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Abstract—This letter investigates a dynamic scheme to an-
alyze and optimize unmanned-aerial-vehicle-(UAV)-to-ground
millimeter-wave (MMW) networks. First, a downlink energy
transfer is proposed, followed by the uplink information transfer
process between the UAV base stations (BSs) and a ground
Internet of things (IoT) network. The UAVs fly above the ground
IoT in the energy transfer phase with the dynamic regulation of
the velocity according to the association distance with the IoT
devices in order to minimize the path loss fading. Afterwards,
the ground-based IoT devices use the received energy to transmit
the uplink information by vertical links, where all the UAV BSs
are modeled with gain from multiple three-dimensional uniform
linear antenna arrays. After deriving new statistical properties,
we analyze the spectrum efficiency and energy efficiency for the
system. Our numerical results reveal that the dynamic scheme
in UAV-to-ground IoT networks provides great advantages than
a traditional static deployment.

Index Terms—Unmanned aerial vehicles, millimeter wave,
wireless power transfer, energy efficiency.

I. INTRODUCTION

In the next-generation Internet of Things (IoT) scenarios,
the use of low-altitude platforms (LAPs) in aerial wireless
communications has become increasingly popular, which has
attracted huge attention from both academia and industry.
Unmanned Aerial Vehicles (UAVs) benefit from mobility and
could act as servers for various IoT devices, for example, data
collection, temporary base stations, or energy power beacons
[1, 2].

Enhancing the energy performance of UAV systems is be-
coming the most critical challenge in UAV networks, because
UAV wireless networks are limited by the aircrafts’ flying
speed and weight constraints. [3] has shown that energy-
efficient networking schemes in UAV will bring significant
benefit when multiple small and mini drones are working
with terrestrial networks. Energy harvesting in millimeter-
wave (MMW)-based dense networks has been considered in
[4]. The energy efficiency in UAV-enabled wireless networks
was studied in [5], which is considered a rotary wing UAV
communication with a group of ground nodes for data dissem-
ination and collection. Optimizing the trajectory of the UAVs
is also examined in [6], which has considered throughput and
energy consumption in UAV wireless networks. In [7], the
authors have proposed a UAV-assisted mobile network and
have analyzed an efficient trade-off between data collection
and energy harvesting to ground devices. The author proposed
the harvest-then-transmit protocol in UAV-enabled mobile net-
works [8].

The existing literature in [9, 10] have focused on moving
UAV acting as a wireless charging station in order to serve
a limited number of ground IoT devices. Minimization of

the total energy consumption in UAV mobile edge computing
network with energy harvesting was investigated in [11].
However, little is known about the wireless communication
between multiple UAVs and ground IoT devices in cellular
networks, based on the harvest-then-transmit protocol.

In order to tackle this new challenge, stochastic geome-
try approach has been considered to optimize the effect of
multiple MMW antennas on the spectrum efficiency (SE) and
energy efficiency (EE) of UAV-BSs and ground Internet of
things (IoT) networks, where the UAV-BSs first transfer energy
and then collect data from the ground IoT devices. We can
apply this network architecture to particular scenarios such as
those pertaining to disasters and precision agriculture. To the
best of our knowledge, this has not been investigated in the
existing literature.

Our main contribution is to investigate a novel dynamic
adaptive flight scheme for the wireless power transfer phase
along with its detailed mathematical derivation. The proposed
scheme can enable UAVs to move above the ground IoT
devices and transfer the information, which significantly im-
proves the efficiency of the harvested energy and overcomes
the blockage effects to reduce the path loss fading. Moreover,
this approach can help the desired UAVs by hovering at an
ideal location to achieve better performance at MMW bands
due to large path loss. We also design a realistic three-
dimensional (3D) uniform linear array (ULA) beamforming
approach to model the UAV-to-ground MMW links after
considering the moving elevation and depression angles for
typical and interfering UAVs, respectively. From the simula-
tion, we conclude that the proposed scheme is superior to the
existing hovering scheme, and the optimal time allocation will
maximize both SE and EE.

II. NETWORK MODEL

We consider a time-division UAV-to-ground network, which
includes multiple UAV BSs having Mo antennas in the air
and multiple single-antenna IoT devices on the ground. The
locations of all the UAV BSs and ground IoT devices are
modeled as a Poisson point process (PPP) configuration in
ΦU and ΦS with densities λU and λS, respectively, where λS

is far larger than λU. We make the assumption that all the
UAV-BSs fly at the same height H .

