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A central quantity of interest in molecular biology and medicine is the free
energy of binding of a molecule to a target biomacromolecule. Until recently,
the accurate prediction of binding affinity had been widely regarded as out
of reach of theoretical methods owing to the lack of reproducibility of the
available methods, not to mention their complexity, computational cost
and time-consuming procedures. The lack of reproducibility stems primarily
from the chaotic nature of classical molecular dynamics (MD) and the
associated extreme sensitivity of trajectories to their initial conditions.
Here, we review computational approaches for both relative and absolute
binding free energy calculations, and illustrate their application to a diverse
set of ligands bound to a range of proteins with immediate relevance in a
number of medical domains. We focus on ensemble-based methods which
are essential in order to compute statistically robust results, including two
we have recently developed, namely thermodynamic integration with
enhanced sampling and enhanced sampling of MD with an approximation
of continuum solvent. Together, these form a set of rapid, accurate, precise
and reproducible free energy methods. They can be used in real-world pro-
blems such as hit-to-lead and lead optimization stages in drug discovery,
and in personalized medicine. These applications show that individual
binding affinities equipped with uncertainty quantification may be com-
puted in a few hours on a massive scale given access to suitable high-end
computing resources and workflow automation. A high level of accuracy
can be achieved using these approaches.
1. Introduction
The use of computer models and simulations to understand natural systems is
now widespread, encompassing many diverse disciplines in academia as well
as industry. One of the major advantages of computational modelling is that
it provides insight into underlying molecular interactions and mechanisms,
which are often inaccessible experimentally, within the limits of the approxi-
mations in the models and the theory concerned. Computer simulations can
be performed under conditions where it is difficult or impossible to conduct
experiments, for instance, at very high pressures and temperatures. But,
beyond the provision of qualitative insight, as our understanding increases
one would hope to use these methods to quantitatively predict the outcome
of experiments prior to, and indeed even instead of, performing them [1–3].
In this way, computational techniques should reduce time and cost in industrial
processes like the discovery of drugs and advanced materials, which take more
than 10 years and $2.6 billion for the former [4], and 20 years and perhaps $10
billion for the latter. Due to these potential benefits, computer-based techniques
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are becoming increasingly popular among researchers
from diverse backgrounds, and are adopted as routine tech-
niques by a significant section of the scientific community.
The relentless enhancement in the performance of high-
end computers is another key factor accounting for the
increasing adoption of computer-based methods in science
over recent decades.

Given the rapidly growing popularity of computational
techniques, it is all the more necessary to ensure that these tech-
niques are reproducible [5,6]. This is essential for such
techniques to be relied upon for taking actionable decisions
and thereby to become a standard technique applicable in
diverse applications, including industrial and clinical contexts.
Here, we focus our review on the field of ligand–protein free
energy calculation methods based on classical molecular
dynamics (MD) simulations and biomolecular systems. A sys-
tematic account of the lack of reproducibility of many
published results from in silico MD and an explanation for
their occurrence are provided. Ensemble-based methods are
the central focus of our attention since these provide the correct
statistical–mechanical way in which to calculate macroscopic
quantities such as free energies from microscopic dynamics.
They also permit us to perform uncertainty quantification
(UQ) in respect of the computed results, and underpin their
verification and validation by means of statistically robust pro-
cedures. UQ is an established domain in applied mathematics
and engineering but has been notably absent inter alia from
the analysis of computer simulations performed using elec-
tronic structure and molecular simulation methods. At this
time, we are witnessing unified developments in quantifying
uncertainty in computer simulation across a wide range of
domains including weather, climate, material, fusion, molecular
and biomedical sciences [7–13].

A major goal in drug discovery and personalized
medicine is to be able to calculate the free energy of
binding of a lead compound or drug with a protein target.
That target may be either a generic protein or, in the
context of personalized medicine, a sequence-specific variant,
reflecting the fact that individuals may respond differently
to a given drug based on their genetic makeup. For such cal-
culations to be useful for real-world applications, for
example, in drug discovery and clinical decision making,
the predictions must be arrived at rapidly, preferably within
at most a few hours; manifestly, they should also be accurate
and reproducible.

The free energy of binding, also known as the binding affi-
nity, is the single most important initial indicator of drug
potency, and the most challenging to predict. It can be deter-
mined experimentally by a number of methods, of which
measurement of half-maximal inhibitory concentration (IC50)
provides a semi-quantitative estimate (technically speaking, it
is just a ‘proxy’ for the true thermodynamic binding affinity),
while biophysical techniques such as isothermal titration
calorimetry (ITC) and surface plasmon resonance (SPR) are
quantitative, albeit much more time consuming. It should be
noted that even the more quantitative measurement methods
like ITC are well known to have problems yielding accurate
and precise thermodynamic parameters [14]. Indeed, one of
the more surprising things about experimental binding affinity
data, given their apparent importance in drug discovery, is the
extent to which they are reported in widely used databases
without any mention of either the measurement method
used, or the associated measurement errors.
Alternatively, one may seek to calculate the binding energy
theoretically. Here, methods drawn from computational chem-
istry offer a route forward; these are primarily based on in silico
MD, for which several approaches to determining the free
energy are possible. Methods that rapidly predict binding affi-
nities are preferable in the context of personalized medicine
and drug discovery but, as we shall see, there is a trade-off
between computational cost, accuracy and precision. As a con-
sequence of the conflation of experimental methods and their
unknown error distributions referred to in the preceding para-
graph, these computational approaches are hindered in a
number of ways. Nonetheless, by advancing the accuracy
and precision of theoretical methods one may expect to encou-
rage more care to be taken in reporting similar attributes of
experimental binding energies.

The widespread use of molecular simulation for free
energy calculations, especially in the field of pharmaceutical
drug development in the last few years, is now placing a pre-
mium on our ability to deliver actionable predictions to
academic, industrial and clinical communities. For knowledge
to be actionable in the current context means that the predic-
tions are accurate, precise and reproducible, and are made
on time scales that are sufficiently rapid to be used in a
decision-making context. The most familiar example of action-
able predictions arises in weather forecasting, as well as
climate science, where ensemble-based methods play a central
role [15,16]. People wish to know tomorrow’s weather today,
not tomorrow let alone in threemonths’ time.Having a reliable
probabilistic prediction prior to an event taking place is extre-
mely valuable and arguably represents the apotheosis of the
scientific method in action. There is a growing awareness of
the importance of making actionable predictions for a range
of real-world problems, reflected in recent literature covering
a range of disciplines including natural disasters, climate
change and medicine [17–20]. This review aims in part to
enhance awareness of the issue in computational chemistry
and molecular simulation in particular.
2. Dynamical systems, ergodic theory and
statistical mechanics

All the free energy methods we shall describe are based on
the use of classical MD. The dynamical observables, G, are
calculated as macroscopic averages, which are given by
ensemble averages, denoted 〈G〉t. Thus

hGit ¼
ð
G(x)rt(x)dm,

where x denotes the 6N phase space variables, m is the invar-
iant measure associated with it and N is the number of
particles in the system. The ergodic theorem is commonly
invoked within the domain; it states that, in the long time
limit, a single trajectory generates a time average of a dyna-
mical observable, 〈G〉t, that is identical to its ensemble
average 〈G〉eq:

hGieq ¼ lim
t!1hGit ¼ lim

t!1

ð
G(x)rt(x)dm ¼

ð
G(x)re(x)dm,

where rt and re are respectively the (6N + 1) dimensional
time-dependent and equilibrium probability distribution
functions defined on the phase space. rt satisfies the Liouville
equation [21]. A time-independent state is asymptotically
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Figure 1. Non-Gaussian properties of equilibrium distributions from ensemble MD simulations. The Fisher–Pearson coefficient of skewness (a,c) and the Fisher
kurtosis (b,d ) for distributions of predicted binding free energies using ESMACS approach (a,b) and free energy differences from TIES calculations (c,d ). The
ESMACS studies consist of approximately 400 ligand–protein complexes, and the TIES studies include alchemical mutations of 50 pairs of ligands. The distribution
of calculated binding free energies for each ligand comprises 25 independent replicas within an ESMACS simulation; the distribution of binding free energy differ-
ences for each pair of ligands comprises 20 or 40 replicas in a TIES simulation. The distributions are skewed both left (negative values of the skewness) and right
( positive values). For the distributions with kurtoses less than 0, the distributions have short and thinner tails, and are more flat-topped than the normal distribution
would predict. For the cases with kurtoses greater than 0, the distributions have a heavy tail, usually at the right for ESMACS (b) because the binding free energy has
a lower bound (on the nanomolar or picomolar level). The large kurtosis values in these studies indicate that such simulations produce significantly more ‘outliers’
than one would anticipate were the statistics to conform to a normal distribution.
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approached if the dynamical system possesses an equilibrium
state such that

lim
t!1 rt ¼ re:

To be ergodic, a system must pass through every possible point
in phase space on the energy shell (in the microcanonical
ensemble). The probabilistic description of the dynamical be-
haviour should be invoked; although usually stated as being
equivalent to the deterministic Newtonian, trajectory based, for-
mulation of classical mechanics its conceptual basis is quite
distinct and admits the inclusion of statistical mechanical con-
cepts which are lacking in the trajectory-based approach [21].
The problems surrounding the reproducibility of the method
are rooted in the instability of the MD trajectories that underpin
it, rendering them increasingly inaccurate as time evolves [21].
Perhaps surprisingly, this fundamental issue is something that
has been frequently overlooked in the literature. It is perhaps
not well known [21–27] that many complex systems, including
all those to which statistical mechanics is applied in order to cal-
culate equilibrium states and their properties, exhibit extreme
sensitivity to initial conditions. Briefly, in the ergodic hierarchy
of dynamical systems, systems which approach and reach
equilibrium must be at least mixing [21]. Neighbouring trajec-
tories—the solutions of the Newtonian equations of motion—
in such systems, no matter how close they are initially in
phase space, diverge exponentially fast with the passage of
time [21]. Under such circumstances, the notion that we can,
even in principle, specify by some experimental procedure the
initial conditions for the time integration of the dynamics is
undermined. Instead, we are obliged to formulate the approach
to equilibrium in probabilistic terms [21,28,29], which is to say
in mathematical language based on measure (also known as
Lebesgue) theory. That theory holds almost everywhere,
except possibly for a set of zero measure. But everything we
can compute is based on a very small subset of the computable
numbers, the IEEE floating-point numbers, both of which are
sets of zero measure, the latter being a very small subset of
the rational numbers (they are dyadic numbers, that is numbers
with power of two denominators). Representing behaviour of
dynamical systems using floating-point numbers may lead to
the omission of a considerable amount of the structure of
a dynamical system as has recently been pointed out [30].
Therefore, there is the likelihood that the calculations performed
on modern digital computers, using the IEEE floating-point
numbers, may not always correctly describe the probabilistic
properties of chaotic dynamical systems [30]. The ramifications
of these limitations remain to be fully understood but our expec-
tation is that they may typically contribute systematic errors of
order unity to the expectation values computed on digital com-
puters. Given that, for the computation of free energies in this
way, we are calculating expectation values which are estimated
by ‘sampling’ from what one hopes to be the true probability
distribution, this sampling must be performed in a manner
that is sensitive to all possible sources of uncertainty.

Extensive studieswehave performed in recent years confirm
that MD models indeed exhibit sensitivity to initial conditions
[24–26,31]. From our investigations, we find that the frequency
distribution of observables as it emerges from the members of
anensemble exhibitsdeviations fromthestandardGaussianpro-
file anticipated on the basis that the variables are independent of
one another, as one assumes in conventional statistics [32].
Instead, we find that the distributions have a skewness associ-
ated with them, the asymmetry favouring the occurrence of
values of the observable higher than the mean (figure 1a,c).
Themajorityof the distributionshavepositive kurtosis,meaning
they are heavy-tailed relative to a normal distribution (figure 1b,
d). This is at first sight unexpected—it has not previously been
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reported in the context of classical MD—until it is recognized
that these systems all display chaotic behaviour as well as
long-range interactions; the underlying nonlinearities in the
dynamics are what accounts for both the presence of chaos and
non-Gaussian statistics. In addition, the distribution of exper-
imental binding free energies might not be Gaussian. The
phenomenon is well known in turbulence: there it is caused by
very long-range hydrodynamic interactions mediated by
energy dissipation. The reason for the presence of non-normal
statistics in biomolecular systems at equilibrium comes from
the fact that here toowe are dealingwith the infinite range inter-
actions mediated by Coulomb forces. The dissipation of energy
within the system causes long-range correlations to be set up,
which manifest themselves in the non-Gaussian nature of the
statistics, leading to the more frequent occurrence of outliers
than otherwise would be expected. Graphs of theoretical
versus experimental data will not produce ideal linear plots in
which all points converge closely on the 45° line. Instead, those
working in this domain should expect to observe many more
so-called outliers as a consequence of the natural behaviour of
these systems. Although no explicit mention is made of the fact
by the authors, Knapp et al. [33] is repletewith figures displaying
skewed (i.e. non-normal) distributions of geometrical quantities
emanating from large ensembles of protein MD trajectory data.
Statistical tools like bootstrapping and linear regression do not
assume any underlying distribution. Therefore, in principle,
they should be applicable to non-normal observables, such as
MD-based free energies. However, their quantitative reliability
is debatable for non-normal distributions in the absence of suffi-
cient samples [34,35]. This further adds to the necessity of
performing ensemble simulations for MD-based methods.
Additionally, estimators like median-of-means allow heavy
tails, are robust to outliers in the data and hence may be used
to estimate means and variances for such distributions. As
soon as this behaviour is apprehended, one understands why
the outcome of single simulations is in general not reproducible,
andmay lead to false-positive conclusions [33]. It has an anecdo-
tal quality. The next personwho studies the same system is likely
to obtain very different results (as indeed one observes in the lit-
eraturewhen, forexample, onepaper reports theobservationof a
conformational change while another does not, from the very
same system [21]).

Our findings serve to underscore that we need a statistical
theory of MD simulation, in the same way that there is an
established statistical theory of turbulence [36]. Individual
trajectories are not robust indicators of molecular behaviour,
and owing to chaos long duration single trajectories lack
accuracy, but we expect statistical averages over such trajec-
tories to be knowable to high precision. In this way, we can
distinguish random from systematic errors, the former arising
due to the chaotic nature of the dynamics, the latter to errors
in things like the force field parametrizations employed.
Without first correctly handling the stochastic errors, it is
not possible to assess correctly the nature/size of the sys-
tematic errors. Our recent work [30] shows, however, that
even statistical averaging can produce hitherto unexpected
systematic errors, caused by the fact that the IEEE floating-
point numbers are a poor representation of the real numbers.
We have shown this recently for the case of simple dynamical
systems for which the equilibrium probability distribution is
known exactly [30]. For the systems studied by practitioners
of MD and turbulence, such probability distributions are
not known and must be assessed by sampling methods.
Based on our studies of very simple ergodic systems, the
errors accruing from the use of floating-point numbers are,
in specific cases, likely to be catastrophically large; in others
they are more insidious, in that simulation results may
seem correct but will contain errors of order unity. In the
most favourable cases they will contain errors that are
small, but nonetheless much larger than machine precision.

Putting those fundamental limitations of floating-point
numbers aside, the calculation of observable stochastic
quantities—which are essentially expectation values—proceeds
through an ensemble approach, in which a set of independent
MD simulations, referred to as ‘replicas’ in statisticalmechanics,
is performed and averaged over both time and the members of
the ensemble (see details in the following subsection). The key
feature of ensemble simulation is the use of ensemble and
time averaging [21]. The criterion for ensuring convergence of
the ensemble average is to establish the number N of replicas
required such that using N + 1 of them makes no difference to
the expectationvalues calculated. This is very different fromcal-
culations using a few repeats of a single MD simulation [37,38]
including replica exchange [39], which do not permit reliable
estimation of errors. Here, we describe our procedures for per-
forming rapid and reproducible binding affinity calculations,
and present the results for a number of ligand–protein cases.
The approach is scalable: the throughput of results depends pri-
marily on the size and speed of the available computer. Recent
work [40] on both the calculation methods and the cyberinfras-
tructure environment could transform drug design by
supporting accurate and rapid calculations of how strongly
compounds bind to target molecules, a high-performance
application that can scale to the largest supercomputers avail-
able in the world today and well beyond [41].

2.1. Making molecular dynamics simulations
reproducible

Scientific results are by definition supposed to be reproducible,
that is they should be independent of who conducts the study.
Within the scientific community, there is a somewhat confused
terminology addressing the confirmation of the correct
measurement or phenomena, which includes such terms as
reproducibility, replicability and repeatability [6,42]. We use
the term ‘reproducibility’ in the context of this review to refer
to the ability of a method, be it experimental or theoretical, to
yield the same results when repeated by oneself or others, with or
without variation in its implementation including the software
and the hardware employed. Such reproducibility,whichnecess-
arily has a statistical nature, is essential if a technique is to be
used, for example, in a medical context to treat human beings,
where there are stringent regulatory requirements. But it is also
fundamental to the development of reliable scientific method-
ologies in much wider contexts [43].

