinded data being concurrently generated in the phase 3 trials 

in order to assess the robustness of the ongoing studies with respect to the 

uncertainty of the true dose-response, patient variability in baseline severity and 

drug-response, and to assess the likelihood of achieving a clinically relevant 

response with a dose lower than those included in the trials.  Although the 

decision to start the phase 3 studies was not impacted by this modelling this 

paper highlights the merits of using modelling and simulation to support the end 

of phase 2 decision making.  

In 2006, Chuang-Stein (2006) built on the work O’Hagan (2005) by describing 

the distinction between statistical power and the probability of getting a 

successful trial.  Chuang-Stein highlights that while a very high statistical power 

can be selected to detect a certain treatment effect, the high statistical power 

does not necessarily translate to a high PoS if the target treatment effect is 

based on the perceived ability of the drug candidate, rather than empirical 

clinical knowledge of the drug’s ability to deliver the effect used to power the 

study.  The paper then introduces a framework to calculate the ‘average 

success probability’ for a continuous endpoint and demonstrates how 

uncertainty about the treatment effect could affect the average success 

probability for a future confirmatory trial.  In a later publication, Chuang-Stein 
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(2010), the concept of assurance was expanded to sample size re-estimation, 

the results highlighting again, that the traditionally designed phase 3 studies 

may have a much lower likelihood of success than originally anticipated. 

In 2009, Nixon, Bansback, Stevens, Brennan and Madan (2009a) described a 

model to predict the six-month American College of Rheumatology (ACR) 

response rate based upon the ACR response rate collected at earlier time 

points, for trials in rheumatoid arthritis.  Within this paper the data synthesis and 

modelling is performed within a treatment arm on the absolute scale which has 

the potential disadvantage of breaking the randomization within studies.  This 

differs from the approach adopted within this PhD, which synthesizes the 

relationships between phase 2 and phase 3 study outcome measures on the 

relative treatment difference scale and therefore maintains the randomization 

within each study.  Nixon et al (2009b) also expand on this research to develop 

a Rheumatoid Arthritis Drug Development Model (RADDM), which simulates 

proposed phase 2b and 3 trials based upon efficacy evidence on the ACR 

response rate at the end of phase 2a, evidence of efficacy from existing 

treatments and expert opinion on three key safety markers.  Bayesian clinical 

trial simulation is then used to determine the assurances of licensing approval at 

the end of phase 3.  Although the randomisation is broken in the Nixon example, 

this does provide a useful methodological example of predicting the PoS in the 

situation where single arm or non-randomised phase 2 trials are conducted with 

decision made from short term endpoints.  It should also be noted that while the 

theoretical value of randomised phase 2’s is presumed, primarily due to the 
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requirement for non-randomised designs to be interpreted relative to historical 

controls or through the use of indirect treatment comparisons which may be 

susceptible to selection bias and the impact of confounding factors (Cannistra et 

al (2009), Gan et al (2010), Sharma et al (2011)), a study by Monzon (2015) of 

189 phase 3 studies found no evidence that randomised phase 2 studies were 

superior at predicting phase 3 success than single arm phase 2’s.   

In 2012 a method that uses predictive power to predict the probability of 

success in a phase 3 outcome measure (i.e. the Overall Survival (OS) log 

hazard ratio) based on a different phase 2 outcome measure (the Progression-

Free Survival (PFS) log hazard ratio) was published by Hong (2012).  This 

approach uses a bivariate normal model in phase 2 to estimate the joint 

distribution of the log hazard ratios on the two endpoints, and requires 

specification of a prior for the correlation between the treatment difference for 

the phase 2 outcome measure and the treatment difference for the phase 3 

outcome measure.  This approach aims to develops a relationship between 

endpoints estimated from a single trial which may not be sufficient to support 

predictions across trials.  To overcome this issue, the modelling approach 

developed for the PhD differs from the Hong (2012) publication by its use of 

meta-regression techniques to estimate the relationship between the primary 

phase 2 outcome measure (PFS log hazard ratio) and the different primary 

phase 3 outcome measure (OS log hazard ratio).     

Also in 2012, Claret (2012) synthesized observed phase 2 data with a public 

domain drug–disease modelling framework that had been built using the 
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individual patient level data relationship between changes in tumour size and 

overall survival (Wang, 2009), to simulate survival outcomes for phase 3 studies 

investigating motesanib or bevacizumab plus carboplatin/paclitaxel in first-line 

non–small-cell lung cancer.  While an interesting approach, the model could not 

discriminate between failed and successful studies, suggesting that further 

enhancements were required to improve its utility for predicting phase 3 trial 

outcomes. 

In 2013, while acknowledging the appealing nature of using the concept of 

assurance in phase 2 to 3 decision making, Carroll (2013) pointed out some of 

the nuances embedded within the assurance calculation to be aware of.  One 

particularly interesting example being that the phase 3 assurance is capped at 

the 1 minus one-sided p-value observed in phase 2 even when phase 3 

includes an infinite number of patients (assuming the phase 2 and 3 outcome 

measures are the same and additional prior opinion on the phase 2 outcome 

measure is not included).  The literature on assurance was further developed in 

2014 by Ren (2014), who enhanced the methodologies to accommodate 

survival outcome measures assuming both parametric and non-parametric 

models.  Prior elicitation methods were also proposed for each survival model to 

enable the assurance calculations to be performed reliably and easily. 

Also in 2013, Wang (2013) published on an approach from Eli-Lilly which 

involved the use of bayesian modelling to synthesize relevant data to create a 

posterior distribution for the treatment difference in the phase 3 endpoint which 
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was then used to determine the PoS in a phase 3 study.  Three interesting 

examples from the oncology setting were presented: 

1. An example where a randomized phase 3 study is in planning designed to 

compare an experimental regimen (E) with a control regimen (C) in a solid 

tumour. The primary endpoint is the overall survival (OS) time from 

randomization. Overall survival data from a preceding randomized phase 

2 study was available to form the prior. 

2. An example where two single arm studies of an experimental therapy (E) 

were available, in addition to historical data on the standard of care (C). 

The desire was to run a phase 3 trial to compare the combination of E+C 

against C.  In this circumstance no prior data was available for the 

combination.  The survival distribution for the historical data, and similarly 

the experimental treatment was determined using meta-analysis of the 

respective hazard functions (assuming an exponential distribution).  

These were then synthesised within a bayesian hierarchical model, and 

combined with various subjective assumptions about how the synergistic 

potential of the combination in order to generate a predicted posterior 

distribution of the treatment effect in a phase 3 study. 

3. An example where a randomised phase 2 study had been conducted to 

compare the combination (E+C) versus control (C) in metastatic breast 

cancer.  The primary endpoint of the phase 2 study was PFS.  At the time 

of study completion only a few OS event were observed, however a 

changing regulatory landscape suggested the need to demonstrate OS 
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benefit in phase 3.  In 2008, a meta-analysis (Sherrill, 2008) had been 

published that aimed to quantify the treatment effects with respect to the 

PFS HR and the OS HR in metastatic breast cancer.  Using this data the 

relationship between the log PFS HR and the Log OS HR was modelled 

using meta-regression.  This relationship was then use in conjunction with 

the PFS HR from the phase 2 to predict a posterior distribution for OS and 

thereby the PoS in phase 3.  This later example closely resembles the 

methodology adopted to convert between phase 2 and phase 3 outcome 

measures within this PhD, and published within Sabin (2014 and 2015).  

Differences lie in the choice of functional form for the meta regression 

model, the choice of prior for the between study variance, and the 

additional incorporation of the prior opinion of key decision makers for the 

treatment difference in the phase 2 outcome measure. 

Walley et al (2015) provide a further example on how the design and statistical 

analysis of a phase 2 study can be formulated into a bayesian framework using 

a worked example from chronic kidney disease.  The bayesian framework 

incorporates methods to inform decisions on individual trials using informative 

priors on treatment effects and placebo response.  The case study highlights the 

potential value of meta analysing and synthesising placebo data for use as an 

informative prior for the phase 2 study.   Of note, this prior information is 

combined with the results of a randomised phase 2 study to predict the 

probability of success in phase 3 (where PoS is based on a bayesian analysis 

as opposed to a frequentist analysis of the phase 3 study) as long as there is 
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not a statistically significant difference between the expected result from the 

meta-analysis and the observed phase 2 placebo response (with a two-sided p -

value of less than 0.05).  If a difference was found this would imply discordance 

which would lead to the primary analysis being switched to one with a vague 

placebo mean prior.  This would therefore lead to the observed phase 2 data 

being dominant in the decision making process and predicted probability of 

success in phase 3.  Similarly, the use of borrowing historical data to enrich 

controls in clinical trials is further discussed in the publications by 

(Neuenschwander et al. 2010, and Viele et al. 2014).  An alternative innovative 

approach explored within this PhD is to take the view that the observed 

treatment difference seen in the randomized phase 2 study is the best unbiased 

estimate available, whilst the variance of the randomised phase 2 treatment 

difference is inflated as the observed phase 2 control group response departs 

from the expected, thereby inserting additional uncertainty into the predicted 

probability of success in phase 3.  

When implementing a bayesian decision framework one particular challenge is 

the construction of a prior for the treatment effect.  Within this PhD sceptical, 

uninformative and optimistic priors for the phase 2 treatment difference are 

elicited from individual key decision makers.  The sceptical and optimistic priors 

elicited are used to form bounds of belief for the probability of success in a 

future phase 3 study.  If empirical evidence is available from previous studies 

then it may be natural for this to be used as the basis for a prior distribution. 

Spiegelhalter et al (2004) discuss several options for summarising external 
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evidence to form a prior distribution.  These include various approaches for 

discounting the degree of influence of the prior data depending upon the degree 

of relevance or potential for bias.  There is however the potential for there to be 

no or limited historical information on the treatment effect.  Examples of this may 

occur when working with a treatment with a novel mechanism of action, or 

possibly a new outcome measure.  In such circumstances subjective priors as 

used in this PhD (for the phase 2 treatment difference) may be required to be 

elicited from key decision makers.  Walley (2015) follow a similar type of 

approach by eliciting subjective priors for the phase 3 treatment difference 

based upon the SHELF approach (Oakley 2010, 2017).  This methodology has 

also been extensively adopted by GSK for any prior elicitation as described in 

Dallow (2018).  The SHELF framework begins with the selection and training of 

experts to be involved and the generation of an evidence package to support 

the prior determination.  Individual priors are then elicited from each individual 

expert in a masked fashion.  These are then discussed and where possible a 

consensus prior created through agreement of what a rationale independent 

observer would determine after hearing the individual opinions. 

When determining priors for the phase 3 study, consideration should be given to 

the potential need to adjust for over optimistic phase 2 results.  The need to 

adjust the distribution of the observed phase 2 treatment effect was raised by 

Kirby (2012) and Wang (2006) because of two potential sources of bias.  The 

first arises from selecting compounds with pre-specified favourable phase 2 

results and using these results as the basis of treatment effect for phase 3 



Page 54 of 198 
 

sample size planning.  The second rises from projecting the phase 2 treatment 

effect onto the phase 3 population when this may be typically optimistic due to a 

more heterogeneous patient population used within phase 3.  In an attempt to 

reduce the impact of these two sources of bias, Kirby (2012) proposes 

discounting the phase 2 estimate of treatment effect through making simple  

multiplicative or additive adjustments.  Wang (2006) recommended an 

alternative approach discounting the observed treatment effect by one standard 

error of the treatment effect estimate.  Additional approaches to downweight the 

phase 2 treatment effect were also considered by Saint Hiliary (2019) including 

the use of a mixture prior which combines a conjugate vague normal prior with 

the observed phase 2 distribution weighted by an assumed prior probability that 

the phase 2 outcome measure does not predict the phase 3 outcome measure.  

As briefly discussed earlier, within this PhD a different approach is taken 

whereby the observed treatment effect from a randomised phase 2 study is 

assumed to the best unbiased estimate of the treatment effect available, 

however additional uncertainty is incorporated by inflating the variance of the 

treatment effect based upon a function of difference between the expected and 

observed treatment effects on the control arm.  Moreover, population changes 

are handled through the bayesian modelling framework.  The PhD implicitly 

assumes that data is available to make such adjustments which may not always 

be the case.  The concept of over-optimistic results within exploratory 

subgroups is discussed in Gὂtte (2017) which is a result of the practice of 

performing exploratory biomarker driven subgroup analyses to identify patient 
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populations with a beneficial treatment effect.  Selecting a subgroup based upon 

a large observed effect may lead to over-optimistic expectation on the 

probability of success of a phase 3 trial.  Gὂtte highlights how the use of 

approximate bayesian computational techniques can be used to adjust for bias 

in this setting.     

Frewer (2016) discuss an alternative decision making framework being applied 

within early development at AstraZeneca that builds on an approach originally 

proposed by Lalonde (2007).  This methodology compares the observed upper 

and lower confidence intervals for the treatment effect with a lower reference 

value (LRV, the smallest clinically meaningful treatment effect leading to a 

commercially viable treatment) and a target value (TV, the commercially desired 

effect to establish the treatment as a lead treatment in the market).  Typically a 

three-outcome decision framework is then constructed in line with pre-specified 

risks.  For example,  

  Go to the next phase : PCT20 >LRV and PCT90 >TV 

  Consider / collect more data  : PCT20 ≤ LRV and PCT90 >TV 

  Stop development : PCT90 ≤ TV  

where PCTx denotes the xth percentile of the distribution of the observed 

treatment difference.  This methodology is further expanded in Pulkstanis (2017) 

who applies a bayesian decision framework allowing for multiple levels of the 

targeted efficacy in line with the target product profile.  Moreover, Dunyak 

(2018) expand this on this methodology presented in Frewer (2016) to include 
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dose response estimation into the decision framework.  The approach 

incorporates a set of dose response models and uses model averaging. Whilst 

such approaches provide a useful standardised decision framework they are 

independent of the potential actions required to be taken in a subsequent phase 

of development, for example potential changes in endpoint or population. 

Further work expanding these concepts to account for such factors would be 

useful.  

Similarly, Huang (2019) also presented a quantitative bayesian/frequentist 

decision framework for Go/No-Go criteria and sample size evaluation in phase 2 

randomized studies with a time-to-event endpoint.  This approach followed a 

similar integrated quantitative modelling approach to that used in the PhD with 

the exception that both the phase 2 and phase 3 trials shared a common 

endpoint while allowing a discount of the observed phase 2 data.  This decision 

framework also incorporated criteria based upon the observed effect size and its 

precision against a target value and a minimally acceptable value in a similar 

way to Lalonde (2007) and Frewer (2016).  Under the situation presented with 

no change of endpoint, the results showed that an increase in the sample size 

of a phase 2 trial will result in greater increase in the PoS of a phase 3 trial than 

increasing the phase 3 trial sample size by equal amount.  Jiang (2011) also 

discussed the potential to optimise the phase 2 and 3 sample size using a  

combined bayesian and frequentist framework. This article proposed a PoS 

function to allow an integrated approach to the sample size and go/no-go 

decision criteria for a phase 2/3 program in which both the phase 2 and 3 trials 
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share a common, normally distributed response variable.  Gὂtte (2015) also 

describe an approach for planning a phase 2 trial in a time-to-event setting that 

considers the whole phase 2/3 program.  The article expands on the work on 

Jiang (2011) through the inclusion of stopping boundaries after phase 2 that 

minimise the number of events under select conditions for the conditional 

probability of a correct go/no-go decision after phase 2, as well as the 

conditional success probabilities for phase 3.  Simulation is used show that 

unconditional probabilities of go/no-go decision as well as the unconditional 

success probabilities for phase 3 are influenced by the number of events 

observed in phase 2.  Moreover, it highlights that a phase 2 sample size 

providing more than 150 events may not be necessary as the impact on these 

probabilities then becomes quite small. 

Saint-Hilary (2019) extended a framework to determine the probability of 

success in a future phase 3 trial to the situation where prior information can be 

borrowed from multiple early phase endpoints, as opposed to a single phase 2 

endpoint.  In their approach the joint distribution of the treatment effects from the 

multiple early endpoints and the clinical endpoint are developed using a meta-

analytic approach from external data.  This is used in conjunction with the prior 

observations on the early phase endpoints to build an informative prior 

distribution for the phase 3 outcome measure.  After incorporating the properties 

of the future phase 3 design, the predictive distribution of the phase 3 outcome 

measure is then used to calculate the PoS of the phase 3 trial.  An example is 

shown from the multiple sclerosis.  
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In addition to becoming part of practice at Amgen and AstraZeneca, Crisp 

(2018) described how the use of assurance embedded within a quantitative 

bayesian modelling framework as a measure of the PoS has also now become 

routine practice at GlaxoSmithKline across all therapeutic areas.  The key 

benefits highlighted being:  

 The estimated PoS is more meaningful than focussing on the power of the 

phase 3 study, as it incorporates current knowledge about the treatment 

effect.  An observed consequence of this is that it leads to focused 

discussions on study design and objectives.  

 The probability of observing clinically meaningful effect sizes is explicitly 

characterised in advance. 

 The assumptions that are driving the calculated PoS are transparent to all. 

The process of empirically determining or eliciting these assumptions can 

lead to important refinements in study design.  For example, the 

relationship between PoS and sample size can be assessed such that an 

optimal sample size can be identified to balance risks and cost. 

It is implicitly assumed through the drug development process that the selected 

phase 2 outcome measure will be predictive of the phase 3 outcome measure. 

In many circumstances the phase 2 outcome measure may not strictly fulfil the 

criteria (Prentice 1989) to be labelled as a formal surrogate endpoint.  It is 

however expected that the choice of phase 2 outcome measure will have 

biological plausibility and that evidence of the prognostic value of the endpoint 

will be supported by epidemiological data or clinical trials.  It is also important to 
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note that many of the proposed bayesian modelling frameworks (e.g., Nixon 

(2009b), Hong (2012), Claret (2012), Wang (2013), Sabin (2014, 2015), Saint-

Hilary (2019)) incorporate the uncertainty in this relationship in their decision 

framework.  While formal surrogacy is not deemed necessary for the modelling 

framework, a stronger relationship between the phase 2 and 3 outcome 

measures will provide greater confidence in the end of phase 2 decision.  Buyse 

(2016) provide a statistical evaluation of surrogate endpoints for use in cancer 

trials that is a useful guide in selecting the phase 2 endpoints for a variety of 

cancer types.  In addition, the relationship between the PFS HR and OS HR has 

been examined in several oncology cancer types (including pancreatic, gastric, 

STS, NSCLC, mBC, mCRC, esophageal, rectal, 1st-line ovarian, CRPC, SCLC, 

advanced NSCLC, advanced neuroendocrine neoplasms) in the literature.  This 

work greatly facilitates both the use of a meta-analytic modelling approach to 

determine the PoS in future phase 3 studies, and further promotes 

understanding of the confidence drug developers have in the choice and 

interpretability of phase 2 endpoints.     

 Key Research Area 2:  

 The incorporation of qualitative factors in the decision making process, 

and the implementation of a PoS framework in the situation where very 

limited or no prior clinical data is available. 
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Benda (2010) presents general considerations for comparing competing options 

for clinical programs, trial designs and analysis methods as a basis for decision 

making, highlighting that final decision making should incorporate qualitative 

factors as well as quantitative methods.  This paper differs to the research 

presented in Section 3.9 and 3.10 as it does not broach the topic of how to 

synthesise the qualitative or quantitative factors into an overall PoS.  

The situation where limited or no prior clinical data is available for an indication 

may arise in the life cycle management (broadening the use of the drug into new 

lines of therapies or disease indications) of oncology products that target 

patients with specific genes or biomarker targets.  With the exception of the 

potential to use subjective formal priors (Walley (2015), Oakley (2010, 2017), 

Dallow (2018)) no further prior literature specifically focussing on predicting the 

PoS under this scenario was identified.   

Key Research Area 3: 

 The determination of the expected efficacy of the investigational treatment 

and how this compares and ranks to the current and future treatment 

options available for patients. 

No prior literature focussing specifically on developing models to enable early 

predictions (to be used as part of the EOP2 decision) of the expected efficacy of 

the investigational treatment at the end of a successful phase 3 study and how 

this will compare and rank to the current and future successful treatment options 

available for patients was identified as part of the background review.  Within 
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this PhD a bayesian re-sampling approach was used to determine the predicted 

probability that a treatment will rank 1st, 2nd or 3rd.  Additional graphical and 

numerical approaches to summarise the results of these treatment ranking 

probabilities are described in Salanti (2011).  Of note, in order to supplement a 

graphical display of cumulative ranking probabilities and as an alternative way to 

rank the treatments overall, Salanti uses the estimate of the surface under the 

cumulative ranking (SUCRA) line for each treatment as a simple numerical 

summary.  Rϋcker (2015) built on the work by Salanti presenting a frequentist 

analogue to SUCRA called the P-Score.  This approach for comparing 

treatments in a network meta-analysis does not use a re-sampling approach.      

The main challenges of network meta-analysis and the use of indirect 

comparisons associated with evaluating the assumptions underlying the 

statistical synthesis of direct and indirect evidence follow through into the work 

conducted for this PhD.  A comprehensive overview of these assumptions 

including the statistical and nonstatistical methodological considerations are 

discussed in Salanti (2012) and in Chapter 11 of the Cochrane handbook 

(Higgins et al (2011, 2019).          

3.2. STAGE 1: Systematic Literature Review and Data 

Abstraction 

For any disease area under investigation, the process begins (ideally prior to 

starting phase 2) with a literature review focused on identifying published trials 

relevant to addressing the ten core questions highlighted below. A thorough 
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systematic review of the literature is required to ensure that all appropriate 

historical trials and data are selected to support the decision making process. 