We define T as the duration of a total communication slot,
and τ , τ ∈ (0, 1) as the allocation factor of time. In the first
duration, τT is allocated to the UAV-to-ground wireless power
transfer phase, which includes the time taken for the serving
UAV to move to the desired location for that ground IoT
device. Typical ground IoT devices first associate with the
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Fig. 1. System model. Fig. 2. Velocities and acceler-
ations schematic plot.

nearest UAV-BS, then the UAV-BS flies towards the typical
ground IoT device, with a constant heading rate and altitude,
as shown in Fig. 1. During the dynamic adaptive flight process,
energy is transmitted to the typical ground IoT device in the
downlink phase. The next duration of (1− τ)T is allocated to
the ground-to-UAV wireless information communication phase
1, and each ground IoT devices uses the received energy as the
transmit power to transmit information back to the associated
UAV BSs 2.

A. Uniform Linear Array

All the antenna elements are placed along the propagation
plane with ∆κ spacing, and we formulate the 3D array steering
and response vector [12, 13] for the UAV BS as

uD
a(θD, ϑD,Mo) =

[
1, e−jζ sin θD sinϑD

, .., e−jζ(Mo−1) sin θD sinϑD
]T
,

(1)
where θD ∼ U(0, 2π) is the azimuth angle of departure
(AoD) and ϑD ∼ U(0, π) is the angle of depression for AoD,
respectively, and ζ = 2π∆κ

% , % is the wavelength. Mo is the
number of the elements, and (·)T denotes transpose. We obtain
the uplink receiving vector uA

a(θA, ϑA,Mo) by interchanging
θD → θA and ϑD → ϑA in (1), where θA ∼ U(0, 2π) is the
azimuth angle of arrival (AoA) and ϑA ∼ U(0, π) is the angle
of depression for AoA, respectively.

In the ground network, the ground IoTs are only
equipped with single-omnidirectional-antenna, which
are labeled as ug = [1]. Then we have the downlink
and uplink ULA steering channel columns given as

UD = uD
a(θDo, ϑ

D
o,Mo)u

H
g , (2)

UU = ug
[
uA
a(θAo, ϑ

A
o,Mo)

]H
. (3)

Notice (·)H is the conjugate transpose 3.
It is obvious that the transmitting and receiving array an-

tenna gain from the UAV BS to its serving ground IoT device
is Mo. Based on Euler’s formula, Chebyshev polynomials and
trigonometric identities, the average interference antenna gain
for downlink and uplink are expressed as

GD =

∣∣∣∣∣uD
a(θD, ϑD,Mo)

H

√
Mo

UD
uHg
1

∣∣∣∣∣
2

=
1

Mo

(
1

2π

)2(
1

π

)2

×
∫ π

0

∫ 2π

0

∫ π

0

∫ 2π

0

1− cos (MoζψD)

1− cos (ζψD)
dθDdϑDdθDodϑ

D
o, (4)

1We consider UAVs with sufficient onboard energy that can be stored for
supporting stable transmit power.

2Once collected the data from ground IoT devices, each UAV will hover in
the current location and wait for another call until the storage space is full.

3θAo and ϑAo are the channel angles.

and GU =

∣∣∣∣∣uHg1 UU
uA
a(θA, ϑA,Mo)√

Mo

∣∣∣∣∣
2

=
1

Mo

1

2π

1

π

×
∫ π

0

∫ 2π

0

1− cos (MoζψA)

1− cos (ζψA)
dθAodϑ

A
o, (5)

respectively, where we have defined ψD = sin θD sinϑD −
sin θDo sinϑDo and ψA = sin θA sinϑA − sin θAo sinϑAo.

B. Downlink Power Transfer Model

During the downlink power transmission phase, the associ-
ated UAV BS first transmits energy for the duration τT with
the instantaneous velocity v(t) (m/s) and constant acceleration
a (m/s2) toward the typical ground IoT device. Considering
blockage effects in the wireless channel of the UAV-to-ground
network, different path loss probabilities have been applied to
line-of-sight (LoS) links and non-line-of-sight (NLoS) links.
Due to the sparse scattering in the MMW channel, we have
neglected small scale fading [14].

