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Molecular simulations unravel 
the molecular principles 
that mediate selective permeability 
of carboxysome shell protein
Matthew Faulkner  1,5, István Szabó2,5, Samantha L. Weetman1,3,5, Francois Sicard  2, 
Roland G. Huber  3, Peter J. Bond  3, Edina Rosta2* & Lu‑Ning Liu  1,4*

Bacterial microcompartments (BMCs) are nanoscale proteinaceous organelles that encapsulate 
enzymes from the cytoplasm using an icosahedral protein shell that resembles viral capsids. Of 
particular interest are the carboxysomes (CBs), which sequester the CO2-fixing enzymes ribulose-1,5-
bisphosphate carboxylase/oxygenase (Rubisco) to enhance carbon assimilation. The carboxysome 
shell serves as a semi-permeable barrier for passage of metabolites in and out of the carboxysome 
to enhance CO2 fixation. How the protein shell directs influx and efflux of molecules in an effective 
manner has remained elusive. Here we use molecular dynamics and umbrella sampling calculations 
to determine the free-energy profiles of the metabolic substrates, bicarbonate, CO2 and ribulose 
bisphosphate and the product 3-phosphoglycerate associated with their transition through the major 
carboxysome shell protein CcmK2. We elucidate the electrostatic charge-based permeability and 
key amino acid residues of CcmK2 functioning in mediating molecular transit through the central 
pore. Conformational changes of the loops forming the central pore may also be required for transit 
of specific metabolites. The importance of these in-silico findings is validated experimentally by 
site-directed mutagenesis of the key CcmK2 residue Serine 39. This study provides insight into the 
mechanism that mediates molecular transport through the shells of carboxysomes, applicable to 
other BMCs. It also offers a predictive approach to investigate and manipulate the shell permeability, 
with the intent of engineering BMC-based metabolic modules for new functions in synthetic biology.

Bacterial microcompartments (BMCs) are proteinaceous organelles that sequester key metabolic pathways in 
the cytoplasm to enhance metabolic performance1. These metabolic modules are ubiquitous in many bacterial 
phyla and play vital roles in CO2 fixation, pathogenesis, and microbial ecology2–4. BMCs are composed of cata-
lytic enzymes encapsulated by a single-layer protein shell that structurally resembles virus capsids. The shell is 
self-assembled by hundreds of proteins in the forms of hexamers (BMC-H), pentamers (BMC-P) and trimers 
(BMC-T). BMC-H and BMC-T proteins are predominant in the shell facets, whereas BMC-P proteins occupy 
the vertices of the polyhedral shell5.

The most well-characterized BMC is the carboxysome, which acts as the key CO2-fixing machinery in all 
cyanobacteria and many chemoautotrophs6–8. The primary carboxylating enzymes, ribulose-1,5-bisphosphate 
carboxylase/oxygenase (Rubisco), are encased in the carboxysome9. Based on their protein composition 
and phylogeny of Rubisco enzymes, carboxysomes can be categorized into two types, α-carboxysomes and 
β-carboxysomes10. The β-carboxysome from freshwater cyanobacteria exhibits an icosahedral geometry with a 
diameter of ~ 150 nm (Fig. 1A)11,12.

Rubisco catalyzes the reaction between ribulose-1,5-bisphosphate (RuBP) and CO2 to generate two mol-
ecules of 3-phosphoglycerate (3-PGA). Meanwhile, Rubisco can also carry out oxygenation by accepting O2 as 
a substrate instead of CO2 through a competing, unproductive reaction called photorespiration. Its restricted 
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capability in discriminating between CO2 and O2 causes the catalytical inefficiency of Rubisco13. The carboxy-
some provides a microenvironment that can sequester and concentrate Rubisco enzymes from the cytoplasm 
(Fig. 1B); carbonic anhydrase (CA) is co-encapsulated with Rubisco within the carboxysome lumen and dehy-
drates HCO3

− to CO2 and thereby, supplies a high concentration of CO2 in the vicinity of Rubisco. The shell of 
the carboxysome was also speculated to act as a diffusion barrier to HCO3

−/CO2 efflux and O2 influx, thereby 
promoting Rubisco carboxylation14. The shell should also permit transit of the natural substrate RuBP and 
product 3-PGA. Overall, the highly-defined structure and protein organization of carboxysomes enhances the 
efficiency of CO2 fixation and reduces the wasteful side reaction of photorespiration, allowing cyanobacteria to 
contribute up to 25% of global carbon fixation on Earth15. As such, there is a growing interest in repurposing 
carboxysomes in heterologous systems, such as Escherichia coli (E. coli) and crop plants, to profoundly boost 
photosynthetic carbon fixation and productivity16–20.