Guidance on conducting systematic reviews can be found in Moher et al. 

(2009), and Higgins et al (2011, 2019).  The inappropriate inclusion or exclusion 

of trials will have a direct effect on the quality of decisions made.   

The answers to the following questions form key inputs into the drug 

development decision making process.  They provide information that supports 

the appropriate selection of study design, population and outcome measures to 

be used in the phase 2 and 3 studies.  They enable the relationship between the 

phase 2 and 3 outcome measures to be determined, and indirect treatment 

comparisons against competitor drugs to be made.  

The 10 core questions are:   

1. Has the definition of disease changed over time?  For example, in the hope 

of extending treatment benefits to early disease, over time common disease 

definitions may have been changed by lowering the threshold value or 

changing a component of the diagnosis.    

2. What are the important prognostic markers for the targeted indication?  

Prognostic factors are important to help define the study population and 

objectives. 

3. What is the expected absolute treatment effect of the current standard of 

care, and other drugs either marketed or in development, for both the phase 

2 and primary phase 3 outcome measures?  This information helps the 
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design and interpretation of the phase 2 and 3 study design and feeds into 

the target product profile (TPP) for the new investigational product. 

4. What are the observed treatment effects of other drugs relative to the 

standard of care for both the phase 2 and primary phase 3 outcome 

measures?  This information helps guide study design and interpretation. 

Understanding the relationship between phase 2 and 3 outcome measures is 

critical to the decisions to be made from the phase 2 study. 

5. What is the impact of the important prognostic factors on the ability to detect 

a treatment effect relative to the standard of care in both the phase 2 and 

primary phase 3 outcome measures (i.e., is there a prognostic factor by 

relative treatment effect interaction)?  If the phase 3 study enrols a different 

population to the phase 2 study this may lead to a different expectation of 

the treatment effect in the phase 3 study.  This therefore needs to be 

considered when designing and determining the PoS of phase 3.    

6. Have the absolute and relative treatment effects changed over time?  

Changes in clinical practice over time may also impact the expected 

treatment effects.  This is critical to consider in the design and interpretation 

of results. 

7. What are the most common side effects and their expected incidence rate?  

As well as efficacy it is also important to consider the safety and tolerability 

of the investigation drug and to be able to compare to competitor drugs. 

8. What are the relationships between the phase 2 and primary phase 3 

outcome measures for individual treatment groups? 
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9. Are these relationships between outcome measures likely to hold for drugs 

with different modes of action?  

10. What is the impact of previous treatments on the relationships between the 

phase 2 and 3 outcome measures? 

Questions 8, 9 and 10 are all important to design and interpretation. If the 

relationship between outcome measures differs with different treatments, drug 

classes or prior treatment exposure then this needs to be carefully considered in 

the design and interpretation of the phase 2 and 3 studies.   

Moreover, it is very often desirable for phase 2 studies and the associated 

EOP2 decisions to utilise short term intermediary outcome measures for efficacy 

as opposed to the those requiring longer follow up used in phase 3.  However, 

when selecting the outcome measures it is also important to consider the future 

context of use.  For example, within oncology, outcome measures can serve 

different downstream purposes. They may be selected purely for internal 

sponsor decisions or to support accelerated or full approval. As discussed in the 

2018 FDA guidance on the clinical trial endpoints for the approval of oncology 

drugs and biologics, the determination of outcome measure will be based on the 

specific disease and is highly dependent upon factors such as effect size and 

duration, the number of complete responses, other available therapy, the 

disease location and setting, the clinical consequences of delaying or preventing 

disease progression or delaying administration of more toxic therapies, and the 

risk-benefit relationship.  Table 3.1 summarises some of the advantages and 

disadvantages associated with a selection of key endpoints (PFS, PFS at a 
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certain timepoint, objective response rate (ORR) and overall survival) often used 

in phase 2 oncology studies.   

Endpoint Advantages Disadvantages 

PFS  

(hazard ratio) 

1. Likely leads to earlier decisions than  

overall survival studies. 

2. Likely smaller sample size than 

overall survival studies. 

3. Typically objectively and 

quantitatively assessed. 

4. Includes stable disease in the 

assessment. 

1. Potential for assessment and 

ascertainment bias. 

2. Definitions vary between studies 

3. May not always correlate with 

overall survival. 

PFS Rate at 

certain 

timepoint 

1. As PFS above. 

2. Likely leads to earlier decisions than 

PFS studies. 

1. As PFS above. 

2. Doesn’t factor in the entire PFS 

curve, so excludes information. 

3. Likely not an approvable 

endpoint. 

ORR 1. Leads to earlier decisions than OS 

studies.  

2. Typically smaller sample size than 

OS studies. 

3. Effect on tumor is attributable to 

drug and not natural history. 

4. Typically objectively and 

quantitatively assessed. 

1. Definitions vary between studies. 

2. May not correlate to overall 

survival. 

3. Tumor measurements may be 

imprecise in certain locations where 

there is a lack of demarcated 

margins. 

OS 1. Easily, objectively and precisely 

measured. 

1. Generally requires larger sample 

size than other oncology endpoints.  

2. Requires long follow-up.  

3. May be impacted by treatment 

switching post progression. 

  

Table 3.1: Advantages and Disadvantages of Select Oncology Endpoints 
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As described in Section 3.1.1, while the uncertainty in the relationship is 

captured through the modelling process it is implicitly assumed that the selected 

phase 2 outcome measure will be a reasonable predictor of the phase 3 

outcome measure.  The choice of endpoint should have good biological 

plausibility, with its prognostic value supported by evidence from prior 

epidemiological data or clinical trials. 

Once the outcome measures are defined, the relevant data are then 

systematically abstracted from the published literature and synthesized using 

standard meta-analytical techniques.  If the data abstraction was first performed 

at the phase 2 design stage, the data should be updated in preparation for the 

EOP2 meeting to ensure that any new information is incorporated into the EOP2 

decision. Given a large part of the EOP2 decision revolves around predicting the 

treatment difference in the phase 3 study from the treatment difference 

observed in the phase 2, the focus is placed on the development of a statistical 

(usually meta-regression) model to relate the treatment differences seen with 

the phase 2 outcome measure to treatment differences seen with the phase 3 

outcome measure.  This relationship forms part of the prior knowledge required 

for the statistical model used for predicting the probability of success in phase 3 

described in stage 2.   

In many situations where the phase 2 and phase 3 outcome measures are 

different, e.g., phase 2 studies may use short term intermediate outcome 

measures, rather than the longer-term outcome measures needed for regulatory 

approval, using meta-regression to investigate their relationship provides an 
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understanding of how good the outcome measure selected for phase 2 may be 

at predicting the phase 3 outcome measure.  Determining this relationship, from 

completed studies where both the phase 2 and phase 3 outcome measures 

have been collected, on the relative treatment effect scale is particularly 

valuable.  This enables the development of a model for estimating phase 3 

outcome measure differences from any given fixed value for the phase 2 

outcome measure difference.  For example, assuming the relationship is linear 

and passes through the origin, the model to be fitted is: 

𝜇௜ ൌ  𝛽𝑧௜   (1) 

where 𝜇௜ is the true phase 3 outcome measure treatment difference in the ith 

study, 𝑧௜ is the phase 2 outcome measure treatment difference in the ith study, 

and 𝛽 the slope of the regression line.   

It should also be noted that the functional form of the model does not have to be 

linear or forced through the origin.  In many scientific situations it may often be 

expected to choose a model that is forced through the origin.  In the context of 

relating a treatment difference in phase 2 outcome measure to a phase 3 

measure this would imply that no change in the phase 2 measure equates to no 

change in the phase 3 measure.  However, as with any model it is simply a 

matter of choosing a functional form that makes sense.  If the treatment 

differences are believed to be dependent upon certain important prognostic 

characteristics of the studies included in the meta-analysis, the above model 

may be further expanded to include the prognostic characteristics as trial level 

covariates.  For example: 
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𝜇௜ ൌ  𝛼𝑃௜ ൅ 𝛽𝑧௜ 

where 𝜇௜ is the true treatment difference in the phase 3 outcome measure in the 

ith study, 𝑃௜ is the prevalence of a key prognostic factor in the ith study, 𝑧௜ is the 

phase 2 outcome measure treatment difference in the ith study. 

The meta-data consist of k study estimates of phase 3 outcome measure 

treatment differences, 𝜗መ௜, with variance 𝜀௜
ଶ (i=1 to k).  To utilize a random effect 

model, we assume 𝜗መ௜ is normally distributed with mean 𝜇௜, such that: 

𝜗መ௜~ 𝑁ሺ𝜇௜, 𝜀௜
ଶ 

ሻ, 𝑖 ൌ 1 𝑡𝑜 𝑘.            

and that 𝜇௜ is itself a realisation of a normally distributed random variable 

reflecting that the true effect might differ from study to study with variance 𝜏ଶ, 

such that: 

𝜇௜~ 𝑁ሺ𝜑௜, 𝜏ଶሻ         

In my application of this method a bayesian approach is taken where 𝛽 and 𝜏 

are considered as hyperparameters with independent prior distributions.  A non-

informative prior N(0,104) is given to 𝛽.  Lambert, Sutton, Burton, Abrams and 

Jones (2005) and Spiegelhalter et al (2004) highlight the importance of carefully 

selecting the prior for 𝜏.  The choice of prior for 𝜏 should be made following a 

review of the data, and sensitivity analyses conducted using a range of realistic 

vague prior distributions.  For the pancreatic cancer example described later we 

selected a uniform (0,2) prior.   
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The posterior distributions for 𝛽 and 𝜏 can be approximated using Markov Chain 

Monte Carlo (MCMC) methods.  

While the use of meta regression to determine the relationship between the 

phase 2 and phase 3 outcome measures on the relative treatment effect scale is 

clearly valuable, there are a number of potential limitations to consider when 

applying the methodology.  

 The sample size needs to be sufficient.  Where estimation methods are 

based upon asymptotical assumptions they can easily be biased when the 

sample size is small.  It is recommended that meta-regression should 

generally not be considered when there are fewer than ten studies 

available (Higgins et al, Cochrane handbook 2019).    

 Published papers may not always measure or appropriately report the 

information on covariates needed for the model, preventing the 

opportunity to appropriately adjust for confounding.  Additionally, even if 

the number of studies is moderately large and the information on 

confounders is present the characteristics of the studies may be 

correlated leading to problems of collinearity.  

 When applying meta-regression it should be noted that the while the 

association discovered may be real, it could also be driven by 

unmeasured confounders or other differences between selected studies. 

 Literature reviews are suspectable to publication bias.  Moreover, as 

discussed in the pancreatic cancer example in Section 3.6, care should be 

taken when including data from conference abstracts and presentations 
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as these can be susceptible to change.  Whilst the choice to use these 

data for internal decision making is the sponsors risk it is recommended 

that sensitivity analyses are performed to explore the impact on the 

results and decisions. 

 Meta regression uses the individual study as the unit of observation. 

There is however no logical imperative that the association seen at the 

study level reflects the association at the individual patient level, or vice 

versa (the ecological fallacy).  It is therefore important to note that the 

association observed at the trial level should not be considered in the 

management of an individual patient (Korn 2005). 

 Conventional random effects methods ignore the imprecision in the 

between-trial variance estimate.  In the modelling described, a bayesian 

approach using a vague prior is adopted to account for the imprecision. 

While this is preferable in principle, especially when the number of trials is 

small or when the between-trial variance is estimated as zero, the 

resulting widening of the predicted confidence intervals may still be rather 

slight in practice. 

 The model described assumes that the relationship between the treatment 

differences for the phase 2 and phase 3 outcome measures, determined 

from the systematic review, will apply to the new drug being tested.  It is 

therefore recommended that sensitivity analyses are performed to assess 

how robust predictions are for departures from this relationship.  The most 

practical way of doing this will be to split the data by subgroups.  For 
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example, if data permit, relationship may be determined from selected 

studies on treatments with similar modes of action to the investigational 

drug.    

3.3. STAGE 2: Statistical Model for Predicting the Probability 

of Success (PoS) in Phase 3 

Prior to investing in a large costly phase 3 programme, it is important for 

pharmaceutical decision makers to understand the probability of success in the 

proposed phase 3 study.  After completing the relevant data abstraction in 

accordance with the core questions described in Section 3.2, and conducting 

the meta-regression to determine the relationship between the treatment 

difference in the phase 2 and 3 outcome measures, the next step described 

herein is to synthesise the data collected into a model that enables the 

probability of success in a future frequentist phase 3 study to be calculated.  

The definition of success may of course differ depending upon the objectives of 

the phase 3 study.  In general, this is likely to be the probability of achieving a 

favourable statistically significant efficacy result from an appropriate statistical 

test designed to reject, or not, the null-hypothesis of no difference between 

treatments, on the primary phase 3 outcome measure at the conventional 5% 2-

sided level of significance.  

A general overview of the statistical model used to estimate the PoS of the 

compound is provided in Figure 3.1.  The model synthesises the following 

information: 
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 The relationships between phase 2 and phase 3 study outcome measures 

(on the relative treatment difference scale).  

 The influence of prognostic factors on the relationship.  

 The observed treatment difference for the phase 2 outcome measure in 

the phase 2 study.  

 A range of prior opinions of key decision makers for the treatment 

difference in the phase 2 outcome measure. 

 Knowledge of the proposed phase 3 study design. 

 

Ph: Phase; trt: treatment; RCT: Randomized Controlled Trial; PoS: probability of success. 

Figure 3.1 Statistical Model for Predicting the Probability of Success in 

Phase 3 
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A predominantly bayesian approach is used to the perform the prediction as 

described in the following 4 steps. 

Step 1: The first step in the process is to obtain the phase 2 study results.  The 

observed (or simulated) treatment difference in the phase 2 outcome measure 

may be expressed as: 

𝑑~ 𝑁ሺ𝛿, 𝜎ௗ
ଶሻ           ሺ2ሻ 

where 𝑑 is the observed treatment difference,  𝜎ௗ
ଶ is the observed variance of 

the treatment difference, and 𝛿 is the true treatment difference in the phase 2 

outcome measure.  

Step 2: A range of prior statistical distributions for the phase 2 outcome 

measure treatment difference reflecting differing opinions of key decision 

makers is elicited.  Following Spiegelhalter, Freedman and Palmer (1993), the 

following three priors were chosen for δ: 

 A non-informative prior distribution δ~ Nሺδ୬, σ୬
ଶሻ  

 An optimistic prior opinion δ~ Nሺδ୭, σ୭
ଶሻ 

 A sceptical opinion δ~ Nሺδୱ, σୱ
ଶሻ. 

When combined with the observed phase 2 data, these priors lead to the 

development of reasonable bounds of evidence for the PoS in phase 3, as 

described in Step 3.  Taking the prior belief of key decision makers into account 

was an important component in the successful implementation of this 

framework.  In addition to using the observed evidence, the ability to state at the 
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EOP2 meeting that the PoS in phase 3 is still above a certain value taking the 

point of view of the most sceptical decision maker, or that the PoS is still below 

a certain value, taking into account the view of the optimist decision maker, 

brings valuable perspective to the go / no-go discussions.  These priors are 

combined with the results from equation 2 to obtain a range of posterior 

statistical distributions for the treatment difference in terms of the phase 2 

outcome measure which are given by:   

𝒑𝒋൫𝜹𝒋ห𝒅൯ ൌ  𝑵
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where j = n, o, s (representing the non-informative, optimistic and sceptical 

distributions).  It is assumed that each of these posterior distributions can be 

represented by the following notation, where the parameter 𝑑୨ଶ represents the 

posterior distribution of the phase 2 outcome measure treatment difference at 

the end of phase 2, distributed with mean 𝛶୨ and variance 𝜎୨ୢଶ
ଶ : 

𝑑୨ଶ~ 𝑁൫𝛶 ୨, 𝜎୨ୢଶ
ଶ ൯ (3) 

Step 3: The distribution of our expected phase 2 outcome measure treatment 

differences (equation 3) and the relationship between the treatment differences 

for phase 2 and phase 3 outcome measures determined using meta-regression 

from the systematic review (equation 1) are now used to form distributions for 

the phase 3 outcome measure treatment difference.  This is constructed using 

MCMC simulations as follows: 
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 Sample a value 𝑑୨ଶ
(n) from the distribution 𝑑୨ଶ  (equation 3) and pass the 

result through the meta-regression model derived in Section 3.2 to 

determine the predicted phase 3 outcome measure treatment difference 

at the end of phase 2, represented by 𝑑୨ଶଷ
(n) ൌ 𝛽. 𝑑୨ଶ

(n).  Here, β is the 

slope from the random effects meta-regression considered to be normally 

distributed with mean b and variance 𝜎ୠ
ଶ, that is β ~ 𝑁(b, 𝜎ୠ

ଶሻ.   

 The process is repeated (n) times, ensuring the uncertainty in the phase 2 

outcome measure treatment difference is incorporated, to estimate the 

posterior predicted distribution of the phase 3 outcome measure treatment 

difference at the end of phase 2.  This is represented by:   

𝑑୨ଶଷ~ 𝑁൫𝜇୨ , 𝜎୨ଶଷ
ଶ ൯ 

In this bayesian approach,  three different prior distributions for the phase 2 

treatment difference (representing sceptical, optimistic and non-informative 

opinions of key decision makers) are used to form three different predictive 

distributions for the phase 3 outcome measure treatment difference.  If the 

relative treatment differences are believed to be dependent upon certain 

important prognostic characteristics of the studies included in the meta-analysis, 

then the model for the relationship between phase 2 and 3 outcome measures 

should also include the prognostic characteristics as trial level covariates.  The 

predictive distributions of the phase 3 outcome measure treatment difference 

may then be estimated from the relationship by predicting the response for the 

planned characteristics of the phase 3 study.   
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Step 4: The range of predictive distributions for the phase 3 outcome measure 

treatment differences are used to simulate the results of the proposed phase 3 

study design and estimate the PoS for the future frequentist phase 3 study.  The 

earlier inclusion of sceptical and optimistic priors leads to the development of 

reasonable bounds of belief for the PoS.   

The phase 3 study design parameters considered include the required level of 

statistical significance, the desired size of the treatment difference (which is 

based purely on the minimum clinically and commercially desirable effect, and 

not the posterior predicted distribution of the phase 3 outcome measure 

calculated in step 3), variance and the trial sample size.   

The PoS may be determined by again using MCMC simulation.  Assuming the 

predictive distributions for the phase 3 outcome measure treatment differences 

found in step 3 are normally distributed 𝑑୨ଶଷ~ 𝑁൫𝜇୨, 𝜎୨ଶଷ
ଶ ൯, and the future phase 3 

data are normally distributed 𝑋ଷ~ 𝑁 ቀ𝑑୨ଶଷ 
, 𝜎ଷ

ଶቁ then: 

1. Sample a value for the phase 3 treatment difference, dj23(n) from the 

posterior distribution in step 3. 

2. Sample a value 𝑋ଷ
(n) given 𝑑୨ଶଷ

(n). 

3. Calculate the confidence interval for 𝑋ଷ
(n) and determine whether this 

represents a favourable statistically significant result. 
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4. Repeat (n) times and determine the proportion of statistically significant 

outcomes.   

In addition to simulating the PoS, this approach can be extended to simulate the 

probability of observing a particular outcome in the phase 3 trial; that is, the 

probability P(X3 > y) that the phase 3 treatment difference is greater than a 

selected value (y) of interest.   

3.4. STAGE 3: Informing the PoS Threshold for a Go or No-Go 

Decision 

Section 3.3 focused on the calculation of the PoS in a future phase 3 study at 

the end of phase 2.  In this section, methodology is presented that is designed 

to support the risk-informed selection of a PoS threshold.  Determining a PoS 

threshold is a critical part of the decision making process because the following 

question will need to be answered by the sponsor/funder:  

“What magnitude of PoS (PoS threshold) should I be looking for to make a 

go decision?”  

The PoS threshold therefore represents the minimum acceptable PoS that 

would lead to a ‘commit to phase 3’ decision.  The selection of such a threshold 

will be specific to a funder/sponsor and their current portfolio.  Factors including 

the unmet need of patients with a particular disease, the current financial state 

of the business, and the potential return on investment will determine if 

decisions makers will take more or less risk, and thereby select a higher or 
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lower PoS threshold.  These considerations are further emphasised in Crisp 

(2018).  Crisp also highlights that decision makers should not make the mistake 

of thinking they must seek to change the underlying study assumptions to force 

the assurance to be high.  It may be useful instead to act on a low assurance 

estimate by considering options for futility interims, or in extreme cases, 

considering whether the study should actually go ahead.   

Due to the important of this decision it should be risk informed.  In this section, a 

simulation approach developed to support the risk informed selection of the PoS 

threshold is presented.  The methodology developed focuses on simulating the 

following risks based on different ‘PoS commit to phase 3’ decision thresholds 

and hypothetical truths for the treatment difference in the phase 3 outcome 

measure:  

 The probability of making a go decision and failing phase 3  

 The probability of making a go decision and achieving success in phase 3.  

It should be noted that while this methodology requires details of the phase 2 

and 3 designs, it does not require the observed phase 2 results and, therefore 

importantly, can be done ahead of time in preparation for the end of phase 2 

meeting.  The range of hypothetical truths over which the simulations are 

conducted span the EOP2 predicted posterior distributions of the phase 3 

outcome measures (sceptical, optimistic and uninformative). Moreover, they 

should also include the ‘no treatment’ effect and the ‘minimum commercially 

viable’ treatment effect.      



Page 79 of 198 
 

The steps taken are as follows: 

1. Select a hypothetical truth for the treatment difference, 𝑋, for the phase 3 

outcome measure.   