The total harvested energy from associated UAV BS and
ambient UAV BSs to the ground IoT device as

Esum = η
τTPUMoβ

D (|Xo(t)|)︸ ︷︷ ︸
E1

+ η τT
∑

q∈ΦU

PUβGD

D (|Xq(t)|)︸ ︷︷ ︸
E2

, (6)

where E1 is the directed energy from the associated UAV, PU

is the transmitting power from all the UAV BSs and Xo(t) is
the instant projection distance between the moving associated
UAV BS to the typical IoT device. Notably, the horizontal
distance Xo(t) = ro − s(t) is dynamic, i.e., varying with
time t, where t ∈ [0, τT ], ro is the initial closest association-
projection distance from UAV to typical IoT devices based on
the associated probability density functions, which is given by
f(ro) = 2πλUro exp(−πλUr

2
o). E2 is the harvested energy

from the ambient UAVs, and Xq(t) is the dynamic projection
distances between typical ground IoT device and the ambient
wireless power charging UAV BSs which varies with time
t. η is the energy conversion efficiency factor, and β is the
frequency-dependent constant value.

The path loss gain function can be expressed by

D(X) =
pL(X)

√
X2 +H2

αL +
pN(X)

√
X2 +H2

αN , (7)

where X indicates the projection distance from the serving
UAV to the typical user, αL and αN are the LoS and NLoS
path loss exponents, respectively. pL(X) is the LoS connection
probability, while the NLoS probability of a link is pN(X) =
1− pL(X).

C. Uplink Information Transmission

The received signal-to-interference-plus-noise ratio (SINR)
of the serving UAV BS with distance |Xo| is given by

γ =
PTMoβD

(∣∣∣X̂o

∣∣∣)∑
k∈ΦU\oPTGUβD (|Zk|) + σ2

, (8)

where PT is the maximum stable transmit power from the
ground IoT device, and X̂o is the projection distance between
the serving UAV BS and its intended IoT device, GU is the
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Esum(ro, τ) = ητT2πλUPUḠDβ

∫ ∞
0

D(u)udu

+ ηPUMoβ

{∫ τT
2

0

D

(
ro

(
1− 2

(
t

τT

)2
))

dt+

∫ τT

τT
2

D

(
ro

(
2− 4

t

τT
+ 2

(
t

τT

)2
))

dt

}
. (11)

uplink array gain and Zk is the projection distance between
the typical ground IoT device and k-th interfering UAV BSs,
and σ2 is the noise power.

III. PERFORMANCE ANALYSIS

In this section, the downlink average harvested energy and
average achievable rate in the uplink are analysed.

A. UAV-to-ground Wireless Power Transfer

In the wireless power transfer phase, each typical ground
IoT device is associated with the nearest UAV BS. The
associated UAV BS flies towards the serving ground IoT
device whilst transmitting energy.

Note that we assumed that each associated UAV flies at
constant acceleration as in the beginning. Then, each UAV is
stopped right above the typical user and remained aloft, so that
the minimum path-loss fading between the typical IoT device
and serving UAV in the information transmission process is
guaranteed. In the first phase (i.e., from a hovering state to
maximum velocity), an adaptive and dynamical solution has
been designed where UAVs fly at constant acceleration to
achieve the maximum velocity. Then, the UAVs decelerate
to the destination, stopping and hovering on the top of the
typical IoT device during the second duration (i.e., from the
maximum velocity to hovering state). For further analysis, we
calculated the instant velocity and constant acceleration has
been calculated, which was based on the given distance ro
expression as
v1(ro, τ, t) = 4ro/(τT )

2
t< vm 0 6 t 6

τT

2

v2(ro, τ, t) = (4ro − 4ro/τT ) / (τT )< vm
τT

2
6 t 6 τT

,

(9)

where the acceleration can be expressed as{
a1(ro, τ) = 4ro/(τT )

2
0 6 t 6 τT/2

a2(ro, τ) = −4ro/(τT )
2

τT/2 6 t 6 τT
. (10)

Note that vm = amτT/2 is the constant for the velocity. 0 <
a1(ro, τ) < am and −am < a2(ro, τ) < 0 are the acceleration
and the deceleration along the UAV’s flying direction, am and
−am are the constant for the acceleration and deceleration,
respectively.

Theorem 1: The average harvested energy for the associated
typical IoT device served by the UAV-BSs with the power
transfer time allocation τ is given by (11) on the top of this
page. Note that the azimuth AoD θD and depression AoD ϑD

from the associated UAV BS will change as the UAV flies,
which adapt to the moving direction as the UAV BS flies.