A method cannot be reliable if it does not yield the same
result when performed by oneself, let alone others. Indeed,
the lack of reproducible results in the published literature is a
widespread concern in the scientific community [6]. Measure-
ments are not perfect. They always contain errors. So too for a
theoretical result. The issue was recently highlighted by a
survey conducted by Nature which found that more than 70%
of researchers failed to reproduce another researcher’s results,
while more than half were unable to reproduce their own
[44]. In the case of experiments, non-reproducible results can
be an artefact of factors ranging from the incorrect use of
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chemicals, an insufficient number of samples, fluctuations in
the environment and variations in the experimental setup, to
data dredging and a posteriori hypothesis generation, not to
mention conclusions influenced by conformational bias,
conflicts of interest, selective reporting or, worst of all, miscon-
duct. In the case of computer-based methods, the reasons may
also reside in the theory or the model used, the extent of con-
vergence of the calculations, the reliability of the software,
the adequacy of the floating-point representation of the real
numbers [30] and so on [27].

In this review, we focus on the convergence, reproducibility
and reliability of observable properties obtained from MD
simulations. Although it was recognized more than two dec-
ades ago that one-off classical MD simulations do not
generate consistent protein conformations [45,46], systematic
investigation as to how to make these calculations reproducible
has not been performed until recently. This is a reflection of the
history of how ensemble methods became adopted in weather
and climate forecasting: pioneered some 25 years ago, their
initial introduction encountered considerable resistance from
established workers in the domain but they are now the
standardmethod bymeans ofwhich probabilistic weather fore-
casts are made on a daily basis [16]. In themolecular simulation
domain, one notices similar reluctance to embrace the probabil-
istic approach. Until now, one-off simulations remain a very
common way of performing MD studies (see ‘Application of
free energy calculations’ section below).

More specifically in the field of MD-based free energy
calculations, the variation in the calculated free energies
based on independent simulations was investigated systema-
tically by Sadiq et al. [24] and by Genheden & Ryde [47]
using MMPBSA and MMGBSA methods, respectively. The
estimated free energies from two independent MMPBSA
calculations of the same molecular system can vary by
more than 10 kcal mol−1 in smaller molecule–protein
complexes [26,31,47], and by up to 43 kcal mol−1 in larger
and/or more flexible ligands bound to a protein such as the
peptide–MHC (major histocompatibility complex) systems
[25]. The underlying reason for such variations between inde-
pendent MD simulations is due to the extreme sensitivity of a
dynamical system to its initial conditions [21,48].

Although these studies [21,24,45–47] employed various
methods to calculate diverse observable quantities, the
common conclusion was drawn that multiple short MD simu-
lations provide substantially better sampling than a single
long MD simulation. This does not invalidate the ergodic theo-
rem, it merely indicates that the time scales over which MD
simulations are run are nowhere near long enough to fulfil its
requirements. It should be noted that these studies investigated
systems which were at thermodynamic equilibrium; for behav-
iour that requires long time scales to happen (such as
conformational changes), including also the important case of
non-equilibrium systems, we must use ensembles for both
long and short simulations. Further investigation has been
undertaken in the last few years, which has led to approaches
such as enhanced sampling of MD with an approximation of
continuum solvent (ESMACS) [25], velocity-induced indepen-
dent trajectories (VIIT), solvation-induced independent
trajectories (SIIT), conformation, rotation and protonation-
induced independent trajectories (CRPIIT) [49] and methods-
induced independent trajectories (MIIT) [50]. Similarly, in the
case of alchemical methods, Lawrenz et al. [38] introduced a
method called independent trajectory thermodynamic
integration (IT-TI)which employsmultiple, independent TI cal-
culations and yields more accurate free energy changes. More
recently Bhati et al. [51] published a method called thermodyn-
amic integration with enhanced sampling (TIES) which
employs an ensemble of independent MD simulations in com-
bination with the concept of stochastic integration to yield
accurate and precise free energy predictions. While most of
the aforementioned approaches only make use of multiple sep-
arate simulations and/or independent trajectories but do not
systematically assess the statistical or the statistical mechanical
significance, ESMACS and TIES exploit the statistical mechan-
ical concept of ensembles and the connection to ergodic
theory to quantify uncertainty and obtain reproducible results
from MD simulations in a systematic and theoretically
well-grounded manner [21].
2.2. Sources of error in classical molecular dynamics
As noted above, there are two sources of error accruing in
MD simulations, due to systematic and random sources.
The systematic errors originate in things like the imperfect
methods, models and calibration of simulations. Biases of
protein force fields towards different secondary structure
types [52], for example, will consistently populate either heli-
cal or sheet-like structures from independent simulations.
When the cause of such systematic errors can be identified,
it can be reduced or even eliminated, as shown in recent
simulations with state-of-the-art force fields [53].

Random variation, also called system noise or stochastic
error, on the other hand, has a different origin. It is caused
by the chaotic nature of classical MD. Given the sensitivity
of Newtonian dynamics to initial conditions, two indepen-
dent MD simulations will sample the microscopic states
with different probabilities no matter how close the initial
conditions of the simulations [21]. The difference produced
by two simulations introduces a level of variation which
can be larger than the quantity of interest, making the results
practically useless.

In order to get a full grip on uncertainty in MD simu-
lations, one needs to be able to identify the systematic and
random components contributing to the errors. We would
like to assess the variation in results arising from the inaccur-
acy inherent in the molecular models including the choice of
force field. This has not been convincingly addressed to date,
since for the most part the UQ due to the intrinsic random
error in the simulation trajectories is only now being nailed
down. The overall quality of a computer-based simulation
study can be assessed by a relevant set of verification,
validation and uncertainty quantification (VVUQ) method-
ologies and associated tools [54,55]. Validation is about
comparing the results of our models with experiment (or
high-quality reference benchmark/theoretical results) while
verification is concerned with ensuring that the quantities
we are calculating from the algorithms and software are
themselves being computed correctly. UQ reports the error
in the calculations. It is timely to address these issues now
and one purpose of this review is to encourage such investi-
gations (see for example https://www.vecma.eu/). One way
to approach these issues is through sensitivity analysis in the
first instance—which term or terms in a force field or other
choices made, such as cut-off distances, size of simulation
cell, etc. lead to the greatest sensitivity, for example in the cal-
culation of the free energy of binding of a ligand to a protein?

https://www.vecma.eu/
https://www.vecma.eu/
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2.3. Ensemble averaging
In order to address the aforementioned problems, it is necess-
ary to perform ensemble simulation, requiring a break-away
from the traditional practice of performing one-off MD simu-
lations. The practice of one-off simulations, based on an ad hoc
appeal to the ergodic theorem discussed earlier, has been at
the basis of most publications in the field since the dawn of
MD which was originally introduced by Alder & Wainwright
in the late 1950s [56]. We focus here primarily on free energy
methods which have been used for decades to study the
binding affinities of ligands to their target proteins [57].

The results from ensemble simulations are designed by
construction to be accurate, precise and reproducible [21,24–
26,47,50,51,58–61]. It should be noted that the term ‘accuracy’
refers to the closeness of the results to the corresponding
experimental values and it is largely dependent on the limit-
ations of the force field employed. In addition, given the vast
number of nodes, cores and accelerators on modern high-
performance computers and available automated workflows
(see the ‘Distributed computing approaches to enhance
sampling’ section below), all of the replicas can be run in par-
allel and hence an ensemble simulation can be run in the
same wallclock time as needed for computing a single replica
[25,51]. This leads to rapid predictions informed by high-
quality error estimates, which is essential for free energy
methods to have an impact beyond an academic setting.
The appropriate number of replicas and the duration of the
simulation are parameters dependent on the system under
study and the calculational method selected; they depend
on the extent of stochasticity, that is the fluctuations, within
individual stages in a calculation comprised of multiple
steps, and the level of precision desired, although general
guidelines are available [21,25,26,51,61]. Thus, for example,
within a relative binding free energy calculation using a ther-
modynamic cycle, the alchemical leg for the ligand–protein
complex requires more replicas than that for the ligands to
realize the same level of precision [61]. The errors in each
individual step decrease as the inverse of the square root of
the number of replicas, 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nreplicas

p
. Varying numbers of

replicas are required to achieve a desired level of precision;
for example, of order 25 replicas are typically required for
ESMACS studies [25,26], 5 replicas for each λ window
within a TIES relative binding free energy calculation [51],
a combination of 5 and 10 replicas during the multiple
steps required to compute absolute alchemical binding free
energies [61] and as many as 40 replicas for some gra-
phene-related MD studies [62]. Many ensemble simulations
only vary the velocities in the initial conditions of the replicas
[24,25,51,61]; in some cases variations in the initial spatial
coordinates are also required [63].

Considerable effort has been invested in the development
of so-called ‘enhanced sampling protocols’ in order to
improve phase space sampling [64–66], including metady-
namics, a method for accelerating rare events in simulated
systems [67]. Among these, the most popular in the case of
biomolecular simulation is the Hamiltonian-replica exchange
(H-REMD) [68] and its variants—replica exchange with
solute tempering (REST2) [69] and FEP/REST [70]—which
run multiple concurrent (parallel) simulations and occasion-
ally swap information between them to improve sampling.
A molecular system subjected to these parallel simulations
has a common configuration space; the simulations sample
the microscopic states with different probabilities because
of the differences in their Hamiltonians. For a given set of
simulation samples, different free energy estimators can be
applied with varying reported accuracies and precisions
[71]. One of the free energy estimators is called the multistate
Bennett acceptance ratio (MBAR) [72] which has become
increasingly popular of late. MBAR makes use of all micro-
scopic states from all of the replica exchange simulations,
by reweighting them to the target Hamiltonian.

Free energy calculations had rarely been used seriously in
drug development projects until recently when Schrödinger
Inc. released their ‘FEP+’ simulation software for relative free
energy calculations [73]. With the improved technology and
the availability of graphical processing units (GPUs), FEP+
has made a significant impact in the pharmaceutical industry
within its domain of applicability [74]. FEP+ is employed in
a shrink-wrapped and very easy to use manner, being
wholly proprietary and directed at commercial users. Unfortu-
nately, it promotes the uncritical use of one-off simulations.
Merck recently published a large-scale study using FEP+ and
discussed several challenges in its application within the
drug discovery process [75]. However, the authors did not per-
form ensemble simulations to confirm the robustness and
reproducibility of their findings which therefore have only a
provisional status. In an attempt to gain a handle on errors
in these calculations, FEP+ recommends the use of closed ther-
modynamic cycles of transformations performed by one-off
simulations in order to detect hysteresis and, indirectly, to
assess convergence. While this method can indicate that con-
vergence has not been reached, a small error reported in
cycle closure convergence does not guarantee convergence.
This is because, while a hysteresis value of 0 from such a
closed cycle is a necessary condition, it is by no means suffi-
cient. Hysteresis certainly merits close attention, as indeed
we do within TIES, for example, when comparing results
from simulations running several ‘forwards’ and ‘backwards’
transitions [76]. In such cases, this amounts to a form of ensem-
ble simulation in which replicas with different initial and final
states are used.

It is often claimed that the implementation of an
enhanced sampling protocol such as REST2 [69] and the
use of the free energy estimator MBAR [72] can overcome
the problem of non-reproducible results. This is not the
case. Application of REST2 may make a ligand drift away
from its stable binding position, and lead to deteriorated
free energy predictions [77]. In recent work, we performed
free energy calculations using FEP+ [73] which de facto
implements REST2 and MBAR. Up to 3.9 kcal mol−1 vari-
ations were observed from 30 independent simulations,
much larger than the MBAR errors reported for individual
FEP+ calculations [78]. Other studies have also found that
bootstrap analyses from repeated simulations provided a
more realistic uncertainty estimate than MBAR [79]. It is
clear that such ‘enhanced sampling’ methods are not an
alternative to the use of ensemble simulations [61]: they too
must be ensemble averaged [61,77,78].
3. Common methods for free energy calculations
Molecular recognition [80] is central for many physical,
chemical and biological processes. Accurate prediction of
the binding affinity of a guest molecule with its host is an
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important goal in host–guest chemistry and has an essential
role in biomolecular signalling and pathways. A guest is
often a compound with low molecular weight, while a host
is usually a larger molecule which encompasses the guest.
Guests are the so-called ligands we consider here, which
are molecules that bind reversibly and specifically to a bioma-
cromolecule (a protein in the context of this paper) and alter
the latter’s activity. MD simulation provides a tool to collect
microstates of the biomolecule of interest, and has been
applied to get the macroscopic thermodynamic properties,
such as the free energies, from the ensemble of microstates.
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3.1. Free energy of binding
The binding affinity is the change in the free energy associated
with a binding process. The magnitude of the binding affinity
is a measure of how strong the interaction is between the
ligand and the protein, and hence it is often directly related
to the potency of the ligand. Therefore, its measurement is of
importance in the fields of drug design and personalized
medicine. It can be used as a virtual screening tool in drug
design or as a clinical tool to tailor a patient’s medication
based on his/her genetic makeup. Computer-aided drug
design (CADD) is an extremely active field of research [81].
In addition, rapid and accurate binding affinity predictions
can be useful in health-related applications like the design of
medicines with reduced side-effects and drug resistance [82].
Thus, the use of in silico techniques to predict binding affinities
has grown immensely in the last few decades [83].

Reliable binding affinity predictions need to be made on
time scales shorter than experimental ones in order to have
a real impact in drug design and personalized medicine
[82]. Therefore, the time to solution is another important
factor influencing the applicability of computational methods
in real-world scenarios. This is especially crucial when con-
sidering the development of a typical prescription drug
which, as noted, often takes around a decade (and costing
$2–3 billion) to get to market [4]. The ensemble approaches
described above fulfil these requirements given the avail-
ability of sufficient computing resources (for more details
see the ‘Application of free energy calculations’ section).
3.2. Methods for free energy calculation
The methods with most potential, in order of increasing level
of molecular resolution, are listed below. A higher level of
resolution ought, in principle, to lead to higher accuracy,
although this is not necessarily true because of the quality
of the theory employed and the way in which the calculations
are implemented [27].

(i) ‘Informatics’ based approaches which are usually the
output of docking studies in combination with so-
called ‘machine learning’ [84–87];

(ii) linear interaction energy (LIE) methods [88];
(iii) molecular mechanics Poisson–Boltzmann surface area

(MMPBSA) and molecular mechanics generalized
Born surface area (MMGBSA) methods [89] based on
invoking a continuum approximation for the aqueous
solvent to approximate, e.g. electrostatic interactions
following all-atom MD simulations; and

(iv) alchemical methods including thermodynamic
integration (TI) and free energy perturbation (FEP).
Machine learning (ML) is currently gaining a lot of traction
within the pharmaceutical industry. The current approach is to
seek to invoke ML to generate candidate compounds and to
rank congeneric compounds [90]. There are now many start-
ups and small companies that offer such ‘AI’ (artificial intelli-
gence) based approaches to drug discovery; this is being done
to generate lots of candidate compounds, both virtual and
real. The predictive performance of ML methods for binding
affinities, however, is sensitive to the quality of the ligand–
protein structures which are usually generated using docking
methods. There are claims that ML can achieve ‘chemical accu-
racy’, meaning ±1 kcal mol−1 in energy predictions. Indeed, it
has been shown that, when the most relevant high-quality
data are used for training, ML algorithms can generate accurate
binding affinity predictions [91,92]. This is still hotly contested
in real-world situations due to a number of shortcomings of
such approaches [1,2,93]. These arise from some obvious
built-in assumptions of all ML algorithms. The key one is the
assumption that relationships between points in ML data
space are smooth (continuously differentiable), so they interp-
olate smoothly between gaps in the state space. This may or
may not be valid, depending on each and every case under
study; when invalid, however, its predictions will fail badly.
Thus, for example, when the free energy changes more or less
discontinuously with molecular structure, as it does for the
case of free energy cliffs [94], there is noway such anML algor-
ithm will in general be able to spot such phenomena. It could
only do so if the coverage of the state space were exceptionally
dense, implying that the data upon which it has been trained
would need to be enormous. A related generic problem is the
well known ‘curse of dimensionality’: for a state space of dimen-
sionality N, the required quantity of training data grows as an
exponential function ofN, so that there is no chance of acquiring
sufficient data to get close to densely populating the state space
of a complex system with representative examples. ML is, at
root, nothing more than glorified curve fitting; and equipped
with so many thousands of adjustable fitting parameters, it is
no wonder that it may appear to fit the data it has been trained
upon well. In general, however, this leads to overfitting, mean-
ing that it then often fails spectacularly but unexpectedly when
asked to make predictions for previously unseen data [1,2].
Lacking any significant explanatory power, it is hard to figure
out what has caused the poor performance.