2. Calculate the corresponding treatment difference in the phase 2 outcome 

measure by utilizing the relationship between the treatment differences in 

phase 2 outcome measure and phase 3 outcome measure, 𝛿 ൌ  X/𝛽. 

3. In accordance with the phase 2 study design, sample a value for the 

phase 2 treatment difference, 𝑑(n), in the phase 2 outcome measure 

assuming  𝑑~ 𝑁ሺ𝛿, 𝜎ௗ
ଶሻ.   

4. Follow Stage 2 and calculate the predicted PoS in the planned future 

frequentist phase 3 study selected to ensure the study has a fixed power 

(e.g. 80 or 90%) to detect the minimum clinical and commercially 

desirable treatment difference.  

5. Repeat n times. 

6. For any given PoS go / no-go threshold calculate the proportion of 

simulations resulting in go and no-go decision.  This is the probability of 

making a go p(Go) or no-go P(No-go) decision. 

7. For the selected frequentist phase 3 study calculate the probability that it 

results in a statistically significant phase 3 outcome, P(P3+ve), for the 

selected hypothetical truth.  P(P3+ve) therefore represents the true PoS 

of the phase 3 study.  

8. Calculate the probability of making a go decision at the EOP2 and being 

successful in phase 3 as P(Go+ve) = P(Go)*P(P3+ve).   
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9. Calculate the probability of making a go decision and failing in phase 3 as 

P(Go-ve) = P(Go)*(1-P(P3+ve)). 

10. Repeat for a range of hypothetical truths for the treatment difference in the 

phase 3 outcome measure and PoS go / no-go criteria.  Plot the P(Go+ve) 

and P(Go-ve) against the hypothetic truths for each PoS criteria.  The 

sponsor may then select a criterion which meets the risks they are willing 

to take. It should also be noted that reasonable bounds of belief for 

P(Go+ve) and P(Go-ve) can be generated through the incorporation the 

sceptical and optimistic priors into step 4 above.    

An example in the pancreatic cancer indication is shown in Section 3.6.3. 

3.5. Further Optimising the Design of the Phase 2 and 3 

Studies 

The methodology presented to predict the PoS in Section 3.3 assumes that the 

phase 2 results have already been observed.  While it may be more usual that 

the process begins after the phase 2 study has already started or been 

completed, ideally the first step would begin prior to starting phase 2.  A range 

of plausible treatment differences for the phase 2 outcome measure can be 

simulated and in turn used to evaluate the PoS for the planned phase 3 study.  

Repeating this process using different design options for the phase 2 and 3 

design can be used to optimize the development strategy around the PoS in 

phase 3 for a particular indication. 
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The approach can also help to decide among different development strategies 

for a specific indication.  For example, strategy A could be to conduct a small 

phase 2 study and begin a phase 3 study but with an early futility analysis.  

Strategy B could be to conduct an interim analysis within a phase 2 study with a 

possible decision to begin the phase 3 study immediately, or wait until 

completion of the phase 2 study to decide on beginning a phase 3 study.  Using 

the process to produce phase 3 predictions and EOP2 decisions in simulations 

for therapies that have a range of efficacy could be used to decide the best 

strategy.  In some instances, it may be that only minimal phase 2 evidence will 

be enough to make an adequate decision, whereas other instances may require 

much larger phase 2 studies.   

3.6. Worked Example: Predicting The PoS In Pancreatic 

Cancer 

A worked example of predicting the probability of success is now presented in a 

pancreatic cancer study.  Gemcitabine is indicated for use in the first-line 

treatment of advanced pancreatic cancer and is the most commonly used 

treatment in this setting.  Here we assume it is being used as the control group 

for a randomized phase 2 study, and is planned to be used for a future phase 3 

study.  The primary outcome measure being used in the phase 2 study is 

progression free survival (PFS), a short-term outcome measure for the phase 3 

regulatory outcome measure, overall survival (OS).  The EOP2 decision is 

based upon treatment differences expressed in terms of hazard ratios.  We 



Page 82 of 198 
 

focus on predicting the distribution for the OS hazard ratio in a planned phase 3 

study from the distribution of the PFS hazard ratio observed in phase 2.  The 

modelling is performed on the log hazard ratio scale to allow the use of the 

normal distribution and is transposed back onto the hazard ratio scale for 

presentation purposes.  The presence of metastases and Eastern Cooperative 

Oncology Group (ECOG) performance status are both considered to be 

prognostic factors for OS.  The phase 2 study is being conducted in a 100% 

metastatic patient population with an ECOG performance status of 0 or 1 at 

randomization.  In this example, the PoS in a future phase 3 study reflects the 

probability of rejecting the null hypothesis that the log OS hazard ratio (HR) =0 

(in favour of the experimental treatment) at a 2-sided 5% level of significance.   

3.6.1. STAGE 1: Systematic Literature Review and Data 

Abstraction 

A thorough systematic literature review was conducted by Antony Sabin to 

identify all published randomized pancreatic cancer trials over the period from 

2000 - 2012 in which gemcitabine was used alone or in combination with other 

therapies.   

The specific objectives of the search were:  

 To understand the progression-free survival and overall survival of 

subjects treated with gemcitabine alone  

 To understand the relationship between the hazard ratio for progression 

free survival and the hazard ratio for overall survival  
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 To understand the distribution of treatment effects seen with other 

experimental drugs in combination with gemcitabine over gemcitabine 

alone.     

Studies included in the literature review were identified using the following 

criteria: 

 All randomized controlled comparative studies that were published in 

English in year 2000 or later, in which gemcitabine was used either alone 

or in combination with other therapies 

 Adult patients (≥ 18 years of age) with locally advanced or metastatic 

pancreatic cancer 

 Interventions of gemcitabine alone or gemcitabine-based combination 

chemotherapy 

 First-line treatment for pancreatic cancer 

 Outcome measures of overall survival (OS) data included in the report. 

Studies to be excluded from the literature review were identified using the 

following criteria: 

 Studies where patients were given concurrent radiotherapy or local 

regional modalities such as surgery, which might have influenced survival 

 Cross over studies where the assessment of survival times was impaired 

 Non randomized study 

 Studies published in a language other than English 

 Studies where information on patient survival times was not available.  
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Studies were identified by targeting MEDLINE, EMBASE, the American Society 

of Clinical Oncology web site, published meta-analyses and the internal 

knowledge of Amgen’s clinical and regulatory groups.  The following search 

terms were used to select the literature in MEDLINE and EMBASE: 

 (Advanced or metastatic or unresectable) and  

(pancreatic and gemcitabine) and random* 

 Year of publication 2000 to current date 

 Remove duplicate information. 

Once a final list had been determined the data were systematically abstracted 

from the literature and independently quality checked by statisticians Antony 

Sabin and Sarah Bray.  The selected literature references can be found in 

Annex A and the associated data abstracted can be found at Annex C 

respectively. 

In total forty-three studies were selected for detailed analysis.  The methods in 

Tierney, Stewart, Ghersi, Burdett and Sydes (2007) were used to estimate the 

median survival, hazard ratio and their associated standard errors for the PFS 

and OS outcome measures.  Data that were relevant to predicting the 

gemcitabine control group PFS and OS, the relationship between median PFS 

and median OS, the relationship between the PFS hazard ratio and the OS 

hazard ratio, and the pattern of treatment differences seen with important study 

level covariates were synthesized.  It should be noted that data from 7 of the 43 

studies (Cheverton 2004, Kindler 2007, Loehr 2009, Philip 2007, Riess 2005 & 

2010, Viret 2004) were obtained from conference abstracts or publications. As 
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results obtained from conference abstracts and publications have the potential 

to change, a decision needs to be made regarding the inclusion of such data in 

the modelling.  In the pancreatic example the data was included, but in order to 

alleviate concerns regarding the inclusion of such data in the meta regression 

sensitivity analyses were conducted excluding these studies from the analysis. 

The results of the sensitivity analysis are shown in Table’s 3.3 and 3.4.  

Key facts learned from this step pertinent to predicting the PoS included: 

 Plots of the OS hazard ratio against the study level characteristics 

percentage of metastatic subjects (Figure 3.2), and percentage of ECOG 

0/1 subjects (Figure 3.3) showed there to be a wide range of values for 

the percentage of metastatic subjects and percentage of subjects with 

ECOG=0/1 where positive treatment effects have been shown.  Moreover, 

there is no range of values where a treatment effect has not been shown 

and no evidence of association between these study-level covariates and 

outcome. 

 There is a strong association between the PFS hazard ratio and the OS 

hazard ratio (Figure 3.4). 
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Figure 3.2: Plot of the OS Hazard Ratio against the Percentage of 

Metastatic Patients

Figure 3.3: Plot of the OS Hazard Ratio against the Percentage of ECOG 

0/1 Patients 



Page 87 of 198 
 

3.6.2.  STAGE 2: Statistical Model for Predicting the PoS in 

Phase 3 

Step 1: Table 3.2 below presents an example assuming that the PFS HR 

observed in phase 2 is 0.8 (log PFS HR=-0.223, with variance 0.05).  This 

represents a phase 2 study comparing a new treatment with gemcitabine 

analysed after 80 subjects have experienced a PFS event.  

 

 Sceptical Non-Informative Optimistic 

Mean SE Mean SE Mean SE 

Prior PFS log HR  0 0.217 0 10 -0.357 0.344 

Observed Ph 2 
PFS log HR 

-0.223 0.224 -0.223 0.224 -0.223 0.224 

Posterior PFS log 
HR 

-0.108 0.156 -0.223 0.225 -0.263 0.188 

Predicted Ph 2 
OS log HR

-0.074 0.112 -0.152 0.158 -0.180 0.136 

Probability of Ph 
3 Success

0.198 0.395 0.447 

 
Table 3.2: Estimating the Probability of Success with a Phase 2 PFS 

Result (HR=0.8) 
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Step 2: Three prior distributions for the log PFS hazard ratio were elicited 

from key decision makers to represent non-informative 𝑁ሺ0 , 10 
ଶሻ, sceptical 

𝑁ሺ0 , 0.2168 
ଶሻ, and optimistic 𝑁ሺെ0.357, 0.3441 

ଶሻ prior opinions.  The 

sceptical distribution reflects the opinion that the new treatment shows on 

average no benefit in PFS time relative to gemcitabine, but there is a 5% 

chance that the new treatment is better than gemcitabine with a hazard ratio 

≤0.70.  The optimistic distribution represents an average hazard ratio of 

0.70, with a 15% chance that the new treatment is no better than control, i.e., 

a hazard ratio ≥ 1.  Each of these distributions are then combined with the 

observed phase 2 results to obtain a range of posterior estimates for the 

PFS log HR (Table 3.2).   

Step 3: The relationship between the PFS hazard ratio and OS hazard ratio 

using the systematically abstracted data were investigated using bayesian 

meta-regression (Figure 3.4 below).  Each point on Figure 3.4 represents the 

results of one completed study, from which both the PFS hazard ratio and 

corresponding OS hazard ratio were abstracted.  In this example we apply a 

no-intercept model forcing the regression through the origin.  The potential 

for publication bias was minimized by including all randomized phase 2 and 

3 studies in the model.  Sensitivity analysis excluding the small earlier phase 

studies from the analysis was conducted and showed the small studies to 

have little impact on the parameter estimates.  Also, given no evidence of 

association between the percentage of metastatic patients or percentage of 
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ECOG 0/1 patients, and the PFS log HR or OS log HR was observed, the 

selected model did not include these factors as study-level covariates. 

 

Axes are back transposed from a linear regression between OS log(HR) and PFS 
log(HR)  
The diameter of the circles is inversely proportional to the SE of the OS log(HR) for 
each published study. 

 
Plot shows the predicted mean and 95% CI of a new study for fixed PFS hazard ratios.   

 
Figure 3.4: Random effects Meta-Regression for OS Hazard Ratio from 

PFS Hazard Ratio 

Step 4: In this example it is assumed that the sample size for the frequentist 

phase 3 study requires 380 deaths to enable 80% power to detect an OS 

hazard of 0.75 or less with a statistical significance level of 0.05 (5%).  In this 

step, the predictive distributions for the log OS HR are calculated and used to 

simulate the results of the proposed phase 3 study design, which in turn can be 

used to determine the probability of different patterns of study results, including 

the PoS.   
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Axes are back transposed from a linear regression between OS log(HR) and PFS log(HR)  
The diameter of the circles is inversely proportional to the SE of the OS log(HR). 
Plot shows the OS HR posterior predicted mean and 95% CrI assuming a phase 2 study with 80 
observed PFS events and a non-informative prior for the PFS log HR. 

Figure 3.5: Posterior Predicted OS Hazard Ratio with a Non-Informative 
Prior 

 

Table 3.2 above completes the example determining the PoS for the planned 

phase 3 study assuming an observed phase 2 PFS hazard ratio of 0.8.  Each of 

the posterior distributions for the phase 2 outcome measure (PFS log HR) are 

synthesized with the meta-regression to estimate the predictive distribution for 

the phase 3 outcome measure treatment difference, i.e., the OS log HR (Table 

3.2 above).  Within this step the meta-regression shown in Figure 3.4 is 

extended to ensure the uncertainty in the phase 2 outcome measure, PFS log 

HR, is incorporated.  An example including the non-informative prior is shown in 
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Figure 3.5, which shows the posterior predicted OS HR, assuming that the PFS 

HR from a phase 2 study to be analysed after 80 PFS events are observed is 

unknown at this stage.   

The sceptical and optimistic priors can be viewed as providing reasonable 

bounds of belief for the estimated PoS.  Assuming we observe a PFS HR=0.8 in 

our phase 2 study we can conclude a PoS in phase 3 ranging from 19.8% to 

44.7% depending on the prior belief.  Figure 3.6 below expands on the example 

to show the estimated PoS across a range of potentially observed phase 2 PFS 

hazard ratios and prior distributions.  It can be seen that a PoS of at least 60% 

in phase 3 would require the phase 2 PFS hazard ratio to be 0.7 or lower, with a 

non- informative or optimistic prior belief.  Note that the lines for optimistic and 

uninformative prior will naturally cross at the point where the observed phase 2 

results become more favourable than the optimistic prior.   
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Figure 3.6 Probability of Success in a Phase 3 Study Analysed after 380 

Deaths 

3.6.2.1: Sensitivity Analysis  
 

Seven of the 43 studies (Cheverton 2004, Kindler 2007, Loehr 2009, Philip 

2007, Riess 2005 & 2010, Viret 2004) were obtained from conference abstracts 

or publications.  In order to alleviate concerns regarding the inclusion of such 

data in the meta regression sensitivity analyses were conducted excluding these 

studies from the analysis.  

Additionally, a more recent meta-analysis of pancreatic cancer was published by 

Makris (2017).  A sensitivity analysis was conducted using all of the data from 

this meta-analysis to check for consistency with the data published in Sabin 
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(2014).  The results of these sensitivity analyses are shown in Table 3.3 and 

Table 3.4. 

Parameter Mean SD 95% CI 

 

All studies 

Slope 0.688 0.083 (0.526,0.848) 

Random effects 𝜏 0.023 0.018 (0.001, 0.065) 

 

Sensitivity excluding conference abstracts and presentation 

Slope 0.701 0.084 (0.539,0.868) 

Random effects 𝜏 0.025 0.019 (<0.001, 0.071) 

    

Sensitivity using the meta-analysis of Makris(2017)  

Slope 0.658 0.093 (0.474, 0.840) 

Random effects 𝜏 0.031 0.024 (0.001, 0.087) 

 

Table 3.3: Sensitivity analysis of the meta regression relating the 

PFS Log HR to OS Log HR 

The results showed the exclusion of the data from the conference abstracts and 

presentations led to a very small increase in the slope and between study 

variance. The slope increased from 0.688 when including all studies to 0.701. 

(Table 3.3)  This translates into a 0.4%, 0.9% and 1.9% increase when 
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incorporating the sceptical, non-informative and optimistic priors into the 

predicted PoS at the end of phase 3 (Table 3.4). 

The results using the meta-analysis by Makris (2017) showed a small reduction 

in slope and increase in the between study variance.  The slope decreased from 

0.688 to 0.658 (Table 3.3).  This translates into a 1.0%, 1.3% and 1.4% 

decrease when incorporating the sceptical, non-informative and optimistic priors 

into the predicted PoS at the end of phase 3 (Table 3.4).   

As discussed in Section 3.2, the choice of prior for the between study standard 

deviation, 𝜏, should be subjected to sensitivity analyses using a range of 

realistic vague prior distributions.  For the pancreatic cancer the range of vague 

prior distributions explored included a uniform (0,2) on 𝜏, a uniform (0,0.6) on 𝜏, 

a half normal, and a Gamma (0.001,0.001) on 1/ 𝜏2.  The results are shown in 

Table 3.5. 

The results of the sensitivity analyses for the choice of prior with the between 

study standard deviation, 𝜏, were found to be highly consistent with the 

uniform(0,2) prior selected in the pancreatic model, providing reassurance on 

the robustness of the results. 
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 Sceptical Non-Informative Optimistic 

Mean SE Mean SE Mean SE 

Original Analyses 

Prior PFS log HR  0 0.217 0 10 -0.357 0.344 

Observed Ph 2 
PFS log HR 

-0.223 0.224 -0.223 0.224 -0.223 0.224 

Posterior PFS log 
HR 

-0.108 0.156 -0.223 0.225 -0.263 0.188 

Predicted Ph 2 
OS log HR

-0.074 0.112 -0.152 0.158 -0.180 0.136 

Probability of Ph 
3 Success

0.198  0.395  0.447  

 

Sensitivity excluding conference abstracts and presentation 

Prior PFS log HR  0 0.217 0 10 -0.357 0.344 

Observed Ph 2 
PFS log HR 

-0.223 0.224 -0.223 0.224 -0.223 0.224 

Posterior PFS log 
HR 

-0.108 0.156 -0.223 0.225 -0.263 0.188 

Predicted Ph 2 
OS log HR

-0.075 0.113 -0.156 0.161 -0.188 0.138 

Probability of Ph 
3 Success

0.202 0.404 0.466 

 

Sensitivity using the meta-analysis of Makris(2017) 

Prior PFS log HR  0 0.217 0 10 -0.357 0.344 

Observed Ph 2 
PFS log HR 

-0.223 0.224 -0.223 0.224 -0.223 0.224 

Posterior PFS log 
HR 

-0.108 0.156 -0.223 0.225 -0.263 0.188 

Predicted Ph 2 
OS log HR

-0.070 0.109 -0.146 0.155 -0.174 0.131 

Probability of Ph 
3 Success

0.188 0.382 0.433 

 

Table 3.4: Sensitivity Analyses estimating the Probability of 

Success with a Phase 2 PFS Result (HR=0.8)  
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Parameter Mean SD 95% CI 

 

Uniform (0,2) on 𝝉  

Slope 0.688 0.083 (0.526,0.848) 

Random effects 𝜏 0.023 0.018 (0.001, 0.065) 

 

Sensitivity analysis using a Uniform (0,0.6) prior on 𝝉 

Slope 0.683 0.070 (0.529,0.836) 

Random effects 𝜏 0.023 0.017 (<0.001, 0.065) 

    

Sensitivity analysis using a Half Normal (0,1) prior on 𝝉 

Slope 0.687 0.078 (0.530,0.836) 

Random effects 𝜏 0.022 0.017 (<0.001, 0.064) 

    

Sensitivity analysis using a Gamma(0.001,0.001) prior on 1/ 𝝉2 

Slope 0.684 0.078 (0.527,0.834) 

Random effects 𝜏 0.020 0.014 (0.004, 0.055) 

 

Table 3.5: Sensitivity analysis of the meta regression relating the 

PFS Log HR to OS Log HR to the choice of prior for 𝝉 
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3.6.3.   STAGE 3: Informing the PoS Threshold for a Go or No-Go 

Decision 

In order to guide the sponsor organisation on the choice of PoS criteria to use to 

make a go/no-go decision for the pancreatic indication, the probability of making 

a go decision and failing phase 3, and a go decision and being successful in 

phase 3 was simulated using different PoS commit to phase 3 decision criteria 

(ranging between 0.1 and 0.8), and hypothetical truths for the treatment 

difference in the phase 3 outcome measure (a hazard ratio ranging between 0.5 

and 1) for a selection of different development strategies.  The different 

strategies explored in this example include the use of different phase 2 sample 

sizes ranging from a total of 40 to 320 subjects, followed by a phase 3 study 

with either 80% (Figure 3.7) or 90% (Figure 3.8) power to detect a minimum 

clinically and commercially desirable OS hazard of 0.75 with a statistical 

significance level of 0.05 (5%).  Figures 3.7 and 3.8 (below) show the results 

with a non-informative prior for the phase 2 outcome measure treatment 

difference.  As described in Section 3.3, reasonable bounds of belief for each 

scenario shown can also be generated by incorporating sceptical and optimistic 

priors.  The plots down the left-hand side of each figure show the probability of 

making an EOP2 go decision but failing the subsequent phase 3 study.  The 

plots down the right-hand side of each figure show the probability of making an 

EOP2 go decision and being successful in the subsequent phase 3 study.  Each 

row of plots utilises different PoS thresholds for the go to phase 3 decision 

criteria.   
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Table 3.6 below summarizes the results shown in the figures for select PoS 

thresholds, true treatment differences in the phase 3 outcome measure, phase 2 

sample sizes and choice of phase 3 power. 