Proof 1: Based on (11), the average harvested energy for a
typical IoT device projection distance is written as

Esum(ro, τ) = η {E1(ro, τ) + E2(ro, τ)} . (12)

The average harvested energy directly from the associated
UAV BS can be written as

E1(ro, τ) = PUMoβ×{∫ τT
2

0

D(ro − s1(ro, τ, t))dt +

∫ τT

τT
2

D(ro − s2(ro, τ, t))dt

}
,

(13)

with s1(ro, τ, t) =
2ro

(τT )
2 t

2,

s2(ro, τ, t) =
4ro

(τT )
t− 2ro

(τT )
2 t

2 − ro, (14)

where s1 and s2 are referred to the moving distance in the
straight line during first phase and second phase, respectively,
and ro is the distance between the staring point to the
destination. To avoid the low efficiency association link and
high moving cost, we prevent the association distance ro larger
than rd(τ) = am(τT )

2
/4, where the associated UAV can not

fly to the top of the typical user.
The ambient harvested energy E2 under the prescribed

association distance and time allocation is calculated as

E2(τ, r) = τT2πλUPUḠDβ

∫ ∞
0

∫ 2π

0

×{∫ τT
2

0

D(U1(φ, t, u))udt+
∫ τT

τT
2

D(U2(φ, t, u))udt

}
dφdu

(a)
≈ τT2πλU

∫ ∞
0

PUḠDβD(u)udu, (15)

where U1 and U2 are the instant projection distance from
interference UAV to the typical IoT device in the first and
second phase at time t, respectively.

U1(φ, t, u) =

√
u2 + s1(ul, τ, t)

2 − 2us1(ul, τ, t) cosφ,

U2(φ, t, u) =

√
u2 + s2(ul, τ, t)

2 − 2us2(ul, τ, t) cosφ,

(16)

where s1(ul, τ, t) and s2(ul, τ, t) are obtained by interchang-
ing the parameters ro → ul in (14), and u is the projection
distance from interference UAV to the typical IoT device. φ
is the inclined angle with original interference UAV to the
typical IoT device and the interference UAV to the destination
IoT device. We simply use the average nearest distance to
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replace the dynamic distance from the interference UAV to its
serving IoT device as

ul =

∫ ∞
0

rof(ro)dro. (17)

Note that the approximation (a) in (15) is obtained by as-
suming each interference UAV flies to the destination UAV
with random inclined angle φ, which will counteract the
impact of mobility. Moreover, consider the interference only
has negligible effect on MMW links, then we can obtain it
by approximating the generating function of PPP [15]. By
applying (13) and (15) into (12), we obtain the desired result
in (11).

B. Ground-to-UAV Wireless Information Communication

After the energy transfer phase, the IoT devices trans-
mit their information signals to the associated UAV BSs 4.
Since the uplink information transmission energy consumed
could not exceed the received energy Esum, and the average
transmit power in the ground IoT device is PT(ro, τ) =
Esum(ro, τ)/(1− τ)T , where Esum(ro, τ) is given by (11).

Theorem 2: For a UAV BS associated with its intended
ground IoT device, the average achievable rate at each UAV
BS can be found as

R(ro, τ) =
(1− τ)T

ln 2

∫ ∞
0

1

w

(
1− exp

(
−wMoβH

−αL
))

× exp

(
−w2πλUGUβ

∫ ∞
0

D (v) vdv

)
× exp

(
−w σ2

PT(ro, τ)

)
dw. (18)

Proof 2: The average uplink rate from the typical ground
IoT device to the associated UAV BS can be expressed as

R(ro, τ) =
(1− τ)T

ln 2

∫ ∞
0

1

w

(
1− e−wγ

)
dw =

(1− τ)T

ln 2

×
∫ ∞

0

1

w

1− e−wS︸ ︷︷ ︸
ΘS(w)

 e−wI︸ ︷︷ ︸
ΘI(w)

e
− wσ2τT

Esum(ro,τ) dw. (19)

Since the received signal and interference are independent, we
derive the signal expression ΘS (w) as

ΘS (w) = exp
(
−wMoβH

−αL
)
, (20)

and then ΘI (w) is calculated as

ΘI (w) = E

[
exp

(
−w

∑
k∈ΦU

GUβ
√
u2
k +H2

−αU

)]

≈ exp

{
−w2πλUḠUβ

∫ ∞
0

D (v) vdv

}
, (21)

Substituting (20) and (21) into (19), we obtain the desired
result (18).

4It is assumed that the association pair is the same as in the downlink
phase.