More accurate experimental and computational chemistry
studies are needed to provide correct binding poses and bind-
ing affinities in conjunction with it. Combinations of ML and
MD are currently being used, for example, to search for
appropriate evolution of MD simulations through various
‘on-the-fly learning’ processes [95,96]. Because of the high
compute intensity of MD calculations, ML is being increas-
ingly used as a ‘surrogate’ in order to replace that expense
with something less costly and time consuming. It is hoped
that combinations of ML and MD [97] will enable the virtual
screening of colossal numbers of compounds, and to focus
only on a small subset of those virtual compounds with
more computationally expensive free energy calculations.
This, in turn, should ultimately lead to much more limited
effort and cost expended on the actual synthesis and testing
of candidate compounds for subsequent drug development.

The LIE approaches usually generate worse relative bind-
ing affinity rankings and considerably larger uncertainties
than MMPBSA and MMGBSA [98]. In addition, the scaling
factors for the electrostatic and the van der Waals interactions
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in LIE approaches are still a matter of discussion, and the
quality of predictions from the approaches is frequently
reported to be system-dependent [98].

Ensemble-based approaches centred on (iii) MMPBSA/
MMGBSA and (iv) alchemical methods are the focus of our
attention in this review. Although MMPBSA/MMGBSA
means many different things in the literature, when we refer
to it here we mean the full determination of the free energy of
binding from either a one-, two- or three-trajectory method: it
includes both the configurational entropy and the association
free energy [26,99], and—where appropriate—the adaptation
energy [25,59,60]. It may be invoked, in principle, to any inhibi-
tor–protein complex, although caution should be applied when
truly diverse datasets are handled [100,101]. ESMACS is the
name we give to this protocol when it is run in an ensemble-
based form, with all these options available to select from.
Recent ESMACS publications [25,59,60,100,102], for example,
investigate drug-like small molecules bound to therapeutic tar-
gets, including G protein-coupled receptors (GPCR), the most
frequently exploited drug target class, as well as biological sub-
strates (9-mer peptides) bound to the major histocompatibility
complex (the p-MHC system) of central importance in immu-
nology. The peptides in the latter are much larger than
common small-molecule drugs, and havewidely varying struc-
tures and electrostatic charges. The methods have also been
used to study protein–protein interactions [103,104]. ESMACS
is thus well suited for use in the initial hit-to-lead activities
within drug discovery.

The alchemical methods have a more restricted domain of
validity: they are applicable mainly to estimating small rela-
tive free energy changes for structures (drugs or proteins)
which involve relatively minor (perturbative) variations. As
such, the methods are most relevant to lead optimization fol-
lowing the identification of promising lead compounds.
When changes in the net charge arise, TI and FEP methods
encounter specific difficulties owing to major adjustments
in long-range electrostatic interactions [105]; charge correc-
tion approaches are required to take into account the
artefacts of the electrostatic potential energy introduced by
the finite size effects [106]. A recent paper by Wang et al.
[73] employing FEP has attracted significant attention, as it
purports to provide a reliable route to the prediction of bind-
ing free energies. However, it has the same restricted scope as
it seeks to compute free energy differences between similar
ligands bound to a protein. The approach advocated has
been to run single simulations, without paying any attention
to the stochastic nature of the quantities calculated. A recent
study furnishes an estimate of the reproducibility of TIES and
provides a reliable method for UQ for both relative and absol-
ute binding free energy (ABFE) calculations using alchemical
methods [61,78]. While equilibrium simulations are com-
monly implemented in alchemical methods, there are also
non-equilibrium approaches which can generate comparable
results with these obtained from equilibrium simulations
[107–111]. The accuracy of such approaches is quantified by
comparing the predictions with experimental data which, as
previously discussed, all too often have no associated
errors. Compounding this, there is frequently no reporting
of the variations arising from the predictions provided by
the calculational method, leaving the uncertainty associated
with the protocol largely unquantified.

While ESMACS (and LIE) is an ABFE method and TIES/
FEP+ are relative free energy methods, there exists an
alchemical ABFE method which can be used to estimate bind-
ing affinities, which we now describe. It is the equivalent of
TIES/FEP+ when one of the drugs involved is replaced by
nothing, in both bound and unbound states. The calculation
method is called double annihilation, first proposed three dec-
ades ago [112]. A series of nonphysical steps are involved in
the calculation; the free energy changes for each step are calcu-
lated by a combination of alchemical and analytical methods
[61,79,112]. The processes of decoupling/coupling the ligands
from/to the environment involve large changes in phase
space, of which the calculated free energy changes exhibit
large fluctuations. Owing to its extreme compute intensity
and intrinsically large uncertainties, the method has until
recently not been applied to pharmacologically relevant pro-
teins in any significant manner. Ensemble approaches render
ABFE much more reliable, and reveal that in this compute-
intensive multistep calculation, the various steps require differ-
ent ensemble sizes to attain the same high level of precision
[61]. The ABFE calculation is by far the most expensive of
the methods we discuss here. Compared with the pair-wise
comparison of the relative binding free energy calculations,
the advantage of ABFE approaches is that their results can
serve as a reusable library to which calculated ABFE results
for other ligands can be compared and added.

The use of these approaches is not mutually exclusive but
indeed can be even more powerful when performed in
tandem. For example, a combination of endpoint and alchem-
ical methods has been used to accurately predict protein–
ligand interactions for a membrane transporter [113]. In the
currently ongoing COVID-19 pandemic, the computer-aided
drug discovery market has experienced a boost, in which
the aforementioned approaches have been extensively
applied, separately or jointly, to find novel drug candidates
and to reposition existing drugs. We ourselves are currently
participating in a large scale collaboration in which ML,
docking, endpoint and alchemical approaches are applied
interactively to find promising drug candidates from data
consisting of billions of compounds. The most attractive
drug candidates are subsequently being studied experimen-
tally, with some under consideration for inclusion in
possible clinical trials.
4. Ensemble-based simulation approaches
Over the past 20 years, all these methods have been subjected
to substantial criticism for a wide range of reasons, mainly due
to their lack of accuracy and reproducibility, and in the case of
(iv) their long turnaround time. Two distinct but related pro-
blems contribute to the issue: conformational exploration
and precise sampling. The usage of ensemble approaches is
increasingly widespread within a broad range of MD studies,
for sampling ‘rare events’ including protein folding and ligand
binding kinetics using ensemble dynamics [114], weighted
ensemble [115] and splitting methods [116], for predictions of
residence times using steered MD [117] and random accelera-
tion molecular dynamics (RAMD) simulations [118], and
extending now from all-atom to multiscale and coarse-grained
studies [62,119,120].

4.1. Ensemble-based conformational exploration
Many biological processes occur on time scales which are
difficult, if actually possible, to access by atomistic MD



royalsocietypublishing.org/journal/rsfs
Interface

Focus
10:20200007

9
simulations. Such processes usually go through a complicated
free energy profile which can be simplified into local minima
and transition states. The former normally trap a system for
very long times, while the latter can only be accessed rarely
and transitorily [9]. Transition path sampling [55] is one
common approach to investigate the transition paths connect-
ing different minima, in which accelerated MD approaches
such as metadynamics [67], steered MD [117] and high-
temperature simulations are first used to construct an overall
free energy landscape, followed by ensemble simulations
from putative transition states to generate a transition path
containing information on the mechanism and kinetics of the
process [121]. The ensemble simulations consist of many rela-
tively short runs sampling regions between different minima
but do not need to spend a long time in any specific minimum.
A converged free energy landscape can then be reconstructed
once all of the regions have been fully explored [121], if the
weighting factors can be correctly assigned to each confor-
mation [61]. A widely used approach is to construct a
Markov state model (MSM) [122,123] for the description of bio-
logical processes such as ligand binding and protein folding.
Large scale ensemble simulation needs to be run to adequately
sample the entire configurational space, which consists of a
vast number of individual MD simulations.

Among ensemble simulation approaches used for study-
ing long time scale events by accessing transition states are
ensemble dynamics [114], weighted ensemble methods [115]
and multilevel splitting along with their variants [116].
These methods differ from the ones described above in that
they do not involve any external force or biasing potential;
nor do they involve heating the system of interest. Rather
they exploit the fact that MD simulations, being chaotic, are
extremely sensitive to their starting conditions and enhance
sampling of otherwise inaccessible states by running large
numbers of short independent MD simulations varying
only in their starting conformations. The ensemble dynamics
method has been successfully used to study protein folding
of a large number of systems in the last couple of decades
[124]. It involves replacing a single long simulation by an
ensemble of shorter simulations with a cumulative simulation
time of up to microseconds. The fraction of simulations cap-
turing folding or a conformational change of interest is used to
infer the probability of such events. The weighted ensemble
method involves partitioning the phase space into several
regions and initiating an equal number of concurrent ‘walkers’
in each of them [115]. The regions are maintained at equally
populated levels by adjusting the number of walkers in each
after regular intervals. This permits sampling of rare events
that would otherwise get underpopulated with walkers and
hence sampled less. The basic idea behind the multilevel split-
ting method is to discard trajectories that drift away from the
region of interest in the conformational space while focusing
on those that get closer to it [116]. To this end, a ‘reaction coor-
dinate’ is defined that is used to monitor the progress of a
trajectory and to measure its closeness to the desired rare
event. This allows one to dedicate the majority of compu-
tational effort to sampling the region of interest instead of
the initially much vaster phase space. It should be pointed
out, however, that although all these methods use ensemble
simulations, they do not do so to ensure reproducibility, but
only as a means to capture and observe interesting transitions.
Thus, the application of UQ in these contexts still remains
wide open.
4.1.1. Ensemble-based docking
Ensemble methods have been used in docking studies to
accommodate the flexibility of target proteins, in which an
ensemble of structures can be generated from explicitly sol-
vated MD simulations, against which the screening of
ligands is performed. It has been demonstrated that the
approach generates a set of top hits, some of them ranked
very poorly if only crystal structure data are used [125].
Our own work [126] also showed that ensemble-based dock-
ing is required to explain the preference of gatekeeper mutant
EGFR (epidermal growth factor receptor) binding with gefiti-
nib, a targeted anti-cancer drug, rather than ATP. To improve
ligand–protein binding affinity predictions, multiple inde-
pendent MD simulations have been applied within the LIE
[127] approach. Ensemble docking approaches have been
employed recently to identify small molecules which may
disrupt host–virus interactions at an entry point for infection
with the SARS-CoV-2 [128].

4.1.2. Ensemble-based peptide and protein folding
Since the pioneering study by Duan & Kollman [129] two dec-
ades ago, significant advances have been made in the field of
peptide folding studies [130], thanks to the rapid development
of simulation approaches, the availability of powerful super-
computers, and the improvement of the force fields. Using
vanilla all-atom MD, the lengths of simulations for peptide
(un)folding have reached the time scales in the range of micro-
seconds to milliseconds [130]. The Shaw group has applied
long time scale simulations, up to 1 ms, correctly folding 12
structurally diverse small proteins to their experimentally
determined structures using Anton [131], a special-purpose
MD supercomputer. Except (un)folding in solvent, the process
of peptide binding, folding and partitioning into lipid bilayers
has been successfully captured using high-temperature MD
simulations [132]. Because of the time scales required for the
simulation of peptide folding/unfolding, it is not surprising
that many of these standard simulations use a single trajectory
approach, lack accuracy and reliable error estimates, and are
thus unlikely to be reproducible.

An ensemble study of a 10-residue peptide [33], designed
to investigate the reproducibility of MD simulations, indeed
displays the necessity for applying ensemble approaches to
investigate peptide unfolding. In the study, 100 replicas
were investigated with a simulation length of 3 µs each
[33]. The study yet again concluded that single simulations
are typically not reproducible [21]. Rather than using
standard MD simulations, other approaches have been
applied to sample the large conformational changes involved
in peptide (un)folding, such as accelerated MD [64–66] and
transition path sampling [55].

4.2. Ensemble-based sampling of restricted domains
In the study of a real biological system, it is practically not
possible, and indeed not necessary, to sample extensively all
regions in the configuration space. Only restricted regions of
conformational space are important for the calculation of
many properties of interest. The binding affinity, for example,
is determined by the stable binding conformations. Acceler-
ated MD approaches such as REST2 can help conformational
sampling, but their propensity to drift from stable binding con-
formations degrades free energy predictions because of the
lack of proper weighting factors for the conformations
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explored [61]. Precise predictions can be obtained when the
most relevant conformations have been extensively sampled,
without the need to explore a large conformational space.

The performance of short ensemble simulations for free
energy predictions depends on the quality of initial binding
poses and on the time scales for the efficient sampling of
local conformations. The phrase ‘garbage in, garbage out’ is
particularly pertinent when short simulations are used: a
system will not be able to escape from a poor initial configur-
ation within a limited simulation time, even if an ensemble is
employed. The initial ensemble must be close to the most rel-
evant region of the configuration space so that the relevant
phase can be sampled extensively. With carefully prepared
initial molecular systems, our studies show that the protocol
of running 4-ns ensemble production runs works well for all
the molecular systems we have investigated [21,25,26,51,59–
61,77,101]; longer simulations only provide a marginal gain
in the predictions [61], and may even have negative impact
if the ligands drift away from their stable binding confor-
mations [61]. There are certainly cases where longer
simulation duration is required, either to improve the poor
initial structures, to sample multiple binding conformations
[77], or to obtain converged occupancy probabilities of water
molecules at the binding sites [101,133]. A combination of con-
formational exploration and precise sampling, both based on
ensemble simulation, may be required in these cases.
5. Distributed computing approaches to enhance
sampling

In order to make a positive impact in industrial or clinical set-
tings, computational predictions need to be made on time
scales which can compete with or preferably dramatically out-
strip the duration of experimental discovery and testing
programmes. Today it is possible to achieve this by making
use of the methods described here. The history of biomolecular
simulation has been significantly influenced by the available
computational power, the development of automated work-
flow tools, and the evolution of distributed computing
approaches in recent years. In this section, we summarize
the developments we and others have made in these areas.

5.1. Hardware approaches
Karplus recalled [134] the considerable courage required to
perform the first MD simulation of a macromolecule of bio-
logical interest [135], due to the very limited and expensive
computational resources available in the mid-1970s. Biomole-
cular simulation, along with other areas of computational
science, have been benefiting from the rapid evolution of com-
puting power. In the last five decades, the performance of
microprocessors has improved exponentially, roughly follow-
ing Moore’s law which states that the number of transistors
on a chip, a rough measure of processing power, doubles
about every 2 years. Even though Moore’s law has come to
an end in recent years, the computational power is expected
to keep improving for many years with the creative and/or
specialized design of chips to accelerate specific crucial algor-
ithms. There are also special-purpose supercomputers for MD
simulations: Anton [131], for example, is a remarkable compu-
ter which can achieve simulation rates of microseconds per
day for biosystems with millions of atoms.
Supercomputers use essentially the same microprocessors
within nodes in far greater numbers than a desktop worksta-
tion, a fundamental difference arising from the speed of the
interconnects linking nodes and cores together. While a typical
early supercomputer from the 1980s only contained a few cen-
tral processing units (CPUs), massively parallel designs since
the 1990s have driven the architecture of supercomputers
and connected a much greater number of microprocessors
together via fast networking interconnects. Supercomputers
today consist of hundreds of thousands to millions of such
cores [83]. Indeed, cores as such are seldom referred to
today; the basic units are the nodes, which typically contain
tens to hundreds of cores and many also include accelerators.

The advent of GPU accelerators has resulted in more and
more powerful specialized processing units designed for
floating-point calculations. Initially used to accelerate the
creation of images in a frame buffer, such processors are
now in widespread use in high-performance computing
and cloud platforms in so-called general-purpose GPUs.
High-performance computing systems that feature both GPU
accelerators and CPU chips within individual nodes allow
hybrid applications to be developed that take advantage of the
processing power GPUs offer, albeit at greater financial cost.
MD codes developed to run onGPUs often showvery significant
performance improvements compared to CPU variants.

