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Abstract. With the advent of smart contracts that execute on the
blockchain ecosystem, a new mode of reasoning is required for developers
that must pay meticulous attention to the gas spent by their smart con-
tracts, as well as for optimization tools that must be capable of effectively
reducing the gas required by the smart contracts. Super-optimization is a
technique which attempts to find the best translation of a block of code
by trying all possible sequences of instructions that produce the same
result. This paper presents a novel approach for super-optimization of
smart contracts based on Max-SMT which is split into two main phases:
(i) the extraction of a stack functional specification from the basic blocks
of the smart contract, which is simplified using rules that capture the
semantics of the arithmetic, bit-wise, relational operations, etc. (ii) the
synthesis of optimized blocks which, by means of an efficient Max-SMT
encoding, finds the bytecode blocks with minimal gas cost whose stack
functional specification is equal (modulo commutativity) to the extracted
one. Our experimental results are very promising: we are able to optimize
55.41 % of the blocks, and prove that 34.28 % were already optimal, for
more than 61 000 blocks from the most called 2500 Ethereum contracts.

1 Introduction

Open-source software that leverages on the blockchain ecosystem is known as
smart contract. Smart contracts are not necessarily restricted to the classical con-
cept of contracts, but can be any kind of program that executes on a blockchain
or distributed ledger. A smart contract can be regarded as a collection of secured
stored functions whose execution and effects (e.g., the transfer of some value
between parties) cannot be manipulated. This is because all records of the trans-
actions must be stored on a public and decentralized blockchain that avoids the
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pitfalls of centralization. While Bitcoin [21] paved the way for cryptocurrencies
and for the popularity of the blockchain technology, Ethereum [25] showed the
full potential of blockchains by allowing developers to run their decentralized
applications on top of their platform. The Ethereum Virtual Machine (EVM) is
capable of running smart contracts coded by Ethereum developers that have the
potential of replacing all sorts of legal, financial and social agreements, e.g., can
be used to fulfill employment contracts, execute bets and wagers, etc.

On the Ethereum blockchain platform, as well as in other emerging
blockchains equipped with a smart contract programming language (e.g., Tezos
[1], Zilliqa [24], Facebook’s Libra [23]), gas refers to the fee, or pricing value,
required to successfully conduct a transaction or to execute a smart contract.
Gas is priced in a sub-unit of the cryptocurrency—in Ethereum in gwei, a sub-
unit of its Ether cryptocurrency. The EVM specification [25] provides the gas
model, i.e., a precise definition of the gas consumption for each EVM bytecode
instruction. The EVM is a simple stack-based architecture: computation on the
EVM is done using a stack-based bytecode language; the word size of the machine
is 256-bits (32-bytes), and this is also the size of a stack item. The proposer of
a transaction allots an amount of gas (known as gas limit) to carry out the exe-
cution. If the transaction exceeds the allotted gas limit, an out-of-gas exception
is raised, interrupting the current execution. The rationale of gas metering is
three-fold: first, a gas-metered execution puts a cap on the number of operations
that a transaction can execute and prevents attacks based on non-terminating
executions; second, paying for gas at the moment of creating the transaction
does not allow the proposer to waste other parties’ (aka miners) computational
resources; third, gas fees discourage users to overuse replicated storage, which is
an expensive and valuable resource in a blockchain-based consensus system.

Optimization of smart contracts has thus a clear optimization target: gas
usage, as both computational and storage costs are accounted within the gas
cost of each of the EVM instructions. Indeed, reducing gas costs of smart con-
tracts is a problem of utmost relevance in the blockchain ecosystem, as there
are normally between half a million and a million transactions a day. The cost
of a transaction in Ethereum ranges from cents to few dollars, except in certain
peak periods that has been ten or a hundred times more. In order to provide an
idea of the impact of gas saving techniques, we have estimated that the money
spent in transactions (excluding the intrinsic gas cost) from 2017 to 2019 is
around 157 Million dollars1. Thus, optimizing programs in an energy-saving way
is essential in general, but it is even more so in the blockchain ecosystem. The
Solidity2 documentation [13], and posterior documents (e.g., [9,19]), identify gas-
costly patterns and propose replacements with gas-efficient ones. Adopting these
guidelines requires a deep understanding of EVM instructions and the gas con-
sumption for the different operations. Compilers for Solidity also try to optimize
the bytecode for minimizing its gas consumption (e.g., the flag optimize of the

1 The data is taken from [3] using the gas spent by transactions and the average gwei
and Ether exchange rate per day.

2 It is the most popular programming language for writing Ethereum smart contracts.
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solc compiler optimizes storage of large constants and the dispatch routine,
with the goal of saving gas).

Even when the guidelines are followed and the optimize flag is used, the com-
piled EVM code is not always as efficient as desired. Super-optimization [17] is
a technique proposed over 30 years ago which attempts to find the best transla-
tion of a block of code using exhaustive search to try all possible sequences of
instructions that produce the same result. As an exhaustive search problem, it
is computationally extremely demanding. The work in [15] proposed the idea of
“unbounded” super-optimization that consists in shifting the search for the tar-
get program into the solver. Recently, unbounded super-optimization has been
applied to Ethereum bytecode [20] for basic block optimization (i.e., optimiza-
tions are made inside a basic block formed by a sequence of instructions without
any JUMP operation in the middle). The experimental results in [20] confirm the
extreme computational demands of the technique (e.g., the tool times out in 92%
of the blocks used in their evaluation). This is a severe limitation for the use of
the technique, and the problem of finding the optimal code for an EVM block
still remains very challenging. The complexity stems mainly from three sources:
First, the problem is expressed in the theory of bit-vector arithmetic with bit-
width size of 256, which is a challenging width size for most SMT solvers. Second,
expressing the problem involves an exists-forall quantification, since we want to
find an assignment of instructions that works for all values in the initial stack.
Third, since we look for the gas-optimal code, the problem is not a satisfaction
problem but rather an optimization problem.

Contributions. This paper proposes a novel method for gas optimization of
smart contracts which is based on synthesizing optimized EVM blocks using
Max-SMT. The main novel features that distinguish our work from previous
approaches, that attack the same or a similar problem [15,20], are:

1. Stack functional specification. Our method takes as input an EVM bytecode
and first obtains from it a stack functional specification (SFS) of the input
and output operational stacks for each of the blocks of the control-flow graph
(CFG) for the bytecode by using symbolic execution. The SFS determines
thus the target stack that the block has to compute and is simplified using a
set of rules that capture a great part of the semantics of the arithmetic, bit-
wise, relational, etc., EVM operations which are relevant for gas optimization.

2. Synthesis problem using SMT. We approach optimization as a synthesis prob-
lem in which an SMT solver is used to synthesize optimal EVM bytecode
which, for the input stack given in the functional specification, produces
the target stack determined by the specification. We present a very efficient
encoding that, in contrast to the previous attempts, uses only existential
quantification in a very simple fragment of integer arithmetic. According to
our evaluation, its simplicity greatly improves the performance of the SMT
solvers while accuracy is kept as we cover the main possible optimizations.
Importantly, only the semantics of the stack operations (PUSH, DUP, SWAP, etc.)
is encoded, while all other operations are treated as uninterpreted functions.
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3. Use of Max-SMT. We encode the optimization problem using Max-SMT, by
adding soft constraints that encode the gas cost of the selected instructions,
by adding the needed weights. This allows us to take advantage of the features
given by recent Max-SMT optimizers that can improve the search.