C. Energy Efficiency

The energy efficiency of the overall UAV-to-ground down-
link and uplink system is defined as the ratio of the average
achievable rate to the total average power consumption. We
consider the total average power consumption composed of
the energy transfer phase and the information transfer phase,
which includes flying power and hovering power consumption,
respectively. This problem can be formulated as

P : max
τ
BLow

EE (τ, ro) =

∫ rm(τ)

0

R (ro, τ)

EF (ro, τ) + EO (τ)
f (ro) dro,

(22)

where the average flying energy EF (ro, τ) is given as

EF (ro, τ) =

∫ τT
2

0

k1v1(ro, τ, t)
3

+
k2

(
1 + |a (ro)|2/g2

)
v1 (t)

dt

+

∫ τT

τT
2

k1v2(ro, t)
3

+
k2

(
1 + |a (ro)|2/g2

)
v2 (ro, t)

dt, (23)

where k1 and k2 are the constant values and g is the gravitation
acceleration with the nominal value is 9.8 m/s2. The remaining
consumption energy is EO (τ) = τTPU + (1 − τ)TPH, while
PH is the hovering power which ensures that the UAV remains
aloft [6]. We formulate the optimization problem to find the
optimal time allocation of τ to maximize the average energy
efficiency. Since the optimization of the energy efficiency BEE
for time allocation τ does not permit a closed-form solution,
we solve the problem by using a simple one-dimensional
search in the numerical results.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present numerical results of UAV to
ground channel characteristics and multiple 3D ULA antenna
array on the achievable energy efficiency. We assume the
bandwidth with BW = 1GHz, where the pathloss exponent
are αL = 2.5 and αN = 3.71, respectively. The noise
figure is Nf = 10dB, the noise power is σ2 = −174 +
10 log 10(BW)+NfdBm. Then we have the frequency de-

pendent constant value given by β =
(

c
4πfc

)2

with c =

3 × 108m/s. We also assume that k1 = 9.26 × 10−4 and
k2 = 2.25×103 in the constant for the UAV flying power [6],
am = 4m/s2, η = 0.9, PU = 46 dBm, Mo = 16, PH = 80W.
In the ULA configuration, we choose the antenna spacing as
half wavelength ∆κ = 1

2%.
The blockages are modeled as [16], and the LoS connection

probability function in a network is computed as

pL(X) = 1 + a exp (−b [arctan (H/X)− a]), (24)

where a = 9.6 and b = 0.28, respectively. For comparison, we
consider the static hovering scheme, in which all the UAVs
hover at their original location and do not fly to the IoT
devices.

Fig. 3 shows the energy efficiency against the time al-
location of τ . We observe that as the time allocation τ
increases, there exists an optimal value of τ which achieves
the maximum SE and EE, and this optimal value changes with
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frequency when fc = 28 GHz and fc = 38 GHz, respectively.
Furthermore, our dynamic scheme shows superiority to the
static hovering scheme, due to a dynamic adaptive scheme
effectively eliminate blockage effects in the information trans-
fer phase. For further comparison, we examined a new Lower
power scheme, which uses the transmit power from the static
hovering scheme to replace the dynamic scheme. The results
show that the dynamic adaptive scheme not only benefits the
wireless power transfer phase, it also brings benefits in the
information transfer phase. As expected, the simulation results
for EE provide similar insights to those for SE.

Fig. 4 (a) presents the harvested energy curve versus height
H . We can observe that as the height increases, the harvested
energy demonstrates a significant reduction for the proposed
scheme. In contrast, the hovering scheme can harvest ex-
tremely lower energy than the dynamic scheme.

Fig. 4 (b) presents the required UAV energy curve versus
time allocation τ . The required energy includes mechanical en-
ergy and transmit energy. We observe that the dynamic scheme
consumes more energy than the static hovering scheme and the
optimal time allocation τ that minimized the energy required
are 0.16 and 0.22 when λu = 200/km2 and λu = 100/km2,
respectively.

Overall, the dynamic scheme consumes more propulsion
energy than the hovering scheme. However, the dynamic
adaptive scheme also harvests more energy and demonstrate
superiority over traditional static networks in both SE and EE.
The proposed scheme is significantly advantageous for both
the wireless power transfer and information transfer phases.