All shell proteins bear a central pore surrounded by the loops of BMC-H, BMC-P and BMC-T polypeptides. 
These pores are presumed to provide portals for metabolite transport in and out of the carboxysome, given that 
shell proteins are closely packed in flat facets on the basis of observations from crystallography21,22, electron 
microscopy11,23,24 and atomic force microscopy11,25,26. To date, how the transition of substrates through the car-
boxysome shell is mediated remains enigmatic. Here, we use molecular dynamics (MD) via umbrella sampling 
(US) free energy calculations to explore the selective permeability of the major shell protein CcmK2 (BMC-H) 
in β-carboxysomes to specific substrates and products related to the reaction catalyzed by Rubisco. This study 
provides computational evidence for elucidating the mechanisms that mediate metabolite traffic through the 
carboxysome shell.

Figure 1.   Carboxysome structure, metabolism and building components. (A) A model of the proposed 
polyhedral architecture of the carboxysome. The β-carboxysome from Syn7942 is ~ 150 nm in diameter, 
comprising an icosahedral shell formed by hexameric and pentametric proteins. (B) The metabolic pathways 
of carbon fixation in the carboxysome. The carboxysome shell serves as a physical barrier for controlling the 
flux of specific metabolites in and out of the carboxysome. The shell permits passage of cytosolic bicarbonate 
(HCO3

−) and ribulose-1,5-bisphosphate (RuBP) into the carboxysome. Then carbonic anhydrase (CA) 
in the carboxysome lumen dehydrates HCO3

− to CO2 and provides high levels of CO2 close to Rubisco. 
Rubisco catalyzes the carboxylation of RuBP by adding CO2 to generate 3-phosphoglycerate (3-PGA), which 
is transported across the shell and is metabolized via the Calvin–Benson–Bassham cycle. C, Structural 
representation of the major carboxysome shell building component, CcmK2 (PDB: 2A1B). The CcmK2 complex 
presents a sixfold symmetry, involving a central pore that mediates metabolite flow. CcmK2 has concave and 
convex faces; the C-terminal tails of CcmK2, highlighted in purple, are located at the concave side.
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Results
Structural flexibility of CcmK2.  CcmK2 in β-carboxysomes from Synechocystis sp. PCC 6803 (Syn6803) 
was the first BMC protein that has been structurally determined22. The protein subunits of CcmK2 are arranged 
in hexameric units with a six-fold symmetry (Fig. 1C). The central pore is ~ 7 Å in diameter, surrounded by six 
copies of the backbone amide nitrogen atom of Serine 39 (Ser39). The predominant protein surface of CcmK2 
is negatively charged, whereas the central pore of CcmK2 has a strong positive electrostatic potential, ascribed 
to the positively charged residues Arginine 11 (Arg11) and Lysine 36 (Lys36) that are 10 Å away from the nar-
rowest point of the pore in each subunit and solvent exposed to the lumen and cytoplasm, respectively22 (Sup-
plementary Figures 1,2).

The CcmK2 C-terminal tail contains a 5-residue helix on the concave side and has been deduced to play roles 
in BMC domain assembly and protein–protein interaction22 (Fig. 2A, B). We performed MD simulations of the 
full-length CcmK2 from Syn6803 (CcmK2-full, PDB: 2A1B)22, the C-terminal truncated CcmK2 from Syn6803 
(CcmK2-∆C, PDB: 3CIM)27, and the full-length CcmK2 from Synechococcus elongatus PCC 7942 (Syn7942) 
(PDB: 4OX7) in explicit water for 200 ns. The results revealed that the C-terminal tails of CcmK2 exhibited 
structural flexibility during simulations (Fig. 2C). These C-terminal residues have a lower resolution and display 
a higher degree of flexibility than the core residues in the crystal structures, resulting in the disorder of crystal 
forms27,28. A similar fashion of protein contacts has been illustrated in virus capsid assembly: interactions through 
flexible termini act as conformational switches that mediate virus capsid formation29,30.