 
Table 3.6: Select PoS Operating Characteristics for Pancreatic Cancer 

PoS 
Threshold 

True 
OS 
HR 

Pred. 
Ph.2 

PFS HR

Ph. 2 
Sample 

Size

Ph. 3 
Study 
Power

Probability 
of Go (%) 

Probability 
of Go+ve 

(%) 

Probability 
Go-ve  

(%)
0.7 1.0 1.0 80 80 2.4 0.1 2.3 

 1.0 1.0 80 90 3.4 0.1 3.3
 0.86 0.8 80 80 14.8 4.9 9.9
 0.86 0.8 80 90 21.8 9.2 12.6
 0.75 0.66 80 80 46.4 37.8 8.6 
 0.75 0.66 80 90 55.8 50.8 5.0 
 0.62 0.5 80 80 87.2 87.0 0.2 
 0.62 0.5 80 90 90.4 90.4 0.0
 0.53 0.4 80 80 98.2 98.2 0.0
 0.53 0.4 80 90 99.8 98.8 0.0 
        

0.6 1.0 1.0 80 80 4.4 0.1 4.3 
 1.0 1.0 80 90 6.2 0.2 6.0
 0.86 0.8 80 80 26.4 8.7 17.7
 0.86 0.8 80 90 32.6 13.7 18.9
 0.75 0.66 80 80 61.8 50.3 11.5 
 0.75 0.66 80 90 69.8 63.5 6.3 
 0.62 0.5 80 80 93.2 92.9 0.3 
 0.62 0.5 80 90 95.0 95.0 0.0
 0.53 0.4 80 80 99.2 99.2 0.0
 0.53 0.4 80 90 99.2 99.2 0.0 
        

0.5 1.0 1.0 80 80 8.0 0.2 7.8 
 1.0 1.0 80 90 10.6 0.3 10.3 
 0.86 0.8 80 80 37.4 12.4 25.0
 0.86 0.8 80 90 44.6 18.8 25.8
 0.75 0.66 80 80 73.2 59.6 13.6 
 0.75 0.66 80 90 78.2 71.1 7.1 
 0.62 0.5 80 80 96.2 95.9 0.3 
 0.62 0.5 80 90 97.4 97.4 0.0
 0.53 0.4 80 80 99.6 99.6 0.0
 0.53 0.4 80 90 99.6 99.6 0.0
        

0.7 1.0 1.0 160 80 0.2 0.0 0.2 
 1.0 1.0 160 90 1.2 0.0 1.2
 0.86 0.8 160 80 10.0 3.3 6.7
 0.86 0.8 160 90 17.6 7.4 10.2
 0.75 0.66 160 80 53.0 43.2 9.8 
 0.75 0.66 160 90 66.4 60.4 6.0 
 0.62 0.5 160 80 96.2 95.9 0.3 
 0.62 0.5 160 90 98.0 98.0 0.0
 0.53 0.4 160 80 99.8 99.8 0.0
 0.53 0.4 160 90 100 100 0.0
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PoS 
Threshold 

True 
OS 
HR 

Pred. 
Ph.2 

PFS HR 

Ph. 2 
Sample 

Size 

Ph. 3 
Study 
Power 

Probability 
of Go (%) 

Probability 
of Go+ve 

(%) 

Probability 
Go-ve  

(%) 
0.6 1.0 1.0 160 80 1.8 0.0 1.8 

 1.0 1.0 160 90 2.5 0.0 2.5
 0.86 0.8 160 80 20.2 6.7 13.5
 0.86 0.8 160 90 29.2 12.3 16.9
 0.75 0.66 160 80 69.8 56.8 13.0 
 0.75 0.66 160 90 77.8 70.8 7.0 
 0.62 0.5 160 80 98.2 97.9 0.3 
 0.62 0.5 160 90 99.2 99.2 0.0
 0.53 0.4 160 80 100 100 0.0
 0.53 0.4 160 90 100 100 0.0 
        

0.5 1.0 1.0 160 80 2.8 0.0 2.7 
 1.0 1.0 160 90 4.5 0.0 4.5
 0.86 0.8 160 80 32.6 10.8 21.8
 0.86 0.8 160 90 42.4 17.8 24.6
 0.75 0.66 160 80 79.6 64.8 14.8 
 0.75 0.66 160 90 85.4 77.7 7.7 
 0.62 0.5 160 80 99.2 98.9 0.3 
 0.62 0.5 160 90 99.4 99.4 0.0
 0.53 0.4 160 80 100 100 0.0
 0.53 0.4 160 90 100 100 0.0 
        

0.7 1.0 1.0 240 80 0.0 0.0 0.0 
 1.0 1.0 240 90 0.2 0.0 0.2
 0.86 0.8 240 80 6.6 2.2 4.4
 0.86 0.8 240 90 13.2 5.6 7.6
 0.75 0.66 240 80 56.6 46.1 10.5 
 0.75 0.66 240 90 72.6 66.0 6.6 
 0.62 0.5 240 80 98.6 98.3 0.3 
 0.62 0.5 240 90 99.2 99.2 0.0
 0.53 0.4 240 80 100 100 0.0
 0.53 0.4 240 90 100 100 0.0
        

0.6 1.0 1.0 240 80 0.2 0.0 0.2 
 1.0 1.0 240 90 1.0 0.0 1.0 
 0.86 0.8 240 80 16.2 5.4 10.8 
 0.86 0.8 240 90 26.8 11.3 15.5 
 0.75 0.66 240 80 73.4 59.8 13.6 
 0.75 0.66 240 90 82.2 74.8 7.4 
 0.62 0.5 240 80 99.2 98.9 0.3 
 0.62 0.5 240 90 99.8 99.8 0.0
 0.53 0.4 240 80 100 100 0.0
 0.53 0.4 240 90 100 100 0.0
        

0.5 1.0 1.0 240 80 1.4 0.0 1.4 
 1.0 1.0 240 90 2.4 0.0 2.4
 0.86 0.8 240 80 29.2 9.7 19.5
 0.86 0.8 240 90 41.0 17.2 23.8
 0.75 0.66 240 80 84.2 68.6 15.6 
 0.75 0.66 240 90 89.2 81.1 8.1 
 0.62 0.5 240 80 99.8 99.5 0.3 
 0.62 0.5 240 90 100 100 0.0
 0.53 0.4 240 80 100 100 0.0
 0.53 0.4 240 90 100 100 0.0
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The development strategy used throughout this example was to use 80 subjects 

in total (40/arm) in phase 2, followed by a phase 3 study with 80% power.  Here 

we learn that if the drug has a minimal clinically and commercially desirable 

beneficial effect (OS HR=0.75), then when using a threshold for the PoS of 0.6, 

there is a 61.8% chance of making a correct EOP2 go decision, but with a 

11.5% chance of making this decision and subsequently failing in the phase 3 

study.  If a PoS threshold of 0.5 is selected, there is a 73.2% chance of making 

a correct EOP2 go decision, with a 13.6% chance of making this decision and 

subsequently failing in the phase 3 study.  Similarly, when selecting a PoS 

threshold of 0.7, there is a 46.4% chance of making a correct EOP2 go decision, 

with a 8.6% chance of making this decision and subsequently failing in the 

phase 3 study.  

If the drug has no benefit (OS HR=1.0), when using threshold for the PoS of 0.7, 

0.6, or 0.5 there is a 2.4%, 4.4% and 8% chance of making an incorrect EOP2 

go decision.  Similarly, if the drug has a marginal but not clinically meaningful 

effect (OS HR=0.86), when using threshold for the PoS of 0.7, 0.6, or 0.5 there 

is a 14.8%, 26.4% and 37.4% chance of making an incorrect EOP2 go decision. 

Moreover, there is a corresponding 4.9%, 8.7% and 12.4% chance of the phase 

3 still being successful potentially resulting in the future population of patients 

receiving a drug with a poor benefit risk.     

Other noteworthy points from Table 3.6 include: 

 Assuming a true clinically meaningful OS HR of 0.75, as the size of the 

Phase 2 study increases from 80 (40/arm) to 160 the probability of making 
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a go decision increases by approximately 9-10% (depending upon choice 

of threshold).  The magnitude of increase is not so marked when including 

a further 80 patients to a total of 240 with the probability of making a go 

decision increasing by another 4-6%.  

 Over the range of scenario’s presented in Table 3.6, assuming a true HR 

of 0.75 and utilizing a phase 3 study with 90% power as opposed to 80% 

increases the probability of a go and being successful between 12.1 to 

20%, and decreases the probability of a go and failing by 3.6 to 7.5% 

 The lower the PoS threshold the greater the probability of making a go 

decision.  From the patient perspective keeping this probability low when 

there is no true benefit of the drug (HR=1) is vital.  We see this probability 

is between 2.4% and 10.6%, 0.2% and 4.5%, and 0.0% and 2.4% for the 

various design options and thresholds with 80, 160 and 240 subjects 

respectively in phase 2. 

 The lower the PoS threshold the greater the probability of making a go 

decision followed by subsequent phase 3 failure.  From purely the 

sponsor perspective of avoiding failed phase 3 studies, keeping this 

probability low is important.  When there is no true benefit of the drug  

(HR=1), this probability is between 2.3% to 10.3%, 0.2% to 4.5%, and 0% 

to 2.4% for the various design and threshold options with 80, 160, and 

240 subjects respectively in phase 2.  
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 Importantly the probability of making a go decision followed by a 

successful phase 3 trial when in truth there is no benefit of the drug is 

negligible <0.3% for all scenarios on Table 3.6.   

As discussed in Section 3.5, sponsor companies can therefore use this 

approach to trade off the respective probabilities to ensure an appropriate PoS 

threshold is selected to balance the risks they are willing to take with the costs 

and resource utilisation associated with various development strategies.  A 

review of the PoS values for 63 completed phase 3 studies spanning the 

oncology, respiratory and Cardiovascular portfolio that started during or after 

2015 at AstraZeneca in presented in Section 3.10.  Here we learn that the 

average predicted PoS of the phase 3 trials undertaken was 61.4%, with 82% of 

trials subsequently successful if the PoS was ≥. 61.4%.  
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Figure 3.7: Informing the PoS Threshold for a Decision to conduct an 80% 
powered Phase 3 Study 
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Figure 3.7 (cont.): Informing the PoS Threshold for a Decision to conduct 
an 80% powered Phase 3 Study 
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Figure 3.8: Informing the PoS Threshold for a Decision to conduct a 90% 
powered Phase 3 Study 

 

 



Page 106 of 198 
 

Figure 3.8 (cont): Informing the PoS Threshold for a Decision to conduct a 

90% powered Phase 3 Study 
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3.7. Methodology Extension: Incorporation of a Variance 

Inflation Factor for the Treatment Difference in the Phase 2 

Outcome Measure 

When interpreting the observed results from a phase 2 study, decision makers 

will carefully investigate the robustness of the phase 2 evidence provided.  One 

area of evaluation will focus on the similarity of the observed phase 2 control 

response with that which was expected from prior knowledge.  The motivation 

behind the methodology presented in this section is to explore methods to build 

additional uncertainty into the phase 2 treatment difference distribution for the 

phase 2 outcome measure as the observed control departed from the prior 

expected result.  This uncertainty would then pass through into the PoS 

modelling. 

As part of the systematic review in step 1, a prior for the control group response 

in the absolute phase 2 outcome measure may be estimated using meta-

regression by predicting the response for the observed characteristics of the 

phase 2 study.  At the EOP2 meeting, after completing the phase 2 study, this 

prior will be compared to the actual observed control group response in the 

phase 2 study.  If the observed response is similar to the prior then there will be 

support for using the observed treatment difference from the phase 2 study to 

predict the phase 3 outcome.  If the control group response is not as expected, 

this may cast doubt on the validity of using the treatment difference observed in 

the phase 2 study for prediction purposes.  Instead of using the control prior as 
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an external assessment of the trial’s robustness, exploring alternative 

approaches to synthesize a prior for the control group response with the control 

arm in the phase 2 study may be useful.   

One natural option to this is to assume that the control arms from the studies 

selected in the systematic review are compatible with the new phase 2 study 

control group data.  Then, assuming the phase 2 study is comparative, a 

posterior expected treatment difference in the phase 2 outcome measure is 

calculated after initially combining the prior and phase 2 study control results 

together.  If the phase 2 is randomized, such an approach would however break 

the randomization and potentially introduce bias.   

An alternative innovative approach would be to take the view that the observed 

treatment difference seen in the randomized phase 2 study is the best unbiased 

estimate available, whilst inflating the variance of the phase 2 treatment 

difference as the observed phase 2 control group response departs from the 

expected.  Such an approach acts as a quality index for the phase 2 study and 

may help to discount early optimistic phase 2 results (Kirby, Burke, Chuang-

Stein and Sin, 2012). 

Following discussions Antony Sabin had with the drug development decision 

makers whilst working at Amgen, a generalized approach (which constrains the 

variance inflation to a maximum of 2-fold) was to be considered as an optional 

extension and useful sensitivity analysis of the base methodology.  
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Assuming the observed (or simulated) treatment difference in the phase 2 

outcome measure may be expressed as: 

𝑑~ 𝑁ሺ𝛿, 𝜎ௗ
ଶሻ            

Then, the predicted distribution of the treatment difference in the phase 2 

outcome measure including the uncertainty due to differences between the 

observed and expected result for the control arm is: 

𝑑ଶ~ 𝑁ሺ𝛿, Ѵ𝜎ଶ
ଶሻ            

with Ѵ, the variance inflation factor equal to 

Ѵ ൌ 2 െ 𝑒
ሺ
ି൫ௗ೓

మ൯
ଶఙ೓

మ ሻ
 

where 𝑑௛ is the difference between the mean expected (or historical) and the 

observed control group response, and  𝜎௛
ଶ is the variance of the difference.   

The variance inflation factor was determined as follows: 

1. Calculate the probability density function for the PFS log HR comparing 

the observed control PFS hazard rate to the expected hazard rate.   

1

𝜎௛ √2𝜋
  𝑒

ሺ
ି൫ௗ೓

మ൯
ଶఙ೓

మ ሻ
 

2. Calculate the probability density function for the PFS log HR comparing 

the observed control PFS hazard rate to the expected hazard rate, 

assuming no difference.   
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1

𝜎௛ √2𝜋
  𝑒

ሺ
ିሺ଴ሻ
ଶఙ೓

మ ሻ
 

3. Take the ratio of the two density functions and constrain to a maximum 

inflation of 2. 

Ѵ ൌ 2 െ 𝑒
ሺ
ି൫ௗ೓

మ൯
ଶఙ೓

మ ሻ
 

Here it is assumed that the variance of the expected control group response is 

weighted equally to the observed control arm of the phase 2 study, implying the 

strength of information provided in the result of the external control data is equal 

to that determined from the phase 2 study.   

Alternative choices of weighting for the expected control could be applied.  The 

choice of weight will require judgement around the exchangeability assumption, 

i.e., the extent to which the historical control information can be considered 

contemporaneous to the data generated in the phase 2 study (Spiegelhalter, 

Abrams, Myles, 2004).   

Incorporating this into the worked example from pancreatic cancer and 

assuming: 

 The hazard function observed from R0 PFS events in phase 2 for 

gemcitabine is λo, where R0=40 and λo=0.173 (an observed median PFS 

of 4 months) 

 An expected median PFS for gemcitabine of 3.7 months based upon 

historical evidence weighted equally to the R0 PFS events.  With the 
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added assumption of exponential survival times this equates to a hazard 

function of: 

λe = 0.187     (Log2 / med PFS) 

Then the log(hazard ratio), 𝑑௛  = log(λo/λe)=log(0.925), with variance 𝜎௛
ଶ = (R0 + 

R0)/(R0
2) = 0.05, and the corresponding variance inflation factor = 1.06. 

The following plot (Figure 3.9 below) expands this scenario to highlight the 

variance inflation factor for a range of potential PFS log hazard ratios comparing 

the expected and the observed result in the control arm of the phase 2 study for 

a selection of phase 2 sample sizes. 

 

Figure 3.9: Variance Inflation factor by Log PFS HR 

 

 



Page 112 of 198 
 

Figure 3.10 investigates the impact of the variance inflation factor on the 

predicted phase 3 results for the pancreatic example.  It is assumed the median 

PFS is 4 months in the phase 2 control arm (N=40), while the historical 

expected estimate ranged from 2 to 8 months (log PFS HR ranging from -0.69 

to 0.69).  As used in Section 3.6.2 the phase 3 trial is designed to have 80% 

power to detect an OS hazard ratio of 0.75.  In this example observed phase 2 

PFS HR’s (comparing test with control) of 0.5 and 0.8 are explored. 

 

Figure 3.10: Assessing the impact of the Inflation Factor on PoS 

As shown in Figure 3.10, in the scenario where the observed phase 2 PFS HR 

was 0.5 (leading to a predicted phase 3 OS HR of 0.61, stronger than the 

targeted phase 3 HR of 0.75), the variance inflation factor reduced the PoS from 

91.7% down to 86%, as the difference between the observed and expected 

control log PFS HR moved away from 0 (no difference) towards -0.69 (HR=0.5) 
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or 0.69 (HR=2).  In the scenario where the observed phase 2 PFS HR was 0.8 

(leading to a predicted phase 3 OS HR of 0.86, worse than the targeted phase 3 

HR of 0.75), the variance inflation factor moved the PoS up from 39.5% to 42% 

as the difference between the observed and expected control log PFS HR 

moved away from 0 (no difference) towards -0.69 (HR=0.5) or 0.69 (HR=2).   

The implication of using this variance inflation factor approach is that additional 

uncertainty is incorporated into the posterior predicted phase 3 outcome 

measure.  This has the consequence of reducing confidence in being successful 

or failing and thereby moving the PoS closer towards 50%.  Assuming trials with 

a higher PoS (e.g. >60%) are selected to move forward in phase 3, this 

approach may help to discount early optimistic phase 2 results. 

3.8. Additional Examples of Predicting the PoS through a 

Meta-Regression Modelling Approach 

In this section additional examples following the meta analytical approach to 

determine the PoS outlined in Section 3.6.2 are presented.  These complement 

the examples shown for pancreatic cancer in Section 3.6.2 and the breast 

cancer indication (Wang 2013). 

An example using advanced gastric cancer: 

In this example a randomised phase 3 study comparing olaparib in combination 

with paclitaxel versus paclitaxel alone in Asian patients with advanced gastric 

cancer was planned.  The study was designed with two primary populations in 
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mind (all overall population, and a biomarker subgroup left unspecified at the 

study onset).  The unspecified subgroup was to be defined and pre-specified 

during the course of the study prior to the interim analysis, and selected based 

upon efficacy data generated outside of the study and the estimated prevalence 

from patients recruited into the trial.  Due to the uncertainty in the subgroup the 

test mass (alpha spending) was split with 4% assigned to the all-comers 

population and 1% to the subgroup.  The primary endpoint required for 

regulatory approval in this setting was overall survival.     

 

Figure 3.11 : Relationship between PFS and OS Hazard Ratio’s in 
Advanced Gastric Cancer 

The study was sized (500 patients with a 1:1 randomisation, with the primary 

analysis occurring after 353 deaths) to have had 90% power to detect a HR of 

0.7 at a significance level of 4% in the intent to treat population.  A single interim 

analysis for futility (both populations) and superiority (overall population) was 
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included at an information fraction of 50%.  Prior data from a randomised phase 

2 study (N=62/arm) conducted purely in Korea that compared the test drug in 

combination with paclitaxel with paclitaxel was available to support the decision 

to invest in phase 3.  The phase 2 study had enriched for the biomarker effect.  

In order to adjust the result to the expected prevalence in the ITT population of 

the planned phase 3 study a weighted progression free survival hazard ratio 

was calculated.  This was found to be 0.87 (95% CI 0.54 to 1.39, 110/122 PFS 

events).  Some data on overall survival was also available, with the weighted 

OS hazard ratio found to be 0.69 (95% CI 0.41 to 1.17, 80/122 OS events).  

In order to develop the PoS, the PFS HR and OS HR data from the meta-

analysis and validation studies published in Paoletti (2013) were abstracted and 

a meta regression conducted to determine the relationship between PFS HR 

and OS HR (Figure 3.11). 

Following the approach detailed in Section 3.6.2, passing the phase 2 PFS HR 

through the meta regression resulted in a phase 3 prior distribution for OS HR to 

be 0.95 (95% CI 0.638, 1.337), which in turn translates to a low PoS in the 

planned phase 3 study of 23%. 

Due to the discrepancy between the OS and PFS findings in the phase 2 study 

the PoS was also calculated from the OS data.  The discrepancy in results also 

led to a decision to include more scepticism in the predicted PoS for OS.  A 

decision to add an additional 0.15 to the OS HR result was made by the project 
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team (i.e., an assumed HR of 0.84).  The resulting PoS in the planned phase 3 

study is then calculated to be 44%. 

Although the PoS was low, a decision was made to still conduct the phase 3 

study.  The treatment of advanced gastric cancer, in second and later lines in 

particular, was considered to represent a high unmet medical need with poor 

outcomes and toxic treatments, and therefore a significant development and 

market opportunity with relatively low market entry and access hurdles 

compared to other areas.  Moreover, the addition of olaparib to paclitaxel had 

been shown to have a manageable and predictable tolerability profile in phase 2 

and a signal of efficacy in overall survival.  However, the resulting phase 3 study 

was not successful.  It resulted in an observed OS HR of 0.795 (95% CI 0.63, 

1.00) and a median improvement of 1.9 months.  Similarly, the secondary PFS 

endpoint resulted in a HR of 0.837 (95% CI 0.67, 1.04). 