The explosion in the growth of computing power has led
computational biologists to become prominent users of high-
performance computing. Concomitantly, the rise of cloud
computing has made accessing such resources at scale poten-
tially trivial for researchers in academia and industry. The
pay per use models promoted by clouds mean that users
can pay just for the resources that they need to achieve
their research objectives, without having to engage in expens-
ive hardware procurement and operational costs, although
this is a model which often works better in commercial con-
texts than within academic research. Notwithstanding these
comments, at the level of compute intensity required to per-
form many free energy calculations, cloud computing can
currently become prohibitive very rapidly on cost grounds.
5.2. Software approaches
To make the best use of available HPC resources, considerable
effort has been devoted to improve the scalability of software
and todevelop adaptive andautomatedworkflows. The scalabil-
ity of MD codes on large numbers of cores and/or nodes is an
important factor in determining the size and time scales of a pro-
blem which can be studied. Most of the MD codes used today
have been designed or adapted to run on parallel computer sys-
tems. NAMD [136], for example, designed for high-performance
simulation of large biomolecular systems, has been used to simu-
late systems consisting of tens of millions atoms [137], although
anyMDcodeswith long-range interactions,which are communi-
cation bound, will not scale effectively in a strong sense to reach
required time scales [138]. OpenMM [139] and ACEMD (the
latter now uses the OpenMM kernels) [140], designed and opti-
mized for GPUs, are among the fastest MD codes in terms of
single GPU board performance.

The application of molecular modelling techniques to real-
world problems involves a complex workflow which is extre-
mely tedious and error prone if performed manually,
especially when ensemble computing approaches are
embraced. In the case of pharmaceutical drug discovery for



Table 1. Workflows to simplify free energy calculations. The workflows are designed to automate one or more of the multiple-step process of the calculation, with
employment of endpoint and/or alchemical approaches in conjunction with specific force field(s) and MD engine(s). 3: function available; 7: function not available.

name

automated steps FE approaches

force field MD engine referencebuild simulation
post-
analyses endpoint alchemical

FEP+ 3 3 3 7 3 OPLS Desmond [73]

BAC 3 3 3 3 3 AMBER, CHARMM NAMD,

OpenMM,

GROMACS

[141]

FEW 3 3 3 3 3 AMBER AMBER [142]

YANK 3 3 3 7 3 AMBER, CHARMM OpenMM [143]

FESetup 3 7 7 7 3 AMBER Sire, AMBER, GROMACS,

CHARMM, NAMD,

DL_POLY

[144]

pmx 3 7 3 7 3 AMBER, CHARMM,

OPLS

GROMACS [145]

STaGE 3 7 7 7 3 AMBER, CHARMM,

OPLS

GROMACS [146]

Flare 3 3 3 7 3 AMBER OpenMM [147]
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example, anywhere from hundreds to tens of thousands of
compounds may need to be screened within a few days. The
number of ensemble runs is of the same order of magnitude
as the number of compounds. Managing the execution of
simulations and collation of output data mandates the adop-
tion of automation techniques to make the process tractable
and reduce the time to solution. The scarcity of automated
software tools is one major obstacle limiting the wider appli-
cation of free energy approaches in real-world problems.

In recent years, a good deal of effort has been expended to
develop workflows that simplify some or all of the process of
free energy calculation using alchemical approaches such as
TI and FEP, and/or endpoint approaches like MMPBSA,
MMGBSA and LIE (table 1). The workflows include the
entire steps to plan, set up, simulate, and analyse the final
results in an automated manner. As mentioned earlier,
FEP+ [73] is a patented free energy calculation suite from
Schrödinger Inc., designed to automate the setup and analy-
sis of FEP. It has been promoted primarily to major
pharmaceutical companies. The Amber free energy workflow
(FEW) [142] is a tool to set up alchemical and endpoint free
energy calculations. FESetup [144] provides the setup of
alchemical free energy and endpoint approaches for a few
modelling packages including Amber, CHARMM, GRO-
MACS, NAMD, Sire and OpenMM. The small-molecule
topology generator (STaGE) [146] automatically generates
GROMACS topologies using force fields such as Amber,
CHARMM and OPLS, and sets them up for high-throughput
free energy calculations, while pmx [145] within GROMACS
provides an automated framework to provide hybrid
protein/ligand structures and topologies for alchemical free
energy calculations. Flare [147], implemented in Cresset’s
structure-based drug design suite, offers a graphical user
interface to automate setup, simulation and analysis of free
energy calculations via interfaces to the open source packages
OpenMM, Sire, LOMAP, SOMD and BioSimSpace. We have
developed our own free energy workflow called the binding
affinity calculator (BAC) [141,148], designed to automate the
end-to-end execution of ESMACS, TIES and ABFE calculations,
and to handle ensemble calculations. A relative free energy cal-
culation usually requires a hybrid topology and coordinate files
to transfer one ligand to another. An automated algorithm is
desired for planning and setting up free energy calculations
between possible ligand pairs, and for generating required
files. In most of the workflows mentioned here, this task is
handled by the lead optimization mapper (LOMAP) [149] or
other similar tools. The original LOMAP code was mainly
based on commercial application programming interfaces
(APIs) such as ones fromSchrödinger andOpenEye.A newver-
sion of LOMAP has been developed, which is based on open
APIs such as RDKit; this offers the scientific community a free
tool to plan binding free energy calculations.

A complete free energy workflow comprises three distinct
phases: (i) the preparation phase, (ii) the production phase
and (iii) the analysis phase. The preparation phase is the
step which all workflows focus on, in which the simulation-
ready topology and coordinate files are constructed for a bio-
molecular system to be studied from its raw starting structure
(usually in the form of a crystal structure in PDB format).
They take parameter files for proteins, ligands and other com-
ponents (water, ions, cofactors, etc.) as input with the
specification of a desired force field. Some workflows also
generate input configuration files compatible with chosen
MD engines which are used to perform the equilibration
and production simulations. After the successful execution
of the simulation phase, the final step is to perform the stat-
istical analysis on the output generated by the simulations
or the post-processed data.

Most of the listed workflows are executed through a com-
mand line interface (CLI), with inputs being handled through
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shell scripts. An API is usually available, which allows a user
to access the code through their own scripts for maximum
flexibility and customization. As one might expect for a com-
mercial product targeted at end-users in pharmaceutical
companies, FEP+ has a well-designed graphical user interface
to ensure user-friendly operation and high-quality visualiza-
tion of input and output data. It uses a range of technical
approaches to improve the accuracy and throughput of calcu-
lations, based on a replica-exchange method and GPU
acceleration. However, as noted above, it is proprietary so
users cannot access the code including the force field. As
such, it fails to comply with the requirement of open and
reproducible science and is thus harder to compare with
other approaches. By contrast, a user friendly graphical inter-
face for BAC, called ufBAC (see details below), has been
developed in order to make it available to the widest range
of users possible from academic to industrial and clinical.
BAC has built-in ensemble-based simulation capabilities in
order to ensure the accuracy and precision of reported results.
5.3. Distributed computing approaches
The significant computing resources required to deliver
accurate binding predictions mean that we necessarily
adopt a multitude of computing paradigms in order to
perform investigations using BAC. To that end, we make
use of large scale supercomputing class resources, as well
as public cloud infrastructures including Azure, Amazon
Web Services (AWS) and DNAnexus.

In the context of supercomputing class resources, we typi-
cally make use of RADICAL-Cybertools [150], developed by
Rutgers University, a suite of tools that provide a common,
consistent and scalable approach to high-performance and
distributed computing. RADICAL-Cybertools consists of
three fundamental components: (i) SAGA, an OGF commu-
nity standard API for application-level jobs and data
movement; (ii) RADICAL-Pilot (also known as BigJob), a
tool that provides the ability to aggregate large number of
tasks into a single-container job; (iii) EnsembleMD Toolkit,
which builds upon RADICAL-Pilot as the execution layer,
supports different patterns of ensemble-based computing,
including replica exchange, workflows and simulation-
analysis loops. These tools prove effective when wrapping
complex workflows requiring very high core counts, and
hence allow us to easily run replicas using the BAC Pro-
duction component. RADICAL-Cybertools allows users to
circumvent limitations put in place by supercomputing queu-
ing systems, and run our applications in an efficient manner
and ultra large scale including at the emerging exascale. A
further feature of RADICAL-Cybertools allows adaptive
applications to be created which alter the execution pattern
based on the evolution of parameters in a defined set of simu-
lations in order to promote computational efficiency.

RADICAL-Cybertools has been used to develop a version
of BAC called high throughput or HT-BAC, designed to
maximize simulation throughput when running on such
high-performance computing platforms. Computational
studies [8] have found that HT-BAC exhibits near linear
weak and strong scaling when running both ESMACS and
TIES BAC simulations, as shown in figure 2. Furthermore,
the adaptive computing capabilities of RADICAL-Cybertools
are employed by HT-BAC when running TIES calculations to
automate runtime decisions based on partial simulation data
and redistribute resources at runtime to support dynamically
generated simulations.

Deploying BAC to cloud resources has required us to
adopt technologies that minimize the differences between
platforms. The rise of cloud computing has been
accompanied by the development of so-called ‘containeriza-
tion’ technologies, which allow a whole operating system to
be virtualized [151]. Effectively this means that, using primar-
ily the Docker [125] tool, it is possible to create a fixed,
standard and portable environment for applications, by
wrapping them in Docker containers. (On HPC platforms,
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which operate a different security model, Singularity is a pre-
ferred container technology—see below.) This means that the
different components of the BAC application can each be
embedded in their own container, including all of the depen-
dencies required to run them. Each containerized BAC
component is stored in a container registry, and can easily
be deployed to any infrastructure that supports Docker
(and/or Singularity).

This process is made easier using Kubernetes, an open
source orchestration system for the automated deployment,
scaling and management of the containerized application.
Kubernetes allows us to define virtual clusters on a cloud,
which can then be used to run containerized applications.
These clusters can then be scaled up or down in order to exe-
cute the required number of replicas. In the context of the
BAC application, it provides us with an infrastructure-
independent platform on which to execute application
components. Kubernetes is available as a managed service
on Azure, AWS and Google Cloud Platform, meaning that
the containerized BAC application can be easily ported
between the leading cloud platforms, and indeed to any plat-
form that supports Kubernetes and Docker. A base Docker
image contains the core of each application component, and
this is then used to build Docker images for specific cloud
platforms that contain the necessary code to move data
around that platform for example.

As well as facilitating platform-independent cloud deploy-
ments, the use of containerization is becoming increasingly
widespread on supercomputing class resources, using either
Docker or Singularity [139] (which is compatible with Docker
containers). This means that containerized BAC components
can easily be deployed to compatible supercomputing resources,
without users having to have recourse to system administrators
to install and optimize application dependencies.

But the ability to easily and reliably deploy components
of the application on cloud and supercomputing resources
is not sufficient to allow users to trivially perform complex
investigations using the software. To remedy this, we have
developed ufBAC [148], a Web portal interface to the BAC,
which allows a user to build models of molecule-compound
binding, and execute and analyse multi-replica MD simu-
lations using the model. ufBAC enables BAC to be run via
a Software as a Service model, hiding from the user the com-
plexities of the command line tools used to build models,
execute them and analyse the results. ufBAC is intended to
plug in to a range of computational back ends, from HPC
resources provided by academic national research facilities
to commercial platforms such as Microsoft Azure or AWS.

The purpose of the ufBAC system, and the portal in par-
ticular, is to make the process of running complicated
simulation workflows that rely heavily on HPC as simple
as possible, improving usability by moving the user away
from the command line towards a user friendly cloud style
application. The ufBAC Web portal follows a conventional
design. The left-hand side of the interface contains a menu
bar that allows the user to access the various features of the
application. The top bar of the website displays user notifica-
tions (for example that a set of simulations has finished
running). The main content panel gives access to the features
of the application and allows users to control running
simulations, create and execute new models and analyse data.

A typical deployment of ufBAC, with BAC simulations
performed on the Azure cloud using docker and Kubernetes,
is outlined in figure 3. The application architecture comprises
multiple layers. The first is the client layer, a user portal
developed using Google Web Toolkit (GWT) [73]. The user
interacts with the BAC system via their Web browser.
The use of GWT provides a mechanism to develop high-
performance, low overhead Web interfaces developed using
Java which are compiled into separate JavaScript/HTML
and Java byte code components, with the former running
inside the user’s browser (reducing server overheads) and
interacting with the latter running inside a web application
container such as Tomcat. It also means that new interfaces
(designed for mobile devices, for example) can easily be con-
structed which make use of the common functionality
provided by the server-side of the client.

The server layer comprises the server components of a set
of RESTful Web services that allow the user to control the
execution of the different BAC application components in
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the cloud. Services support user login, state management and
collaboration. It interfaces with the Kubernetes cluster used
to run the BAC application components. This cluster com-
prises two to three compute pools, made up of differing
types of cloud nodes (for example, a single core pool for
building and analysing jobs, a GPU pool for production
simulation, and a multicore pool to run normal mode
calculations). In addition, a cloud blob store is used to store
file-based output from the different components of the BAC
application, and to pass data between components.
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6. Application of free energy calculations
As we have emphasized, the most effective and reliable com-
putational route to the reproducible ranking of the binding
affinity of ligands to proteins can be achieved using ensemble
methods. The endpoint approaches usually impose no signifi-
cant restriction on the nature of the drug–protein systems that
can be studied, although careful thought/attention needs to be
given to the setting up of themodels inmany instances, such as
the positions of metal ions and binding site water molecules
[133], the parametrizations for the ligands, and so on. A
study of box size dependence in simulations opens a debate
[152–154], which indeed highlights the importance of setting
up systems for simulation correctly and, more importantly,
applying ensemble approaches to get statistically significant
results.

We should point out that because of the flexibility of end-
point approaches, they are well suited to the early stage of
drug discovery, so-called hit-to-lead. The approach does not
provide accurate ‘absolute’ free energies, because of the
nature of the approximations used, such as the implicit sol-
vent models in MMPBSA-based approaches and the linear
reaction assumption in LIE. However, the ensemble simu-
lation based approaches can yield precise and reproducible,
hence reliable, binding affinity ranking predictions. The
alchemical approaches are in principle both accurate and pre-
cise in their domain of applicability [74]. The use of
ensembles allows for the modelled systems to vary within a
large phase space [21,25] and thereby describes a population
of all relevant models which provide probabilistic predictions
about the system behaviour.

The approach has been applied in different areas, including
structural determination of proteins by combined experimental
and computational information [155], and for structure predic-
tions of ligand–protein complexes using docking approaches
[156]. For binding free energy calculations, the ensemble
approach is increasingly widely employed as the most effective
way forward. Williams-Noonan et al. [157] have summarized
some case studies using alchemical approaches. Here, we
review some of the free energy applications, using endpoint
and/or alchemical approaches, to relatively large datasets that
closely mimic a real-world drug development setting, and to
a few clinically approved drugs binding to sequence-dependent
target proteins in a more forward-looking approach for person-
alized medicine. As the ensemble approaches are only now
beginning to make their way into real-world problems, the
applications reviewed below are not limited to ensemble-
based methods. It needs to be emphasized once again here
that, due to the random nature ofMD trajectories, one-off simu-
lations do not have any reliability; only ensemble simulations
enable one to draw statistically significant conclusions [21].
In direct collaboration with various leading pharma-
ceutical companies, we have tested the ensemble free energy
approaches in realistic pharmaceutical settings [59,60]. The cal-
culations were performed, initially blind, to investigate the
ability of our ESMACS and TIES methods to reproduce the
experimentally measured trends which were released to us
by the pharmaceutical companies after our computational pre-
dictions were made. Very good correlations were obtained
from both of the methods. In addition to the binding free
energy, structural, energetic and dynamic information at the
atomistic level is forthcoming from the simulations, which
cannot be obtained experimentally. Such information not
only explains experimental observations, it sheds light on
how to make modifications in the laboratory to improve the
ligand binding and/or ligand selectivity [59,60].

Wang et al. [73] published a study with a large number of
compounds binding to eight proteins. A total number of 330
relative binding free energies were calculated using single tra-
jectory-based FEP+. While most of the published free energy
studies focused primarily on retrospective predictions, the
study [73] also included two prospective projects, where
some of the compounds had been synthesized based on the
alchemical free energy calculations. While the description of
theprospective studywasbriefwithout revealing the structures
of the compounds simulated and synthesized in this study,
more details have been presented in a similar prospective
study of GPCRs [158]. Based on the computational predictions,
four novel compounds were synthesized and experimentally
tested, showing that simulations correctly predicted the bind-
ing affinities for two of them. FEP+ was also used for the
calculation of relative binding free energies of fragment-sized
compounds using several pharmaceutically relevant targets
with 96 fragments [159]. The studies demonstrate that such
alchemical approaches have the potential to guide the synthesis
of potent compounds, to impact fragment-based affinityoptim-
ization and to assist rational drug design projects.