4. Experiments. We report on syrup, an implementation of our approach, and
evaluate it on (i) the same data set used for evaluating the tool ebso from
[20] and, (ii) on 128 of the most called contracts on the Ethereum blockchain.
Our results are very promising: while ebso timed out in 92.12 % of the blocks
in (i), we only time out in 8.64 % and obtain gains that are two orders of
magnitude larger than ebso. These results show that we have found the right
balance between what is optimized by means of symbolic execution and sym-
bolic simplification using rules and what is encoded as a Max-SMT problem.
Moreover, for set (ii), we obtain gas savings of 0.59% of the total gas. Assum-
ing that these savings are uniformly distributed, it would amount nearly to 1
Million dollars from 2017 to 2019.

While the purpose of superoptimization is to optimize at the level of basic
blocks (intra-block), our approach to synthesize EVM code from a given SFS can
be applied also in a richer optimization framework that enables the optimization
of multiple basic blocks (inter-block). For this purpose, the framework should be
extended to include branching instructions (which in the SMT encoding can be
handled with uninterpreted functions as well) and, besides, additional compo-
nents would be required, e.g., in the context of EVM we would need to resolve
the jumping addresses, and to ensure that there are no additional incoming
jumps to intermediate blocks that are being merged by the optimizer. Inter-
block optimization is especially interesting in the context of smart contracts to
gain storage-related gas, since the optimizations that can be achieved locally for
the storage are quite limited as explained in Sect. 6.

1 pragma solidity ˆ0.4.25;
2 contract addExp{
3 function ae(uint x3, uint x2, uint x1,
4 uint x0) returns (uint){
5 uint x = x3+x2;
6 uint y = x1+x0;
7 return x∗∗y; //EXP operation
8 }
9 }

1 JUMPDEST
2 PUSH1 0x00
3 DUP1
4 PUSH1 0x00
5 DUP6
6 DUP8
7 ADD
8 SWAP2
9 POP

10 DUP4
11 DUP6
12 ADD
13 SWAP1
14 POP
15 DUP1
16 DUP3
17 EXP
18 SWAP3

19 POP
20 POP
21 POP
22 SWAP5
23 SWAP4
24 POP
25 POP
26 POP
27 POP
28 JUMP

Fig. 1. Solidity code (left). Under-optimized EVM bytecode using solc (right).

2 Overview: Optimal Bytecode as a Synthesis Problem

This section provides a general overview of our method for synthesizing super-
optimized smart contracts from given EVM bytecode. We use the motivating
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example in Fig. 1 whose Solidity source code contract appears to the left and
the EVM bytecode generated by the solc compiler appears to the right. Solid-
ity is an object-oriented, high-level language that is statically typed, supports
inheritance, libraries and user-defined types, among other features. It is designed
to target the EVM. As it can be observed in the example the EVM bytecodes
that operate on the stack (i.e., DUP, SWAP, ADD, AND, etc.) are standard operators.
In the following, we refer as stack operations only to DUP, PUSH, SWAP and POP,
which modify the stack without performing computations. The EVM has also
bytecodes to access persistent data stored in the contract’s storage (SLOAD and
SSTORE), to access data stored in the local memory (MLOAD and MSTORE), bytecodes
that jump to a different code address location (JUMP, JUMPI), bytecodes for calling
a function on a different contract (CALL, DELEGATECALL, CALLCODE and CALLSTATIC),
to write a log (LOG), to access information about the blockchain and transaction
(GAS, CALLER, BLOCKHASH, etc.) and copy information related to an external call
(CODECOPY, RETURNDATACOPY, etc.). However, as we explain in the coming sections,
our approach is based on optimizing the operations that modify the stack as
we have a great coverage of all potential bytecode optimizations while we still
remain scalable, i.e., we do not optimize those bytecodes whose effects are not
reflected in the stack, e.g., MSTORE, SSTORE, LOG1 or EXTCODECOPY. The gas con-
sumed by this bytecode (excluding the JUMPDEST and JUMP opcodes that cannot
be optimized and are thus not accounted in the examples) is 76. As specified
in [25], the operations from the so-called base family (like POP) have cost 2, the
operators from the verylow family (like PUSH, SWAP, ADD) cost 3, operators from
the low family (like MUL, DIV) cost 5, and so on.

2.1 Extracting Stack Functional Specifications from EVM Bytecode

Our method takes as input the set of blocks that make up the control flow
graph (CFG) of the bytecode. The first step is, for each of the blocks, to
extract from it a stack functional specification (SFS) from which the super-
optimized bytecode will be synthesized. The SFS is a functional description of
the initial stack when entering the block and the final stack after executing
the block, which instead of using bytecode instructions to determine how the
final stack is computed, is defined by means of symbolic first-order terms over
the initial stack elements. The SFS for our running example is shown in Fig. 2.

x0

x1

x2

x3

x4

=⇒ x4

exp(x2 + x3, x0 + x1)

Fig. 2. Initial and final stack

As can be observed, it consists of an
initial stack shown at the left which
simply determines what the size of the
input stack to the block is and assigns
a symbolic variable as identifier to
each stack position (e.g., the initial
stack contains five elements named
x0, . . . , x4); while the output stack
contains two elements: x4 at the top, and the symbolic term exp(x2+x3, x0+x1)
at the bottom. The output stack is obtained by symbolic execution of the byte-
codes that operate on the stack, as it will be formalized in Sect. 3. The resulting
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expressions are then optimized by means of simplification rules based on the
semantics of the non-stack operations (e.g., the neutral elements, double nega-
tions or idempotent operations are removed, operations on constants performed).
This captures a relevant part of the semantics of the non-stack operators.

2.2 The Synthesis Problem

This section hints on how the generated bytecode will be, and on that the syn-
thesis of optimal bytecode from the specification is challenging.

Example 1. From the SFS in Fig. 2, we know that we have to compute x0 + x1

and x2 + x3, but we have to decide which summation we compute first. On the
left, we have the best bytecode (together with the stack evolution) when we first
compute x2 + x3 and on the right when we first compute x0 + x1. Computing
first one subexpression or the other has an impact on the consumed gas, since
the bytecode on the left has a gas cost of 31 and the bytecode on the right has
a gas cost of 25, which is indeed the optimum.

SWAP3 [x3, x1, x2, x0, x4]
SWAP1 [x1, x3, x2, x0, x4]
SWAP2 [x2, x3, x1, x0, x4]
ADD [x2 + x3, x1, x0, x4]
SWAP2 [x0, x1, x2 + x3, x4]
ADD [x0 + x1, x2 + x3, x4]
EXP [(x0 + x1) ∗∗ (x2 + x3), x4]
SWAP1 [x4, (x0 + x1) ∗∗ (x2 + x3)]

ADD [x0 + x1, x2, x3, x4]
SWAP2 [x3, x2, x0 + x1, x4]

ADD [x3 + x2, x0 + x1, x4]

SWAP1 [x0 + x1, x3 + x2, x4]

EXP [(x0 + x1) ∗∗ (x2 + x3), x4]

SWAP1 [x4, (x0 + x1) ∗∗ (x2 + x3)]

Both codes are far better than the original generated bytecode whose gas cost
was 76. Besides, note that the cost of the two additions and the exponentiation
is in total 16 (that necessarily has to remain), which means that the optimal
code has used only 9 units of gas for the rest while the original code needed 60
units.

The next example shows that the optimal code is obtained when the subterms
of the exponential are computed in the other order (compared to the previous
example). Hence, an exhaustive search of all possibilities (with its associated
computational demands) must be carried out to find the optimum.