An example using soft tissue sarcoma: 

In this example the PoS of a randomised phase 3 study comparing olaratumab 

in combination with doxorubicin versus doxorubicin alone in patients with 

advanced soft tissue sarcoma is determined.  The phase 3 study was designed 

with two primary populations in mind (all overall population, and a 

Leiomyosarcoma subgroup).  The test mass (alpha spending) was split with 4% 

assigned to the all-comers population and 1% to the subgroup.  The primary 

endpoint required for regulatory approval in this setting is overall survival.  The 

study was sized (460 patients with a 1:1 randomisation, with the primary 
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analysis occurring after 322 deaths) to have had 80% power to detect a HR of 

0.723 at a significance level of 4% in the intent to treat population. 

Prior data from a randomised phase 2 study (Tap, 2016) comparing olaratumab 

in combination with doxorubicin with doxorubicin was available to support the 

decision to invest in phase 3.  The estimated progression free survival hazard 

ratio was 0.67 (95% CI 0.442 to 1.021).  Some data on overall survival was also 

available.  The OS hazard ratio found to be 0.46 (95% CI 0.301 to 0.710), which 

when comparing against the expected relative strength of the PFS and OS 

results seen in historical data was inconsistent to expectations.  

 

Figure 3.12 : Relationship between PFS and OS Hazard Ratio’s in 
Advanced Soft Tissue Sarcoma 
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In order to develop the PoS, the PFS HR and OS HR data from the meta-

analysis published in Tanaka (2019) were selected, and a meta regression 

conducted to determine the relationship between PFS HR and OS HR (Figure 

3.12). 

Following the approach detailed in Section 3.6.2, passing the phase 2 PFS HR 

through the meta regression resulted in a phase 3 prior distribution for OS HR to 

be 0.81 (95% CI 0.562, 1.06), which in turn translates to a PoS in the planned 

phase 3 study of 49.8%.  The phase 3 study was not successful with an 

observed OS HR of 1.05 (95% CI 0.841, 1.303). 

An example for Non-Small Cell Lung Cancer 

In this example the PoS of a randomized phase 3 study in NSCLC comparing 

conatumumab in combination with carboplatin and paclitaxel against carboplatin 

and paclitaxel alone is established.  The planned phase 3 study had 90% power 

(randomized 1:1 with the primary analysis after 844 events) to detect a clinically 

meaningful OS hazard ratio of 0.8 at the 2-sided 5% level of significance.  Prior 

data from a randomised phase 2 study (Paz-Ares, 2013) comparing 

conatumumab in combination with carboplatin and paclitaxel against carboplatin 

and paclitaxel alone was available to support the decision to invest in phase 3. 

The estimated progression free survival hazard ratio from the phase 2 study 

was 0.84 (95% CI 0.57 to 1.24) in the 3mg/kg conatumumab dose and 0.93 

(95% CI 0.64, 1.35) at the 15mg/kg dose. 
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In order to develop the PoS, a relationship between the PFS HR and the OS HR 

a systematic review was performed at the sponsor company.  A meta regression 

was then conducted using the abstracted data.  The parameters from the meta 

regression are shown in Table 3.7.     

Parameter Posterior Distribution 
 Mean SD 95% Interval 

Intercept 0.014 0.020 (-0.025, 0.053) 
Slope 0.592 0.118 (0.362, 0.824) 

Random effects, ꚍ 0.031 0.022 (0.001, 0.083) 
 
Table 3.7 Relationship between log HR (OS) and log HR (PFS) in NSCLC  
 

The analysis indicates that the OS log(HR) = 0.014 + (0.592 x PFS log(HR)).  

Following the approach detailed in Section 3.6.2, passing the phase 2 PFS HR’s 

through the meta regression resulted in a phase 3 prior distribution for OS HR to 

be 0.91 (95% CI 0.69, 1.15) for the 3mg/kg arm and 0.96 (95% CI 0.75, 1.22) for 

the 15mg/kg.  These in turn translate to a PoS in the planned phase 3 study of 

49.3% and 25.7% respectively.  The planned phase 3 study did not go ahead.  

In addition to the pancreatic, gastric, STS and NSCLC examples shown, the 

relationship between the PFS HR and OS HR has been examined in several 

other cancer types (including mBC, mCRC, esophageal, rectal, 1st-line ovarian, 

CRPC, SCLC, advanced neuroendocrine neoplasms) in the literature, which 

greatly facilitates both the use of such a modelling approach to determine the 

PoS in future phase 3 studies and promotes understanding of the confidence 

drug developers have in the choice and interpretability of phase 2 endpoints.     
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3.9. Qualitative Information    

In this section the incorporation of qualitative factors into the decision making 

process is discussed.   

A large portion of the research conducted for this PhD has focused on 

developing a quantitative framework to assess the PoS.  The framework 

developed for the PoS modelling incorporated: 

 The relationships between phase 2 and phase 3 study outcome measures 

(on the relative treatment difference scale) 

 The influence of prognostic factors on the relationship 

 The treatment difference observed for the phase 2 outcome measure in 

the phase 2 study 

 A range of prior opinions of key decision makers for the treatment 

difference in the phase 2 outcome measure 

 Knowledge of the proposed phase 3 study design.   

While this is approach is undoubtably informative, it is predominantly driven 

through an assessment of efficacy.  In practice, there will be additional 

situations and considerations that need to be taken account when making the 

EOP2 decision.  While theoretically such uncertainties could be incorporated in 

the elicited priors, some of the more ‘qualitative’ considerations may not always 

be easily incorporated into the quantitative assessment.  For example, 
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 Uncertainty in the feasibility of the target population being recruited 

 The phase 2 formulation may not have used the final formulation 

 Drug or class specific safety considerations 

 Differences in regulatory expectations across regions. 

In practice it is naturally expected that combining both qualitative and 

quantitative information will lead to the most appropriate decision.  This may be 

achieved through the use of a bayesian model to predict the probability of 

efficacy success, followed by making subsequent modulations upwards or 

downwards depending upon the quantitative assessment of evidence to predict 

the probability of success on phase 3.    

Moreover, in areas such as oncology where drug development times are long, 

there may be limited patent life remaining post the approval in the first 

indication.  In order to expand use into new additional indications prior to the 

patent expiry a decision may be required to initiate a phase 3 study with limited 

or no prior phase 2 data in the target indication or population. 

A proposed approach in the situation where there is very limited or no prior data 

may be to start with a company or industry benchmark for the probability of 

success based upon historical evidence, and then to modulate this upwards or 

downwards according to the strength of evidence actually available in the 

following key areas: 
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 Clinical efficacy (evidence from same/different drug, disease and patient 

population) 

 Clinical safety (evidence from same/different drug, disease and patient 

population) 

 Mode of action and dose choice (e.g. preclinical/clinical evidence linking 

the drug target and the disease, prior dose response data (including 

pharmacokinetic / pharmacodynamic relationships), changes in 

formulation and/or devices used) 

 Risks associated with the phase 3 design (e.g. choice of comparator, 

primary endpoint, expected dropout rate, power and the multiplicity 

strategy adopted) 

 Feasibility of study execution (company experience in recruiting the 

desired population).  

However, as decision making becomes more qualitative, it becomes more 

subjective, less data driven, more inconsistent and less decisive.  When 

following such an approach, care must be taken to ensure consistency in 

modulations across the portfolio so that all new drug candidates are 

evaluated on a level footing.  It should also be noted that the use of a general 

benchmark as a starting point for the PoS has the disadvantage of not being 

directly related to the specific target product profile of a drug. 
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Example use of a Benchmarking approach in 1st-line Ovarian Cancer: 

In this example the primary endpoint of the phase 3 study was PFS.  The 

proposed phase 3 study was designed with a power of 90% to detect a 

hazard ratio of 0.62 (at the 2-sided 5% level, which translates into an 8 month 

benefit in median PFS over 13 months on placebo) in accordance with the 

target product profile.  An overview of the study design in presented in Figure 

3.13.  Patients with gBRCAm 1st-line ovarian cancer who were in complete or 

partial response after platinum based therapy were randomised in a 2:1 ratio 

to either the Test Drug or placebo.  Study treatment continued until 

progression, with the exception of patients with no evidence of disease at the 

2 year point who’s treatment was stopped.  

 

Figure 3.13: Design of a First Line Ovarian Cancer Study 

At the time of initiating the study no prior phase 2 data was available in the 

population treated.  The test drug was however approved in the USA as 
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monotherapy in patients with advanced ovarian cancer and a germline BRCAm 

who have received ≥3 lines of chemotherapy, and also had positive randomised  

Benchmark PoS 65% 

Acceptable safety data available from other studies in other 

tumor types and other lines of ovarian cancer at the selected 

dose level. 

+5% 

Strong evidence available to support the BRCAm scientific 

hypothesis from multiple tumor types and other lines of 

ovarian cancer.  Positive results at the selected dose level in 

other studies. 

+20% 

No chemistry, manufacturing and quality control issues. +0% 

Uncertainty in the median PFS for the control group.  

Uncertainty in the cure rate after platinum-based therapy. 

Uncertainty on the impact of efficacy of stopping the test. 

treatment at 2 years for patients with non-evaluable disease.  

Targeted large magnitude of treatment benefit never 

previously observed in 1st line ovarian cancer setting. 

-30% 

Scientific advise sought from the FDA and EMA and partially 

followed.  FDA had a preference for OS to be the primary 

endpoint, but such a study considered infeasible due to 

timelines. 

-10% 

Final PoS 50% 

Table 3.8: Example benchmarking approach to determine PoS in 1st-line 

Ovarian Cancer 

phase 2 data in patients with platinum-sensitive relapsed ovarian cancer.  The 

internal AstraZeneca benchmark probability of success in phase 3 was set at 
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65% based upon historical experience.  The modulations determined by 

decision makers for this scenario that lead to a final PoS estimate of 50% are 

described in Table 3.8.  It is of interest to note the use of large modulations by 

decision makers, including +20 and -30%, within this example.  While the final 

PoS estimate may of course still be appropriate, such large swings are contrary 

to some of the observations seen through the quantitative approach where wide 

variations in assumptions may only lead to small changes in the PoS.  This 

emphasises the point that care must be taken to ensure consistency in 

qualitative modulations across the portfolio so that all new drug candidates are 

evaluated on a level footing. 

3.10. The Utility of a Bayesian PoS Framework in Practice 

In addition to becoming part of routine practice at Amgen and AstraZeneca, 

Crisp (2018) described how the use of assurance embedded within a 

quantitative bayesian modelling framework as a measure of the PoS has also 

now become routine practice at GlaxoSmithKline across all therapeutic areas. 

The publication by Wang (2013) also highlight that Eli-Lilly have also been 

utilising such an approach to support their development decisions.  As 

highlighted in Section 3.1.1, the underlying choice of bayesian framework used 

varies in accordance with the available evidence. For example in practice not all 

phase 2 studies will be randomised.  Data may need to be synthesised from 

randomised and/or non-randomised cohort studies.  The modelling approaches 

however, all lead to the development of  the posterior distribution for phase 2 

treatment difference in the phase 3 outcome measure for the planned phase 3 
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population.  Some of the key factors influencing the formulation of the  

framework include: 

1. The need to elicit subjective priors versus the availability of empirical 

priors for the treatment effect in the phase 2 and phase 3 outcome 

measures. 

2. The availability of prior data on the active and control treatment from a 

randomised, or non-randomised setting (e.g., a single arm study).  In 

certain circumstances multiple prior studies may also be available to 

combine.  

3. The need and availability of data to establish the relationship between the 

phase 2 and phase 3 study outcome measures.  Where substantial 

historical data is available meta regression may be used to determine the 

relationship as proposed in the model within this PhD.  If not, methods 

such as those proposed by Hong (2012) may be required to be used.  

4. The need and availability of data to adjust for the influence of prognostic 

factors on the relationship between the phase 2 and 3 outcome measures. 

5. The need and availability of data to adjust for changes in population 

studied between phase 2 and phase 3.   

6. Knowledge of the proposed phase 3 study, including the population, 

objectives, choice of control group and design. 

Although the building blocks of bayesian framework may vary depending upon 

the available evidence, the underlying use of such an approach to predict the 
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probability of success in a future phase 3 trial has a number of practical 

advantages: 

1. The estimated PoS is more meaningful than focussing on the power of the 

phase 3 study, as it incorporates current knowledge about the treatment 

effect.  Historically, despite phase 3 studies typically being powered at the 

90% level, as described in section 2, the observed phase 3 success rates 

across all therapeutic areas have been much lower than this.  This 

inconsistency highlights that power is not a good measure of PoS.  To 

clarify further, this does not imply that a power calculation is inappropriate 

to use for the design of studies, however it should not be misinterpreted 

as a surrogate for the probability of success of the trial. 

2. The assumptions that are driving the calculated PoS are transparent to all. 

The process of empirically determining or eliciting these assumptions can 

lead to important refinements in the phase 3 study design and objectives.  

For example, the relationship between PoS and sample size can be 

assessed such that an optimal sample size can be identified to balance 

risks and cost.   

3. Each new treatment entering phase 3 will have an associated target 

product profile that define both the minimum and desirable clinical effect 

size required for commercialisation.  Through the modelling, the 

probability of achieving these clinically meaningful effect sizes is explicitly 

characterised in advance. 
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Figure 3.14 highlights the PoS values for 63 completed phase 3 studies 

spanning the oncology, respiratory and Cardiovascular portfolio that started  

during or after 2015 at AstraZeneca.   A bayesian modelling framework to 

predict the probability of success was used in 39/63 (62%) of cases.  A 

benchmarking approach such as that described in Section 3.9 was taken in 

24/63 (38%) of cases.  Table 3.9 provides some basic summary statistics of the 

predicted PoS for the completed phase 3 studies by the methodology used to 

determine the PoS and the ultimate outcome of the phase 3 study. 

It is evident from Figure 3.14 and Table 3.9. that those studies with a higher 

 

Figure 3.14: Predicted PoS by Methodology and Phase 3 Outcome 
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predicted PoS are more likely to lead to a positive outcome in the phase 3 

study.  Over all studies the average PoS that led to initiation of phase 3 studies 

was 61.4%.  Of the studies initiated with a PoS ≥ 61.4%, 82% were successful, 

while only 36% of studies which initiated with a PoS < 61.4% were successful.  

The average PoS for studies that used the bayesian modelling approach was 

71.5% (with 72% of studies being successful in phase 3), while the average PoS 

was 45.6% for the benchmarking (with 50% of studies successful in phase 3).  

The benchmarking approach has generally been used when data is limited to 

enable the formulation of a bayesian model.  This reflects the lower PoS found 

within these studies. Such confounding in this data set limits the ability to draw 

comparisons between the utility of the two approaches. 

Figure 3.11 also highlights that decisions to invest in phase 3 may still be taken 

when the estimated PoS is low.  In addition to the PoS, additional factors 

including the competitor landscape, the cost, the unmet need in patients, and 

commercial opportunity will need to be considered in order to determine if the 

benefits of moving into phase 3 outweigh the risks.  For example, a higher PoS 

may be required to move into a disease area that has well established treatment 

options with less unmet need.  While trials may still go forward with a low PoS, 

through following such a modelling framework they do so with sponsors fully 

informed of the risk.  This knowledge may lead to important risk mitigation 

strategies implemented in the phase 3 study such as the inclusion of interim 

analyses for futility.   
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All Studies N 63 

 Average PoS 61.4% 

 %Successful Phase 3 ≥ 61.4% (31/38) 82% 

 %Successful Phase 3 < 61.4% (9/25) 36% 

PoS through bayesian modelling N  39 

 Average PoS 71.5% 

 %Successful Phase 3 28/39 (72%) 

 %Failed Phase 3 11/39 (28%) 

 % Success with PoS ≥ 70% 20/23 (87%) 

 % Success with PoS ≥ 65% 25/31 (81%) 

 % Success with PoS ≥ 60% 27/34 (79%) 

 % Success with PoS ≥ 50% 27/35 (77%) 

 % Success with PoS < 50% 1/4 (25%) 

PoS through benchmarks N 24 

 Average PoS 45.6% 

 %Successful Phase 3 12/24 (50%) 

 %Failed Phase 3 12/24 (50%) 

 % Success with PoS ≥ 70% 5/5 (100%) 

 % Success with PoS ≥ 65% 5/6 (83%) 

 % Success with PoS ≥ 60% 5/6 (83%) 

 % Success with PoS ≥ 50% 8/11 (73%) 

 % Success with PoS < 50% 4/13 (31%) 

Table 3.9 Summary of PoS in Completed Phase 3 Studies by Methodology 

and Outcome 
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It would also be useful to further break these data down by therapeutic area. 

However, such an evaluation is currently limited by the data provided being 

blinded across studies and therapeutic area.   

 

3.11. Early Predictions of Indirect Treatment Comparisons and 

Treatment Ranking 

The predicted PoS of the future phase trial is no doubt a very important 

component of the EOP2 decision.  However, it is also important for 

sponsors/funders to predict and understand how their new investigational 

treatment is likely to compare with currently marketed and other potential 

treatment options being developed by other companies at the future time that 

the sponsors/funders new investigational drug is scheduled to reach the market.   

To complement the PoS modelling at the EOP2, Section 3.11 therefore expands 

the modelling framework further to incorporate network meta-analysis to enable 

early predictions of indirect treatment comparisons in the phase 3 outcome 

measure and the probability of being highly ranked amongst the treatment 

options that will be available at the time of market approval to be evaluated.  

Moreover, following regulatory approval of a new treatment, applications for 

drug reimbursement need to be made in many different geographical regions.  If 

the treatment is considered to have a significant budget impact on health care 

systems often this will require a form of pharmacoeconomic assessment called 

a Health Technology Appraisal to take place.  Part of this assessment requires 
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making effectiveness or indirect treatment comparisons between treatments not 

already compared in head to head trials.  Therefore, in addition to predicting 

how the new investigational treatment will compare to its competitors, the 

methodology presented in this section also provides results that enable the 

sponsor to perform early pharmacoeconomic assessments of the investigational 

drug and thereby consider the likelihood of reimbursement and the future drug 

costs.  

This methodology therefore greatly complements the modelling of the PoS and 

further supports the EOP2 decision.  Such information could, for example, be 

used to stop the development of an investigational drug prior to investing in a 

costly phase 3 trial where it is unlikely to beat the competitors and become 

profitable.  This could be despite having a high probability of success in a phase 

3 trial designed to show superiority against the currently available standard of 

care.   

No prior literature focussing specifically on developing models to enable early 

predictions (to be used as part of the EoP2 decision) of the expected efficacy of 

the investigational treatment at the end of a successful phase 3 study and how 

this will compare and rank to the current and future successful treatment options 

available for patients was identified as part of the background review.  Within 

this PhD a bayesian re-sampling approach has been used to determine the 

predicted probability that a treatment will rank 1st, 2nd or 3rd.  Additional graphical 

and numerical approaches, including the SUCRA score, that may be used to 
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summarise the results of these treatment ranking probabilities are described in 

Salanti (2011).   

The main challenges of network meta-analysis and the use of indirect 

comparisons associated with evaluating the assumptions underlying the 

statistical synthesis of direct and indirect evidence follow through into the work 

conducted for this PhD.  A comprehensive overview of these assumptions 

including the statistical and nonstatistical methodological considerations are 

discussed in Salanti (2012) and in Chapter 11 of the Cochrane handbook 

(Higgins et al 2011, 2019).          

The methodology is presented in Section 3.11.1 and illustrated in Section 3.11.2 

through extending the pancreatic cancer example introduced in Section 3.6. 

   

3.11.1. Methodology and Framework 

The framework of the bayesian model designed to calculate the indirect 

treatment comparisons and treatment ranking is shown in Figure 3.15.  This 

shows there are four key steps in the process which are fully described below: 

Step 1: Change of Endpoint between Phase 2 and 3 

The relationship between phase 2 and phase 3 study outcome measures (on 

the relative difference scale), the influence of prognostic factors on this 

relationship and the observed treatment difference in the phase 2 outcome 

measure between the test product and the phase 2 control in the phase 2 study  
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Figure 3.15 Statistical Model for Predicting the Indirect Comparisons and 
Treatment Ranking 

 

are initially synthesized to predict the difference in the phase 3 outcome 

measure between the test product and the phase 2 control at the end of phase 

2.  It should be noted that sceptical and optimistic priors for the treatment 

difference in the phase 2 outcome measure could also be included at this stage 

to enable reasonable bounds of belief for the treatment ranking probability to be 

generated.   
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Step 2: Change of Control Arm between Phase 2 and 3 

Due to a changing clinical landscape (e.g., where an alternative new treatment 

option becomes standard of care) a different control group may be required for 

the phase 3 study than used in the phase 2 study.  To allow for this the 

bayesian model synthesizes direct and indirect comparisons of the phase 2 and 

phase 3 control groups in the phase 3 outcome measure with the predicted 

distribution of the difference in the phase 3 outcome measure between the test 

product and the phase 2 control calculated in step 1.  This enables the 

determination of the distribution of the treatment difference in the phase 3 

outcome measure between the investigational product and the chosen phase 3 

control group.   

Step 3: Comparisons of Competitor Treatment Options versus Phase 3 

control  

The predicted distribution of the treatment difference in the phase 3 outcome 

measure between other typical treatment options and the phase 3 control are 

calculated using direct and/or indirect comparisons.   

Step 4: Phase 3 Simulation and Treatment Ranking 

The properties of the planned phase 3 study design are synthesized with the 

phase 2 predicted distribution of the treatment difference in the phase 3 

outcome measure between the test product and the phase 3 control (as 

determined in step 2).  This enables the development of the predictive 



Page 136 of 198 
 

distribution of the treatment difference between the test product and phase 3 

control in phase 3 conditional on achieving a successful phase 3 trial.  We 

require this conditional distribution because in practice a health technology 

appraisal of the test product will not take place unless the phase 3 trial is 

successful.   

