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ABSTRACT 

Background: We sought to test the hypothesis that the effectiveness of intensive treatment for locoregionally advanced head and neck 

cancer (LAHNC) depends on the proportion of patients’ overall event risk attributable to cancer. 

Methods: We analyzed 22,339 LAHNC patients treated on 81 randomized trials testing AFX (MARCH data set) or chemotherapy 

(MACH-NC dataset). We applied generalized competing event regression to the control arms in MARCH, stratifying patients by 

tertile according to  score, which quantifies the relative hazard for cancer vs. competing events. We externally validated the classifier 

on the MACH-NC dataset. We tested for interactions between  score and treatment effects on overall survival (OS). 

Results: Factors associated with a higher  score were younger age, better performance status, oral cavity site, higher T and N 

category, and p16 negative/unknown status. The effect of AFX on OS was greater in patients with high (hazard ratio [HR], 0.92; 95% 

confidence interval [CI], 0.85 to 0.99) and medium (HR, 0.91; 95% CI, 0.84 to 0.98) vs. low  score (HR, 0.97; 95% CI, 0.90 to 1.05; 

p=0.086 for interaction). The effect of chemotherapy on OS was significantly greater in patients with high (HR, 0.81; 95% CI, 0.75 to 

0.88) and medium (HR, 0.86; 95% CI, 0.78 to 0.88) vs. low  score (HR, 0.96; 95% CI, 0.86 to 1.08; p=0.011 for interaction).  

Conclusion: LAHNC patients with a higher risk of cancer progression relative to competing mortality – as reflected by a higher  

score – selectively benefit from more intensive treatment. 

 

Funding: Ligue National Contre le Cancer, Institut National du Cancer (PHRC-K 10-02-58; PHRC-K-15-189), Programme d’Actions 

Intégrées de Recherche (2011-1-VADS-04), UC San Diego Head and Neck Cancer Center. 
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Precis: The  score measures the proportion of patients’ overall event risk attributable to cancer. We created and externally validated 

an  score using two large meta-analyses in head and neck cancer to predict the benefit of intensive treatment.   
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INTRODUCTION 

Head and neck cancer (HNC) is a global health burden requiring a multi-disciplinary approach to individualize treatments 

and manage toxicities. Meta-analyses of randomized clinical trials have shown improved survival with the addition of chemotherapy 

to radiotherapy for locoregionally advanced HNC (LAHNC).1,2 However, a lack of benefit for chemotherapy has been observed in 

older patients and those with poor performance status, leading to controversy about the management of these patients.1-4 As a result, 

chemotherapy utilization patterns vary widely between institutions and providers.5-8  

Management of patients with LAHNC is uniquely complicated by their multiple comorbidities and variable tolerance for 

treatment.9 Many have argued that advanced age alone should not be a contraindication to chemotherapy.4-6 However, there is 

presently no validated risk prediction model for chemotherapy effectiveness. Nomograms and risk models that incorporate individual 

patient’s overall disease and health status would be preferable to age thresholds.   

We sought to develop and validate a model to predict the benefit of treatment intensification for patients with LAHNC, using 

a novel methodological approach called generalized competing event (GCE) regression,10,11 and to compare this to a standard 

modeling approach for risk-stratification. In contrast to models that predict patients’ overall survival (OS) or progression-free survival 

(PFS), the GCE method is designed to stratify patients according to their hazard for primary events (e.g. cancer 

recurrence/progression) vs. competing events (e.g. death from non-cancer causes). Because the benefit of an intensive cancer 

treatment depends on its ability to reduce cancer progression to a greater extent than it increases competing mortality, we hypothesized 

that stratifying patients according to the ratio of the two events would improve selection of patients for treatment intensification 

strategies. 

 

METHODS 

Study Design, Population, and Sampling Methods 

The study design was based on two individual patient-level meta-analyses of randomized controlled trials. Analysis and 

reporting conformed to the transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) 

guidelines, and followed a pre-specified protocol for the analysis.12 We studied patients with previously untreated LAHNC who were 

candidates for standard radiation therapy (RT) with or without treatment intensification (i.e., altered fractionation (AFX) or 

chemotherapy). For model training, we used the control group from the first update of the Meta-Analysis of Radiotherapy in 

squamous cell Carcinomas of Head and neck (MARCH) dataset.13,14 The control group of MARCH was used to fit a model to stratify 

patients according to the ratio of the baseline cause-specific hazard for primary vs. competing events ( ratio), without regard to the 
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effect of treatment (i.e., unsupervised classification). We tested the magnitude of effect of AFX according to different values of the  

ratio determined by the model, using both arms of MARCH.  