Example 2. Let us now consider a slight variation of the previous example in
which the functional specification is [x0, x1, x2, x3] =⇒ [x3, (x0+x1) ∗∗ (x0+x2)].
Now, on the left-hand side we have the best bytecode (together with the stack
evolution) when we compute first x0 + x2 and on the right-hand side we have
the best bytecode when we compute first x0 + x1.
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DUP1 [x0, x0, x1, x2, x3]
SWAP3 [x2, x0, x1, x0, x3]
ADD [x2 + x0, x1, x0, x3]
SWAP2 [x0, x1, x2 + x0, x3]
ADD [x0 + x1, x2 + x0, x3]
EXP [(x0 + x1) ∗∗ (x2 + x0), x3]
SWAP1 [x3, (x0 + x1) ∗∗ (x2 + x0)]

DUP1 [x0, x0, x1, x2, x3]
SWAP2 [x1, x0, x0, x2, x3]
ADD [x1 + x0, x0, x2, x3]
SWAP2 [x2, x0, x1 + x0, x3]
ADD [x2 + x0, x1 + x0, x3]
SWAP1 [x1 + x0, x2 + x0, x3]
EXP [(x1 + x0) ∗∗ (x2 + x0), x3]
SWAP1 [x3, (x1 + x0) ∗∗ (x2 + x0)]

In this case the bytecode on the left has a gas cost of 28, which is indeed the
optimum, and the bytecode on the right has a gas cost of 31. The original
bytecode generated by solc has gas cost 74, so again the improvement is huge.

Both examples show that, in principle, even if we have the functional specification
that guides the search, we have to exhaustively try all possible ways to obtain
it, if we want to ensure that we have found the optimal bytecode.

2.3 Characteristics of Our SMT Encoding of the Synthesis Problem

Our approach to super-optimize blocks is based on restricting the problem in
such a way that we have both a great coverage of most EVM code optimizations
and we can propose an encoding in a simple theory where an SMT solver can
perform efficiently. To this end, the key point is to handle all non-stack oper-
ations, like ADD, SUB, AND, OR, LT, as uninterpreted bytecodes. This allows us to
simplify the encoding in two directions. First, by considering them as uninter-
preted bytecodes we can avoid reasoning on the theory of bit-vectors with width
256. Second, and even more important, this allows us to express the problem in
the existentially quantified fragment, avoiding the exists/forall alternation:

1. We start from the SFS by introducing fresh variables abstracting out all terms
built with uninterpreted functions, in such a way that every fresh variable
represents a term f(a1, . . . , an), where every ai is either a (256 bit) numeric
value, a fresh variable, or an initial stack variable. We also have sharing by
having a single variable for every term, e.g., (x0+1) ∗∗ (x0+1), where x0 is the
top of the initial stack, is abstracted into y0 =EXPU(y1, y1) and y1 =ADDU(x0, 1),
where y0 and y1 are fresh variables and EXPU and ADDU are the uninterpreted
bytecodes for exponentiation and addition, respectively.

2. Now, in order to avoid universal quantification, we take advantage of the fact
that only values from 0 to 2256 − 1 can be introduced in the stack by a PUSH

opcode and hence only this range can appear in the SFS. Therefore, if we
assign values from 2256 on to fresh variables and initial stack variables we
avoid the confusion between themselves and all other values in the problem.

After these two key observations have been made, we fix the maximal number n
of opcodes and highest size h of the stack that is allowed in a solution. This can
be bound by analyzing the original code generated by the compiler. From this,
we roughly encode the problem using variables o0, . . . , on−1 to express the oper-
ations of our code (together with variables p0, . . . , pn−1 that encode the value
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0 ≤ pi ≤ 2256 − 1 added to the stack when oi is a PUSH), variables si
0, . . . , s

i
h−1 to

encode the contents of the stack before executing the operation oi, where si
0 is the

top of the stack (we also use some Boolean variables to express the active part
of the stack). Using this, we can encode the behavior of all stack operations:
POP, PUSH, DUP, SWAP for all its versions (like DUP1, DUP2, . . . ). For the uninter-
preted bytecodes fu, we basically add for every abstraction y = fu(a1, . . . , am)
assertions stating that if we have a1, . . . , am at the top of the stack at step i
(i.e., si

0, . . . , s
i
m−1) and we take the operation f in oi then in step i + 1 we have

y, si
m, . . . on the top of the stack. Again, as all fresh variables and initial stack

variables have been replaced by values form 2256 on, there is no confusion with
all other values.

As a final remark, we have also encoded the commutativity property of unin-
terpreted bytecodes representing the ADD, MUL, AND, OR, etc. This can be easily
made by considering that the arguments can occur at the top of the stack in
the two possible orders. Other properties like associativity are more difficult to
encode and are left for future developments.

2.4 Optimal Synthesis Using Max-SMT

The last key element is how we encode the optimization problem of finding the
bytecode with minimal gas cost. First, let us describe which notion of optimality
we are considering. Our problem is defined as, given an SFS in which all occur-
ring bytecodes there are considered uninterpreted and maybe commutative, we
have to provide the bytecode with minimal gas cost whose SFS is equal modulo
commutativity to the given one. From the encoding we have described in the
previous section, we know that every solution to the SMT problem will have
the same SFS as the given one. Hence, we only need to find the solution with
minimal gas cost. In [20], this was made by implementing a loop on top of the
SMT solving process which was calling the solver asking every time for a better
solution in terms of gas, which was also encoded in the SMT problem. Such
approach cannot be easily implemented in an incremental way using the SMT
solver as a black box without the corresponding performance penalty.

Alternatively, we propose to encode the problem as a Max-SMT problem and
hence, we can easily use any Max-SMT optimizer, like Z3 [12], Barcelogic [7] or
(Opti)MathSAT [11], as a black box with an important gain in efficiency. The
Max-SMT encoding adds to the previously defined SMT encoding some soft
constraints, indicating which is the cost associated to choosing every family of
operators. As mentioned, choosing an operator from the base family has cost 2,
from the verylow 3, and so on. Then, the optimal solution is the solution that
minimizes this cost, which can be obtained with a Max-SMT optimizer.
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29 SSTORE
30 SWAP1
31 DUP5
32 SWAP1
33 MLOAD
34 SWAP1

35 DUP2
36 MSTORE
37 PUSH1 0x20
38 ADD
39 PUSH1 0x40
40 MLOAD

41 DUP1
42 SWAP2
43 SUB
44 SWAP1
45 LOG2
46 POP

47 PUSH1 0x01
48 SWAP2
49 SWAP1
50 POP
51 JUMP

Block 1 Block 2 Block 3

30 SWAP1
31 DUP5
32 SWAP1
33 MLOAD
34 SWAP1
35 DUP2

37 PUSH1 0x20
38 ADD
39 PUSH1 0x40
40 MLOAD

41 DUP1
42 SWAP2
43 SUB
44 SWAP1

46 POP
47 PUSH1 0x01
48 SWAP2
49 SWAP1
50 POP

Fig. 3. CFG block of a real smart contract (top), and blocks generated to build the
functional description of the EVM bytecode (bottom)

3 Stack Functional Specification from EVM Bytecode

The starting point of our work is the CFG of the EVM bytecode to be optimized.
There are already a number of tools (e.g., EthIR [6], Madmax [14], Mythril [18]
or Rattle [4]) that are able to compute the CFG from the bytecode of a given
smart contract. Therefore, we do not need to formalize, neither to implement,
this initial CFG generation step. Since there are bytecode instructions that we
do not optimize, for each of the blocks of the provided CFG, we first perform
a further block-partitioning that splits a basic block into the sub-blocks that
will be optimized by our method as defined below. A basic block is defined as a
sequence of EVM instructions without any JUMP bytecode.