Another less explored potential application of free energy
prediction approaches is in the area of personalized medicine
[82]. Due inter alia to the acquisition of drug resistance by
individuals, it is often necessary to tailor the medication of
a person according to his/her genetic configuration. In such
cases, an accurate ranking of the available drugs based on
their binding affinities when bound to different mutants of
the target protein is the prerequisite. We studied the efficacy
of two inhibitors to wild-type and mutant fibroblast growth
factor receptor 1 (FGFR1) using ensemble simulations [75].
FGFR1 is a recognized therapeutic target in cancer. The bind-
ing affinities we predicted were confirmed by later-revealed
biochemical measurements from our laboratory-based col-
leagues. The accuracy of the results displays the potential
for the method to be applied in personalized medicine.
Hauser et al. [160] recently published a study to predict
how protein mutations modulate inhibitor affinities to Abl
kinase. Classification of mutations as resistant or susceptible
was predicted with a reasonable accuracy for eight FDA-
approved drugs across 144 clinically identified mutations.
Fowler et al. [161] demonstrated that ensemble alchemical
approaches generated quantitatively accurate free energies,
and were able to estimate the specificity and sensitivity of
mutations in Staphylococcus aureus dihydrofolate reductase.

Point mutations in proteins can occur either inside (‘local’
mutants) or away from (‘remote’ mutants) the binding
pocket. It is worth mentioning here that alchemical free
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energy methods may not be able to correctly predict binding
affinities in the case of remote mutants—the ones spatially a
long way from the binding site—on typical wall clock time
scales. Even using accelerated sampling techniques like
REST2 cannot guarantee to improve the accuracy of such pre-
dictions [77] for reasons we alluded to earlier. Indeed an
apparent underestimation from a recent study [78] calls atten-
tion to the need of further studies to validate the REST2
method in free energy calculations. A critical analysis of the
application of alchemical free energy methods on protein
mutations has been performed recently in our group [61].
There, we provide insights underpinning the impact of the
gatekeeper mutation (a ‘local’ mutant) of FGFR3 on drug effi-
cacy using ensemble approaches with the REST2 method. We
focus on the UQ in these methods and, using that metric, we
are able to compare the performance of different software
and hardware for the calculation of the same free energy
changes and show that, using ensemble-based methods, one
can achieve reproducible results.
20200007
7. Conclusion
Drug–receptor binding is of key importance in determining
drug efficacyand safety. Themolecular determinants of binding
affinity, compared with those of binding kinetics, are well
understood. Binding free energy calculations are, therefore,
expected to provide valuable contributions in real-world pro-
blems such as in rational drug design as a virtual screening
and optimization tool, and in personalized medicine as a com-
ponent of clinical decision support systems [82,162]. Numerous
approaches and software tools have been developed for the pur-
pose. Despite the applicability of the technology being well
established, themethods have not thus far become standard vir-
tual screening toolswithin the pharmaceutical industry, still less
for decision support systems in clinical practice. The latter is a
very new application of free energy calculations, being dis-
cussed only in recent years [18,26,82]. What aspects are
limiting its applicability at present, and how can significant
progress be made in the future?

While recent developments of the approaches have
resulted in major improvements over what was available
just a few years ago, there are still limitations in applying
them within industry. These limitations include: the accuracy
of the predictions, the challenge of handling truly diverse
datasets, the general usability, as well as the computational
power and financial cost required. While all of these limit-
ations have been alleviated by the recent advances in
software, middleware and hardware, novel approaches are
required to further improve the accuracy of the predictions.
Diverse datasets, including the incorporation of a variety of
crystal structures, can succumb to careful preparation and
analysis [40], including careful use of and standardization
of the software, choice of force fields and assignment of par-
tial charges, as well as selection of bound water molecules to
include in the computations. It should be noted that often the
sought correlation of the computed free energy is done
against something not rigorously related to it, such as IC50,
and insufficient attention has been paid to the errors in
those experimental measurements [14,51,73,163]. To date
only a limited number of studies have been reported which
compare free energy calculations from different MD codes
and force fields due to technical difficulties of comparing
with every code. Studies have shown that consistent results
can be obtained across different MD engines [41,61,78]. Our
recent investigations using three MD engines and two force
fields show that the influences of force fields and MD codes
on results are often quite small if ensemble methods are
used as the basis for such comparisons [78].

In different scenarios, the cost–performance ratio can be in
favour of cloud environment or on premise HPC facilities.
While the former is usually preferred over the latter for small
applications, traditional HPC facilities are what large scale
tightly coupled calculations usually demand [164]. The equiv-
alent instance hours required forMD simulations usuallymake
the cloud applications prohibitive for many users, certainly in
the academic community where investigators lack the supplies
of cash required tomeet such bills, but also inmany companies;
moreover, use of ensemble simulation substantially increases
the costs. These factors make industrial users dither over com-
mitting to clouds when they could buy on premise HPC
hardware. The current situation is that many users still prefer
to own their own computers to avoid issues associated with
the security of data, as well as cost. Nonetheless, the concepts
of containerization and virtual machines are important
advances brought about by the cloud computing paradigm
which have entered mainstream HPC too in recent times
[151]. In the long term, it is likely that both will be used, per-
haps with bursting out to off-premises clouds when the
workload cannot be handled internally. As mentioned above
in the context of ML, reducing computational cost and time
to solution is one of the motivations for invokingMLmethods.
However, UQ applied to ML predictions is in its infancy, being
less mature than that we apply to MD simulation data.

Using ensemble methods, the errors in predictions can be
systematically controlled, amenable to further reduction by
increasing the number of replicas in an ensemble and by extend-
ing the length of simulations. Ensemble approaches are scalable,
allowing thousands of binding affinities to be calculated per day,
depending only on the computing resources available. Using
ESMACS, for example, a single ligand–protein target can be
assessed in 1–2 husingGPUs [61]. TIES ismore computationally
expensive, but predicts changes in free energy between pairs of
structurally closely related ligand–protein systems. A binding
free energy difference can be calculated in 2 h with modern
codes running on accelerators, using HPC or cloud resource
offering the latest GPU technology. Automated workflows are
essential, which significantly increases the usability of the
methods, while scale out to very large supercomputers makes
it possible to deliver actionable predictions. Indeed, as evi-
denced by our Giant Workflow [165] on the entirety of Phase 1
and Phase 2 of SuperMUC, two linked supercomputers at the
Leibniz Supercomputing Centre in Garching near Munich,
with a combined total of about 245 000 coreswherewe achieved
a sustainedperformanceof about sevenpetaflops, it is nowposs-
ible for us to produce high-quality binding affinity predictions
for of the order of several hundred target proteins within a
day or so with suitable computing resources. It is foreseeable
that in the near future, rapid and accurate free energy prediction
at high throughput will assist medicinal chemists in planning
and directing compound synthesis in a routine manner.

Ensemble simulation-based free energy prediction
approaches provide a route to predict relevant drug–protein
binding affinities and hence are directly applicable in rational
drug development and personalized medicine. They yield pre-
cise and reproducible, hence reliable, binding affinity ranking
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predictions. They should provide a major boost to rational drug
development in the pharmaceutical industry, and to personal-
ized medicine in clinical practice. To be sure, there are still
obstacles remaining, for example, inmodelling charge-changing
mutations and sampling relevant phase space when large con-
formational transitions occur. For mutations involving net
charge changes, the long-range electrostatic interactions need
to be incorporated properly [106]. Substantial conformational
changes, which could be triggered by mutations involving
charge changes or large size changes [61], are still a major
issue for the convergence of free energy predictions. The
double annihilation approach in ABFE calculations will almost
always engender large conformational changes; the accuracy
and convergence of the predictions need to be improved for
the method to be used for a wider set of biologically interesting
problems. The calculations are very computationally intensive,
which is related to the requirement of sampling a representative
conformational ensemble so as to get accurate and precise
predictions. More efficient conformational search methods,
which canaccess all of theenergetically important conformation-
al states, will significantly enhance the value of MD-based free
energy calculations. With the improving theories and models,
the increasing availability of automated tools and access to yet
more powerful computing resources, binding free energy
calculations are coming of age as a computational tool for the
pharmaceutical industry and, in the longer term, to clinicians
for drug selection in the context of personalized medicine.
Data accessibility. This article has no additional data.

Authors’ contributions. All authors participated in the design of the study,
contributed to the writing of the paper, gave final approval for publi-
cation and agreed to beheld accountable for theworkperformedherein.
Competing interest. We declare we have no competing interests.

Funding. The authors would like to acknowledge the support of the
MRC Medical Bioinformatics project (grant no. MR/L016311/1),
the Qatar National Research Fund (grant no. 7-1083-1-191), the EU
H2020 projects ComPat (grant no. 671564), CompBioMed (grant
no. 675451), CompBioMed2 (grant no. 823712) and VECMA (grant
no. 800925), NSF Award (award no. NSF 1713749) and funding
from the UCL Provost. We made use of BlueWaters at the National
Center for Supercomputing Applications at the University of Illinois
at Urbana-Champaign, access to which was made available through
the aforementioned NSF award; Titan and Summit at the Oak Ridge
Leadership Computing Facility, supported by the Office of Science of
the U.S. Department of Energy (DoE) under contract no. DE-AC05-
00OR22725; SuperMUC at the Leibniz Supercomputing Centre in
Garching, Germany; and cloud resources made available via DNA-
nexus and Microsoft Azure.

Acknowledgements. We thank a multitude of people for their assistance
and helpful discussions, especially David W. Wright (UCL);
Mike Kiernan and Sid Chaturvedi (Microsoft); Chai Fungtamma-
san, Brett Hannigan and Fiona Ford (DNAnexus); Sarah
Skerratt, Kiyoyuki Omoto, Sharan K. Bagal and Veerabahu Shan-
mugasundaram (Pfizer); Ian Wall, Darren Green, Eric Manas,
Alan Graves and Paul Bamborough (GlaxoSmithKline); Chris-
tophe Meyer, Herman van Vlijmen, Gary Tresadern and Laura
Pérez-Benito (Janssen); and Ola Engkvist (AstraZeneca). We
thank Dr Mateusz Bieniek (UCL) for providing access to his TIES
simulation data.
References
1. Coveney PV, Dougherty ER, Highfield RR. 2016 Big
data need big theory too. Philos. Trans. A Math.
Phys. Eng. Sci. 374, 20160153. (doi:10.1098/rsta.
2016.0153)

2. Succi S, Coveney PV. 2019 Big data: the end of the
scientific method? Philos. Trans. A Math. Phys. Eng.
Sci. 377, 20180145. (doi:10.1098/rsta.2018.0145)

3. Vassaux M, Sinclair RC, Richardson RA, Suter JL,
Coveney PV. 2019 Toward high fidelity materials
property prediction from multiscale modeling and
simulation. Adv. Theory Simul. 3, 1900122. (doi:10.
1002/adts.201900122)

4. DiMasi JA, Grabowski HG, Hansen RW. 2016
Innovation in the pharmaceutical industry: new
estimates of R&D costs. J. Health Econ. 47, 20–33.
(doi:10.1016/j.jhealeco.2016.01.012)

5. Peng RD. 2011 Reproducible research in
computational science. Science 334, 1226–1227.
(doi:10.1126/science.1213847)

6. Springer Nature. 2020 Challenges in irreproducible
research. See https://www.nature.com/collections/
prbfkwmwvz/ (accessed 6 August 2020).

7. Hoekstra AG, Portegies Zwart S, Coveney PV. 2019
Multiscale modelling, simulation and computing:
from the desktop to the exascale. Philos. Trans. A
Math. Phys. Eng. Sci. 377, 20180355. (doi:10.1098/
rsta.2018.0355)

8. Dakka J, Turilli M, Wright DW, Zasada SJ,
Balasubramanian V, Wan S, Coveney PV, Jha S. 2018
High-throughput binding affinity calculations at
extreme scales. BMC Bioinf. 19, 482. (doi:10.1186/
s12859-018-2506-6)

9. Chong LT, Saglam AS, Zuckerman DM. 2017 Path-
sampling strategies for simulating rare events in
biomolecular systems. Curr. Opin. Struct. Biol. 43,
88–94. (doi:10.1016/j.sbi.2016.11.019)

10. Groen D et al. 2019 Introducing VECMAtk:
verification, validation and uncertainty
quantification for multiscale and HPC simulations.
In Computational science – ICCS 2019 (eds JMF
Rodrigues, PJS Cardoso, J Monteiro, R Lam, VV
Krzhizhanovskaya, MH Lees, JJ Dongarra, PMA
Sloot), pp. 479–492. Berlin, Germany: Springer
International Publishing.

11. Foiles S, McDowell DL, Strachan A. 2019 Preface for
focus issue on uncertainty quantification in
materials modeling. Model. Simul. Mater. Sci. Eng.
27, 080301. (doi:10.1088/1361-651x/ab46d6)

12. Thompson AL. 2019 Chemical crystallography: when
are ‘ bad data’ ‘good data’? Crystallogr. Rev. 25,
3–53. (doi:10.1080/0889311X.2019.1569643)

13. Coveney PV, Groen D, Hoekstra AG (eds). In
preparation. Reliability and reproducibility in
computational science: implementing verification,
validation and uncertainty quantification in silico.

14. Chodera JD, Mobley DL. 2013 Entropy-enthalpy
compensation: role and ramifications in
biomolecular ligand recognition and design. Annu.
Rev. Biophys. 42, 121–142. (doi:10.1146/annurev-
biophys-083012-130318)
15. Deser C et al. 2020 Insights from Earth system
model initial-condition large ensembles and future
prospects. Nat. Clim. Change 10, 277–286. (doi:10.
1038/s41558-020-0731-2)

16. Palmer T. 2019 The ECMWF ensemble prediction
system: looking back (more than) 25 years and
projecting forward 25 years. Q. J. R. Meteorol. Soc.
145, 12–24. (doi:10.1002/qj.3383)

17. Manos S, Zasada SJ, Coveney PV. 2008 Life or death
decision-making: the medical case for large-scale,
on-demand grid computing. CTWatch Quarterly 4,
1–9.

18. Sadiq SK et al. 2008 Patient-specific simulation as a
basis for clinical decision-making. Philos. Trans. A
Math. Phys. Eng. Sci. 366, 3199–3219. (doi:10.
1098/rsta.2008.0100)

19. Balis B, Brzoza-Woch R, Bubak M, Kasztelnik M,
Kwolek B, Nawrocki P, Nowakowski P, Szydlo T,
Zielinski K. 2018 Holistic approach to management
of IT infrastructure for environmental monitoring
and decision support systems with urgent
computing capabilities. Future Gener. Comput. Syst.
79, 128–143. (doi:10.1016/j.future.2016.08.007)

20. Kovalchuk SV, Krotov E, Smirnov PA, Nasonov DA,
Yakovlev AN. 2018 Distributed data-driven platform
for urgent decision making in cardiological
ambulance control. Future Gener. Comput. Syst. 79,
144–154. (doi:10.1016/j.future.2016.09.017)

21. Coveney PV, Wan S. 2016 On the calculation of
equilibrium thermodynamic properties from

http://dx.doi.org/10.1098/rsta.2016.0153
http://dx.doi.org/10.1098/rsta.2016.0153
http://dx.doi.org/10.1098/rsta.2018.0145
http://dx.doi.org/10.1002/adts.201900122
http://dx.doi.org/10.1002/adts.201900122
http://dx.doi.org/10.1016/j.jhealeco.2016.01.012
http://dx.doi.org/10.1126/science.1213847
https://www.nature.com/collections/prbfkwmwvz/
https://www.nature.com/collections/prbfkwmwvz/
https://www.nature.com/collections/prbfkwmwvz/
http://dx.doi.org/10.1098/rsta.2018.0355
http://dx.doi.org/10.1098/rsta.2018.0355
http://dx.doi.org/10.1186/s12859-018-2506-6
http://dx.doi.org/10.1186/s12859-018-2506-6
http://dx.doi.org/10.1016/j.sbi.2016.11.019
http://dx.doi.org/10.1088/1361-651x/ab46d6
http://dx.doi.org/10.1080/0889311X.2019.1569643
http://dx.doi.org/10.1146/annurev-biophys-083012-130318
http://dx.doi.org/10.1146/annurev-biophys-083012-130318
http://dx.doi.org/10.1038/s41558-020-0731-2
http://dx.doi.org/10.1038/s41558-020-0731-2
http://dx.doi.org/10.1002/qj.3383
http://dx.doi.org/10.1098/rsta.2008.0100
http://dx.doi.org/10.1098/rsta.2008.0100
http://dx.doi.org/10.1016/j.future.2016.08.007
http://dx.doi.org/10.1016/j.future.2016.09.017


royalsocietypublishing.org/journal/rsfs
Interface

Focus
10:20200007

17
molecular dynamics. Phys. Chem. Chem. Phys. 18,
30 236–30 240. (doi:10.1039/c6cp02349e)

22. Rabier F, Klinker E, Courtier P, Hollingsworth A.
1996 Sensitivity of forecast errors to initial
conditions. Q. J. R. Meteorol. Soc. 122, 121–150.
(doi:10.1002/qj.49712252906)

23. Yun-yu S, Mark AE, Cun-xin W, Fuhua H, Berendsen
HJC, Gunsteren WFV. 1993 Can the stability of
protein mutants be predicted by free energy
calculations? Protein Eng. Des. Sel. 6, 289–295.
(doi:10.1093/protein/6.3.289)

24. Sadiq SK, Wright DW, Kenway OA, Coveney PV. 2010
Accurate ensemble molecular dynamics binding free
energy ranking of multidrug-resistant HIV-1
proteases. J. Chem. Inf. Model. 50, 890–905.
(doi:10.1021/ci100007w)

25. Wan S, Knapp B, Wright DW, Deane CM, Coveney
PV. 2015 Rapid, precise, and reproducible prediction
of peptide-MHC binding affinities from molecular
dynamics that correlate well with experiment.
J. Chem. Theory Comput. 11, 3346–3356. (doi:10.
1021/acs.jctc.5b00179)

26. Wright DW, Hall BA, Kenway OA, Jha S, Coveney PV.
2014 Computing clinically relevant binding free
energies of HIV-1 protease inhibitors. J. Chem.
Theory Comput. 10, 1228–1241. (doi:10.1021/
ct4007037)

27. van Gunsteren WF, Daura X, Hansen N, Mark AE,
Oostenbrink C, Riniker S, Smith LJ. 2018 Validation
of molecular simulation: an overview of issues.
Angew. Chem. Int. Ed. Engl. 57, 884–902. (doi:10.
1002/anie.201702945)

28. Coveney PV, Highfield RR. 1991 The arrow of time:
the quest to solve science’s greatest mystery. London,
UK: Flamingo.