We conducted root mean square fluctuation (RMSF) analysis to measure the per residue fluctuation around 
their average positions. High values of RMSFs are seen at the C-termini (Fig. 2C), as a consequence of the high 
C-terminal flexibility during the course of simulations. Other regions of increased RMSF peaks correspond to 
regions of high flexibility such as loops and turns in CcmK2. By contrast, no significant difference in the RMSF 
profiles of the core regions of CcmK2 was recorded, indicative of the stable conformation of the core. To dimin-
ish the system complexity, we chose the experimentally obtained CcmK2-∆C structure (PDB: 3CIM)27, with 
a high resolution of 1.3 Å, in the following simulations to explore the molecular transport through the central 

Figure 2.   Structural flexibility of the C-terminal tails of CcmK2. (A) C-terminal orientation of CcmK2-full. 
The initial orientation of the C-termini is shown in green and the final state of the C-termini after 200 ns of 
simulation time is shown in blue. (B) Visualization of an individual chain (cartoon representation) in the 
hexamer (quick-surf representation) with the termini, loop and turn regions labeled. (C) RMSF profile of the 
truncated CcmK2 (PDB: 3CIM) and full-length CcmK2 (PDB: 2A1B and 4OX7) over the last 150 ns of the 
simulation period, indicating a flexible C-terminus of CcmK2.
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pore, instead of creating in silico a C-terminal deletion structure based on the full-length CcmK2. Since the MD 
simulation lengths cannot sample the position of the flexible termini exhaustively to find a stable conformation 
relative to the whole protein, using the CcmK2-∆C structure eliminates this uncertainty.

Molecular transport of the pore is mediated by electrostatic charge.  The pore of CcmK2 has been 
proposed to be the route by which metabolites pass through the shell in either direction22. We conducted US 
simulations on CcmK2-∆C (PDB: 3CIM) in the solvent containing HCO3

−, 3-PGA, O2 and CO2, respectively. 
We determined the free-energy (ΔG) profiles associated with the transition of each metabolite initiating simula-
tions in both directions, along the axis (z) relative to the center of mass of the CcmK2 hexamer (x, y, z) = (0, 0, 
0) (Fig. 3A). To assess the US convergence, we divided each window into 5 equal-length trajectories to calculate 
the error bars, which did not display significant systematic changes (Supplementary Figure 4). We also analyzed 
the autocorrelation functions at 3 different US windows (Supplementary Figure 5) and obtained around 2 ns for 
the autocorrelation times, shorter than the US simulation lengths.

As shown in Fig.  3B, the local free energy differences are calculated relative to bulk solvent (at 
z = − 25 Å, + 25 Å). It is evident that the four metabolites experience three shared local free-energy minima/
maxima, representing their specific interactions with the key amino acid residues (Fig. 3). O2 and CO2 have the 
same local free-energy minima localized around the side chains of Arg11 (z =  ~ − 11 Å) and Lys36 (z =  ~ 5 Å) 
as well as a free energy barrier, ΔG‡ of 3.8 kcal mol−1 and 3.5 kcal mol−1 respectively, in proximity to Ser39 
(z =  ~ − 6 Å) (Fig. 3B). This indicates that both the CO2 and O2 have to pass a small free energy barrier to transi-
tion through the pore from one side of Ser39 to the other.

The free-energy minima of HCO3
− are around the side chains of residues near the center of the pore, which 

is formed by the K-I-G-S motif31; Ser39 where z is ~ − 5 Å, Arg11 where z is ~ − 12 Å, and Lys36 where z is ~ 6 Å. 
The lowest of the energy wells (kT) occurs at the Ser39 bottle neck, with a ΔG of ~ − 0.6 kcal mol−1. It is the same 
for 3-PGA except that there is no minimum at Arg11. These free-energy minima correlate with the binding 
pockets of CcmK2 for metabolites in 3D space (Fig. 3C–F), indicating the importance of residues Ser39, Lys36 
and Arg11 in mediating metabolite flux through the pore. Consistently, recent studies on 1,2-propanediol uti-
lization (1,2-PDU) microcompartments have also verified the role of the equivalent Ser40 of the shell hexamer 
PduA in channeling metabolite traffic32,33. Given that the Ser39, Lys36 and Arg11 residues are conserved among 

Figure 3.   Selective permeability of the CcmK2-∆C pore towards key metabolites and products related to 
carbon fixation. (A) A cross-section through a schematic representation of the US environment. The z axis 
shown is relative to (0,0,0) at the center of mass of CcmK2. The full range sampled was from − 25 to + 25 Å 
along z. Positive values of z refer to the concave side of CcmK2, whereas negative values of z refer to the convex 
surface. (B) Free-energy profiles of key metabolite molecules HCO3

−, 3-PGA, O2 and CO2 along z axis, and of K+ 
cations and Cl− anions from no-metabolite control environments. (C–F) 2D free-energy landscapes of HCO3

−, 
O2, 3-PGA and CO2 transport, respectively. A cartoon representation of CcmK2 is shown in green with the side 
chains of the three key residues Ser39, Lys36 and Arg11 shown as sticks.
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orthologous BMC-H members as demonstrated by protein sequence alignment (Supplementary Figure 3)22,27, 
our results may suggest a general principle underlying the selective permeability of BMC shell proteins and the 
conservation of functional domains of BMC shell components. Collectively, our results reveal the charge-based 
molecule transport through the electropositive CcmK2 pore.