Definition 1 (block-partitioning). Given a basic block B = [b0, b1, ..., bn],
we define its block-partitioning as follows:

blocks(B) =

{
Bi ≡ bi, . . . , bj

∣∣∣∣∣
(∀k.i < k < j, bk �∈ Jump ∪ Terminal ∪ Split ∪
{JUMPDEST}) ∧ ( i=0 ∨ bi−1 ∈ Split ∪ {JUMPDEST} ) ∧
( j=n ∨ bj+1 ∈ Jump ∪ Split ∪ Terminal )

}

where

Jump = {JUMP, JUMPI}
Terminal = {RETURN, REVERT, STOP, INVALID}

Split = {SSTORE, MSTORE, LOGX, CALLDATACOPY, CODECOPY, EXTCODECOPY,
RETURNDATACOPY}

As it can be observed, the bytecodes whose effects are not reflected on the stack
induce the partitioning and are omitted in the fragmented sub-blocks. These
include the bytecodes that modify the memory, the storage or record a log, that
belong to the Split set. Figure 3 shows a CFG block at the top and the blocks
generated to build the functional description at the bottom. The original CFG
block contains the bytecodes SSTORE, MSTORE and LOG2. Thus, it is split into three
different blocks that do not contain these bytecodes.
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(1) τ(S, PUSHX A) = [A | S]
(2) τ(S, DUPX) = [S[0] | S]
(3) τ(S, SWAPX) = temp = S[0], S[0] = S[X], S[X] = temp
(4) τ(S, POP) = S.remove(0)
(5) τ(S, OP) = [OP(S[0], ..., S[δ − 1]) | S[δ : n] ]

Fig. 4. Symbolic execution of the instructions that operate on the stack

Once we have the partitioned blocks from the CFG, we aim at obtaining
a functional description of the output stack (i.e., the stack after executing the
sequence of bytecodes in the block) using symbolic execution for each of the
partitioned blocks. As the stack is empty before executing a transaction and the
number of elements that each EVM bytecode consumes and produces is known,
the size of the stack at the beginning of each block can be inferred statically. We
can thus assume that the initial stack size is given within the CFG. A symbolic
stack S is a list of size k that represents the state of the stack where the list
position 0 corresponds to the top of the stack and k − 1 is the index of the
bottom of the stack, such that S[i] is the symbolic value stored at the position i
of the stack. Initially, the input stack maps each index to a symbolic variable si.

The symbolic execution of each bytecode is defined using the transfer function
τ described in Fig. 4 which takes an input stack and a bytecode and returns
the output stack as follows: (1) the PUSHX bytecode stores at the top of the
stack the value A, (2) DUPX duplicates the element stored at position X−1 to
the top of the stack, (3) SWAPX exchanges the values stored at the top of the
stack with the one stored at position X, (4) POP deletes the value stored in the
top of the stack (using the list operation remove to delete the element at the
given position), (5) OP represents all other EVM bytecodes that operate with the
stack (arithmetic and bit-wise operations among others). In that case, τ creates
a symbolic expression that is a functor with the same name as the original
EVM bytecode and as arguments the symbolic expressions stored in the stack
elements that it consumes. Here, δ stands for the number of elements that the
EVM bytecode OP gets from the stack. Now, the SFS can be defined using the
function τ as follows.

Definition 2 (SFS). Given a block B with an initial size of the stack k, the
initial state of the stack S0 stores at each position i ∈ {0, ..., k − 1} a symbolic
variable si. Then, the transfer function τ is extended to the block B, denoted by
τ(B), as: [s0, . . . , sk−1] if B is empty; and τ(τ(B′), o) if B has o as last operation
and B′ is the resulting block without o. The SFS of B is S0 =⇒ S = τ(B).

Example 3. Consider the block formed by the EVM bytecode shown in Fig. 1,
starting with the bytecode at program point 2 (pp2 for short) and finishing with
the bytecode at pp27. Before executing the block symbolically, the initial stack
is S0 = [s0, s1, s2, s3, s4] and k = 5. After applying the transfer function τ , we
obtain the following results at the next selected program points:
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pp2 : τ(S, PUSH1 0X00) = [0, s0, s1, s2, s3, s4]
pp3 : τ(S, DUP1) = [0, 0, s0, s1, s2, s3, s4]
pp5 : τ(S, DUP6) = [s2, 0, 0, 0, s0, s1, s2, s3, s4]
pp6 : τ(S, DUP8) = [s3, s2, 0, 0, 0, s0, s1, s2, s3, s4]
pp7 : τ(S,ADD) = [ADD(s3, s2), 0, 0, 0, s0, s1, s2, s3, s4]
pp8 : τ(S, SWAP2) = [0, 0,ADD(s3, s2), 0, s0, s1, s2, s3, s4]
pp9 : τ(S, POP) = [0,ADD(s3, s2), 0, s0, s1, s2, s3, s4]
pp15 : τ(S, DUP1) = [ADD(s1, s0),ADD(s1, s0),ADD(s3, s2), 0, s0, s1, s2, s3, s4]
pp16 : τ(S, DUP3) = [ADD(s3, s2),ADD(s1, s0),ADD(s1, s0),ADD(s3, s2), 0, s0, s1, s2, s3, s4]
pp17 : τ(S, EXP) = [EXP(ADD(s3, s2),ADD(s1, s0)),ADD(s1, s0),ADD(s3, s2), s0, s1, s2, s3, s4]
pp27 : τ(S, POP) = [s4, EXP(ADD(s3, s2),ADD(s1, s0))]

Thus, altogether, the output stack of the SFS given by τ for the block in Fig. 1
is S = [s4, EXP(ADD(s3, s2), ADD(s1, s0))]. For example, we can see that τ updates
the stack inserting a 0 in the top of the stack at pp2. At pp8, it swaps the element
in the top of the stack (ADD(s3, s2)) with the element stored at position 2 (0). It
generates a symbolic expression to represent the addition at pp7 with the values
stored in the position of the stack that it consumes. At pp17 it generates a new
symbolic expression EXP(ADD(s3, s2), ADD(s1, s0)) to represent the exponentiation
of the two elements stored in the top of the stack. Note that in this case these
elements are also symbolic expressions of the two previous additions symbolically
executed before.

Finally, we capture optimizations based on the semantics of the arithmetic
and bit-wise operations, by applying simplification rules on the SFS of the block
before we proceed to generate the optimized code. This simplification besides
reducing the number of operations includes other notions of simplification as
well. The easiest examples are the application of simplification rules like with the
units of every operation, or with the idempotence of bit-wise Boolean operators.

4 Optimal Synthesis Using Max-SMT

This section describes our Max-SMT encoding. We start by preprocessing the
SFS into an abstract form that is convenient for the encoding in Sect. 4.1. Next,
Sect. 4.2 describes a key element of our encoding: the stack model. Sect. 4.3
presents the complete encoding of the problem and Sect. 4.4 how to obtain the
optimized EVM blocks from the model obtained by the SMT solver. Finally,
Sect. 4.5 describes the optimization problem. The SFS and the encoding gen-
erated for the example shown in Fig. 1 are available at https://github.com/
mariaschett/syrup-backend/tree/master/examples/cav2020.