29. Gallager RG. 2013 Stochastic processes: theory for
applications. Cambridge, UK: Cambridge University
Press.

30. Boghosian BM, Coveney PV, Wang H. 2019 A new
pathology in the simulation of chaotic dynamical
systems on digital computers. Adv. Theory Simul. 2,
1900125. (doi:10.1002/adts.201900125)

31. Wan S, Coveney PV. 2011 Rapid and accurate
ranking of binding affinities of epidermal growth
factor receptor sequences with selected lung cancer
drugs. J. R. Soc. Interface 8, 1114–1127. (doi:10.
1098/rsif.2010.0609)

32. Wan S, Sinclair RC, Coveney PV. 2020 Uncertainty
quantification in classical molecular dynamics.
(https://arxiv.org/abs/2006.07104)

33. Knapp B, Ospina L, Deane CM. 2018 Avoiding
false positive conclusions in molecular
simulation: the importance of replicas. J. Chem.
Theory Comput. 14, 6127–6138. (doi:10.1021/acs.
jctc.8b00391)

34. Efron B, Tibshirani RJ. 1994 An introduction to the
bootstrap. CRC press: FL, USA.

35. Li X, Wong W, Lamoureux EL, Wong TY. 2012
Are linear regression techniques appropriate for
analysis when the dependent (outcome) variable
Is not normally distributed? Invest. Ophthalmol.
Vis. Sci. 53, 3082–3083. (doi:10.1167/iovs.
12-9967)
36. Frisch U. 1995 Turbulence: the legacy of
A. N. Kolmogorov. Cambridge, UK: Cambridge
University Press.

37. Adler M, Beroza P. 2013 Improved ligand binding
energies derived from molecular dynamics: replicate
sampling enhances the search of conformational
space. J. Chem. Inf. Model. 53, 2065–2072. (doi:10.
1021/ci400285z)

38. Lawrenz M, Baron R, McCammon JA. 2009
Independent-trajectories thermodynamic-integration
free-energy changes for biomolecular systems:
determinants of H5N1 avian influenza virus
neuraminidase inhibition by peramivir. J. Chem. Theory
Comput. 5, 1106–1116. (doi:10.1021/ct800559d)

39. Jiang W, Hodoscek M, Roux B. 2009 Computation of
absolute hydration and binding free energy with
free energy perturbation distributed replica-
exchange molecular dynamics (FEP/REMD). J. Chem.
Theory Comput. 5, 2583–2588. (doi:10.1021/
ct900223z)

40. Dakka J, Farkas-Pall K, Balasubramanian V, Turilli M,
Wan S, Wright DW, Zasada S, Coveney PV, Jha S.
2018 Enabling trade-offs between accuracy and
computational cost: adaptive algorithms to reduce
time to clinical insight. In 2018 18th IEEE/ACM Int.
Symp. on Cluster, Cloud and Grid Computing
(CCGRID), Washington, DC, USA, 1-4 May 2018,
pp. 572–577. (doi:10.1109/CCGRID.2018.00005)

41. Loeffler HH, Bosisio S, Duarte Ramos Matos G, Suh
D, Roux B, Mobley DL, Michel J. 2018
Reproducibility of free energy calculations across
different molecular simulation software packages.
J. Chem. Theory Comput. 14, 5567–5582. (doi:10.
1021/acs.jctc.8b00544)

42. Plesser HE. 2017 Reproducibility vs. replicability: a
brief history of a confused terminology. Front.
Neuroinform. 11, 76. (doi:10.3389/fninf.2017.00076)

43. Ioannidis JPA. 2005 Why most published research
findings are false. PLoS Med. 2, 696–701. (doi:10.
1371/journal.pmed.0020124)

44. Baker M. 2016 1,500 scientists lift the lid on
reproducibility. Nature 533, 452–454. (doi:10.1038/
533452a)

45. Caves LS, Evanseck JD, Karplus M. 1998 Locally
accessible conformations of proteins: multiple
molecular dynamics simulations of crambin. Protein
Sci. 7, 649–666. (doi:10.1002/pro.5560070314)

46. Elofsson A, Nilsson L. 1993 How consistent are
molecular-dynamics simulations: comparing
structure and dynamics in reduced and oxidized
Escherichia coli thioredoxin. J. Mol. Biol. 233,
766–780. (doi:10.1006/jmbi.1993.1551)

47. Genheden S, Ryde U. 2010 How to obtain
statistically converged MM/GBSA results. J. Comput.
Chem. 31, 837–846. (doi:10.1002/jcc.21366)

48. Frenkel D, Smit B. 2002 Understanding molecular
simulation: from algorithms to applications, 2nd
edn. San Diego, CA: Academic Press.

49. Genheden S, Ryde U. 2011 A comparison of
different initialization protocols to obtain statistically
independent molecular dynamics simulations.
J. Comput. Chem. 32, 187–195. (doi:10.1002/jcc.
21546)
50. Manzoni F, Ryde U. 2018 Assessing the stability of
free-energy perturbation calculations by performing
variations in the method. J. Comput. Aided Mol. Des.
32, 529–536. (doi:10.1007/s10822-018-0110-5)

51. Bhati AP, Wan S, Wright DW, Coveney PV. 2017
Rapid, accurate, precise, and reliable relative free
energy prediction using ensemble based
thermodynamic integration. J. Chem. Theory Comput.
13, 210–222. (doi:10.1021/acs.jctc.6b00979)

52. Lindorff-Larsen K, Maragakis P, Piana S, Eastwood
MP, Dror RO, Shaw DE. 2012 Systematic validation
of protein force fields against experimental data.
PLoS ONE 7, e32131. (doi:10.1371/journal.pone.
0032131)

53. Lopes PEM, Guvench O, MacKerell Jr AD. 2014
Current status of protein force fields for molecular
dynamics simulations. In Molecular modeling of
proteins (ed. JM Walker), pp. 47–71. Totowa, NJ:
Humana Press.

54. Uzun A, Leslin CM, Abyzov A, Ilyin V. 2007 Structure
SNP (StSNP): a web server for mapping and
modeling nsSNPs on protein structures with linkage
to metabolic pathways. Nucleic Acids Res. 35,
W384–W392. (doi:10.1093/nar/gkm232)

55. Dellago C, Bolhuis PG. 2009 Transition path
sampling and other advanced simulation techniques
for rare events. In Advanced computer simulation
approaches for soft matter sciences III (eds C Holm,
K Kremer), pp. 167–233. Berlin, Germany: Springer.

56. Alder BJ, Wainwright TE. 1959 Studies in molecular
dynamics. I. General method. J. Chem. Phys. 31,
459–466. (doi:10.1063/1.1730376)

57. Bash PA, Singh UC, Brown FK, Langridge R, Kollman
PA. 1987 Calculation of the relative change in
binding free energy of a protein-inhibitor complex.
Science 235, 574. (doi:10.1126/science.3810157)

58. Genheden S, Ryde U. 2015 The MM/PBSA and MM/
GBSA methods to estimate ligand-binding affinities.
Expert. Opin. Drug. Discov. 10, 449–461. (doi:10.
1517/17460441.2015.1032936)

59. Wan S, Bhati AP, Skerratt S, Omoto K,
Shanmugasundaram V, Bagal SK, Coveney PV. 2017
Evaluation and characterization of Trk kinase
inhibitors for the treatment of pain: reliable binding
affinity predictions from theory and computation.
J. Chem. Inf. Model. 57, 897–909. (doi:10.1021/acs.
jcim.6b00780)

60. Wan S, Bhati AP, Zasada SJ, Wall I, Green D,
Bamborough P, Coveney PV. 2017 Rapid and reliable
binding affinity prediction of bromodomain
inhibitors: a computational study. J. Chem. Theory
Comput. 13, 784–795. (doi:10.1021/acs.jctc.
6b00794)

61. Bhati AP, Wan S, Hu Y, Sherborne B, Coveney PV.
2018 Uncertainty quantification in alchemical free
energy methods. J. Chem. Theory Comput. 14,
2867–2880. (doi:10.1021/acs.jctc.7b01143)

62. Sinclair RC, Suter JL, Coveney PV. 2018 Graphene–
graphene interactions: friction, superlubricity, and
exfoliation. Adv. Mater. 30, e1705791. (doi:10.1002/
adma.201705791)

63. Sinclair RC, Suter JL, Coveney PV. 2019
Micromechanical exfoliation of graphene on the

http://dx.doi.org/10.1039/c6cp02349e
http://dx.doi.org/10.1002/qj.49712252906
http://dx.doi.org/10.1093/protein/6.3.289
http://dx.doi.org/10.1021/ci100007w
http://dx.doi.org/10.1021/acs.jctc.5b00179
http://dx.doi.org/10.1021/acs.jctc.5b00179
http://dx.doi.org/10.1021/ct4007037
http://dx.doi.org/10.1021/ct4007037
http://dx.doi.org/10.1002/anie.201702945
http://dx.doi.org/10.1002/anie.201702945
http://dx.doi.org/10.1002/adts.201900125
http://dx.doi.org/10.1098/rsif.2010.0609
http://dx.doi.org/10.1098/rsif.2010.0609
https://arxiv.org/abs/2006.07104
http://dx.doi.org/10.1021/acs.jctc.8b00391
http://dx.doi.org/10.1021/acs.jctc.8b00391
http://dx.doi.org/10.1167/iovs.12-9967
http://dx.doi.org/10.1167/iovs.12-9967
http://dx.doi.org/10.1021/ci400285z
http://dx.doi.org/10.1021/ci400285z
http://dx.doi.org/10.1021/ct800559d
http://dx.doi.org/10.1021/ct900223z
http://dx.doi.org/10.1021/ct900223z
http://dx.doi.org/10.1109/CCGRID.2018.00005
http://dx.doi.org/10.1021/acs.jctc.8b00544
http://dx.doi.org/10.1021/acs.jctc.8b00544
http://dx.doi.org/10.3389/fninf.2017.00076
http://dx.doi.org/10.1371/journal.pmed.0020124
http://dx.doi.org/10.1371/journal.pmed.0020124
http://dx.doi.org/10.1038/533452a
http://dx.doi.org/10.1038/533452a
http://dx.doi.org/10.1002/pro.5560070314
http://dx.doi.org/10.1006/jmbi.1993.1551
http://dx.doi.org/10.1002/jcc.21366
http://dx.doi.org/10.1002/jcc.21546
http://dx.doi.org/10.1002/jcc.21546
http://dx.doi.org/10.1007/s10822-018-0110-5
http://dx.doi.org/10.1021/acs.jctc.6b00979
http://dx.doi.org/10.1371/journal.pone.0032131
http://dx.doi.org/10.1371/journal.pone.0032131
http://dx.doi.org/10.1093/nar/gkm232
http://dx.doi.org/10.1063/1.1730376
http://dx.doi.org/10.1126/science.3810157
http://dx.doi.org/10.1517/17460441.2015.1032936
http://dx.doi.org/10.1517/17460441.2015.1032936
http://dx.doi.org/10.1021/acs.jcim.6b00780
http://dx.doi.org/10.1021/acs.jcim.6b00780
http://dx.doi.org/10.1021/acs.jctc.6b00794
http://dx.doi.org/10.1021/acs.jctc.6b00794
http://dx.doi.org/10.1021/acs.jctc.7b01143
http://dx.doi.org/10.1002/adma.201705791
http://dx.doi.org/10.1002/adma.201705791


royalsocietypublishing.org/journal/rsfs
Interface

Focus
10:20200007

18
atomistic scale. Phys. Chem. Chem. Phys. 21,
5716–5722. (doi:10.1039/c8cp07796g)

64. Abrams C, Bussi G. 2014 Enhanced sampling in
molecular dynamics using metadynamics, replica-
exchange, and temperature-acceleration. Entropy
16, 163–199. (doi:10.3390/e16010163)

65. Bernardi RC, Melo MC.R, Schulten K. 2015 Enhanced
sampling techniques in molecular dynamics simulations
of biological systems. Biochim. Biophys. Acta 1850,
872–877. (doi:10.1016/j.bbagen.2014.10.019)

66. Valsson O, Parrinello M. 2014 Variational approach
to enhanced sampling and free energy calculations.
Phys. Rev. Lett. 113, 090601. (doi:10.1103/
PhysRevLett.113.090601)

67. Laio A, Gervasio FL. 2008 Metadynamics: a method
to simulate rare events and reconstruct the free
energy in biophysics, chemistry and material
science. Rep. Prog. Phys. 71, 126601. (doi:10.1088/
0034-4885/71/12/126601)

68. Fukunishi H, Watanabe O, Takada S. 2002 On the
Hamiltonian replica exchange method for efficient
sampling of biomolecular systems: application to
protein structure prediction. J. Chem. Phys. 116,
9058–9067. (doi:10.1063/1.1472510)

69. Wang L, Friesner RA, Berne BJ. 2011 Replica
exchange with solute scaling: a more efficient
version of replica exchange with solute tempering
(REST2). J. Phys. Chem. B 115, 9431–9438. (doi:10.
1021/jp204407d)

70. Wang L, Berne BJ, Friesner RA. 2012 On achieving
high accuracy and reliability in the calculation of
relative protein–ligand binding affinities. Proc. Natl
Acad. Sci. USA 109, 1937–1942. (doi:10.1073/pnas.
1114017109)

71. Paliwal H, Shirts MR. 2011 A benchmark test set for
alchemical free energy transformations and its use
to quantify error in common free energy methods.
J. Chem. Theory Comput. 7, 4115–4134. (doi:10.
1021/ct2003995)

72. Shirts MR, Chodera JD. 2008 Statistically optimal
analysis of samples from multiple equilibrium
states. J. Chem. Phys. 129, 124105. (doi:10.1063/1.
2978177)

73. Wang L et al. 2015 Accurate and reliable prediction
of relative ligand binding potency in prospective
drug discovery by way of a modern free-energy
calculation protocol and force field. J. Am. Chem.
Soc. 137, 2695–2703. (doi:10.1021/ja512751q)

74. Sherborne B et al. 2016 Collaborating to improve
the use of free-energy and other quantitative
methods in drug discovery. J. Comput. Aided Mol.
Des. 30, 1139–1141. (doi:10.1007/s10822-016-
9996-y)

75. Schindler CEM et al. 2020 Large-scale assessment of
binding free energy calculations in active drug
discovery project. J. Chem. Inf. Model. (doi:10.1021/
acs.jcim.0c00900)

76. Bunney TD et al. 2015 The effect of mutations on
drug sensitivity and kinase activity of fibroblast
growth factor receptors: a combined experimental
and theoretical study. EBioMedicine 2, 194–204.
(doi:10.1016/j.ebiom.2015.02.009)
77. Bhati AP, Wan S, Coveney PV. 2019 Ensemble-based
replica exchange alchemical free energy methods:
the effect of protein mutations on inhibitor binding.
J. Chem. Theory Comput. 15, 1265–1277. (doi:10.
1021/acs.jctc.8b01118)