Additionally, we calculated the free energy of K+ and Cl- using metabolite-free US simulations. The cation 
K+ displays a maximum between z =  ~ − 16 to 5, with the highest ΔG of ~ 7.6 kcal mol−1 occurring around Ser39 
z =  ~ − 4. This suggests that it is unfavorable for cations to transition through the CcmK2 pore. In contrast, the 
small anion Cl− has the smoothest energy profile and is most similar to that of HCO3

−. Overall, it experiences 
much smaller barrier heights for a favorable transition (Fig. 3B). The most favorable free energy occurs when 
3-PGA transits around Ser39 with a ΔG of ~ –7.5 kcal mol−1 (Fig. 3B). This could be rationalized by the tendency 
for hydrogen bonds to be formed between the carboxyl group of 3-PGA and the hydroxyl group of Ser39. The 
local minimum of 3-PGA on the convex side is higher than around Lys36 on the concave face of CcmK2. In 
contrast, the local minimum of HCO3

− around Arg11 (z = − 12 Å) on the convex face of CcmK2 is approximately 
equal to the minimum around Lys36 (z = 6 Å) on the concave side. There is also a shared local maximum centered 
at z = 0–2 Å between the minima around Lys36 and the minima at Ser39.

These results suggest that energetically favorable interactions around and in the center of the pore increase 
the likelihood of transit and could drive transit of HCO3

− and 3-PGA in both directions. It is possible that 3-PGA 
preferentially transits from the convex to the concave face. The energy profile suggests more favorable interactions 
occur on the concave side of Ser39 (Fig. 3B). While HCO3

− US does not indicate a preference, it is likely in the 
cellular environment HCO3

− would preferentially transit from the concave to the convex face with a concentra-
tion gradient. This is in agreement with the shell protein orientation characterized in the intact BMC shells34 and 
the PduA nanotubes35, but distinct from the proposed orientation in recent simulations of the α-carboxysome 
shell hexamer CsoS1A36. The pore, and the binding pockets at the key residues on either side, are accessible to 
water. Solvent effects, such as the likes of salinity, merit further investigation (Fig. 4, Supplementary Figure 2).

We extended the thermodynamic analysis above to the study of the dynamic characteristics associated with 
the transition of O2, CO2, and HCO3

− molecules through the pore. We analyzed the free energy profiles obtained 
in Fig. 3B, within the reaction rate theory framework. Considering a constant prefactor (pre-exponential coef-
ficient) in the Arrhenius/Kramers equation and a barrierless transition process for HCO3

−, we measured the ratio 
of the rates associated with the transition of O2 (respectively CO2) and HCO3

− compounds through the pore. 
This yields kO2/kHCO3− =  ~ 3.5 × 10−4 and kCO2/kHCO3− =  ~ 6.6 × 10−4, which shows significant differences (3 orders 
of magnitude) in terms of the characteristic times for the transition through the pore.

Conformational change of the central pore during metabolite transit.  To examine whether 
potential conformational changes of the CcmK2 pore are associated with transit of metabolites, we measured 
the pore diameter in the presence and absence of contacts between individual metabolites and the residues 
Arg11, Ser39 and Lys36 during the time course of simulations (Fig. 5), using HOLE37 to analyze 2500 equidistant 
frames of a 50 ns MD trajectory independently (see Materials and methods). The pore size of CcmK2-∆C in the 
crystal structure (PDB: 3CIM) was 2.55 Å determined using HOLE, and it varied between 1 and 6 Å during the 
course of simulations (Fig. 5). There were no significant differences found in the pore diameter in the absence 
and presence of contacts between CO2 or O2 and the three residues. It is worth noting that the sample size of 
contacts between these metabolites and the select residues is small, likely because the substrates with relatively 
small size have more space to move freely in the pore area without making contacts. On the contrary, a signifi-
cant difference in the pore size was discerned for HCO3

− between no contacts and contacts with Lys36 (Fig. 5, 
Supplementary Table 2). This reveals that transit of HCO3

− may first require binding to Lys36 on the concave 
side of the protein to open up the pore. Significant changes in the pore diameter were also detected in the pres-
ence and absence of contacts between 3-PGA and all three of the selected residues of interest, indicating that the 
passage of 3-PGA through the pore may require a conformational change to increase the pore diameter (Fig. 5).