We then tested the model’s ability to stratify patients by  ratio and predict the effectiveness of chemotherapy, using the first 

update of the Meta-Analysis of Chemotherapy in Head and Neck Cancer (MACH-NC). This data set compares loco-regional treatment 

versus the same loco-regional treatment + chemotherapy; 29% of patients received concurrent chemotherapy.1,2 Trials with multiple 

experimental arms and 2x2 designs were treated as separate comparisons, with the control arm duplicated. There were 190 patients 

from 3 trials common to MARCH and MACH-NC. A flow diagram of the inclusions and exclusions is provided in Figure 1. Due to 

low frequency in other subsites, only patients with hypopharyngeal, oropharyngeal, laryngeal, and oral cavity cancers were included in 

this analysis.  

 

Endpoints 

OS was defined as time from randomization to death from any cause, or censoring. PFS was defined as time from 

randomization to a first primary cancer event (recurrence, progression, or death from primary cancer without previous recurrence or 

progression), or death from any cause, or censoring. Time to progression was defined as time from randomization to first cancer event. 

Time to competing mortality was defined as time from randomization to death in the absence of any cancer event, as defined above. 

Event times for patients who were alive without progression were censored at the last follow-up. The baseline  value was defined as 

the cumulative hazard for a primary cancer event divided by the cumulative hazard for any PFS event at 3 years (basehaz function, R). 

If the cause of death was “cancer” (i.e. the index cancer), or the cause of death was unknown and the time to death was  5 years, this 

was considered a primary cancer event, consistent with prior methodology.14   

 

Model Building and Specification 

Models were initially trained using the patients in MARCH who were treated on a control arm (5,480 patients). Backward 

stepwise mixed effects multivariable Cox proportional hazards models (coxme package, R) were used to identify independent 

predictors of PFS, which is a strong surrogate endpoint for OS in HNC.15 Candidate covariates for inclusion were: age (continuous), 

sex, performance status (Eastern Cooperative Oncology Group (ECOG) status 0 vs. 1 vs. ≥ 2), disease site (oral cavity vs. oropharynx 

vs. larynx. vs. hypopharynx), tumor stage (T0-1 vs. T2 vs. T3 vs. T4), nodal stage (N0 vs. N1 vs. N2 vs. N3), p16 status (positive vs. 

negative), smoking status (current vs. former/never smoker), and pack-years (≥10 vs. <10). Postoperative status was treated as a trial-

level covariate. Variables were retained for p<0.20.  

Individual risk scores for PFS were created by taking the inner product of the coefficients from the model with each patient’s 

covariate vector (i.e., linear predictor). GCE models were then fit to estimate the effects of covariates on time to progression vs. 
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competing mortality (specifically, the  ratio) respectively, using the same covariates as in the model for PFS with the gcerisk 

package in R.16 Details of the model are provided in the Supplementary Methods. Briefly, this modeling approach consisted of the 

following: 

 

 PFS was treated as the composition of two mutually exclusive events: (1) any primary cancer event or (2) competing 

mortality in the absence of a primary event (i.e., competing event). 

 A cause-specific Cox proportional hazards model was fit for time to progression and for competing mortality using the 

same (normalized) covariates. 

 The coefficient estimates from both models were differenced to generate the respective GCE coefficient estimates. 

 The sample was stratified by the GCE linear predictor (i.e., created by taking the inner product of the GCE coefficient 

vector and the covariate vector). This method separates patients according to their predicted  ( score), i.e., the product 

of the exponentiated GCE risk score and the predicted baseline  for the sample. 

 

Models were stratified by trial and included a random effects term for age grouped by trial (i.e., one effect per trial). The 

rationale for using age as a random effect was that age could play a different prognostic role across trials because of heterogeneous 

comorbidities and inclusion criteria, possibly impacting the risk of competing mortality. Retained covariates in the final models were 

age, performance status, tumor site, sex, tumor and nodal stage, p16 status, smoking, and pack years. p16 and smoking were available 

for 18% and 49% of patients in MARCH, respectively, and not available in MACH-NC (Supplementary Table 1), so we examined 

three potential model specifications: (1) excluding p16, smoking status, and pack-years from the model, (2) treating missing values as 

a separate category, (3) attributing missing p16, smoking status, and pack-years to the reference groups (p16 negative, non-smoker, < 

10 pack-years, respectively).  All three models performed similarly, without meaningful changes in the estimates for the other 

covariates (data not shown).  