Results are concurrently sampled from each of the predicted distributions of the 

treatment difference comparing the various treatment options against the phase 

3 control (step 3) in the phase 3 outcome measure, and the corresponding 

predictive distribution of the test product against the phase 3 control conditional 

on achieving a successful phase 3 trial.  The sampled results are then ranked 

and through repeated sampling the probability of achieving a certain efficacy 

ranking amongst all available treatment options is determined.  Although not 

presented within this PhD, the calculated probabilities can be directly used to 

calculate the SUCRA score for each treatment and used as an alternative way 

to rank the treatments overall (Salanti 2011).  

It should be noted that prior to constructing such a model a thorough systematic 

review of the literature is required to ensure that all appropriate historical trials 

and data are selected to support the decision making process (Moher et al. 

(2009); Higgins (2011, 2019)).  The inappropriate inclusion or exclusion of trials 

will have a direct effect on the quality of decisions made.   
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3.11.2.  Worked Example in Pancreatic Cancer  

To illustrate the methodology, the pancreatic cancer example presented in 

Section 3.6 is extended to enable early predictions of the outcomes of indirect 

comparisons and treatment ranking assuming a successful frequentist phase 3 

study is achieved, using the predictions of phase 3 outcomes at the end of 

phase 2 (Path A in the Figure 3.16 below).  The competitor situation is a key 

component of EOP2 decision making and this approach can be used to quantify 

not only the magnitude of the indirect treatment comparisons, but also their 

levels of uncertainty at the phase 2 stage of the development (path B in Figure 

3.16 below).  

 

Figure 3.16: Planned Network Diagram for Indirect Comparisons of 
Pancreatic Cancer Treatments  

Recall that Gemcitabine is indicated for use in the first-line treatment of 

advanced pancreatic cancer.  At the time of designing the phase 2 study, 
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gemcitabine was considered the most commonly used treatment in this setting 

and hence was used as the control group in a randomized phase 2 study.  The 

phase 2 study was conducted in a 100% metastatic patient population, with this 

also being the target population for phase 3.   

In Section 3.6 we assumed Gemcitabine was also to be the control in the phase 

3 study.  However, whilst conducting the phase 2 study, new treatment options 

became available (abraxane in combination with gemcitabine, and 

FOLFIRINOX).   

It is assumed in this case study that gemcitabine + abraxane combination will be 

selected as the control group for the phase 3 study.  In addition to the 

aforementioned treatment options and in light of advances in clinical practice, 

the treatment options tarceva in combination with gemcitabine, and oxaliplatin in 

combination with gemcitabine (GEMOX) were also incorporated into the 

modelling framework.  In some cases, the published studies for these other 

treatment options were conducted in a mixture of metastatic and locally 

advanced patients.  In these instances, the results in the 100% metastatic 

subgroup were selected to ensure the indirect comparisons were made in our 

target population.   

The primary outcome measure being used in the phase 2 study is again 

assumed to be progression free survival (PFS), commonly used as a short-term 

outcome measure for the phase 3 regulatory outcome measure, overall survival 

(OS).  The EOP2 decision is based upon treatment differences expressed in 
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terms of hazard ratios.  We therefore focus on predicting the distribution for the 

OS hazard ratio of the test treatment versus the gemcitabine plus abraxane 

combination in the 100% metastatic population.  

The ranking of the test treatment against all other treatment options will be 

predicted conditional on achieving a successful phase 3 study, starting from the 

distribution of the PFS hazard ratio (test versus gemcitabine alone) observed in 

phase 2.  The modelling is performed on the log hazard ratio scale to allow the 

use of the normal distribution and is transposed back onto the hazard ratio scale 

for presentation purposes.   

Within the example presented the impact of the choice of statistical framework 

for the phase 3 design (superiority or non-inferiority) on the predicted indirect 

comparisons and treatment rankings is explored.  While in practice non-

inferiority phase 3 designs have rarely been done in oncology, this is included to 

highlight how this modelling approach can help to decide between different 

development strategies.   

In these two frameworks, success in phase 3 is defined as achieving a 

statistically significant result in favour of the test drug (superiority), or that the 

upper limit of the two-sided 95% confidence interval comparing the test drug to 

the control is below the largest acceptable non-inferiority margin (non-

inferiority). 
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3.11.3. Step 1: Change of Endpoint between Phase 2 and 3   

The first step in the process is to predict the distribution of the treatment 

difference relative to the phase 2 control (gemcitabine alone) for the phase 3 

outcome measure (OS HR) in the phase 3 population (100% metastatic) from 

the short-term outcome measure (PFS HR) being used for the end of phase 2 

decision.  In the published data from the systematic literature review described 

in Section 3.6.1 of all published advanced pancreatic cancer randomized trials 

over the period 2000 to 2012 in which gemcitabine was used alone or in 

combination with other therapies (containing a mixture of both metastatic and 

locally advanced patients), where both the phase 2 and phase 3 outcome 

measures had been collected, were used to develop a model for predicting the 

OS HR from the PFS HR in pancreatic cancer.  Here it is assumed our phase 2 

study was conducted in a 100% metastatic patient population with this also 

being the target population for the phase 3 study.   

The regression presented in Section 3.6.2 was therefore extended to 

additionally include a study level covariate for the proportion of metastatic 

patients included in each study, thus enabling the estimation of the posterior 

predicted OS hazard ratio in the 100% metastatic population.   

The model selected was:    𝜇௜ ൌ  𝛼𝑀௜ ൅ 𝛽𝑍௜ 

where 𝜇௜ is the true phase 3 outcome measure treatment difference (OS log HR) 

in the ith study, 𝑀௜ is the proportion of metastatic patients in the ith study, 𝑍௜ is 

the phase 2 outcome measure treatment difference (PFS log HR) in the ith 



Page 141 of 198 
 

study, and 𝛽 is the slope of the regression line.  The meta-data consist of study 

estimates of phase 3 outcome measure (OS log HR) treatment differences, 𝜗መ௜, 

with variance 𝜀௜
ଶ.   

To utilize a random effect model, it is assumed 𝜗መ௜ is normally distributed with 

mean 𝜇௜, such that:  

𝜗መ௜~ 𝑁ሺ𝜇௜, 𝜀௜
ଶ 

ሻ          

and that 𝜇௜ is itself a realisation of a normally distributed random variable such 

that:   

𝜇௜~ 𝑁ሺ𝜑௜, 𝜏ଶሻ         

In the application of this method, a bayesian approach is adopted where α, 𝛽 

and 𝜏 are considered as hyperparameters with independent prior distributions.  

A non-informative prior N(0,104) is given to α and 𝛽, and a uniform (0,2) prior for 

𝜏 (Lambert, Sutton, Burton, Abrams and Jones 2005).  It should be noted that 

the potential for publication bias was minimized by including all randomized 

phase 2 and 3 studies in the model.  Additionally, sensitivity analysis excluding 

the smaller earlier phase studies from the analysis were conducted and showed 

the small studies to have little impact on the parameter estimates.  Figure 3.17 

below presents the results of this modelling, with the predicted mean and the 

95% CI for a new study in 100% metastatic patients represented by the solid 

and dotted black lines respectively.  Also shown (and represented by the 

shaded area) is the posterior predicted 95% CrI for the OS HR in the metastatic 
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population, assuming the phase 2 study had been analysed after observing 80 

PFS events.  Here, the uncertainty in the phase 2 outcome measure is 

incorporated within the MCMC simulation process by assuming the phase 2 

outcome measure (PFS log HR) is a normally distributed random variable.   

 

Axes are back transformed from a linear regression between OS log(HR) and PFS log(HR) 
adjusting for the proportion of metastatic patients.  The diameter of the circles is inversely 
proportional to the SE of the OS log(HR) for each published study.  The solid and dotted lines 
represent the predicted mean and 95% CI of a new phase 2 study for fixed PFS HR’s.  The 
shaded area shows the posterior predicted 95% CrI for the OS HR in the metastatic population, 
assuming a phase 2 study with 80 observed PFS events. 
 

Figure 3.17: Random effects meta-regression for OS HR from PFS 

HR Adjusting for the Proportion of Metastatic Patients 

The first two rows of Table 3.10 below show the results of this modelling 

assuming that a PFS HR of 0.45 was observed in a randomized phase 2 study 

analysed after observing 80 PFS events (40 per treatment arm).  The predicted 
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phase 2 OS HR (95% CrI) comparing test+gemcitabine versus gemcitabine 

alone for this example was 0.57 (0.39 to 0.81).   

3.11.4. Step 2: Change of Control Arm between Phases 2 

and 3 

In step 1, the predicted distribution of the OS log HR comparing the test 

product+gemcitabine versus gemcitabine alone in metastatic patients was 

calculated.  In this next step it is assumed the control group for the future phase 

3 trial will be abraxane+gemcitabine.  It is wished, therefore, to determine the 

predicted distribution of the treatment difference between test+gemcitabine and 

abraxane+gemcitabine.  A phase 3 trial containing a direct comparison of 

abraxane+gemcitabine versus gemcitabine alone within the metastatic 

population (row 3 of Table 3.10) is available for the phase 3 outcome measure 

(OS log HR) from the published literature (Von Hoff, 2013).  

Assuming the distributions of the treatment difference for OS log HR from the 

phase 2 study and the abraxane study are normally distributed, the predicted 

distribution of the indirect treatment difference between test+gemcitabine and 

abraxane+gemcitabine is computed using MCMC as follows: 

1. Sample a value 𝑡ଶ
ሺ௡ሻ, from the distribution for the treatment difference 

between test+gemcitabine and gemcitabine alone 

2. Sample a value 𝑎ଷ
ሺ௡ሻ, from the distribution for the treatment difference 

between abraxane+gemcitabine and gemcitabine alone 

3. Calculate 𝑡ଶ
ሺ௡ሻ െ   𝑎ଷ

ሺ௡ሻ 
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4. Repeat (n) times, to determine the required distribution. 

Continuing with the example in Table 3.10, the predicted OS HR (95% CrI) 

comparing test+gemcitabine versus abraxane+gemcitabine is 0.82 (0.52 to 

1.14).  This is shown in Figure 3.18 and on the log scale in row 4 of Table 3.10. 

 Comparison Mean (HR) SD 

Observed Ph2 PFS log HR Test+Gem vs Gem -0.799 (0.45) 0.224 

Predicted Ph2 OS log HR Test+Gem vs Gem -0.557 (0.57) 0.184 

Observed Ph3 OS log HR Abraxane+Gem vs  Gem  -0.329 (0.72) 0.076 

OS log HR Ind. Comp  Test+Gem vs Abraxane+Gem -0.228 (0.82) 0.220 

OS log HR Ind. Comp GEMOX vs Abraxane+Gem 0.217  (1.24) 0.129 

OS log HR Ind. Comp Folfirinox vs Abraxane+Gem -0.232 (0.79) 0.143 

OS log HR Ind. Comp Tarceva+Gem vs Abraxane+Gem 0.094 (1.10) 0.128 

Superiority PoS in Ph 3 

Prob. Ph3 success and Ranked 1st 

Prob. Ph3 success and Ranked 2nd 

Test+Gem vs Abraxane+Gem 0.583 

0.431 

0.151 

 

Non-Inferiority PoS in Ph 3 

Prob. Ph3 success and Ranked 1st 

Prob. Ph3 success and Ranked 2nd 

Test+Gem vs Abraxane+Gem 0.810 

0.487 

0.312 

 

 

Ind. Comp = indirect comparison; Gem=Gemcitabine; Ph=Phase. 

Table 3.10: Estimating the Ranking Probability for a given phase 2 PFS 

result (HR=0.45 with 80 PFS events) 
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This assumes a PFS HR of 0.45 was observed in a randomized phase 2 study analysed 

after 80 observing PFS events.  Plots are back transformed to the HR scale from the log 

HR scale. 

Figure 3.18: Indirect Comparison of Test+Gemcitabine vs 

abraxane+Gemcitabine for the phase 3 outcome measure (OS HR) at 

the end of phase 2. 

3.11.5. Step 3: Comparisons of Competitor Treatment 

Options versus Phase 3 control 

In addition to the abraxane + gemcitabine combination (the phase 3 control 

group), the other key treatment options identified were FOLFIRINOX, tarceva in 
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combination with gemcitabine, and oxaliplatin in combination with gemcitabine 

(GEMOX).  In this step, (with no direct head to head trials available) we use 

indirect comparisons to determine the distribution of the treatment difference in 

the phase 3 outcome measure between each of these treatment options and the 

abraxane + gemcitabine phase 3 control group.  

 

Figure 3.19: Network diagram enabling the indirect comparisons of 

key treatment options and the phase 3 control group 

These distributions are then used in step 4 to predict the probability of achieving 

a certain efficacy ranking of our test product amongst all of these available 

treatment options.  As no direct head to head trials were available for the 

comparison with the phase 3 control, the indirect comparisons were calculated 

using the published results from randomized phase 3 trials that directly compare 

the various treatment options with the common comparator gemcitabine 
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monotherapy in the metastatic population.  The systematic reviews of pancreatic 

cancer published by Sabin (2014), Hu (2011), Sultana (2008), and key 

references identified for each treatment option in the National Comprehensive 

Cancer Network (NCCN) Version 2.2014 guidelines were used to select the 

studies and develop the required network (Figure 3.19 above). 

The results of the direct comparisons from the selected studies comparing each 

treatment option with gemcitabine in metastatic patients are presented in Table 

3.11.  Assuming each of the OS log HR distributions for the treatment 

differences presented in Table 3.11 (on the OS HR scale) are normally 

distributed, the predicted distribution of the indirect treatment difference 

between each treatment option and the phase 3 control 

(abraxane+gemcitabine) is computed using MCMC as follows: 

1. Sample a value 𝑡𝑜௜
ሺ௡ሻ, from the OS log HR distribution for the treatment 

difference between the ith treatment option (i= Folfirinox, Tarceva and 

GEMOX) and gemcitabine alone. 

2. Sample a value 𝑎ଷ
ሺ௡ሻ, from the distribution for the treatment difference 

between abraxane+gemcitabine and gemcitabine alone. 

3. Calculate 𝑖𝑐௜
ሺ௡ሻ =  𝑡𝑜௜

ሺ௡ሻ െ   𝑎ଷ
ሺ௡ሻ 

4.   Repeat (n) times, to determine the required distributions, 𝑖𝑐௜. 
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The results of these indirect comparisons are presented on the OS log HR scale 

in Table 3.10, rows 5 to 7. 

Study Comparison OS HR (95% CI) 

Conroy 

(2011) 

Folfirinox vs gemcitabine 0.57 (0.45, 0.73) 

Moore (2007) Tarceva + gemcitabine vs 

gemcitabine 

0.79 (0.65, 0.97) 

Louvet (2005) GEMOX vs gemcitabine 0.89 (0.61, 1.10 ) 

Von Hoff 

(2013) 

Abraxane + gemcitabine vs 

gemcitabine 

0.72 (0.62, 0.83) 

 

Table 3.11: Direct comparisons of key treatment options with a common 
comparator (gemcitabine) in the metastatic population 

 

3.11.6. Step 4: Phase 3 Simulation and Treatment Ranking 

In this step we select the predictive distribution of the treatment difference 

between test+gemcitabine and abraxane+gemcitabine in the phase 3 outcome 

determined in step 2.  This is used in conjunction with the properties of the 

proposed phase 3 study to simulate the results of phase 3 and the distributions 

from the indirect comparison of the various treatment options and 

abraxane+gemcitabine (step 3) to predict the probability that the test treatment 

will be successful in phase 3 and ranked either first or second in terms of 

efficacy amongst the various treatment options.  



Page 149 of 198 
 

Within the example we explore two different frameworks for the phase 3 study, 

these being superiority and non-inferiority.  The superiority framework selected 

(test+gemcitabine vs abraxane+gemcitabine) requires 459 deaths to enable 

90% power to detect an OS hazard ratio of 0.74 or less (a 3 month increase in 

median OS from 8.5 to 11.5 months) with a 2-sided statistical significance level 

of 0.05.  The non-inferiority framework was set up following the Rothman (2003) 

95% two-sided confidence interval procedure, assuming that the new phase 3 

study is required to demonstrate that 50% of the active control effect is retained.  

Following this approach and using the phase 3 OS HR (log HR= -0.329, se 

=0.076) results from Von Hoff (2013) comparing abraxane+gemcitabine versus 

gemcitabine, the non-inferiority margin (for test+gemcitabine vs 

abraxane+gemcitabine) was selected to be 1.094 (OS HR scale).  The resulting 

non-inferiority framework selected required 824 deaths to enable 80% power to 

detect the alternative hypothesis that the hazard ratio is 0.9 with a one sided 

2.5% non-inferiority test.  For each design the following steps are then taken: 

 Sample a value, idଶ
ሺ୬ሻ, from the predicted distribution of the OS log HR for 

test+gemcitabine vs abraxane+gemcitabine determined in Step 2 

 Assuming the future phase 3 study OS log HR is normally distributed, 

𝑋ଷ ~𝑁ሺ𝑖𝑑ଶ, 𝜎ଷ
ଶሻ, sample a value, 𝑋ଷ

ሺ௡ሻ, where 𝜎ଷ
ଶ is the variance in the 

respective phase 3 superiority or non-inferiority study 
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 Sample a value, 𝑖𝑐௜
ሺ௡ሻ from each of the OS log HR indirect comparison 

distributions between the ith treatment option and abraxane+gemcitabine 

determined in step 3.  

For the superiority framework, calculate the 2-sided 95% confidence interval for  

𝑋ଷ
ሺ௡ሻ and determine whether this indicates a favourable statistically significant 

result.  Note, through repeating this for (n) simulations, the probability of 

success can also be determined by summarizing the proportion of favourable 

statistically significant results.  If the upper 2-sided 95% CI for exp(𝑋ଷ
ሺ௡ሻ) <1, then 

order the values of 𝑋ଷ
ሺ௡ሻ and  𝑖𝑐௜

ሺ௡ሻ from smallest (rank 1) to largest.  

For the non-inferiority framework, calculate the 2-sided upper 95% confidence 

limit for  𝑋ଷ
ሺ௡ሻ and determine whether exp(𝑋ଷ

ሺ௡ሻሻ is less than the non-inferiority 

margin.  Note, through repeating this for (n) simulations the probability of 

success can be determined by summarizing the proportion of times non-

inferiority was achieved.  If the upper 2-sided 95% CI for exp(𝑋ଷ
ሺ௡ሻ) < 1.094, 

order the values of 𝑋ଷ
ሺ௡ሻ and  𝑖𝑐௜

ሺ௡ሻfrom smallest to largest.  Note, if 𝑋ଷ
ሺ௡ሻ< 1, and 

𝑋ଷ
ሺ௡ሻ ൏ 𝑖𝑐௜

ሺ௡ሻ then the ranking of the test treatment will be 1.  

Repeat this procedure for (n) simulations and summarize the proportion of times 

the test product is ranked 1st or 2nd.  

In summary, the treatment ranking is therefore determined within the MCMC 

simulations by sampling and comparing estimates of the treatment effect from 

the predictive distributions of the OS log HR for test+gemcitabine vs 
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abraxane+gemcitabine in the phase 3 study (assuming the phase 3 trial is 

successful), and the various treatment options vs abraxane+gemcitabine (the 

phase 3 control).  Following the example shown in Table 3.10 through to 

completion we learn that, assuming a PFS HR of 0.45 (comparing a test 

product+gemcitabine to gemcitabine alone) was observed in a randomized 

phase 2 study analysed after observing 80 PFS events (40 per treatment arm) 

and we plan to conduct a superiority phase 3 study as described in Step 4, the 

probability that the trial is successful and the test drug ranked 1st or 2nd for 

efficacy amongst the competitor treatment options for metastatic pancreatic 

cancer is 43.1% and 15.1% respectively (Table 3.10 row 8).  

Similarly, within the non-inferiority framework selected in step 4, these 

probabilities are 48.7% and 31.2% respectively (Table 3.10, row 9).  These 

probabilities implicitly assume the chosen framework is acceptable from a 

regulatory perspective.  For the non-inferiority setting this would likely mean 

there is perceived toxicity or cost-effectiveness benefits and that the efficacy of 

the test drug is not inferior to the reference by ‘too large’ an amount. 

Figure 3.20 further expands on the superiority example highlighting the impact 

of the phase 2 sample size and a range of potential phase 2 PFS HR’s 

comparing the test drug in combination with gemcitabine to gemcitabine alone 

on the probability that the phase 3 trial is successful and the test drug ranked 1st 

amongst the competitor treatment options.   
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Figure 3.20: Probability of Phase 3 Success and Being Ranked First by 
Phase 2 sample size and observed PFS HR 

Some key takeaways from these additional simulations are: 

 The shape of the curve indicates that higher phase 2 sample size leads 

to greater certainty in being ranked first or not.  However, there appears 

to be little extra certainty to be gained from increasing the phase 2 

sample size from 160 to 240 patients. 

 If a small phase 2 sample size is used (N=40, 20/arm), over a selected 

range of potential PFS HR’s the predicted probability of success and 

being ranked first may be up to 10% higher or lower than if a larger 

phase 2 sample size has been used (e.g. 160 or 240). 
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 If the observed phase 2 PFS HR is 0.35 or better the probability of 

success and being ranked 1st will be >70% for all of the sample sizes 

explored. 