4.1 Abstracting Uninterpreted Functions

Before we apply our encoding, we need to abstract all (sub)expressions occurring
in the SFS, by introducing new fresh variables sk, sk+1, . . . that start after the
last stack variable in the initial stack [s0, . . . , sk−1] (of size k). In this process
we have a mapping from fresh variables to shallow expressions of depth one,

https://github.com/mariaschett/syrup-backend/tree/master/examples/cav2020
https://github.com/mariaschett/syrup-backend/tree/master/examples/cav2020
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i.e., built with a function symbol and variables or constants as arguments. Here
we introduce the minimal number of fresh variables that allow us to describe
the SFS using only shallow expressions. By minimal, we mean that we use the
same variable if some subterm occurs more than once (we also take into account
commutativity properties to avoid creating unnecessary fresh variables). Finally
if an uninterpreted function occurs more than once, we add a subscript from 0
on to distinguish them. As a result we have that the abstracted SFS is defined
by a stack S containing only stack variables, fresh variables or constants (in
{0, . . . , 2256 − 1}) and a map M from fresh variables to shallow terms formed
by an uninterpreted function (maybe with subscript) applied to stack variables,
fresh variables or constants (in {0, . . . , 2256 − 1}). Besides, we note that the
abstracted SFS generated is equivalent to first-order A-normal form with shear-
ing. Trivially, all positions in the stack in the SFS and the abstracted SFS are
equal when the map is fully applied to remove all fresh variables and the sub-
scripts are removed. Moreover, we have that every uninterpreted function of the
SFS has a fresh variable assigned in the map and all function symbols in the
map are different.

Example 4. The abstraction of the SFS [s4, EXP(ADD(s3, s2), ADD(s1, s0))] shown in
Example 3 needs three fresh variables s5, s6 and s7. Then, the abstracted SFS is
the stack S = [s4, s7] and the mapping M is defined as {s5 �→ ADD0(s3, s2), s6 �→
ADD1(s1, s0), s7 �→ EXP(s5, s6)}.

4.2 Modeling the Stack

A key element in our encoding is the representation of the stack and the elements
it contains. As mentioned in Sect. 2.3, a first observation is that in our approach
we will only have in the stack constants in the domain {0, . . . , 2256 − 1} (we do
not care if they represent a negative number or not, as they are handled simply as
256-bit words), initial stack variables s0, . . . , sk−1 and fresh variables sk, . . . , sv.
In order to distinguish between constants and the variables si, we assign to every
variable si, with i ∈ {0, . . . , v}, the constant 2256 + i. Now, for instance, we can
establish that a PUSH operation can only introduce a constant in {0, . . . , 2256−1}
and that fresh variables si can only be introduced by uninterpreted functions
if the appropriate arguments are in the stack (see below). The rest of stack
operations, like DUP or SWAP, just duplicate or move whatever is in the stack.
Since in our encoding we will use the variables s0, . . . , sv, as they are part of
the SFS, we have a first constraint assigning the constant values to all these
variables (this could be done as well with a let expression).

SV =
∧

0�i<v
si = 2256 + i

Let us now show how we model the stack along the execution of the instructions.
First, we have to fix a bound on the number of operations bo and the size of
the stack bs. We can apply different heuristics to this end though considering
the initial number of operations and the maximum number of stack elements
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involved in the block are sound bounds. We have to express a stack of bs positions
after executing j operations with j ∈ {0, . . . , bo}. To this end, on the one hand,
we use existentially quantified variables xi,j ∈ Z with i ∈ {0, . . . , bs − 1} and
j ∈ {0, . . . , bo} to express the word at position i of the stack after executing the
first j operations of the code, where x0,j encodes the word on the top of the
stack. On the other hand to complete the modeling we introduce propositional
variables ui,j with i ∈ {0, . . . , bs−1} and j ∈ {0, . . . , bo}, to denote the utilization
of the stack (i.e., the words that the stack currently holds). Here, ui,j indicates
that the word at position i of the stack after executing the first j operations
exists or not.

Additionally, to simplify the next definitions we have the following parame-
terized constraint that, given an instruction step j with 0 < j ≤ bo, two stack
positions α and β and a shift amount δ ∈ Z, with 0 ≤ α, 0 ≤ α + δ, β < bs and
β + δ < bs, imposes that the stack after executing j + 1 instructions between
positions α and β is the same as the stack after executing the j instruction but
with a shift of δ (they are moved up if negative and moved down otherwise).

Move(j, α, β, δ) =
∧

α�i�β
ui+δ,j+1 = ui,j ∧ xi+δ,j+1 = xi,j

4.3 Encoding of Instructions

Let I be the set of instructions occurring in our problem. The set I is split in
three subsets IC 	 IU 	 IS , where:

– IC contains the commutative uninterpreted functions occurring in the map
M of the abstracted SFS,

– IU contains the non-commutative uninterpreted functions occurring in M ,
– IS contains the stack operations: PUSH, that introduces an up to 32-bytes

item on top of the stack; POP that removes the top of the stack; DUPk, with
k ∈ {1, . . . , 16} that copies the k−1 element of the stack on top of the stack;
SWAPk, with k ∈ {1, . . . , 16} that swaps the top of the stack with the k element
of the stack; and an extra operation NOP that does nothing.

Note that, although in EVM there are 32 different PUSH instructions depending
on the amount of bytes needed to express the item, in our context this distinction
is unnecessary, since we can decide afterwards which PUSH do we need by checking
in the obtained solution which is the value to be pushed. Also, the operations
DUPk in IS are reduced to only those with k < bs (otherwise we go beyond the
maximal size of the stack) and, similarly, the operations SWAPk in IS are reduced
to only those with k < bs.

Let θ be a mapping from the set of instructions in I to consecutive different
non-negative integers in {0, . . . , mι}, where mι+1 is the cardinality of I. In order
to encode the selected instructions at every step, we introduce the existentially
quantified variables tj ∈ {0, . . . , mι}, with j ∈ {0, . . . , bo − 1} where for every
instruction ι ∈ I, if tj = θ(ι) then we have that the operation executed at step
j is ι. Additionally, we introduce associated existentially quantified variables
aj ∈ {0, . . . , 2256 − 1}, with j ∈ {0, . . . , bo − 1}, to express the value pushed at
the top of the stack when tj = θ(PUSH) (otherwise the value of aj is meaningless).
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Encoding the Stack Operations. First we show how we encode the effect of
choosing in tj one of the operations in IS that does not depend on the particular
(abstracted) SFS we are considering. The following parameterized constraints
show this effect:

CPUSH(j) =tj = θ(PUSH)⇒0 ≤ aj < 2256 ∧ ¬ubs−1,j ∧ u0,j+1 ∧ x0,j+1 = aj ∧
Move(j, 0, bs − 2, 1)

CDUPk(j) =tj = θ(DUPk)⇒¬ubs−1,j ∧ uk−1,j ∧ u0,j+1 ∧ x0,j+1 = xk−1,j ∧
Move(j, 0, bs − 2, 1)

CSWAPk(j) = tj = θ(SWAPk) ⇒ uk,j ∧ u0,j+1 ∧ x0,j+1 = xk,j ∧ uk,j+1 ∧
xk,j+1 = x0,j∧ Move(j, 1, k − 1, 0) ∧
Move(j, k + 1, bs − 1, 0)

CPOP(j) = tj = θ(POP) ⇒ u0,j ∧ ¬ubs−1,j+1 ∧ Move(j, 1, bs − 1,−1)
CNOP(j) = tj = θ(NOP) ⇒ Move(j, 0, bs − 1, 0)

Notice that the stack before executing the instruction tj is given in the variables
x0,j , . . . , xbs−1,j and u0,j , . . . , ubs−1,j , while the stack after executing tj is given
in x0,j+1, . . . , xbs−1,j+1 and u0,j+1, . . . , ubs−1,j+1.