 

Model Validation, Sensitivity Testing, and Hypothesis Testing 

The ability to stratify patients by  ratio was tested independently in both the MARCH experimental group and the MACH-

NC control group. We also compared cumulative incidences of primary cancer events and competing mortality within high, medium, 

and low risk groups defined by the GCE model ( score) and the Cox model for PFS. Patients were divided into low, medium, and 

high risk groups according to tertiles of the PFS risk score and  score, respectively. Forest plots were presented to show further 

gradation in effects according to  score. Calibration was checked by plotting cumulative incidences of cause-specific events in the 

patients from MARCH who were treated on an experimental arm (5,694 patients).   
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For sensitivity analyses, we also tested a model in which unknown cause of death for any reason was considered a competing 

event. Model calibration was tested by comparing predicted vs. observed  values (i.e.,  plots). We tested the effect of chemotherapy 

on overall survival in all patients based on the pre-defined risk groups as well as by stratifying into tertiles with even numbers of 

events within each subgroup. We also compared the GCE risk strata to age > 70 threshold for the purpose of predicting the effects of 

treatment intensification, since previous studies2,14 have noted interactions between age and these treatment effects. Survival curves 

stratified on trial were computed for control and experimental groups using Peto’s method and were used to calculate absolute benefit 

at 5 years.17 

Effects of treatment intensification (i.e., AFX or chemotherapy) on OS were estimated using mixed effects Cox models 

(coxme package, R) stratified by trial, with a random treatment by trial interaction (age effect not included). Stratified survival curves 

were generated to compare event probabilities by treatment and risk group.17 They were calculated with an annual hazard ratio (HR) 

estimated using a fixed effect meta-analysis model. HRs were based on the Peto estimator, estimated with the logrank test (without 

random effect). Interactions between treatment effects and  score were tested both on the continuous scale and across risk strata (i.e., 

trend test). Two-sided P values < 0.05 were considered statistically significant. Analyses were by intention-to-treat.  

 

RESULTS 

Risk Model Results and Comparison 

Patient characteristics for MARCH (30 trials; 11,174 patients) and MACH-NC (54 trials; 11,355 patients) are provided in 

Supplementary Table 1, and have been reported elsewhere.1,2,13,14,18 In the MARCH control group, factors associated with higher  

score - indicating a higher hazard for cancer recurrence/progression relative to competing mortality - were younger age, better 

performance status, oral cavity tumors, higher tumor and nodal stage, and female sex, whereas laryngeal site, p16 positive status, 

current smoking, and higher pack-years were associated with a lower score (Table 1). For example, increasing age was associated 

with an increased HR for PFS, but because age increased the HR for competing mortality more than the HR for a cancer event, the 

relative HR was lower in the GCE model. While sex, laryngeal site, and smoking information were not statistically significantly 

associated with  score at p < 0.05, they were retained in the stepwise model according to the pre-specified analysis plan. The values 

of the GCE risk score that define the tertile risk groups were: < -25, -25 to 25, and > 25, respectively, with corresponding  scores of 

< 0.80, 0.80 to 0.87, and > 0.87, respectively (Supplementary Methods). 

The Cox model to predict PFS stratified patients satisfactorily according to primary cancer events, but not competing 

mortality events; in contrast, the GCE model stratified patients well according to both primary cancer events and competing events, 

increasing the separation between these events within risk strata (Figure 2). These patterns were replicated on external validation in 
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the MACH-NC control group (Figure 2), indicating good model performance in both the training and validation data set. With both 

models, the risk for primary events significantly increased with higher risk score (p < 0.001 for trend tests). However, with the GCE 

model, the risk for competing events significantly decreased with higher risk score, whereas with the standard PFS model the risk for 

competing events significantly increased with higher risk score (p < 0.001 for trend tests), which highlights the principal difference in 

the two modeling approaches. The distribution of covariates by GCE risk group are provided for the MACH-NC control group in 

Supplementary Table 2. The distribution of event types by GCE risk group for MARCH and MACH-NC are provided in 

Supplementary Table 3.  