Figure 4.   Interactions formed by key charged residues. Lys36 (left) and Arg11 (right) shown as van de Waals 
spheres at the concave and convex sides of the pore respectively. Interacting conserved Glu71 (turquoise) and 
Glu35 (green) residues, as well as nearby residues within 4 Å (Tyr34 and Arg41, Leu73) and water molecules are 
shown as sticks highlighting solvent accessibility.
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Permeability of large metabolite molecules through the CcmK2 pore.  Our results imply that the 
large molecule 3-PGA experiences favorable interactions (Fig. 3B) and may induce a conformational change 
of the CcmK2 pore during transit (Fig. 5). Likewise, RuBP also has a large size (~ 3–4 Å wide, ~ 9.4 Å long) 
with respect to the pore diameter (Fig. 6A). We calculated the acidic dissociation constants based on the Ham-
mett and Taft equations using the Epik method (black) and empirically calculated physico-chemical parameters 
obtained from ionization site-specific regression equations (red) annotated on Fig. 6A. The pKa calculations 
exhibited consistency regardless of the pKa calculation methods, suggesting the most likely protonation state of 
RuBP and 3-PGA molecules at ~ pH7.

To estimate their interactions with the CcmK2 pore, we conducted molecular docking simulations of 3-PGA 
and RuBP with CcmK2-∆C structure using SwissDock38 and Glide extra precision (XP) docking39. Snapshots of 
the most stable binding poses for RuBP (Fig. 6B) and 3-PGA (Fig. 6C) from both the concave and convex faces 
illustrate the negative relative free energy changes experienced by RuBP and 3-PGA when in the final docking 
pose in the CcmK2 pore: ΔG is -9.96 kcal∙mol−1 for RuBP (Fig. 6D) and − 9.98 kcal∙mol−1 for 3-PGA (Fig. 6E). 
The FullFitness score for RuBP (− 3383 kcal mol−1) in this pose is similar to 3-PGA (− 3275 kcal mol−1) (Supple-
mentary Figure 6). These results verify a highly stable binding pocket for 3-PGA and RuBP in the narrowest point 
of the CcmK2 pore when the phosphate groups of these metabolites interact with the Ser39 hydroxyl groups. All 
three of the phosphate oxygen groups of both RuBP and 3-PGA can be stabilized by hydrogen bonding to Ser39. 
This binding pocket also contributes to a local free-energy minimum for 3-PGA, as observed in US calculations 
(z =  ~ − 5 Å) (Fig. 3). This emphasizes a good correlation between our molecular docking and US simulations 
results, despite the known lower reliability of docking simulations compared to full MD simulations. These 
binding poses of 3-PGA are directly compared between US and docking in Fig. 7. Interestingly, despite the size 

Figure 5.   Pore diameter of CcmK2-∆C in the presence and absence of contacts with metabolites during 
simulations. Violin plots of the pore diameters of CcmK2 determined by HOLE from the full MD 
simulations trajectories for each metabolite, depicting the conformational dynamics of the pore during 
metabolite transition. The two categories “contact” and “no contact” refer to the presence or absence, 
respectively, of the metabolite within the cutoff distance of 3.5 Å and angle of 30° of the reside. p values were 
calculated using the Wilcoxon rank-sum test (Supplementary Table 2). These diameter measurements were 
made at the region corresponding to the minimum constriction along the pore axis z.
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difference between 3-PGA and RuBP, the free energy detected when docking RuBP and 3-PGA to CcmK2 is 
relatively similar. This might suggest that there are relatively strong interactions between the binding pocket and 
RuBP or 3-PGA. This binding pocket is alike for both molecules, but accessibility is equally challenging due to the 
small diameter of the pore and large sizes of the metabolites. As the binding poses observed are solvent-accessible 
and make use of the charged phosphate groups of the metabolites bound in the polar center of the pore, we do 
not expect significant changes in their protonation states upon binding. Nevertheless, a significant change in pH 
that affects the protonation states of these metabolites might result in the changes in binding energies and poses.