 If the observed phase 2 PFS HR is 0.6 or worse the probability of 

success and being ranked 1st ranges from 7 to 18% over the sample 

sizes explored.  It is expected that knowledge of this these probabilities is 

likely to be informative to the EOP2 go/no-go decision.  
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4. DISCUSSION 

This PhD has focussed upon enhancing EOP2 decisions through the 

development of a quantitative process designed to ensure a consistent and 

explicit evidence-based approach is used to inform drug development decisions 

for new drug candidates.  The process has broadly involved: 

 The systematic abstraction of data to support the choice of phase 2 and 3 

study design and population, the determination of the relationship 

between phase 2 and 3 outcome measures, and the understanding of the 

efficacy in competitor drugs. 

 Elicitation of prior belief of the treatment effect in the phase 2 outcome 

measures. 

 The inclusion of a variance inflation factor to incorporate additional 

uncertainty into the phase 2 result as the observed control effect departs 

from the prior expected result.  This approach may also help to discount 

early optimistic phase 2 results.  

 Evaluation of the probability of achieving the required statistical criteria for 

efficacy success (PoS) in a future phase 3 study. 

 Determination of a threshold for probability of success that is indicative of 

a go to phase 3 decision. 

 The incorporation of qualitative factors into the decision making process, 

and the implementation of a PoS framework in the situation where very 

limited or no prior clinical data is available. 
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 Evaluation of how the expected efficacy of the new investigational 

treatment compares and ranks to the current and future treatment options 

available for patients. 

Also highlighted is how the process, if applied prior to phase 2 starting, can be 

used to optimise the drug development program (i.e. the design of the phase 2 

and 3 studies) around the PoS in phase 3 for a particular indication.   

Following the process therefore leads to the creation of a data package that, in 

totality, provides direct evidence on the likelihood of success of the development 

programme, the expected clinical value of the new treatment, and enables the 

optimisation of the overall development strategy.  Moreover, the information 

developed can also be used as inputs to evaluate the pharmacoeconomic value 

of a new treatment.  It therefore contributes widely to the value assessment 

undertaken at the EOP2.   

Evaluating the probability of efficacy success in phase 3 using the quantitative 

methodology outlined in this PhD requires the relationship between treatment 

differences seen using the phase 2 study outcome measure and treatment 

differences seen using the phase 3 outcome measure to be developed from 

prior studies through meta-regression.  It also requires knowledge of how 

prognostic factors could influence the treatment difference.  Utilising the meta 

regression approach requires a sufficient sample size.  Where estimation 

methods are based upon asymmetrical assumptions they can easily be biased 

when the sample size is small.  It is recommended that meta-regression 
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approaches should not be used when there are fewer than 10 studies available.  

Where insufficient data is available to determine the relationship methods such 

as those proposed by Hong (2012) should be considered as a useful alternative 

approach.  The bayesian PoS framework presented also assumes that the 

observed phase 2 treatment difference in the phase 2 outcome measure comes 

from a randomised phase 2 trial.  The phase 2 result is then passed through the 

meta regression to determine the posterior distribution for phase 2 treatment 

difference in the phase 3 outcome measure for the planned phase 3 population.   

In practice not all phase 2 studies will be randomised.  Data may come from 

non-randomised cohort studies, or potentially even a mixture of randomised and 

non-randomised studies.  The underlying choice of bayesian framework that 

synthesizes this information will therefore need to be appropriately adjusted 

according to the evidence available.  However, all approaches should lead to 

the development of the posterior distribution for phase 2 treatment difference in 

the phase 3 outcome measure for the planned phase 3 population, which in 

conjunction with knowledge of the planned phase 3 trial is used to determine the 

PoS.      

Although the building blocks of the quantitative framework may vary depending 

upon the available evidence, as detailed in Section 3.10, the underlying use of 

such an approach to determine the PoS has a number of practical advantages 

including: 
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1. The estimated PoS is more meaningful than focussing on the power of the 

phase 3 study, as it incorporates current knowledge about the treatment 

effect. 

2. The assumptions that are driving the calculated PoS are transparent to all 

decision makers.  The process of determining these assumptions can lead 

to important refinements to the phase 3 design (for example, inclusion of 

early futility analyses). 

3. Each new treatment entering phase 3 will have an associated target 

product profile.  The probability of achieving this profile is explicitly 

characterised.  Moreover, the process emphasizes the need to target a 

treatment difference in phase 3 that is clinically worthwhile, realistic and 

cost effective.  The PoS implicitly assumes that this has been done. 

It should also be noted that the PoS modelling is predominately driven through 

an assessment of efficacy.  As discussed in Section 3.9, in practice there may 

be additional quantitative considerations that need to be taken into account 

when making the EOP2 decision.  It would be natural to expect that combining 

both quantitative and qualitative information will lead to the most appropriate 

decision.  This may be achieved this by incorporating the considerations into the 

formally elicited sceptical or optimistic priors, or using the bayesian model to 

predict the probability of efficacy success, followed by manual modification to 

the PoS to account for the quantitative considerations.  Moreover, there will be 

situations when a decision to start a phase 3 study is required with limited or no 
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prior data in the target indication or population.  In such situations one option 

discussed in Section 3.9 is to start the PoS evaluation with a company or 

industry benchmark and then modulate upwards or downwards according to the 

strength of available evidence.  However, as decision making becomes more 

qualitative it becomes more subjective, less data driven, more inconsistent and 

less decisive.  Section 3.10 presents the PoS, including the methodology used 

(modelling vs benchmarking) and the ultimate success or failure rate for 63 

completed phase 3 studies.  While it is evident that trials still may go forward 

into phase 3 with a low PoS, they are doing so with sponsors fully informed of 

the risk.  It is clear that those studies with a higher predicted PoS are more likely 

to lead to a positive phase 3 study outcome.  Of the phase 3 studies initiated 

with a predicted PoS ≥61.4%, 82% of them were successful, while only 36% of 

phase 3 studies initiated with a PoS <61.4% were successful.       

By broadly following the concepts highlighted, statisticians can contribute greatly 

to project strategy and the decision making processes.  In many ways the 

structure and process presented herein are just making explicit many of the 

implicit assumptions and decisions that are made when deciding whether to 

move on from a phase 2 result to a phase 3 trial.  Additionally, as highlighted in 

the publication by Sargent et al (2005), if convincing evidence of a strong 

relationship between a short-term outcome measure and the currently used 

phase 3 outcome measure is found, there is potential to validate the use of the 

phase 2 outcome measure as a surrogate for the phase 3 outcome measure 
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and therefore influence current practice.  This may subsequently translate into 

reduced drug development times.   

Operationally, following such an approach is getting easier over time.  With 

study results now registered on clinicaltrials.gov, more complete data is 

available for meta-analyses which should translate to more robust analyses.  
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5. FUTURE WORK 

The methodology presented considers the size of the phase 3 study to be fixed 

at that required to show a frequentist success (e.g. for a superiority study with 

α=0.05).  When designing the phase 2 study the PoS for this phase 3 study is 

evaluated based upon a range of potential results from a phase 2 study of fixed 

size.  An alternative approach could be to fix the PoS for the phase 3 study (at 

say 65%) and determine the size of the phase 2 study required to achieve this 

for a range of plausible phase 2 results.  This could indicate how reliant a good 

EOP2 decision could be on the size of the phase 2 study. 

Additional work exploring alternative approaches to synthesize a prior for the 

control group response with the control arm in the phase 2 study may be useful.  

The primary approach used in the pancreatic cancer example takes the view 

that the observed treatment difference is the best unbiased estimate available 

and uses the control prior simply as an external assessment of the trial’s 

robustness.  An alternative innovative approach explored takes the view that the 

observed treatment difference seen in the randomized phase 2 study is the best 

unbiased estimate available, whilst the variance of the phase 2 treatment 

difference is inflated as the observed phase 2 control group response departs 

from the expected.  If the phase 2 is randomized, such an approach would 

however break the randomization and potentially introduce bias.  Moreover, the 

degree of variance inflation chosen is fairly arbitrary.  However, this approach 
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may help to discount early optimistic phase 2 results (Kirby, Burke, Chuang-

Stein and Sin, 2012).   

Additionally, our pancreatic model assumes that the baseline hazard survivor 

function is consistent across studies.  Whilst this may be a reasonable 

assumption for a model that uses the relative treatment effects from randomized 

trials, incorporating methods to adjust for differences in the baseline hazard 

would be an important attribute to develop for an approach that combines the 

absolute treatment effects of trial arms across different studies.  

The pancreatic model assumes proportional hazards within each study.  Whilst 

there was no reason to doubt this assumption in this indication, a potentially 

beneficial alternative but more resource intensive approach would be to use 

methods of data abstraction that reproduce the individual patient data (Guyot, 

Ades, Ouwens and Welton 2012).  This would facilitate selection of an 

appropriate model from a wide set of parametric survival distributions.  

Moreover, in indications where the proportional hazards assumption is not so 

robust and the hazard ratio changes over time, additional work to adjust for the 

duration of follow up in the abstracted studies would be valuable.  

The modelling presented has focused on the methods for enhancing decision 

making at the EOP2 with respect to the likely efficacy of a new treatment.  With 

some adjustment, the general approach used could be applied to the evaluation 

of comparative safety data.  This would require investigating the relationships 

between phase 2 and phase 3 safety outcome measures to predict phase 3 
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safety outcomes given the results of phase 2 safety assessment.  If prediction of 

the likely efficacy and safety outcomes for a phase 3 study can be achieved, 

then it may also be possible to investigate the benefit-risk of a new drug by 

employing one of the benefit-risk methods that are currently being developed 

(EMA Benefit-Risk Methodology Project). 

One of the key factors in making a go/no-go decision, and determining the 

phase 3 development strategy, is the expected efficacy of the investigational 

treatment and how this compares and ranks to the current and future treatment 

options available for patients.  This is a vitally important consideration at the end 

of phase 2 because downstream after regulatory approval of a new treatment, 

gaining agreement for reimbursement in many different geographical regions 

may require a health technology appraisal to take place, which usually 

necessitates the use of indirect treatment comparisons between treatments not 

compared in head to head trials.   

In Section 3.11, through using a worked example in pancreatic cancer, the 

statistical model has been expanded to predict the outcome of such indirect 

comparisons and evaluate how the efficacy of an investigational product will 

rank against the typical treatment options for a given indication and population 

of interest following a successful phase 3 program.  The simulation process for 

treatment ranking can again naturally be extended to any potential development 

strategy and therefore be used to evaluate the value of different phase 2 and 3 

study designs.  Similarly, the process does not need to be restricted to efficacy 

endpoints.  Evaluating the treatment ranking associated with key safety or other 
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outcome measures that are important to assessing the comparative value of 

treatments would also be a value addition to the end of phase 2 decision.  

Again in a similar vein to the approach described in Section 3.4, while not 

specifically discussed, a threshold for the treatment ranking probability could 

also be used as the ‘go-to-phase 3’ decision criteria, and the inclusion of 

sceptical and optimistic priors into the simulations would enable reasonable 

bounds of belief for the treatment ranking probability to be generated and 

incorporated in the end of phase 2 decisions.   

In summary, assessing the probability of achieving a particular ranking supports 

end of phase 2 decisions by providing evidence on the expected clinical value of 

the investigational treatment and may be used as an input to assess the 

potential risk-benefit and economic value of a new treatment.  This is arguably a 

more explicit way of approaching the end of phase 2 decision problem and is 

more aligned to the thought process being used in general practice than one 

which uses the probability of success in phase 3 alone.  Additional simulations 

and worked examples would be useful to further explore the operating 

characteristics of this approach. 

Section 3.9 also acknowledges that, in practice, there are additional qualitative 

considerations that factor into the EOP2 decision.  Further work synthesizing 

this information with the quantitative data to further refine the PoS may be 

useful.  Moreover, the publication of additional examples on developing a PoS 

framework where there is limited or no prior information would be informative.  
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One potential option could be to evaluate the quantitative PoS modulations 

made in prior studies, and to build a bayesian network to drive consistency and 

learning in the modulations made for future decisions.   
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6. CONCLUSION 

In conclusion, this PhD outlines a process for drugs entering phase 2 that is 

designed to enable the application of a consistent and explicit evidence-based 

approach to EOP2 decision making for new drug candidates.  It also provides a 

structured approach for collecting and synthesizing prior data with the phase 2 

data for a new treatment to predict outcomes in future phase 3 studies.   

The modelling approach developed complements other published approaches 

through working on the relative treatment difference scale to maintain the 

randomization within each study, and its use of meta-regression techniques to 

estimate the PoS.  Reasonable bounds of belief for the PoS are then 

determined using prior opinions representing different attitudes of key decision 

makers.  The methodology and framework have then been expanded to quantify 

the expected efficacy of the investigational product and how this ranks against 

the current and future treatment options in development, while incorporating the 

levels of uncertainty at the phase 2 design stage.  Finally, the development of a 

PoS framework in the situation where very limited or no prior clinical data is 

available was also explored.   

Broadly following the approaches highlighted will enhance the way statisticians 

contribute to the EOP2 decision making process, ensure key elements of 

proposed development plans are investigated through modelling and simulation, 

enable statistical properties of phase 3 clinical trial designs to be considered 

relative to downstream evidence synthesis evaluations and enhance the  
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strategic influence provided by statisticians in drug development.  Clinical 

development leaders will undoubtedly highly value statisticians who are able to 

make these types of contributions.  

To help statisticians implement the approaches developed herein sample code 

is included in Annex B. 
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ANNEX B - KEY CODE FRAGMENTS 

SAS Code to calculate the predicted probability of success in a 

future Frequentist Phase 3 study 

 
***********************************************************************************************; 

 
8.  
9. * Example SAS code to simulate datasets of possible phase 2 results (log PFS HR’s); 
10. %macro datasim(nsim=); 
11.  data p2result; 
12.         do trp2_hr_pfs = 0.4 ;  *range of true PFS HR to examine; 
13.         do nsub = 40 ;       * range of P2 sample sizes; 
14.         do sim= 1 to &nsim; 
15.         ind+1; 
16.         flag=1; 
17.         trp2_lhr_pfs = log(trp2_hr_pfs);  
18.         p2_selhr_pfs=sqrt(4/nsub); 
19.         p2_lhr_pfs = trp2_lhr_pfs + (p2_selhr_pfs*rannor(ind)); 
20.      output; 
21.    end; 
22.    end; 
23.    end; 
24.   run; 
25.  
26. proc sort data=p2result out=indx;  
27.   by flag ind;  
28. run; 
29.  
30. data ind; 
31.   set indx; 
32.   by flag ind; 
33.   if last.flag ; 
34. run; 
35.  
36. data ind2; 
37.  set ind; 
38.  %global indmax; 
39.  call symput('indmax',ind); 
40. run;  
41.  
42. %mend datasim; 
43.  
44. %datasim(nsim=500); 
45.  
46. **********************************************************************************; 
47.  
48. /* Example SAS code to combine the simulated P2 results with uninformative, sceptical and 

optimistic priors 
49.    to create posterior distributions for the phase 2 result (log PFS HRs); 
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50. */ 
51.   
52.  
53. %macro p2_post_ind(dset,ind,p_mean,p_se,postfix) ; 
54.   data _p2result ; 
55.     set &dset ; 
56.     if ind eq &ind ; 
57.   run ; 
58.  
59.  proc mcmc data=_p2result nbi=1000 thin=20 nmc=1000000 seed=21339 
60.        monitor=(p2d) /* plots=(trace density autocorr)*/ 
61.        statistics(percentage=(2.5 5 25 50 75 95 97.5))=all ; 
62.        ods output PostSummaries=mcmc_sum ; 
63.        prior p2d ~ normal(&p_mean,sd=&p_se) ; 
64.        parms p2d 0 ; 
65.        model p2_lhr_pfs ~ normal(p2d,sd=p2_selhr_pfs) ; 
66.  run ; 
67.  
68.  data _p2out (keep=ind p2_diff_&postfix p2_diffse_&postfix) ; 
69.    set mcmc_sum ; 
70.    ind=&ind ; 
71.    p2_diff_&postfix   =mean ; 
72.    p2_diffse_&postfix =stddev ; 
73.  run ; 
74.  
75.  data &dset ; 
76.   merge &dset _p2out ; by ind ; 
77.  run ; 
78. %mend ; 
79.  
80. %macro p2_post(dset,npred,p_mean,p_se,postfix) ; 
81.   %do i=1 %to &npred ; 
82.       %p2_post_ind(&dset,&i,&p_mean,&p_se,&postfix) ; 
83.   %end ; 
84. %mend ; 
85.  
86. %p2_post(p2result,&indmax.,0.00,10,uninf) ;  *uninformative prior; 
87. %p2_post(p2result,&indmax.,0.00,0.216843,scept) ; *sceptical prior;  
88. %p2_post(p2result,&indmax.,-0.35667,0.344137,optim) ;  *optimistic prior; 
89.  
90. **********************************************************************************; 
91.  
92. /* Example SAS code to pass the posterior P2 results through a meta-regression of the  
93.    Phase 2 and 3 endpoints to create predictive distributions for the treatment difference  
94.    in the phase 3 outcome measure, at the end of phase 2.  
95. */ 
96.  
97.  
98. data p3result ; 
99.   set p2result ; 
100. run ; 
101.  
102. %macro p3_post_ind(dset,ind,beta_m,beta_se,tau,postfix) ; 
103.   data _p3result ; 
104.    set &dset ; 
105.    if ind eq &ind ; 
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106.   run ; 
107.  
108.   proc mcmc data=_p3result nbi=1000 thin=20 nmc=1000000 seed=21339 
109.        monitor=(p3_diff) /*plots=(trace density autocorr)*/ 
110.        statistics(percentage=(2.5 5 25 50 75 95 97.5))=all ; 
111.        ods output PostSummaries=mcmc_sum ; 
112.        prior beta  ~ normal(&beta_m,sd=&beta_se) ; 
113.        prior theta ~ normal(0,sd=10); 
114.        p3_diff_m=beta*theta ; 
115.        prior p3_diff ~ normal(p3_diff_m,sd=&tau) ; 
116.            parms beta 0 ; 
117.            parms theta 0 ; 
118.            parms p3_diff 0 ; 
119.       model p2_diff_&postfix ~ normal(theta,sd=p2_diffse_&postfix ) ; 
120.   run ; 
121.  
122.  
123. data _p3out (keep=ind p3_diff_&postfix p3_diffse_&postfix p3_diffll_&postfix 

p3_difful_&postfix) ; 
124.     set mcmc_sum ; 
125.     ind=&ind ; 
126.     p3_diff_&postfix   =mean ; 
127.     p3_diffll_&postfix =P2_5 ; 
128.     p3_difful_&postfix =P97_5; 
129.     p3_diffse_&postfix =stddev ; 
130. run ; 
131.  
132. data &dset ; 
133.   merge &dset _p3out ; by ind ; 
134. run ; 
135. %mend ; 
136.  
137.  
138. %macro p3_post(dset,npred,beta_m,beta_se,tau,postfix) ; 
139.   %do i=1 %to &npred ; 
140.       %p3_post_ind(&dset,&i,&beta_m,&beta_se,&tau,&postfix) ; 
141.   %end ; 
142. %mend ; 
143.  
144. %p3_post(p3result,&indmax.,0.6883,0.08253,0.02341,uninf) ; 
145. %p3_post(p3result,&indmax.,0.6883,0.08253,0.02341,scept) ; 
146. %p3_post(p3result,&indmax.,0.6883,0.08253,0.02341,optim) ; 
147.  
148. data p3posterior (keep=ind nsub trp2_hr_pfs trp2_lhr_pfs p2_lhr_pfs p2_selhr_pfs 
149.                     p3_diff_uninf p3_diffse_uninf p3_diffll_uninf p3_difful_uninf 
150.                     p3_diff_scept p3_diffse_scept p3_diffll_scept p3_difful_scept 
151.                     p3_diff_optim p3_diffse_optim p3_diffll_optim p3_difful_optim) ; 
152.   set p3result ; 
153. run; 
154.  
155. **********************************************************************************; 
156.  
157. /* Example SAS macro combining the phase 3 predictive distribution with a planned 

phase 3 study design 
158. and working out the predictive probability of success.  This is used as part of the end of 

phase 2 decision.  
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159. */ 
160. %macro p3_predict_ind(dset,ind,p3_diff,p3_diffse,p3_se,postfix) ; 
161.   data _p3predict ; 
162.     set &dset ; 
163.     if ind eq &ind ; 
164.   run ; 
165.  
166.   proc mcmc data=_p3predict nbi=1000 thin=20 nmc=1000000 seed=88715 
167.           monitor=(p3_result p3_result_lcl p3_result_ucl p3_result_sig p3_result_assure) 
168.          /* plots=(trace density autocorr)*/ 
169.           statistics(percentage=(2.5 5 25 50 75 95 97.5))=all ; 
170.        ods output PostSummaries=mcmc_sum ; 
171.        prior theta  ~ normal( &p3_diff ,sd=&p3_diffse ) ; 
172.        parms theta 0 ; 
173.        prior p3_result ~ normal(theta,sd=&p3_se ) ; 
174.        parms p3_result 0 ; 
175.        model general(0) ; 
176.            p3_result_lcl = p3_result-1.96*&p3_se ; 
177.            p3_result_ucl = p3_result+1.96*&p3_se ; 
178.            if      p3_result_lcl gt 0 then p3_result_sig=1 ; 
179.            else if p3_result_ucl lt 0 then p3_result_sig=1 ; 
180.            else                            p3_result_sig=0 ; 
181.            if      p3_result_ucl lt 0 then p3_result_assure=1 ; 
182.            else                            p3_result_assure=0 ; 
183.    run ; 
184.  
185.   data _p3out (keep=ind p3_&postfix p3_lcl_&postfix p3_ucl_&postfix p3_sig_&postfix 

p3_assure_&postfix) ; 
186.     set mcmc_sum ; 
187.     ind=&ind ; 
188.         if parameter eq 'p3_result'        then p3_&postfix=mean ; 
189.         if parameter eq 'p3_result_lcl'    then p3_lcl_&postfix=mean ; 
190.         if parameter eq 'p3_result_ucl'    then p3_ucl_&postfix=mean ; 
191.         if parameter eq 'p3_result_sig'    then p3_sig_&postfix=mean ; 
192.         if parameter eq 'p3_result_assure' then p3_assure_&postfix=mean ; 
193.     retain p3_&postfix p3_lcl_&postfix p3_ucl_&postfix p3_sig_&postfix 

p3_assure_&postfix ; 
194.   run ; 
195.  
196.   data _p3out ; 
197.   set _p3out end=lastobs ; 
198.   if lastobs ; 
199.   run ; 
200.  
201.   data &dset ; 
202.   merge &dset _p3out ; by ind ; 
203.   run ; 
204. %mend ; 
205.  
206. %macro p3_predict(dset,npred,p3_se,postfix) ; 
207.   %do i=1 %to &npred ; 
208.   %p3_predict_ind(&dset,&i,p3_diff_&postfix,p3_diffse_&postfix,&p3_se,&postfix) ; 
209.   %end ; 
210. %mend ; 
211.  
212. data p3prediction ; 
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213.   set p3posterior ; 
214. run ; 
215.  
216. *N=380 over survival events required;                    
217.  
218. %p3_predict(p3prediction,&indmax.,0.10260,uninf) ; 
219. %p3_predict(p3prediction,&indmax.,0.10260,scept) ; 
220. %p3_predict(p3prediction,&indmax.,0.10260,optim) ; 
221.  
222. proc sort data=p3prediction out= p3preds40hr04; 
223.   by ind; 
224. run; 
225. **********************************************************************************; 
226.  
227. *Example SAS code to work out the probability a P2 go decision is made for    different 