 

 

Effects of AFX and Chemotherapy 

In the MARCH data, the effect of AFX on OS was greater in patients with high (HR=0.92 [0.85-0.99]) and medium (HR 

[95% CI=0.91[0.84-0.98]) vs. low  scores (HR=0.97 [0.90-1.05]) – indicating patients with higher  ratios appear to preferentially 

benefit from AFX, according to model predictions (Supplementary Figure 1). Tests for interaction between AFX effect and  score 

were not statistically significant (p=0.086; trend test p=0.15), except in patients with  score above the 85th percentile (p=0.021). The 

effect of hyperfractionation on OS was also greater with increasing  score (HR=0.86 [0.74-1.00; p for interaction 0.054). In contrast, 

the Cox model to predict PFS did not identify (p for interaction 0.48) differences in the effect of AFX on OS according to risk group 

(low: HR=0.94, 95% CI 0.86-1.03; medium: HR=0.92, 95% CI 0.86-1.00; high: HR=0.94, 95% CI 0.87-1.01).  

In the MACH-NC data, the effect of chemotherapy on OS was statistically significant in patients with high (HR=0.81, 95% 

CI 0.75-0.88) and medium (HR=0.86, 95% CI 0.78-0.93)  scores, but not in patients with a lower  score (HR=0.96 [0.86-1.08]). 

Tests for interaction between chemotherapy effect and  score were statistically significant (p=0.011; trend test p=0.0047). 

Conversely, the effect of chemotherapy on OS was statistically significant in all risk groups defined by the Cox model to predict PFS 

(low: HR=0.79, 95% CI 0.69-0.91; medium: HR=0.82, 95% CI 0.74-0.90; high: HR=0.86, 95% CI 0.78-0.93), indicating the inability 

of this model (p for interaction 0.22) to select patients that benefit more or less from chemotherapy (Figures 3-4). Note in Figure 4C 

that the effect of chemotherapy was greater in patients with the most favorable PFS (lowest risk score group). When we restricted 

analysis only to trials testing cisplatin-based or concurrent chemotherapy, results of interaction tests with  score were similar 

(cisplatin-based: p=0.06; concurrent: p=0.04).  

 

Model Validation, Sensitivity Analysis, Exploratory Analyses 

Calibration plots showed high correspondence between the observed and predicted  ratios at varying risk score cutoffs  

(Supplementary Figure 2). Results of sensitivity analysis showed similar model estimates regardless of how unknown cause of death 
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was handled. We conducted exploratory analyses to test for treatment interactions with  score in older patients, because there is 

significant ongoing controversy in the management of this population. Patients older than 70 comprised 13.8% (n=1540) of the 

MARCH dataset and 8.0% (n=905) of the MACH-NC dataset. On the whole, patients older than 70 appeared not to benefit from AFX 

(HR=1.00; 95% CI 0.89-1.12; p=0.14 for interaction) or chemotherapy (HR=0.97; 95% CI 0.82-1.14; p=0.03 for interaction), as 

previously reported.1,2,13 In patients older than 70, the effect of AFX did not differ significantly with respect to  score ≥ 0.80 vs. < 

0.80 (HR=1.11 vs 1.00, interaction p=0.44) (Supplementary Figure 3).  However, the effect of chemotherapy on OS in patients older 

than 70 with  score ≥ 0.80 (HR=0.80; 95% CI 0.58-1.12), appeared similar to the effectiveness of chemotherapy in the whole 

population (HR=0.84; 95% CI 0.80-0.89), in contrast to those with  score < 0.80 (HR=1.02; 95% CI 0.83-1.24; interaction p=0.19) 

(Figure 5). 

 

DISCUSSION 

In this study, we found that stratifying LAHNC patients according to their risk of cancer event (i.e., recurrence/progression) 

relative to competing mortality is useful in identifying patients who selectively benefit from intensive treatment. In particular, 

LAHNC patients with a  score < 0.80 did not benefit from chemotherapy, in contrast to patients with a  score ≥ 0.80. The effect of 

AFX on OS, albeit weaker than chemotherapy, also appeared greater in patients with higher  score. Note that the model we 

developed to predict  scores (independent of treatment) performed well across two separate populations and treatment types, which 

is a more stringent test of model validity than had we developed separate models for each data set. Moreover, models to stratify 

patients by PFS did not show significantly different predicted treatment effects across strata. The  score is simple to calculate and 

could influence clinical practice in situations where there is uncertainty about whether or not treatment intensification would be 

beneficial.  