78. Wan S, Tresadern G, Pérez-Benito L, Vlijmen H,
Coveney PV. 2019 Accuracy and precision of
alchemical relative free energy predictions with and
without replica-exchange. Adv. Theory Simul. 3,
1900195. (doi:10.1002/adts.201900195)

79. Aldeghi M, Heifetz A, Bodkin MJ, Knapp S, Biggin
PC. 2016 Accurate calculation of the absolute free
energy of binding for drug molecules. Chem. Sci. 7,
207–218. (doi:10.1039/c5sc02678d)

80. Babine RE, Bender SL. 1997 Molecular recognition
of protein–ligand complexes: applications to drug
design. Chem. Rev. 97, 1359–1472. (doi:10.1021/
cr960370z)

81. Sliwoski G, Kothiwale S, Meiler J, Lowe Jr EW. 2014
Computational methods in drug discovery.
Pharmacol. Rev. 66, 334–395. (doi:10.1124/pr.112.
007336)

82. Wright DW, Wan S, Shublaq N, Zasada SJ, Coveney
PV. 2012 From base pair to bedside: molecular
simulation and the translation of genomics to
personalized medicine. Wiley Interdiscip. Rev. Syst.
Biol. Med. 4, 585–598. (doi:10.1002/wsbm.1186)

83. Mobley DL, Gilson MK. 2017 Predicting binding free
energies: frontiers and benchmarks. Annu. Rev.
Biophys. 46, 531–558. (doi:10.1146/annurev-
biophys-070816-033654)

84. Moitessier N, Englebienne P, Lee D, Lawandi J,
Corbeil CR. 2008 Towards the development of
universal, fast and highly accurate docking/scoring
methods: a long way to go. Br. J. Pharmacol.
153(Suppl. 1), S7–S26. (doi:10.1038/sj.bjp.
0707515)

85. Ballester PJ, Schreyer A, Blundell TL. 2014 Does a
more precise chemical description of protein–ligand
complexes lead to more accurate prediction of
binding affinity? J. Chem. Inf. Model. 54, 944–955.
(doi:10.1021/ci500091r)

86. Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke
T. 2018 The rise of deep learning in drug discovery.
Drug Discov. Today 23, 1241–1250. (doi:10.1016/j.
drudis.2018.01.039)

87. Perez A, Martinez-Rosell G, De Fabritiis G. 2018
Simulations meet machine learning in structural
biology. Curr. Opin. Struct. Biol. 49, 139–144.
(doi:10.1016/j.sbi.2018.02.004)

88. Aqvist J, Luzhkov VB, Brandsdal BO. 2002 Ligand
binding affinities from MD simulations. Acc. Chem.
Res. 35, 358–365. (doi:10.1021/ar010014p)

89. Kollman PA et al. 2000 Calculating structures and
free energies of complex molecules: combining
molecular mechanics and continuum models. Acc.
Chem. Res. 33, 889–897. (doi:10.1021/ar000033j)

90. Jiménez-Luna J, Pérez-Benito L, Martínez-Rosell G,
Sciabola S, Torella R, Tresadern G, De Fabritiis G.
2019 DeltaDelta neural networks for lead
optimization of small molecule potency. Chem. Sci.
10, 10 911–10 918. (doi:10.1039/C9SC04606B)
91. Sinitskiy AV, Pande VS. 2019 Physical machine
learning outperforms ‘human learning’ in Quantum
Chemistry. (https://arxiv.org/abs/1908.00971).

92. Aldeghi M, Gapsys V, de Groot BL. 2019 Predicting
kinase inhibitor resistance: physics-based and data-
driven approaches. ACS Cent. Sci. 5, 1468–1474.
(doi:10.1021/acscentsci.9b00590)

93. Calude CS, Longo G. 2017 The deluge of spurious
correlations in big data. Found. Sci. 22, 595–612.
(doi:10.1007/s10699-016-9489-4)

94. Perez-Benito L, Casajuana-Martin N, Jimenez-Roses
M, van Vlijmen H, Tresadern G. 2019 Predicting
activity cliffs with free-energy perturbation. J. Chem.
Theory Comput. 15, 1884–1895. (doi:10.1021/acs.
jctc.8b01290)

95. Romero R et al. 2019 Mechanism of
glucocerebrosidase activation and dysfunction in
Gaucher disease unraveled by molecular dynamics
and deep learning. Proc. Natl Acad. Sci. USA 116,
5086–5095. (doi:10.1073/pnas.1818411116)

96. Fox GC et al. 2019 Learning everywhere: pervasive
machine learning for effective high-performance
computation. In 2019 IEEE Int. Parallel and
Distributed Processing Symp. Workshops (IPDPSW),
Rio de Janeiro, Brazil, 20–24 May 2019,
pp. 422–429. (doi:10.1109/IPDPSW.2019.00081)

97. Rufa DA, Bruce Macdonald HE, Fass J, Wieder M,
Grinaway PB, Roitberg AE, Isayev O, Chodera JD.
2020 Towards chemical accuracy for alchemical free
energy calculations with hybrid physics-based
machine learning/molecular mechanics potentials.
bioRxiv. (doi:10.1101/2020.07.29.227959)

98. Homeyer N, Stoll F, Hillisch A, Gohlke H. 2014
Binding free energy calculations for lead
optimization: assessment of their accuracy in an
industrial drug design context. J. Chem.
Theory Comput. 10, 3331–3344. (doi:10.1021/
ct5000296)

99. Swanson JM, Henchman RH, McCammon JA. 2004
Revisiting free energy calculations: a theoretical
connection to MM/PBSA and direct calculation of
the association free energy. Biophys. J. 86, 67–74.
(doi:10.1016/S0006-3495(04)74084-9)

100. Wright DW, Husseini F, Wan S, Meyer C, van Vlijmen
H, Tresadern G, Coveney PV. 2019 Application of the
ESMACS binding free energy protocol to a multi-
binding site lactate dehydogenase A ligand dataset.
Adv. Theory Simul. 3, 1900194. (doi:10.1002/adts.
201900194)

101. Wright DW, Wan S, Meyer C, van Vlijmen H,
Tresadern G, Coveney PV. 2019 Application of
ESMACS binding free energy protocols to diverse
datasets: bromodomain-containing protein 4. Sci.
Rep. 9, 6017. (doi:10.1038/s41598-019-41758-1)

102. Wan S, Potterton A, Husseini FS, Wright DW, Heifetz
A, Malawski M, Townsend-Nicholson A, Coveney PV.
2020 Hit-to-lead and lead optimization binding free
energy calculations for G protein-coupled receptors.
Interface Focus 10, 20190128. (doi:10.1098/rsfs.
2019.0128)

103. Gohlke H, Case DA. 2004 Converging free energy
estimates: MM-PB(GB)SA studies on the protein-

http://dx.doi.org/10.1039/c8cp07796g
http://dx.doi.org/10.3390/e16010163
http://dx.doi.org/10.1016/j.bbagen.2014.10.019
http://dx.doi.org/10.1103/PhysRevLett.113.090601
http://dx.doi.org/10.1103/PhysRevLett.113.090601
http://dx.doi.org/10.1088/0034-4885/71/12/126601
http://dx.doi.org/10.1088/0034-4885/71/12/126601
http://dx.doi.org/10.1063/1.1472510
http://dx.doi.org/10.1021/jp204407d
http://dx.doi.org/10.1021/jp204407d
http://dx.doi.org/10.1073/pnas.1114017109
http://dx.doi.org/10.1073/pnas.1114017109
http://dx.doi.org/10.1021/ct2003995
http://dx.doi.org/10.1021/ct2003995
http://dx.doi.org/10.1063/1.2978177
http://dx.doi.org/10.1063/1.2978177
http://dx.doi.org/10.1021/ja512751q
http://dx.doi.org/10.1007/s10822-016-9996-y
http://dx.doi.org/10.1007/s10822-016-9996-y
http://dx.doi.org/10.1021/acs.jcim.0c00900
http://dx.doi.org/10.1021/acs.jcim.0c00900
http://dx.doi.org/10.1016/j.ebiom.2015.02.009
http://dx.doi.org/10.1021/acs.jctc.8b01118
http://dx.doi.org/10.1021/acs.jctc.8b01118
http://dx.doi.org/10.1002/adts.201900195
http://dx.doi.org/10.1039/c5sc02678d
http://dx.doi.org/10.1021/cr960370z
http://dx.doi.org/10.1021/cr960370z
http://dx.doi.org/10.1124/pr.112.007336
http://dx.doi.org/10.1124/pr.112.007336
http://dx.doi.org/10.1002/wsbm.1186
http://dx.doi.org/10.1146/annurev-biophys-070816-033654
http://dx.doi.org/10.1146/annurev-biophys-070816-033654
http://dx.doi.org/10.1038/sj.bjp.0707515
http://dx.doi.org/10.1038/sj.bjp.0707515
http://dx.doi.org/10.1021/ci500091r
http://dx.doi.org/10.1016/j.drudis.2018.01.039
http://dx.doi.org/10.1016/j.drudis.2018.01.039
http://dx.doi.org/10.1016/j.sbi.2018.02.004
http://dx.doi.org/10.1021/ar010014p
http://dx.doi.org/10.1021/ar000033j
http://dx.doi.org/10.1039/C9SC04606B
https://arxiv.org/abs/1908.00971
http://dx.doi.org/10.1021/acscentsci.9b00590
http://dx.doi.org/10.1007/s10699-016-9489-4
http://dx.doi.org/10.1021/acs.jctc.8b01290
http://dx.doi.org/10.1021/acs.jctc.8b01290
http://dx.doi.org/10.1073/pnas.1818411116
http://dx.doi.org/10.1109/IPDPSW.2019.00081
http://dx.doi.org/10.1101/2020.07.29.227959
http://dx.doi.org/10.1021/ct5000296
http://dx.doi.org/10.1021/ct5000296
http://dx.doi.org/10.1016/S0006-3495(04)74084-9
http://dx.doi.org/10.1002/adts.201900194
http://dx.doi.org/10.1002/adts.201900194
http://dx.doi.org/10.1038/s41598-019-41758-1
http://dx.doi.org/10.1098/rsfs.2019.0128
http://dx.doi.org/10.1098/rsfs.2019.0128


royalsocietypublishing.org/journal/rsfs
Interface

Focus
10:20200007

19
protein complex Ras-Raf. J. Comput. Chem. 25,
238–250. (doi:10.1002/jcc.10379)

104. Wan S, Coveney PV, Flower DR. 2005 Peptide
recognition by the T cell receptor: comparison of
binding free energies from thermodynamic
integration, Poisson–Boltzmann and linear
interaction energy approximations. Phil. Trans. R.
Soc. A 363, 2037–2053. (doi:10.1098/rsta.2005.
1627)

105. Lin YL, Aleksandrov A, Simonson T, Roux B. 2014 An
overview of electrostatic free energy computations
for solutions and proteins. J. Chem. Theory Comput.
10, 2690–2709. (doi:10.1021/ct500195p)

106. Chen W, Deng Y, Russell E, Wu Y, Abel R, Wang L.
2018 Accurate calculation of relative binding free
energies between ligands with different net
charges. J. Chem. Theory Comput. 14, 6346–6358.
(doi:10.1021/acs.jctc.8b00825)

107. Gapsys V, Pérez-Benito L, Aldeghi M, Seeliger D, van
Vlijmen H, Tresadern G, de Groot BL. 2020 Large
scale relative protein ligand binding affinities using
non-equilibrium alchemy. Chem. Sci. 11,
1140–1152. (doi:10.1039/C9SC03754C)

108. Fowler PW, Jha S, Coveney PV. 2005 Grid-based
steered thermodynamic integration accelerates the
calculation of binding free energies. Phil.
Trans. R. Soc. A 363, 1999–2015. (doi:10.1098/rsta.
2005.1625)

109. Jha S, Coveney P, Harvey M. 2005 SPICE: simulated
pore interactive computing environment. In Proc.
2005 ACM/IEEE Conf. on Supercomputing, Seattle,
WA, USA, 12–18 November 2005. (doi:10.1109/SC.
2005.65)

110. Boghosian B, Coveney P, Dong S, Finn L, Jha S,
Karniadakis G, Karonis N. 2007 NEKTAR, SPICE and
Vortonics: using federated grids for large scale
scientific applications. Clust. Comput. 10, 351–364.
(doi:10.1007/s10586-007-0029-4)

111. Martin HSC, Jha S, Howorka S, Coveney PV. 2009
Determination of free energy profiles for the
translocation of polynucleotides through
α-hemolysin nanopores using non-equilibrium
molecular dynamics simulations. J. Chem. Theory
Comput. 5, 2135–2148. (doi:10.1021/ct9000894)

112. Jorgensen WL, Buckner JK, Boudon S, Tirado-Rives
J. 1988 Efficient computation of absolute free
energies of binding by computer simulations.
Application to the methane dimer in water.
J. Chem. Phys. 89, 3742–3746. (doi:10.1063/1.
454895)

113. Samsudin F, Parker JL, Sansom MSP, Newstead S,
Fowler PW. 2016 Accurate prediction of ligand
affinities for a proton-dependent oligopeptide
transporter. Cell Chem. Biol. 23, 299–309. (doi:10.
1016/j.chembiol.2015.11.015)

114. Shirts MR, Pande VS. 2001 Mathematical analysis of
coupled parallel simulations. Phys. Rev. Lett. 86,
4983–4987. (doi:10.1103/PhysRevLett.86.4983)

115. Zuckerman DM, Chong LT. 2017 Weighted ensemble
simulation: review of methodology, applications,
and software. Annu. Rev. Biophys. 46, 43–57.
(doi:10.1146/annurev-biophys-070816-033834)
116. Teo I, Mayne CG, Schulten K, Lelièvre T. 2016
Adaptive multilevel splitting method for molecular
dynamics calculation of benzamidine-trypsin
dissociation time. J. Chem. Theory Comput. 12,
2983–2989. (doi:10.1021/acs.jctc.6b00277)

117. Potterton A, Husseini FS, Southey MWY, Bodkin MJ,
Heifetz A, Coveney PV, Townsend-Nicholson A. 2019
Ensemble-based steered molecular dynamics
predicts relative residence time of A2A receptor
binders. J. Chem. Theory Comput. 15, 3316–3330.
(doi:10.1021/acs.jctc.8b01270)

118. Kokh DB et al. 2018 Estimation of drug-target
residence times by tau-random acceleration
molecular dynamics simulations. J. Chem. Theory
Comput. 14, 3859–3869. (doi:10.1021/acs.jctc.
8b00230)

119. Altwaijry NA, Baron M, Wright DW, Coveney PV,
Townsend-Nicholson A. 2017 An ensemble-based
protocol for the computational prediction of helix–helix
interactions in G protein-coupled receptors using coarse-
grained molecular dynamics. J. Chem. Theory Comput.
13, 2254–2270. (doi:10.1021/acs.jctc.6b01246)

120. Suter JL, Sinclair RC, Coveney PV. 2020 Principles
governing control of aggregation and dispersion of
graphene and graphene oxide in polymer melts.
Adv. Mater. 32, 2003213. (doi:10.1002/adma.
202003213)

121. Pietrucci F. 2017 Strategies for the exploration of
free energy landscapes: unity in diversity and
challenges ahead. Rev. Phys. 2, 32–45. (doi:10.
1016/j.revip.2017.05.001)

122. Bernetti M, Masetti M, Rocchia W, Cavalli A. 2019
Kinetics of drug binding and residence time. Annu.
Rev. Phys. Chem. 70, 143–171. (doi:10.1146/
annurev-physchem-042018-052340)

123. Buch I, Giorgino T, De Fabritiis G. 2011 Complete
reconstruction of an enzyme-inhibitor binding
process by molecular dynamics simulations. Proc.
Natl Acad. Sci. USA 108, 10 184–10 189. (doi:10.
1073/pnas.1103547108)

124. Ensign DL, Kasson PM, Pande VS. 2007
Heterogeneity even at the speed limit of folding:
large-scale molecular dynamics study of a fast-
folding variant of the villin headpiece. J. Mol. Biol.
374, 806–816. (doi:10.1016/j.jmb.2007.09.069)

125. Cheng LS, Amaro RE, Xu D, Li WW, Arzberger PW,
McCammon JA. 2008 Ensemble-based virtual
screening reveals potential novel antiviral compounds
for avian influenza neuraminidase. J. Med. Chem. 51,
3878–3894. (doi:10.1021/jm8001197)

126. Wan S, Wright DW, Coveney PV. 2012 Mechanism of
drug efficacy within the EGF receptor revealed by
microsecond molecular dynamics simulation. Mol.
Cancer Ther. 11, 2394–2400. (doi:10.1158/1535-
7163.MCT-12-0644-T)