In order to avoid redundant solutions (with NOP in intermediate steps), we
have to add as well a constraint stating that once we choose NOP as instruction
tj we can only choose NOP for the following instructions tj+1, tj+2 . . .:

CfromNOP =
∧

0�j<bo−1
tj = θ(NOP) ⇒ tj+1 = θ(NOP)

Encoding the Uninterpreted Operations. The encoding of the uninter-
preted operations comes from the map M of the abstracted SFS. First of all, note
that, every function f occurs only once in M (since subscripts are introduced)
and for every r �→ f(o0, . . . , on−1) in M we have that f ∈ IC 	 IU , r is a fresh
variable, and o0, . . . , on−1 are either initial stack variables, fresh variables or con-
stants. Note also that if f ∈ IC then n = 2. Therefore, we define in the encoding
the effect of choosing in tj the uninterpreted function f with r �→ f(o0, . . . , on−1)
in M , as an operation that takes its arguments o0, . . . , on−1 from the stack and
places its result r in the stack (where o0 must be at the top of the stack).

CU (j, f) = tj = θ(f) ⇒ ∧
0�i�n−1(ui,j ∧ xi,j = oi) ∧ u0,j+1 ∧ x0,j+1 = r ∧

Move(j, n,min(bs − 2 + n, bs − 1), 1 − n) ∧∧
bs−n+1�i�bs−1 ¬ui,j+1

where f ∈ IU and r �→ f(o0, . . . , on−1) ∈ M

Now for the commutative functions the only difference is that we know that
n = 2 and that we can find the arguments in any of both orders in the stack:

CC(j, f) =tj = θ(f)⇒u0,j ∧ u1,j ∧
((x0,j = o0 ∧ x1,j = o1) ∨ (x0,j = o1 ∧ x1,j = o0)) ∧
u0,j+1 ∧ x0,j+1 = r ∧ Move(j, 2, bs − 1,−1) ∧ ¬ubs−1,j

where f ∈ IC and r �→ f(o0, o1) ∈ M
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Finding the Target Program. We assign to every ι ∈ I an integer. Then,
tj ∈ Z encodes the chosen instruction at position j in the target program for
0 � j < bo. To encode the selection of an instruction for every tj , we have the
following constraint:

CI = CfromNOP ∧ ∧
0�j<bo

0 ≤ tj ≤ mι ∧
CPUSH(j) ∧ CDUPk(j) ∧ CSWAPk(j) ∧ CPOP(j) ∧
CNOP(j) ∧ ∧

f∈IU
CU (j, f) ∧ ∧

f∈IC
CC(j, f))

Complete Encoding. Let us conclude our encoding by defining the formula
CSFS that states the whole problem of finding an EVM block for a given
initial stack [s0, . . . , sk−1] and abstracted SFS with final stack [f0, . . . , fw−1]
and map M . Hence, we introduce a constraint B to describe how the stack
at the beginning is and a constraint E to describe how the stack at the
end is and combine all the constraints defined above to express CSFS .

B =
∧

0�α<k(uα,0 ∧ xα,0 = sα) ∧ ∧
k�β�bs−1 ¬uβ,0

E =
∧

0�α<w(uα,bo ∧ xα,bo = fα) ∧ ∧
w�β�bs−1 ¬uβ,bo

CSFS = SV ∧ CI ∧ B ∧ E

Finally, let us mention that the performance of the used SMT solvers greatly
improves when the following (redundant) constraint, which states that all func-
tions in IU 	IC should be eventually used, is added:

∧
ι∈IU�IC

∨
0�j<bo

tj = θ(ι)
Empirical evidence shows, that this constraint helps the solver to establish

optimality, and removing it increases the time-outs and time taken by roughly
50%. On the other hand, adding the similar constraint that all functions in
IU 	IC are used at most once, while also helping the solvers to show optimality
for already optimal blocks, the performance for finding optimizations decreases
by a similar rate. As the latter is our main motivation, we did not include the
constraint.

4.4 From Models to EVM Blocks

The following definition shows how we can extract a concrete set of operations
from a model for the formula CSFS that computes the given SFS.

Definition 3. Given a model σ for CSFS we have that block(σ) is defined as the
sequence of EVM operations o0, . . . , of where f is the largest j ∈ {0, . . . , bo − 1}
such that tj �= θ(NOP). Now for all α ∈ {0, . . . , f} the operation oα is taken as

1. oα = PUSHk aα if tα = θ(PUSH) and aα can be represented with k bytes.
2. oα = ι if tα = θ(ι) where ι ∈ IS \ {PUSH}
3. oα = ι if tα = θ(ι) where ι ∈ IU 	 IC and ι has no subscript.
4. oα = ι if tα = θ(ιl) where ιl ∈ IU 	 IC and has subscript l.

The following result easily follows from the construction of CSFS .

Theorem 1 (soundness). Given an SFS and values for bo and bs, we have
that if σ is a model for CSFS obtained from the abstracted SFS then block(σ)
computes the given SFS.
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4.5 Optimization Using Max-SMT

Now that we know that every model of CSFS provides a block that computes the
SFS, we want to obtain the optimal solution. Since the cost of the solution can
be expressed in terms of the cost of every of the instructions we select in all tj , we
will introduce soft constraints expressing the cost of every selection. A (partial
weighted) Max-SMT problem is an optimization problem where we have an SMT
formula which establishes the hard constraints of the problem and a set of pairs
{[C1, ω1], . . . , [Cm, ωm]}, where each Ci is an SMT clause and ωi is its weight,
that establishes the soft constraints. In this context, the optimization problem
consists in finding the model that satisfies the hard constraints and minimizes
the sum of the weights of the falsified soft constraints. Our approach to find the
optimal code is by encoding the problem as a Max-SMT optimization problem,
where we add to the SMT formula CSFS which defines our hard constraints a set
of soft constraints such that sum of the weights of the falsified soft constraints
coincides with the cost (in terms of gas) of the operations taken in every step.
Therefore the optimal solution to the Max-SMT problem coincides with the
optimal solution in terms of gas cost.

In the EVM, every operation has an associated gas cost, which in general
is constant, but in some few cases may depend on the particular arguments it
is applied to or on the state of the blockchain. All these operations that are
non-constant are considered as uninterpreted, and hence we cannot change the
operands on which they are applied. Therefore, omitting the non-constant part
cannot affect which is the optimal solution. Thanks to this, we can split our set
of instructions I in p+1 disjoint sets W0 	 . . .	Wp where all instructions in Wi

have the same constant cost costi, and such that the costs are strictly increasing,
i.e., cost0 = 0 and costi−1 < costi for all i ∈ {1, . . . , p}.

In the following we describe the encoding we have chosen for the weighted
clauses (we have tried other slightly simpler alternatives but, in general, they
behave worse). Let wi = costi − costi−1 for i ∈ {1, . . . , p}. Hence, we have that
wi > 0 and, moreover, costi = Σ1�α�iwα for i ∈ {1, . . . , p}. Then, our Max-SMT
problem OSFS is obtained adding to CSFS the following soft constraints

OSFS = CSFS ∧
∧

0�j<bo

∧

1�i�p

[
∨

ι∈W0�...�Wi−1

tj = θ(ι) , wi ]

Therefore, if the selected instruction at step j is ι (i.e. tj = θ(ι)) for some ι ∈ Wi

then we accumulate the weight wα of all soft clauses with α ∈ {1, . . . , i}, which
as said sums costi, and hence we accumulate the cost of executing the instruction
ι. From this fact, our optimality theorem follows.