A remarkable finding was that patients with better outcomes (in terms of better PFS) were no less likelyto benefit from 

intensive therapy (Figure 4), counter to prevailing risk-stratification schemes, which typically steer patients with better expected PFS 

toward de-intensification. A problem with using expected PFS and OS to define risk is that these endpoints treat primary and 

competing events interchangeably, placing patients with a high risk for non-cancer death into the same risk pool as those with a high 

risk for cancer recurrence and mortality. The strength of the GCE model, in contrast, stems from its ability to select patients at higher 

risk of cancer event relative to competing mortality. Even small variations in hazard for competing events can meaningfully impact 

this ratio, thus the effect of treatment, which in turn affects the efficiency of randomized trials.19,20 

Using  scores may be preferable to age thresholds for determining the appropriate intensiveness of therapy in LAHNC and 

other populations with competing risks. Age thresholds are often used in treatment selection for simplicity, but are generally not 
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favored since they do not consider a patient’s full health status.  scores have the advantage of incorporating multiple prognostic 

characteristics, including age, to provide a fuller assessment of a patient’s overall risk for cancer event relative to competing mortality. 

Incorporating measures of comorbidity, such as the Charlson or ACE-27 indices, and more comprehensive geriatric assessments that 

measure frailty, psychosocial status, and cognitive function, into future models could improve treatment decisions for older 

patients.21-23 Unfortunately, meta-analyses including these variables are presently lacking. 

This study was strengthened by external validation using robust meta-analyses of randomized clinical trials in LAHNC that 

tested different types of treatment. The effectiveness of AFX and chemotherapy are already known, which allowed us to determine 

whether subgroups of patients with higher  scores selectively benefitted from these treatments. The MARCH and MACH-NC meta-

analyses also contained important tumor and patient characteristics as well as competing mortality information (i.e., death in the 

absence of a primary cancer event) that facilitated our approach to risk modeling. However, our study was limited by low numbers of 

older patients and lack of some known predictors, including p16 status, smoking history, and comorbidity; inclusion of these and other 

covariates would likely enhance the discriminatory power of future  score classifiers.24 In addition, RT techniques and supportive 

care have changed considerably over the study period, which could have influenced our results.  

Despite such limitations, the  score validated in our study outperformed models of PFS for predicting the effectiveness of 

AFX and chemotherapy. It should be noted that our sample represents patients selected for participation in randomized trials; thus, 

how these results will translate into more general populations is not entirely clear. However, previous work, including population-

based studies, has shown the validity of this modeling approach in varying contexts.10,11,25-27 As seen in Supplementary Table 2, 

younger, female patients with good performance status may preferentially benefit from intensified therapy due to their higher  score, 

which is consistent with findings from other sources.26 

In conclusion, we found that LAHNC patients with a higher risk of cancer progression relative to competing mortality - as 

reflected by a higher  score – selectively benefit from more intensive treatment. Inclusion of additional prognostic variables could 

further improve the selection of patients for optimal therapeutic intensity. 

 

ACKNOWLEDGMENT 

We thank the investigators and the associated research groups of the MACH-NC and MARCH project, and the European 

Organisation for Research and Treatment of Cancer (EORTC) for providing study data. The Meta-analysis Platform is supported by 

grants from Ligue National Contre le Cancer and the MACH-NC and MARCH project by grants from Institut National du Cancer 

(PHRC-K 10-02-58; PHRC-K-15-189), the Programme d’Actions Intégrées de Recherche (2011-1-VADS-04), the La Jolla Center for 

Precision Radiation Medicine, and the University of California San Diego Head and Neck Cancer Center. 



12 

 

 

 

 

 

 

 

 

REFERENCES 
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FIGURE LEGENDS 

Figure 1. Flow diagram of the datasets used in this analysis. The overall number of patient and trials is 22,339 and 81 respectively as 

some multiple arm trials are included in both meta-analyses. †: Other than nasopharynx, larynx, hypopharynx, oral cavity, oropharynx; 

*: No smoking status or p16 data in the MACH-NC dataset; ‡: 190 patients included in both meta-analyses: 1 trial + 1 arm from 2 

three-arm trials.  

Figure 2. Cumulative incidences of primary cancer events (solid lines) and competing mortality (dotted lines) according to risk group, 

illustrating that the GCE model better maximizes the ratio of primary events to competing events. (A) Risk groups defined by 

progression-free survival (PFS) in the MARCH data (control arm only). (B) Risk groups defined by ω score in the MARCH data 

(control arm only). (C) Risk groups defined by PFS in the MARCH data (experimental arm only). (D) Risk groups defined by ω score 

in the MARCH data (experimental arm only). (E) Risk groups defined by PFS in the MACH-NC data (control arm only). (F) Risk 

groups defined by ω score in the MACH-NC data (control arm only). High Risk = green; Intermediate Risk = red; Low Risk = blue.  