V. CONCLUSIONS AND FUTURE WORK

This letter has proposed an improved dynamic process for
downlink wireless power transfer and uplink information trans-
fer architecture for UAV-to-ground networks. Based on the
adaptive flying scheme, each link minimizes path loss fading
and avoids blockage effects. We have considered SE and EE
in order to evaluate the performance of this network. The
numerical results indicated that although the proposed moving
scheme consumed considerable energy, it still demonstrated
considerable advantages for SE and EE as compared to the
conventional static hovering network. Besides, optimizing the
time allocation can maximize SE and EE, respectively. We
expect future advances to reduce the energy consumption of
UAV flights and to design a tradeoff between EE and SE.

REFERENCES

[1] N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial
vehicles-based internet of things services: Comprehensive survey and
future perspectives,” IEEE Internet of Things J., vol. 3, no. 6, pp. 899–
922, Dec. 2016.

[2] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile internet
of things: Can UAVs provide an energy-efficient mobile architecture?”
in Proc., IEEE Global Commun. Conf. Commun. (GLOBECOM), Dec.
2016, pp. 1–6.

[3] J. Wang, C. Jiang, Z. Han, Y. Ren, R. G. Maunder, and L. Hanzo,
“Taking drones to the next level: Cooperative distributed Unmanned-
Aerial-Vehicular networks for small and mini drones,” IEEE Veh.
Technol. Mag., vol. 12, no. 3, pp. 73–82, Sep. 2017.

[4] H. Zhang, S. Huang, C. Jiang, K. Long, V. C. M. Leung, and H. V. Poor,
“Energy efficient user association and power allocation in millimeter-
wave-based ultra dense networks with energy harvesting base stations,”
IEEE J. Sel. Areas Commun., vol. 35, no. 9, pp. 1936–1947, Sep. 2017.

[5] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless com-
munication with rotary-wing UAV,” IEEE Trans. Wireless Commun.,
vol. 18, no. 4, pp. 2329–2345, April 2019.

[6] Y. Zeng and R. Zhang, “Energy-efficient UAV communication with
trajectory optimization,” IEEE Trans. Wireless Commun., vol. 16, no. 6,
pp. 3747–3760, June 2017.

[7] L. Ruan, J. Chen, Q. Guo, H. Jiang, Y. Zhang, and D. Liu, “A
coalition formation game approach for efficient cooperative multi-UAV
deployment,” Applied Sciences, vol. 8, no. 12, p. 2427, May 2018.

[8] Z. Yang, W. Xu, and M. Shikh-Bahaei, “Energy efficient uav commu-
nication with energy harvesting,” IEEE Trans. Veh. Technol., vol. 69,
no. 2, pp. 1913–1927, 2020.

[9] J. Xu, Y. Zeng, and R. Zhang, “UAV-enabled wireless power trans-
fer: Trajectory design and energy optimization,” IEEE Trans. Wireless
Commun., vol. 17, no. 8, pp. 5092–5106, Aug 2018.

[10] A. Ali and M. O. Hasna, “Energy harvesting schemes for uav based
communications,” in 2019 16th IEEE Annual Consumer Communica-
tions Networking Conference (CCNC), Jan 2019, pp. 1–2.

[11] Z. Yang, C. Pan, K. Wang, and M. Shikh-Bahaei, “Energy efficient
resource allocation in uav-enabled mobile edge computing networks,”
IEEE Trans. Wireless Commun., vol. 18, no. 9, pp. 4576–4589, 2019.

[12] A. H. Tewfik and W. Hong, “On the application of uniform linear array
bearing estimation techniques to uniform circular arrays,” IEEE Trans.
Signal Process., vol. 40, no. 4, pp. 1008–1011, Apr. 1992.

[13] N. Moraitis and P. Constantinou, “Indoor channel capacity evaluation
utilizing ULA and URA antennas in the millimeter wave band,” in 2007
IEEE 18th International Symposium on Personal, Indoor and Mobile
Radio Communications, Sep. 2007, pp. 1–5.

[14] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N.
Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave
mobile communications for 5g cellular: It will work!” IEEE Access,
vol. 1, pp. 335–349, 2013.

[15] F. Baccelli, B. Błaszczyszyn et al., “Stochastic geometry and wireless
networks: Volume II Applications,” Foundations and Trends R© in Net-
working, vol. 4, no. 1–2, pp. 1–312, Jan. 2010.

[16] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Drone small cells
in the clouds: Design, deployment and performance analysis,” in 2015
IEEE Global Communications Conference (GLOBECOM), Dec 2015,
pp. 1–6.