Theorem 2 (optimality). Given an SFS P and values for bo and bs, we
have that if σ is the optimal solution for the weighted Max-SMT problem OSFS

obtained from the abstracted SFS of P , then block(σ) is the optimal code that
has an SFS equal to P modulo commutativity.
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5 Experimental Evaluation

This section presents the results of our evaluation using syrup, the SYnthesizeR of
sUPer-optimized smart contracts that implements our approach. Our tool syrup
uses EthIR [6] to generate the CFGs of the analyzed contracts and Z3 [12] ver-
sion 4.8.7, Barcelogic [7], and MathSAT [11] version 1.6.3 (namely its optimality
framework OptiMathSAT), as SMT solvers. We refer by s-Z3, s-Bar, s-OMS, to
the results of using syrup with the respective solvers. Experiments have been
performed on a cluster with Intel Xeon Gold 6126 CPUs at 2.60 GHz, 2 GB of
memory and timeout of 15 min, running CentOS Linux 7.6. The main compo-
nents of syrup are implemented in Python and OCaml. The backend of syrup
generating SMT constraints from a SFS is open-source and can be found at
github.com/mariaschett/syrup-backend. Our tool accepts smart contracts writ-
ten in versions of Solidity up to 0.4.25 and EVM bytecode v1.8.18, namely the
three new EVM bytecodes (SHL, SHR and SAR) introduced from the Solidity com-
piler version 0.5.0 are not handled yet by EthIR. Our experimental setup con-
sists of two groups of benchmarks:

(i) In order to compare with the existing tool ebso, we use the same data set (and
the results for ebso) from [20]: the blocks of the 2500 most called contracts
deployed on the Ethereum blockchain3 after removing the duplicates and
the blocks which are only different in the arguments of PUSH by abstracting
to word size 4 bit. This results in a data set of 61 217 blocks.

(ii) A more realistic setting in which we analyze the 150 most called contracts4

queried from the Ethereum blockchain and removing those of the versions
not supported, resulting in 128. As the dates in which the contracts are
fetched are different, not all 128 contracts are included in setup (i), indeed,
the intersection are 106 contracts (besides there might be updated versions).
This setting is more realistic since the analysis is performed at the contract-
level (without removing any duplicates or similar blocks) and allows us to
gather statistics to assess the gains at the level of the deployed contracts.

We note that analyzing the most called contracts corresponds to the most rele-
vant case study as, according to [16], many Ethereum contracts are not used.

5.1 Comparison with ebso (setup I)

As seen in Definition. 1, we split the 61 217 blocks on certain bytecodes that are
not optimized, leading to a total of 72 450. For comparison, we merge the split
blocks back together. The next table shows the results of optimizing the 61 217
blocks by ebso (first column), and by syrup for every solver (next columns). In
column s-All, we use the 3 solvers as a single framework in syrup that yields the
best solution returned by any of the solvers (in parenthesis we show percentages).

3 Up to Ethereum blockchain block number 7 300 000 until 2019-03-04 01:22:15 UTC.
4 Up to Ethereum blockchain block number 9 193 265 until 2019-12-31 23:59:45 UTC.

https://github.com/mariaschett/syrup-backend
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ebso s-Z3 s-Bar s-OMS s-All

A 3882 (6.34%) 20 636 (33.71%) 20 783 (33.95%) 20 973 (34.26%) 20 988 (34.28%)

O 393 (0.64%) 25 922 (42.34%) 26 458 (43.22%) 28 063 (45.84%) 28 195 (46.06%)

B 550 (0.90%) 6288 (10.27%) 3051 (4.98%) 5293 (8.65%) 5726 (9.35%)

N n/a 1933 (3.16%) 563 (0.92%) 837 (1.37%) 1020 (1.67%)

T 56 392 (92.12%) 6438 (10.52%) 10 362 (16.93%) 6051 (9.88%) 5288 (8.64%)

G 27 726 1 188 311 1 003 717 1 272 381 1 309 875

S Not avail 13 710 904.75 13 141 046.21 12 239 980.85 10 948 011.57

Row A shows the number of blocks that were Already optimal, i.e., those
that cannot be optimized because they already consume the minimal amount of
gas and ebso/syrup find bytecode with the same consumption. Row O contains
the number of blocks that have been optimized and the found solution has been
proven to be Optimal, i.e., the one that consumes the minimum amount of gas
needed to obtain the SFS provided. The solvers used are able to provide the
best solution found until the timeout is reached. Row B contains the number
of blocks that have been optimized into a Better solution that consumes less
gas but it is not shown to be the optimum. Row N shows the number of blocks
that have Not been optimized and not proven to be optimal, i.e., the solution
found is the original one but there may exist a better one. Row T contains the
number of blocks for which no model could be found when the T imeout was
reached. Row G contains the accumulated Gas savings for all optimized blocks.
Importantly, the real savings would be larger if the optimized blocks are part of
a loop and hence might be executed multiple times. Row S shows the time in
Seconds in which each setting analyzes all the blocks.

Let us first compare the results by ebso and our best results when using the
portfolio of solvers in s-All. It is clear from the figures that syrup significantly
outperforms ebso on the number of blocks handled (while ebso times out in
92.12 % of the blocks, we only timeout in 8.64 %) and on the overall gas gains
(two orders of magnitude larger). For the analyzed blocks (i.e., those that do not
timeout), the percentages of syrup for number of optimized into better blocks,
into optimal blocks, and those proven to be already optimal, are much larger
than those of ebso. We now discuss how the gains for the blocks that ebso
can analyze compare to the gains by syrup. In particular, if missing part of the
semantics of the uninterpreted instructions and the SSTORE bytecode significantly
affects the gains. Out of 943 examples, where ebso found an optimization, in 46
cases syrup proved optimality w.r.t. the SFS and saved 348 gas but saved less
gas than ebso (total 10 514 gas). The source of this gain is the SSTORE bytecode:
there are two blocks where ebso saves 5000 each, because it realizes that we read
from a key in storage to then store the value back unchanged. As we discuss
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in Sect. 7, our framework naturally extends to handle this storage optimization.
However, in nearly all of 393 cases, where ebso found an optimal solution—in
378 cases—syrup saves as much as ebso amounting to 2670 gas. That is, the
additional semantics did not improve savings. Furthermore, in 43 cases out of
943, the semantics did impede ebso’s performance so that syrup found a better
result with 597 gas versus 440 of ebso. Therefore, we can conclude that syrup
is far more scalable and precise than ebso, the cases in which syrup optimizes
less than ebso are seldom and can be naturally handled in the future. Moreover,
they are offset by the cases where syrup did find an optimization, whereas ebso
did not.

Finally, we can see that MathSAT is the solver that shows the best perfor-
mance: It proves optimality of 34.26 % and optimizes 54.49 % of the blocks (c.f.
Sect. 5.3). Regarding analysis time, the global figure is not reported in [20]. In
syrup, by accumulating the time of all four scenarios (s-X) and using the 900 s
timeout of ebso, we analyze the whole data set in about 3042 h. We note that,
by considering the solvers as a portfolio, we reduce the analysis time as when
an optimal solution is found, the execution of the other two solvers is stopped.
However, for the other cases, we take the highest time taken by the solvers as we
need to know all solutions in order to keep the best one and provide an answer.