Figure 3. Survival curves in patients undergoing chemotherapy (squares) compared to controls (circles) in MACH-NC showing that 

the GCE model is predictive of treatment effectwhile the PFS model is prognostic. (A) High-risk group, GCE Model. (B) Medium-risk 

group, GCE Model. (C) Low-risk group, GCE Model. (D) High-risk group, Cox Model for PFS. (E) Medium-risk group, Cox Model 

for PFS. (F) Low-risk group, Cox Model for PFS.  

Figure 4. Forest plots of effectiveness of altered fractionation (A & B) and chemotherapy (C & D) on overall survival in the MARCH 

and MACH-NC datasets, respectively, for the Cox model of PFS (A & C) compared to the GCE model (B & D), by risk tertile. 

Hazard ratios less than 1.0 favor treatment intensification.  

Figure 5. Survival curves by age group, ω score, and treatment with chemotherapy. (A) Age < 70, ω score < 0.80 (1403 patients) (B) 

Age < 70, ω score ≥ 0.80 (9047 patients) (C) Age ≥ 70, ω score < 0.80 (636 patients) (D) Age ≥ 70, ω score ≥ 0.80 (269 patients).  
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TABLES 

 

Table 1. Cox model of progression-free survival vs. GCE regression model for patients in the control arm (i.e., standard radiotherapy) 

of the MARCH dataset (N= 5,480). 

Covariate Cox Model GCE Model  

 HR (95% CI) p RHR (95% CI) p 

Age (normalized) 1.08 (1.02-1.14) <0.01 0.68 (0.63-0.74) <0.001 

Female sex 0.95 (0.92-0.98) <0.001 1.04 (0.97-1.12) 0.28 

Performance status 
    0 

    1 

    2 

 
Reference 

1.13 (1.10-1.17) 

1.13 (1.10-1.16) 

 
 

<0.001 

<0.001 

 
Reference 

0.86 (0.80-0.93) 

0.91 (0.86-0.97) 

 
 

<0.001 

<0.01 

Anatomic subsite 
    Hypopharynx 

    Oral cavity 

    Oropharynx 
    Larynx 

 
Reference 

1.02 (0.98-1.06) 

0.88 (0.84-0.93) 
0.87 (0.83-0.92) 

 
 

0.38 

<0.001 
<0.001 

 
Reference 

1.19 (1.07-1.33) 

1.04 (0.92-1.17) 
0.91 (0.81-1.03) 

 
 

<0.01 

0.57 
0.14 

T stage 

    T0/T1 

    T2 
    T3 

    T4 

 

Reference 

1.12 (1.06-1.20) 
1.29 (1.21-1.38) 

1.40 (1.31-1.49) 

 

 

<0.001 
<0.001 

<0.001 

 

Reference 

1.23 (1.09-1.39) 
1.22 (1.08-1.38) 

1.25 (1.11-1.42) 

 

 

<0.001 
<0.01 

<0.001 

N stage 
    N0 

    N1 

    N2 
    N3 

 
Reference 

1.10 (1.07-1.14) 

1.19 (1.15-1.24) 
1.18 (1.15-1.22) 

 
 

<0.001 

<0.001 
<0.001 

 
Reference 

1.06 (0.97-1.15) 

1.13 (1.04-1.24) 
1.12 (1.02-1.21) 

 
 

0.20 

<0.01 
0.011 

p16 status 

    Negative / Unknown 
    Positive  

 

Reference 
0.87 (0.83-0.90) 

 

 
<0.001 

 

Reference 
0.88 (0.81-0.95) 

 

 
<0.01 

Current Smoker 
    No or unknown 

    Yes 

 
Reference 

1.11 (1.06-1.16) 

 
 

<0.001 

 
Reference 

0.99 (0.92-1.08) 

 
 

0.93 

≥10 Pack-Years 

    No or unknown 
    Yes 

 

Reference 
1.06 (1.01-1.11) 

 

 
0.018 

 

Reference 
0.93 (0.86-0.99) 

 

 
0.048 

 

Abbreviations: CI= confidence interval; MARCH=Meta-Analysis of Radiotherapy in Carcinomas of Head and neck; GCE=generalized competing event; HR=hazard 

ratio for progression-free survival; RHR=relative hazard ratio for progression vs. competing mortality. 