127. Stjernschantz E, Oostenbrink C. 2010 Improved
ligand–protein binding affinity predictions using
multiple binding modes. Biophys. J. 98,
2682–2691. (doi:10.1016/j.bpj.2010.02.034)

128. Smith M, Smith JC. 2020 Repurposing therapeutics
for COVID-19: supercomputer-based docking to the
SARS-CoV-2 viral spike protein and viral spike
protein-human ACE2 interface. ChemRxiv. (doi:10.
26434/chemrxiv.11871402.v4)

129. Duan Y, Kollman PA. 1998 Pathways to a protein
folding intermediate observed in a 1-microsecond
simulation in aqueous solution. Science 282,
740–744. (doi:10.1126/science.282.5389.740)

130. Georgoulia PS, Glykos NM. 2019 Molecular simulation
of peptides coming of age: accurate prediction of
folding, dynamics and structures. Arch. Biochem.
Biophys. 664, 76–88. (doi:10.1016/j.abb.2019.01.033)

131. Shaw DE et al. 2014 Anton 2: raising the bar for
performance and programmability in a special-
purpose molecular dynamics supercomputer. In
Proc. Int. Conf. for High Performance Computing,
Networking, Storage and Analysis, New Orleans, LA,
USA, 16–21 November 2014, pp. 41–53. (doi:10.
1109/SC.2014.9)

132. Ulmschneider JP, Ulmschneider MB. 2018 Molecular
dynamics simulations are redefining our view of
peptides interacting with biological membranes.
Acc. Chem. Res. 51, 1106–1116. (doi:10.1021/acs.
accounts.7b00613)

133. Bodnarchuk MS. 2016 Water, water, everywhere…
It’s time to stop and think. Drug Discov. Today 21,
1139–1146. (doi:10.1016/j.drudis.2016.05.009)

134. Karplus M. 2006 Spinach on the ceiling: a
theoretical chemist’s return to biology. Annu. Rev.
Biophys. Biomol. Struct. 35, 1–47. (doi:10.1146/
annurev.biophys.33.110502.133350)

135. McCammon JA, Gelin BR, Karplus M. 1977 Dynamics
of folded proteins. Nature 267, 585–590. (doi:10.
1038/267585a0)

136. Phillips JC et al. 2005 Scalable molecular dynamics
with NAMD. J. Comput. Chem. 26, 1781–1802.
(doi:10.1002/jcc.20289)

137. Perilla JR, Goh BC, Cassidy CK, Liu B, Bernardi RC,
Rudack T, Yu H, Wu Z, Schulten K. 2015 Molecular
dynamics simulations of large macromolecular
complexes. Curr. Opin. Struct. Biol. 31, 64–74.
(doi:10.1016/j.sbi.2015.03.007)

138. Hoekstra AG, Chopard B, Coster D, Portegies Zwart
S, Coveney PV. 2019 Multiscale computing for
science and engineering in the era of exascale
performance. Philos. Trans. A Math. Phys. Eng. Sci.
377, 20180144. (doi:10.1098/rsta.2018.0144)

139. Eastman P et al. 2017 OpenMM 7: rapid
development of high performance algorithms for
molecular dynamics. PLoS Comput. Biol. 13,
e1005659. (doi:10.1371/journal.pcbi.1005659)

140. Harvey MJ, Giupponi G, Fabritiis GD. 2009 ACEMD:
accelerating biomolecular dynamics in the
microsecond time scale. J. Chem. Theory Comput. 5,
1632–1639. (doi:10.1021/ct9000685)

141. Sadiq SK, Wright D, Watson SJ, Zasada SJ, Stoica I,
Coveney PV. 2008 Automated molecular simulation
based binding affinity calculator for ligand-bound
HIV-1 proteases. J. Chem. Inf. Model. 48,
1909–1919. (doi:10.1021/ci8000937)

142. Homeyer N, Gohlke H. 2013 FEW: a workflow tool
for free energy calculations of ligand binding.
J. Comput. Chem. 34, 965–973. (doi:10.1002/jcc.
23218)

http://dx.doi.org/10.1002/jcc.10379
http://dx.doi.org/10.1098/rsta.2005.1627
http://dx.doi.org/10.1098/rsta.2005.1627
http://dx.doi.org/10.1021/ct500195p
http://dx.doi.org/10.1021/acs.jctc.8b00825
http://dx.doi.org/10.1039/C9SC03754C
http://dx.doi.org/10.1098/rsta.2005.1625
http://dx.doi.org/10.1098/rsta.2005.1625
http://dx.doi.org/10.1109/SC.2005.65
http://dx.doi.org/10.1109/SC.2005.65
http://dx.doi.org/10.1007/s10586-007-0029-4
http://dx.doi.org/10.1021/ct9000894
http://dx.doi.org/10.1063/1.454895
http://dx.doi.org/10.1063/1.454895
http://dx.doi.org/10.1016/j.chembiol.2015.11.015
http://dx.doi.org/10.1016/j.chembiol.2015.11.015
http://dx.doi.org/10.1103/PhysRevLett.86.4983
http://dx.doi.org/10.1146/annurev-biophys-070816-033834
http://dx.doi.org/10.1021/acs.jctc.6b00277
http://dx.doi.org/10.1021/acs.jctc.8b01270
http://dx.doi.org/10.1021/acs.jctc.8b00230
http://dx.doi.org/10.1021/acs.jctc.8b00230
http://dx.doi.org/10.1021/acs.jctc.6b01246
http://dx.doi.org/10.1002/adma.202003213
http://dx.doi.org/10.1002/adma.202003213
http://dx.doi.org/10.1016/j.revip.2017.05.001
http://dx.doi.org/10.1016/j.revip.2017.05.001
http://dx.doi.org/10.1146/annurev-physchem-042018-052340
http://dx.doi.org/10.1146/annurev-physchem-042018-052340
http://dx.doi.org/10.1073/pnas.1103547108
http://dx.doi.org/10.1073/pnas.1103547108
http://dx.doi.org/10.1016/j.jmb.2007.09.069
http://dx.doi.org/10.1021/jm8001197
http://dx.doi.org/10.1158/1535-7163.MCT-12-0644-T
http://dx.doi.org/10.1158/1535-7163.MCT-12-0644-T
http://dx.doi.org/10.1016/j.bpj.2010.02.034
http://dx.doi.org/10.26434/chemrxiv.11871402.v4
http://dx.doi.org/10.26434/chemrxiv.11871402.v4
http://dx.doi.org/10.1126/science.282.5389.740
http://dx.doi.org/10.1016/j.abb.2019.01.033
http://dx.doi.org/10.1109/SC.2014.9
http://dx.doi.org/10.1109/SC.2014.9
http://dx.doi.org/10.1021/acs.accounts.7b00613
http://dx.doi.org/10.1021/acs.accounts.7b00613
http://dx.doi.org/10.1016/j.drudis.2016.05.009
http://dx.doi.org/10.1146/annurev.biophys.33.110502.133350
http://dx.doi.org/10.1146/annurev.biophys.33.110502.133350
http://dx.doi.org/10.1038/267585a0
http://dx.doi.org/10.1038/267585a0
http://dx.doi.org/10.1002/jcc.20289
http://dx.doi.org/10.1016/j.sbi.2015.03.007
http://dx.doi.org/10.1098/rsta.2018.0144
http://dx.doi.org/10.1371/journal.pcbi.1005659
http://dx.doi.org/10.1021/ct9000685
http://dx.doi.org/10.1021/ci8000937
http://dx.doi.org/10.1002/jcc.23218
http://dx.doi.org/10.1002/jcc.23218


royalsocietypublishing.org/journal/rsfs
Interface

Focus
10:20200007

20
143. Wang K, Chodera JD, Yang Y, Shirts MR. 2013
Identifying ligand binding sites and poses using
GPU-accelerated Hamiltonian replica exchange
molecular dynamics. J. Comput. Aided Mol. Des. 27,
989–1007. (doi:10.1007/s10822-013-9689-8)

144. Loeffler HH, Michel J, Woods C. 2015 FESetup:
automating setup for alchemical free energy
simulations. J. Chem. Inf. Model. 55, 2485–2490.
(doi:10.1021/acs.jcim.5b00368)

145. Gapsys V, Michielssens S, Seeliger D, de Groot BL.
2015 pmx: automated protein structure and topology
generation for alchemical perturbations. J. Comput.
Chem. 36, 348–354. (doi:10.1002/jcc.23804)

146. Lundborg M, Lindahl E. 2015 Automatic GROMACS
topology generation and comparisons of force fields
for solvation free energy calculations. J. Phys. Chem.
B 119, 810–823. (doi:10.1021/jp505332p)

147. Kuhn M, Firth-Clark S, Tosco P, Mey ASJS, Mackey
M, Michel J. 2020 Assessment of binding affinity via
alchemical free-energy calculations. J. Chem. Inf.
Model. 60, 3120–3130. (doi:10.1021/acs.jcim.
0c00165)

148. Zasada SJ, Wright DW, Coveney PV. 2020 Large-
scale binding affinity calculations on commodity
compute clouds. Interface Focus 10, 20190133.
(doi:10.1098/rsfs.2019.0133)

149. Liu S, Wu Y, Lin T, Abel R, Redmann JP, Summa CM,
Jaber VR, Lim NM, Mobley DL. 2013 Lead optimization
mapper: automating free energy calculations for lead
optimization. J. Comput. Aided Mol. Des 27, 755–770.
(doi:10.1007/s10822-013-9678-y)

150. Ho TK. 1998 The random subspace method for
constructing decision forests. IEEE Trans. Pattern
Anal. Mech. Intell. 20, 832–844. (doi:10.1109/34.
709601)
151. CompBioMed. 2020 Report on the use of
commodity HPC infrastructures. See https://www.
compbiomed.eu/wp-content/uploads/2019/02/
D6.5-Report-on-the-Use-of-Commodity-HPC-
Infrastructures.pdf (accessed 9 August 2020).

152. El Hage K, Hedin F, Gupta PK, Meuwly M, Karplus
M. 2018 Valid molecular dynamics simulations of
human hemoglobin require a surprisingly large box
size. Elife 7, e35560. (doi:10.7554/eLife.35560)

153. El Hage K, Hedin F, Gupta PK, Meuwly M, Karplus
M. 2019 Response to comment on ‘Valid molecular
dynamics simulations of human hemoglobin require
a surprisingly large box size’. Elife 8, e45318.
(doi:10.7554/eLife.45318)

154. Gapsys V, de Groot BL. 2019 Comment on ‘Valid
molecular dynamics simulations of human
hemoglobin require a surprisingly large box size’.
Elife 8, e44718. (doi:10.7554/eLife.44718)

155. Bonomi M, Heller GT, Camilloni C, Vendruscolo M.
2017 Principles of protein structural ensemble
determination. Curr. Opin. Struct. Biol. 42, 106–116.
(doi:10.1016/j.sbi.2016.12.004)

156. Amaro RE, Baudry J, Chodera J, Demir O,
McCammon JA, Miao Y, Smith JC. 2018 Ensemble
docking in drug discovery. Biophys. J. 114,
2271–2278. (doi:10.1016/j.bpj.2018.02.038)

157. Williams-Noonan BJ, Yuriev E, Chalmers DK. 2018
Free energy methods in drug design: prospects of
‘Alchemical Perturbation’ in medicinal chemistry.
J. Med. Chem. 61, 638–649. (doi:10.1021/acs.
jmedchem.7b00681)

158. Lenselink EB et al. 2016 Predicting binding affinities
for GPCR ligands using free-energy perturbation.
ACS Omega 1, 293–304. (doi:10.1021/acsomega.
6b00086)
159. Steinbrecher TB, Dahlgren M, Cappel D, Lin T, Wang
L, Krilov G, Abel R, Friesner R, Sherman W. 2015
Accurate binding free energy predictions in
fragment optimization. J. Chem. Inf. Model. 55,
2411–2420. (doi:10.1021/acs.jcim.5b00538)

160. Hauser K, Negron C, Albanese SK, Ray S,
Steinbrecher T, Abel R, Chodera JD, Wang L. 2018
Predicting resistance of clinical Abl mutations to
targeted kinase inhibitors using alchemical free-
energy calculations. Commun. Biol. 1, 70. (doi:10.
1038/s42003-018-0075-x)

161. Fowler PW, Cole K, Gordon NC, Kearns AM, Llewelyn
MJ, Peto TEA, Crook DW, Walker AS. 2018 Robust
prediction of resistance to trimethoprim in
Staphylococcus aureus. Cell Chem. Biol. 25,
339–349. (doi:10.1016/j.chembiol.2017.12.009)

162. Wan S, Kumar D, Ilyin V, Homsi UA, Sher G, Knuth
A, Coveney PV. 2020 From genome to personalised
medicine: cancer treatment and discovery of novel
variants in Qatar. Preprint.

163. Abel R, Wang L, Mobley DL, Friesner RA. 2017 A
critical review of validation, blind testing, and real-
world use of alchemical protein–ligand binding free
energy calculations. Curr. Top. Med. Chem. 17,
2577–2585. (doi:10.2174/
1568026617666170414142131)

164. Netto MAS, Calheiros RN, Rodrigues ER, Cunha RLF,
Buyya R. 2018 HPC cloud for scientific and business
applications: taxonomy, vision, and research
challenges. ACM Comput. Surv. 51, 8. (doi:10.1145/
3150224)

165. Simonson T, Archontis G, Karplus M. 2002 Free
energy simulations come of age: protein-ligand
recognition. Acc. Chem. Res. 35, 430–437. (doi:10.
1021/ar010030m)

http://dx.doi.org/10.1007/s10822-013-9689-8
http://dx.doi.org/10.1021/acs.jcim.5b00368
http://dx.doi.org/10.1002/jcc.23804
http://dx.doi.org/10.1021/jp505332p
http://dx.doi.org/10.1021/acs.jcim.0c00165
http://dx.doi.org/10.1021/acs.jcim.0c00165
http://dx.doi.org/10.1098/rsfs.2019.0133
http://dx.doi.org/10.1007/s10822-013-9678-y
http://dx.doi.org/10.1109/34.709601
http://dx.doi.org/10.1109/34.709601
https://www.compbiomed.eu/wp-content/uploads/2019/02/D6.5-Report-on-the-Use-of-Commodity-HPC-Infrastructures.pdf
https://www.compbiomed.eu/wp-content/uploads/2019/02/D6.5-Report-on-the-Use-of-Commodity-HPC-Infrastructures.pdf
https://www.compbiomed.eu/wp-content/uploads/2019/02/D6.5-Report-on-the-Use-of-Commodity-HPC-Infrastructures.pdf
https://www.compbiomed.eu/wp-content/uploads/2019/02/D6.5-Report-on-the-Use-of-Commodity-HPC-Infrastructures.pdf
https://www.compbiomed.eu/wp-content/uploads/2019/02/D6.5-Report-on-the-Use-of-Commodity-HPC-Infrastructures.pdf
http://dx.doi.org/10.7554/eLife.35560
http://dx.doi.org/10.7554/eLife.45318
http://dx.doi.org/10.7554/eLife.44718
http://dx.doi.org/10.1016/j.sbi.2016.12.004
http://dx.doi.org/10.1016/j.bpj.2018.02.038
http://dx.doi.org/10.1021/acs.jmedchem.7b00681
http://dx.doi.org/10.1021/acs.jmedchem.7b00681
http://dx.doi.org/10.1021/acsomega.6b00086
http://dx.doi.org/10.1021/acsomega.6b00086
http://dx.doi.org/10.1021/acs.jcim.5b00538
http://dx.doi.org/10.1038/s42003-018-0075-x
http://dx.doi.org/10.1038/s42003-018-0075-x
http://dx.doi.org/10.1016/j.chembiol.2017.12.009
http://dx.doi.org/10.2174/1568026617666170414142131
http://dx.doi.org/10.2174/1568026617666170414142131
http://dx.doi.org/10.1145/3150224
http://dx.doi.org/10.1145/3150224
http://dx.doi.org/10.1021/ar010030m
http://dx.doi.org/10.1021/ar010030m

	Rapid, accurate, precise and reproducible ligand–protein binding free energy prediction
	Introduction
	Dynamical systems, ergodic theory and statistical mechanics
	Making molecular dynamics simulations reproducible
	Sources of error in classical molecular dynamics
	Ensemble averaging

	Common methods for free energy calculations
	Free energy of binding
	Methods for free energy calculation

	Ensemble-based simulation approaches
	Ensemble-based conformational exploration
	Ensemble-based docking
	Ensemble-based peptide and protein folding

	Ensemble-based sampling of restricted domains

	Distributed computing approaches to enhance sampling
	Hardware approaches
	Software approaches
	Distributed computing approaches

	Application of free energy calculations
	Conclusion
	Data accessibility
	Authors' contributions
	Competing interest
	Funding
	Acknowledgements
	References