EOP2” criteria, 
228. *The probability of go+P3 failure and the probability of go+P3 success; 
229.  
230. data Pos1; 
231.   set p3preds40hr04; 
232.   p01=0; p02=0; p03=0; p04=0; p05=0; p06=0; p07=0; p08=0; p09=0; *decision criteria 

for PoS; 
233.   if p3_assure_uninf ge 0.1 then p01=1; 
234.   if p3_assure_uninf ge 0.2 then p02=1; 
235.   if p3_assure_uninf ge 0.3 then p03=1; 
236.   if p3_assure_uninf ge 0.4 then p04=1; 
237.   if p3_assure_uninf ge 0.5 then p05=1; 
238.   if p3_assure_uninf ge 0.6 then p06=1; 
239.   if p3_assure_uninf ge 0.7 then p07=1; 
240.   if p3_assure_uninf ge 0.8 then p08=1; 
241.   if p3_assure_uninf ge 0.9 then p08=1; 
242.   run; 
243.  
244.   proc sort data=pos1 out=pos2;  by trp3_hr_os nsub; run; 
245.  
246.   proc univariate data=pos2 noprint; 
247.     by nsub; 
248.     var p01 p02 p03 p04 p05 p06 p07 p08; 
249.     output out=pos1out  sum=s01 sum=s02 sum=s03 sum=s04 sum=s05 
250.                         sum=s06 sum=s07 sum=s08; 
251.     run; 
252.  
253. *probability of a go decision; 
254. data po2out;   
255. set pos1out; 
256. ps01=(s01/500); ps02=(s02/500); ps03=(s03/500); ps04=(s04/500); ps05=(s05/500); 
257. ps06=(s06/500); ps07=(s07/500); ps08=(s08/500);  *500 simulations were run in this 

code; 
258. run; 
259.  
260. data p3out;  
261.   merge p3power po2out;  *merge with a dataset containing the power of the frequentist 

P3 trial (var p3pos); 
262.   **Probability of go and success in P3; 
263.   pgos01 = ps01*p3pos; pgos02 = ps02*p3pos; pgos03 = ps03*p3pos; pgos04 = 

ps04*p3pos; pgos05 = ps05*p3pos; 



Page 184 of 198 
 

264.   pgos06 = ps06*p3pos; pgos07 = ps07*p3pos;pgos08 = ps08*p3pos; 
265.   **Probability of go and fail in P3; 
266.   pgof01 = ps01*(1-p3pos); pgof02 = ps02*(1-p3pos); pgof03 = ps03*(1-p3pos); pgof04 

= ps04*(1-p3pos); 
267.   pgof05 = ps05*(1-p3pos); pgof06 = ps06*(1-p3pos); pgof07 = ps07*(1-p3pos); pgof08 

= ps08*(1-p3pos); 
268.   run; 
269.  
270. ****************************************************************************************************

***; 
 
 
Winbugs Code Fragments for a meta-regression between log PFS 

and log OS adjusting for the proportion of metastatic patients: 

           model{ 

            for(i in 1:nstudy){ 

                   lhr_os_w[i]      <- 1/(lhr_os_se[i]*lhr_os_se[i])  

                   lhr_os[i]         ~ dnorm(lhros[i],lhr_os_w[i]) 

                   lhros[i] ~ dnorm(mu[i], tau) 

                   mu[i]   <-  (beta*lhr_pfs[i]) + (mpar*meta_p[i])  

                             }                        

               beta  ~ dnorm(0,0.001) 

               mpar  ~ dnorm(0,0.001) 

               sd ~ dunif(0,2) 

               tau  <- 1/(sd*sd) 

                           } 

              list(nstudy=44,  

 

lhr_os=c(-0.200,-0.010,-0.288,0.157,-0.058,0.02,-0.182,0.03,-0.151,-

0.139,0.043,-0.163, -0.02,0.016,-0.223,-0.186,-0.128,-0.03,-0.198,0.157,-
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0.274,0.081,-0.288,-0.117,0.247,0.058,0.094,-0.405,-0.151,0.555,-

0.431,0.180,-0.046,0.00, -0.104,-0.084,-0.329,-0.4,0.153,-0.139,-

0.4,0.095,0.014,-0.562), 

 

lhr_os_se=c(0.12,0.14,0.17,0.11,0.077,0.11,0.23,0.091,0.089,0.13,0.087,

0.12,0.09,0.16,0.14,0.095,0.093, 

0.13,0.092,0.19,0.23,0.208,0.24,0.094,0.15,0.16,0.27,0.205,0.35,0.13,0.2

13,0.177,0.185,0.185,0.186,0.19,0.229,0.233,0.12,0.253,0.24,0.106,0.13,

0.123), 

 

lhr_pfs = c(-0.198,-0.051,-0.315,0.307,-0.068,-0.151,0.157,0.03,-0.248,-

0.163, -0.083,-0.252, -0.167,0.035, -0.223, -0.297, -0.038, -0.051, -

0.261,0.182, -0.236, -0.036, -0.198,-0.315,0.215,0.058,0.041,-0.399, -

0.301,0.635, -0.673,0.049, -0.31,-0.217,-0.192,-0.066,-0.329,-

0.006,0.02,-0.431, -0.431,-0.03,0.006, -0.755), 

 

meta_p = 

c(0.9,0.72,0.51,0.7,0.79,0.85,0.8,0.76,0.71,0.79,0.85,0.69,0.91,0.82,0.8,0

.89,0.89,0.79, 

0.77,0.82,0.57,0.89,1,1,0.82,0.82,0.73,0.54,0.77,0.64, 

0.71,0.88,1,1,1,0.79,0.79,0.79,1,1,1,0.84,0.72,1) 
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#Output 

 node    mean          sd          MC error   2.5%         

median 97.5%  

 beta    0.7419    0.09284   1.733E-4   0.5606         0.7419      

0.9237  

 mpar    0.03483  0.02852   5.418E-5  -0.02115     0.03494     

0.0905  

 sd    0.02244  0.01719   3.217E-5   8.759E-4   0.01883      

0.064   

 

 

SAS code for predicting the treatment ranking probability at the end 

of phase 2 

********************************************************************; 

*dataset of potential phase 2 results in the phase 2 outcome measure 

PFS log HR; 

data p2result; 

input ind pfshr events; 
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cards; 

1 0.3 80 

2 0.35 80 

3 0.4 80 

4 0.45 80 

5 0.5 80 

6 0.55 80 

7 0.6 80 

8 0.65 80 

9 0.7 80 

10 0.75 80 

; 

run; 

data p2resulta; 

  set p2result; 

  p2_diff=log(pfshr); 

  p2_diffse = sqrt(4/events); 
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run; 

********************************************************************; 

*Predicting the distribution of the phase 3 outcome measure OS log HR 

at the end of phase 2; 

*using the regression from the winbugs code; 

ods graphics on ; 

  proc mcmc data= p2resulta nbi=1000 thin=50 nmc=2000000 

seed=21339 

            monitor=(p3_diff) plots=(trace density autocorr) 

            statistics(percentage=(2.5 5 25 50 75 95 97.5))=all ; 

       by ind; 

            ods output PostSummaries=mcmc_sum ; 

            prior beta  ~ normal(0.7419,sd=0.09284) ;   

       prior metap ~ normal(0.03483, sd=0.02852); 

       prior theta ~ normal(0,sd=10); 

       *predicting at 100% metastatic; 

           p3_diff_m=(beta*theta) + (metap*1) ;   

           prior p3_diff ~ normal(p3_diff_m,sd=0.02244) ; 
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           parms beta 0 ; 

      parms metap 0; 

           parms theta 0 ; 

           parms p3_diff 0 ; 

           model p2_diff ~ normal(theta,sd=p2_diffse) ; 

  run ; 

  ods graphics off ; 

 

 

      *collecting the data; 

  data _p3outmeta  

 (keep= ind p2_diff_os p2_diffse_os p2_diffll_os p2_difful_os p2_hr_os) ; 

        set mcmc_sum ; 

        p2_diff_os   =mean; 

        p2_diffll_os =p2_5; 

        p2_difful_os =p97_5; 

        p2_diffse_os =stddev; 
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   p2_hr_os= exp(mean); 

  run ; 

  data post_p2; 

     merge _p3outmeta p2result; 

     by ind; 

  run; 

********************************************************************; 

*SAS code for steps 3 and 4 (assuming superiority framework in phase 

3);    

ods graphics on ; 

proc mcmc data=post_p2 outpost=simsup   

          nbi=1000 thin=20 nmc=300000 seed=887152  

monitor=(p2_diff p2_diff_hr abr_res_hrg oxi_res_hrg fol_res_hrg 

tar_res_hrg           

abr_res oxi_res fol_res tar_res  lhr_a_p3  hr_a_p3 h2h_res h2h_all 

h2h_succ hr_o hr_f hr_t lhr_o lhr_f lhr_t rnk1 rnk2 /*rnk3 rnk4 rnk5*/                        

h2h_res_lcl h2h_res_ucl h2h_res_assure) 

          plots=(trace density autocorr) 



Page 191 of 198 
 

          statistics(percentage=(2.5 5 25 50 75 95 97.5))=all ; 

          by ind; 

ods output PostSummaries= pos_mcmc_p3post_p80_sup; 

*entering phase 2 predictive result in phase 3 endpoint; 

          prior p2_diff  ~ normal( p2_diff_os ,sd=p2_diffse_os ) ;   

          parms p2_diff 0 ; 

          p2_diff_hr = exp(p2_diff); 

*entering the abraxane analysis result versus gem control;  

          prior abr_res ~ normal(-0.329 ,sd=0.076) ;      

          parms abr_res 0 ; 

          abr_res_hrg = exp(abr_res); 

*indirect comparison of test versus abraxane (based upon P2 predictive 

dist); 

          lhr_a_p3 = (p2_diff - abr_res);   

     hr_a_p3 = exp(lhr_a_p3); 

*predicted indirect comparison of test versus abraxane at end of phase 3; 

*Assume a superiority phase 3 head to head trial powered for OS HR of;  
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*0.739 = 8.5 to 11.5 median increase. 90% power = 459 events, 

se=0.093; 

          prior h2h_res ~ normal(lhr_a_p3 ,sd=0.093) ;   

          parms h2h_res 0 ; 

*entering the gemox vs gem result;           

          prior oxi_res ~ normal(-0.11328 ,sd=0.105913) ;   

          parms oxi_res 0 ; 

     oxi_res_hrg = exp(oxi_res); 

*entering the folfirinox vs gem analysis result; 

     prior fol_res ~ normal(-0.562 ,sd=0.123) ;      

          parms fol_res 0 ; 

     fol_res_hrg = exp(fol_res); 

*entering the tarceva+gem vs gem analysis result in distant metastases; 

        prior tar_res ~ normal(-0.23572 ,sd=0.104726) ; 

          parms tar_res 0 ; 

     tar_res_hrg = exp(tar_res); 

          model general(0) ; 

*determining the success of the phase 3 trial; 
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      h2h_res_lcl = h2h_res - (1.96*0.093) ; 

           h2h_res_ucl = h2h_res + (1.96*0.093) ; 

           if h2h_res_ucl lt 0 then h2h_res_assure=1 ; 

           else h2h_res_assure=0 ; 

*indirect comparison between test and abraxane at end of phase 3 

assuming; *that the phase 3 trial was successful;  

          if h2h_res_assure=1 then do; 

          h2h_succ = exp(h2h_res); 

          end; 

*indirect comparison irrespective of success; 

          h2h_all = exp(h2h_res); 

*indirect comp between abraxane and oxaliplatin; 

     hr_o = exp( oxi_res - abr_res); *select percentiles for CI's; 

     lhr_o = ( oxi_res - abr_res);   *select percentiles for CI's; 

*indirect comp between abraxane and folirinox; 

        hr_f = exp(fol_res - abr_res); *select percentiles for CI's; 

        lhr_f = (fol_res - abr_res); *select percentiles for CI's;     

*indirect comp between abraxane and tarceva; 
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     hr_t = exp(tar_res - abr_res); *select percentiles for CI's; 

     lhr_t = (tar_res - abr_res); *select percentiles for CI's; 

*working out the ranking following a successful phase 3 trial;   

      rnk1=0; 

      if (h2h_succ < hr_o) and (h2h_succ < hr_f) and (h2h_succ < hr_t)then      

      rnk1=1; 

      if h2h_res_assure=0 then rnk1=0; 

 rnk2=0; 

 if (h2h_succ < hr_o) and (h2h_succ < hr_f) and (h2h_succ ge 

hr_t)then  

      rnk2=1; 

      if (h2h_succ < hr_o) and (h2h_succ ge hr_f) and (h2h_succ < 

hr_t)then  

      rnk2=1; 

 if (h2h_succ ge hr_o) and (h2h_succ < hr_f) and (h2h_succ < 

hr_t)then    

      rnk2=1; 

      if h2h_res_assure=0 then rnk2=0; 
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    run ; 

  ods graphics off ; 

*combining the results; 

data sup; 

  merge pos_mcmc_p3post_p80_sup p2result; 

  by ind; 

run; 
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ANNEX C - PANCREATIC CANCER LITERATURE SEARCH RESULTS:  

Estimates of treatment effects from the pancreatic cancer literature search 
 

 
Reference Author Control Experimental

Overall Survival Progression Free Survival

ln HR
SE 

(lnHR) HR ln HR
SE 

(lnHR) HR
5 Berlin Gemcitabine gemcitabine+fluorouracil -0.200 0.120 0.820 -0.198 0.088 0.820
7 Bramhall Gemcitabine gemcitabine+marimastat -0.010 0.140 0.990 -0.051 0.130 0.950 
10 Cantore Gemcitabine FLEC -0.288 0.170 0.750 -0.315 0.180 0.730

14 Cheverton Gemcitabine Exatecan 0.157 0.110 1.170 0.307 0.100 1.360 
51 Li Gemcitabine gemcitabine+cisplastin -0.197 0.270 0.821
72 Philip Gemcitabine gemcitabine+cituximab  -0.058 0.077 0.943 -0.068 0.073 0.935 
82 RochaLima Gemcitabine gemcitabine+irinotecan  0.020 0.110 1.020 -0.151 0.100 0.860 
107 Viret gemcitabine gemcitabine+cisplastin -0.182 0.230 0.834 0.157 0.170 1.170
104 Van Cutsem gemcitabine gemcitabine+tipifarnib 0.030 0.091 1.030 0.030 0.086 1.030
22 Cunningham gemcitabine  gemcitabine+capecitabine -0.151 0.089 0.860 -0.248 0.087 0.780 
26 Di Costanzo gemcitabine  gemcitabine+ CI fluorouracil -0.031 0.200 0.969     
36 Herrmann gemcitabine gemcitabine+capecitabine -0.139 0.130 0.870 -0.163 0.091 0.850
42 Kindler gemcitabine  gemcitabine+bevacizumab 0.043 0.087 1.044 -0.083 0.069 0.920 
53 Louvet gemcitabine gemcitabine + oxaliplatin  -0.163 0.120 0.850 -0.252 0.130 0.777
64 Oettle gemcitabine gemcitabine+pemetrexed  -0.020 0.090 0.980 -0.167 0.090 0.846
80 Riess gemcitabine  gemcitabine+fluorouracil+folinic  0.040 0.100 1.040     
99 Stathopoulos gemcitabine  gemcitabine + irinotecan 0.016 0.160 1.016 0.035 0.160 1.036 
35 Heinemann gemcitabine gemcitabine + cisplatin -0.223 0.140 0.800 -0.223 0.120 0.800
73 Poplin gemcitabine gemcitabine ([FDR]) -0.186 0.095 0.830 -0.297 0.095 0.743
73 Poplin Gemcitabine gemcitabine + oxaliplatin  -0.128 0.093 0.880 -0.038 0.093 0.963 
1 Abou-Alfa Gemcitabine gemcitabine+exatecan -0.030 0.130 0.970 -0.051 0.100 0.950
59 Moore Gemcitabine gemcitabine+tarceva -0.198 0.092 0.820 -0.261 0.093 0.770
30 Friess Gemcitabine gemcitabine+cilengitide 0.157 0.190 1.170 0.182 0.200 1.200 
78 Richards Gemcitabine gemcitabine+CI-994 0.020 0.170 1.020
91 Spano Gemcitabine gemcitabine+axitinib -0.274 0.230 0.760 -0.236 0.310 0.790 
78 Richards Gemcitabine gemcitabine+enzastaurin 0.081 0.208 1.084 -0.036 0.207 0.965 
91 Scheithauer Gemcitabine gemcitabine+capecitabine -0.288 0.240 0.750 -0.198 0.170 0.820
105 Van Cutsem gemcitabine+erlotinib gemcitabine+erlotinib+bevacizumab -0.117 0.094 0.890 -0.315 0.088 0.730
54 Lutz gemcitabine+docetaxel cisplatin+docetaxel 0.157 0.210 1.170     
6 Boeck gemcitabine+capecitabine gemcitabine+oxaliplatin 0.247 0.150 1.280 0.215 0.150 1.240
6 Boeck gemcitabine+capecitabine capecitabin+oxaliplatin 0.058 0.160 1.060 0.058 0.160 1.060
12 Cascinu gemcitabine+cisplatin gemcitabine+cisplatin+cetuximab 0.094 0.270 1.099 0.041 0.240 1.042 
18 Colucci Gemcitabine gemcitabine+cisplatin (CDDP) -0.405 0.205 0.667 -0.399 0.207 0.671
94 Smith Gemcitabine ZD9331 -0.151 0.350 0.860 -0.301 0.268 0.740 
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Reference Author Control Experimental

Overall Survival Progression Free Survival 

ln HR
SE 

(lnHR) HR ln HR
SE 

(lnHR) HR
58 Moore Gemcitabine BAY 12-9566 0.555 0.130 1.742 0.635 0.128 1.887
76 Reni Gemcitabine PEFG -0.431 0.213 0.650 -0.673 0.219 0.510 
86 Saif Gemcitabine gemcitabein+LY293111 0.180 0.177 1.197 0.049 0.149 1.050
48 Kulke gemcitabine(FDR) gemcitabine+cisplatin -0.046 0.185 0.955 -0.310 0.185 0.733
48 Kulke gemcitabine(FDR) gemcitabine+docetaxel 0.000 0.185 1.000 -0.217 0.185 0.805 
48 Kulke gemcitabine(FDR) gemcitabine+irinotecan -0.104 0.186 0.901 -0.192 0.186 0.825
52 Loehr Gemcitabine gemcitabine+endoTAG-1 low dose -0.084 0.190 0.919 -0.066 0.165 0.936
52 Loehr Gemcitabine gemcitabine+endoTAG-1 mid dose -0.329 0.229 0.720 -0.329 0.184 0.720 
52 Loehr Gemcitabine gemcitabine+endoTAG-1 high dose -0.400 0.233 0.670 -0.006 0.175 0.994
81 Riess Gemcitabine gemcitabine+aflibercept 0.153 0.120 1.165 0.020 0.104 1.020 
60 Nakai Gemcitabine gemcitabine+S-1 -0.329 0.205 0.720
43 Kindler Gemcitabine gemcitabine+conatumumab -0.139 0.253 0.870 -0.431 0.240 0.650 
43 Kindler Gemcitabine gemcitabine+ganitumab (AMG 479) -0.400 0.240 0.670 -0.431 0.237 0.650
19 Colucci Gemcitabine gemcitabine+cisplatin 0.095 0.106 1.100 -0.030 0.101 0.970 
44 Kindler Gemcitabine gemcitabine+axitinib 0.014 0.130 1.014 0.006 0.130 1.006 
20 Conroy Gemcitabine Folfirinox -0.562 0.123 0.570 -0.755 0.119 0.470

Values in italics were estimated using the exponential distribution 
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