5.2 Analysis of the Most Called Contracts with Gas Savings
(setup Ii)

For our second setup, syrup produces the following results for the 46 966 blocks
of the 128 (most called) smart contracts:

Fig. 5. Gas saved per contract in the 128 most called smart contracts
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s-Z3 s-Bar s-OMS s-All

A 30 846 (65.68%) 30 923 (65.84%) 30 971 (65.94%) 30 974 (65.95%)

O 13 102 (27.9%) 13 240 (28.19%) 13 586 (28.93%) 13 606 (28.97%)

B 933 (1.98%) 510 (1.09%) 746 (1.59%) 801 (1.71%)

N 695 (1.48%) 95 (0.2%) 295 (0.63%) 467 (0.99%)

T 1390 (2.96%) 2198 (4.68%) 1368 (2.91%) 1118 (2.38%)

G 438 483 406 086 437 165 443 248

S 2 919 830.35 2 682 469.58 2 413 612.39 2 378 446.26

As before, MathSAT is the solver that shows the best performance: It proves
optimality of 65.94% and optimizes 30.52% of the blocks. The overall gas savings
in G amount to 0.73% of the total gas which, assuming a uniform distribution
of this saving among the contracts, amounts to around a million dollars from
2017 to 2019 (see Sect. 1 for details on this estimations). Moreover, we have
calculated that the 64% of the saved gas is due to the simplification rules and
the 36% to the Max-SMT optimization, which shows that both parts are highly
relevant in our results. For this data set, we additionally display in Fig. 5 the
amount of gas saved for each contract. The X-axis corresponds to each of the
128 analyzed contracts and the Y-axis corresponds to the amount of gas saved
when using each solver. In general the gains obtained by the different solvers
are quite aligned. On average, each contract saves 3425.65 units of gas using Z3,
3172.55 using Barcelogic and 3415.35 using MathSAT. However, we can observe
that the gains are dispersed w.r.t. the mean, and there are big differences in
the savings obtained for each of the contracts (the standard deviation is 2798.19
for Z3, 2664.05 for Barcelogic and 2889.01 for MathSAT). The biggest amount
of gas optimized in all contracts is 18 989 gas using Z3, 18 704 using Barcelogic
and 19 205 using MathSAT. In the case of this contract, MathSAT optimizes 706
blocks out of 1910, and the highest amount of gas optimized is 162 though the
most common amount of gas optimized is 3 (in 165 blocks). The highest amount
of gas optimized per block in all contracts is 481. Finally, we have analyzed the
impact of our optimization on the function transfer of the AirdropToken smart
contract, that has been called around 520 000 times. For this function, which has
no loops, syrup saves 832 units of gas per call. From the number of calls per day
(obtained from [2]), we estimate a total saving (just for this function) of 2815 $.

5.3 Comparison of SMT Solvers in Precision and Time

Figure 6 aims at providing some data to compare the accuracy and efficiency of
the process using the three SMT solvers. The table to the left shows in: Unique
the number of blocks that are uniquely optimized by the corresponding solver,
in UOptim the number of blocks that are proven to be optimal uniquely by one
solver, and +GSave the number of blocks for which one solver has strictly more
gains that the others. The suffixes 1 and 2 refer to the data set in Sects. 5.1 and
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s-Z3 s-Bar s-OMS

Unique1 608 73 925
UOPtim1 22 108 1296
+GSave1 694 634 4286
Unique2 238 6 234

UOPtim2 6 14 237
+GSave2 107 79 563
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Fig. 6. Comparison of SMT Solvers

5.2, resp., excluding all timeouts. In both data sets, MathSAT uniquely finds
a result, uniquely shows the block optimal, or finds the best gain for the large
majority. But clearly, in both data sets, every solver was needed to get the best
possible solution in every category. The plot to the right of Fig. 6 displays the
amount of blocks (Y-axis) that are solved in the corresponding amount of time
(X-axis). Dashed lines correspond to data set 1 and plain lines to 2. We can
see that for data set (i) within 10 s, nearly 89% of the results were found. For
data set (ii) this is even more pronounced, after 10 s around 95% were found,
with around 90% already being available after 1 s. The analysis shows that most
results can be found very fast and thus our optimizer could be invoked during the
compilation of a smart contract without adding a large overhead to compilation.

6 Related Work

There are currently two automated approaches to gas optimization of Ethereum
smart contracts. (i) First, the closest to ours is blockchain superoptimization
[20], whose goal is the same as ours: find the gas-optimal block of code for each
of the blocks in the CFG of the smart contract. While the approach of [20] would
not be applicable within a compiler (e.g., it times out in 92.12 % of the blocks
used in their experimental evaluation), our optimization tool performs very effi-
ciently (e.g., we have seen that 89% of the blocks are optimized in less than 10 s).
The reasons for our efficiency are indeed the fundamental differences with [20]:
(1) we use the SFS to solve the optimization problem efficiently as a synthesis
problem in which the semantic optimizations are carried out within the SFS
part, (2) we do not encode the semantics of the arithmetic and bit-vector oper-
ations in the SMT problem, as [20] does, what allows us to express the problem
using only existential quantification, (3) we use Max-SMT to solve the optimiza-
tion problem. The basis for ebso is in [15], where the description of an encoding
of unbounded superoptimization with the idea to shift the search for optimal
program to the SMT solver is first found. (ii) Second, the system Gasol [5]
incorporates also an automatic optimization for storage operations that con-
sists in replacing accesses to the storage (i.e., bytecodes SSTORE and SLOAD)
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by equivalent accesses to memory locations (i.e., bytecodes MSTORE and MLOAD),
when a static analysis identifies that it is sound and efficient doing such trans-
formation. This optimization is not intra-block, as done in supercompilation,
therefore it is not achievable by our approach as it involves modifying multiple
blocks, and also requires an analysis that identifies the patterns and the sound-
ness of the transformation. On the other hand, Gasol is not able to make the
intra-block optimizations that we are achieving. Therefore, the optimizations in
Gasol are orthogonal (and complementary) to those achievable by means of
superoptimization.

There is work also focused on identifying gas expensive patterns: (1) the
work in [9] identifies 7 expensive patterns on Solidity contracts and proposes
optimizations for them. However, there is no tool in [9] that carries out these
optimizations automatically; (2) The work in [10] identifies 24 anti-patterns, e.g.
[OP,POP] optimizes to POP. Again, there is not automation and those patterns are
manually identified. There is recent work that experimentally proves that the
gas model for some EVM instructions is not correctly aligned with respect to the
observed computational costs in real experiments [26], and that these misalign-
ments can lead to gas-related attacks [22]. Our work is parametric on the gas
model used, and new adjustments in the gas model of Ethereum are integrated in
our optimizer by just updating the cost for the corresponding modified instruc-
tions in our implementation. Finally, the tool TOAST [8] also superoptimizes
machine code. Although applied to different settings, the performance of syrup
is significantly better and the notions of optimality used are different (sequence
length and gas-usage respectively).

7 Conclusions and Future Work

We have presented a novel method for gas super-optimization of smart contracts
that combines symbolic execution with an effective Max-SMT encoding. Our
focus is on the stack operations because these bytecode operations allow for
multiple reorderings, simplifications, and cover the major part of the potential
optimizations; while reading and/or writing on memory or storage can be seldom
optimized (unless the same value is written, or read, consecutively). In spite of
this, the same methodology we have formalized for the stack could be extended to
optimize the memory and storage bytecode operations. Basically, the symbolic
execution phase would extract a functional specification also for memory and
for storage that would be analogous to our SFS and that could include storage-
related optimizations (e.g., detecting unnecessary storage). The SMT encoding
for these operations would be similar to ours but, for soundness, would have to
maintain the order among the memory and storage accesses. It is part of our
future work to implement also the super-optimizations for memory and storage
and experimentally evaluate if there is significant gain. We also plan to extend
the SMT encoding to include information gained from the original program such
as the original cost. Currently, in roughly 0.05% of the blocks of Sect. 5.2, syrup
synthesizes a more expensive solution.
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