Effects of pore mutation on in vivo physiology.  Our simulation results suggest that the Ser39 resi-
due in CcmK2 is a key residue in the charged-based mechanism that mediates the flux of metabolites into 
and out of the carboxysome. To corroborate the in-silico findings, we investigated the significance of Ser39 on 

Figure 6.   Interactions of large metabolites RuBP and 3-PGA with CcmK2-∆C. (A) Ball-and-stick 
representation of the most likely protonation state of RuBP and 3-PGA molecules at ~ pH7. The acidic 
dissociation constants calculated based on the Hammett and Taft equations using the Epik method (black) and 
empirically calculated physico-chemical parameters obtained from ionization site-specific regression equations 
(red) are shown. (B) Interactions of RuBP with the Ser39 residues (purple) displayed from concave and convex 
sides, hydrogen bonding between the phosphate oxygens and Ser39 side chain indicated by dotted lines. (C) 
Interactions of 3-PGA with the Ser39 residues (purple) displayed from concave and convex sides. (D) Free 
energy scores of clustered RuBP binding positions. The interaction site shown in (B) bears the minimal free 
energy in Cluster ID 1, as indicated by the arrow. (E) Free energy scores of clustered 3-PGA binding positions. 
The interaction site shown in (C) has the minimal free energy in Cluster ID 1, as indicated by the arrow. The 
results suggest that the most stable interacting sites with RuBP and 3-PGA are both on the convex side of 
CcmK2. The docking snapshots show the fully deprotonated form of RuBP and 3-PGA. These may be other 
protonation states of these molecules within the pore, which are not represented in this figure for simplicity.
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carboxysome activities and cell physiology by constructing a CcmK2-S39A point mutation. The carboxysome 
of Syn6803 in addition to CcmK2 contains another major shell protein CcmK121, whereas in Syn7942, CcmK2 
proteins act as the only major shell components in the carboxysome shell, as shown by a previous proteomic 
study40. The CcmK2 proteins of Syn7942 and Syn6803 present a high sequence similarity and the Ser39 residues 
are highly conserved (Supplementary Figure 3). To prevent the complementary effects of CcmK1, whose role is 
still unclear, we generated the CcmK2-S39A mutant in Syn7942 and examined cell growth and carbon fixation 
activities of the Syn7942 mutants including knockouts of the other shell proteins.

We compared the growth of CcmK2-S39A in three conditions: air, NaHCO3 supplemented, and 4% CO2. 
The CcmK2-S39A strain could grow at 4% CO2, with a similar growth rate with WT (Fig. 8A). By contrast, the 
growth of CcmK2-S39A was greatly impeded under the air and HCO3

− supplemented conditions, compared 
with those of WT under the same conditions (Fig. 8B). This raises the possibility that the S39A mutation may 
preclude transport of bicarbonate into carboxysomes, or prevents other functions of the pore, such as luminal 
CO2 retention. We also determined that the distinct carbon-fixation activities of the WT and CcmK2-S39A 
cells grown under 4% CO2 (Fig. 8C). CcmK2-S39A has a lower apparent Vmax (10.0 ± 1.5 µmol∙min−1∙OD−1, 
n = 4) and a higher Km(RuBP) (1.7 ± 0.6 mM, n = 4) compared with the WT (Vmax = 28.3 ± 2.0 µmol∙min−1∙OD−1, 
Km(RuBP) = 0.7 ± 0.4 mM, n = 4), revealing the affected Rubisco activity caused by the pore mutation. The increased 
RuBP binding affinity Km(RuBP) might act as a physiological adaption to compensate for a decreased propensity 
of RuBP transit into the carboxysome, especially at a low concentration of RuBP.

We further generated the CcmK2-S39A mutation in ΔccmK3, ΔccmK4, ΔccmK3K4 and ΔccmP Syn7942 
strains, respectively. It is evident that CcmK2-S39A had a notable influence on the growth of all these strains in 
the air and HCO3

− supplemented conditions and resulted in a detectable reduction in carbon-fixation activity 
(Supplementary Figure 7). The effects of point mutations of CcmK2 Arg11 and Lys36 residues on shell perme-
ability merit further investigation.

Discussion
Selective permeability of the carboxysome shell allows the generation of a local microenvironment with an 
optimized luminal concentration of metabolites, crucial for carbon assimilation of this specialized organelle. 
In particular, the carboxysome shell was proposed to facilitate the diffusion of HCO3

− and probably provides 
a barrier to O2 and reduces CO2 leakage into the cytosol41, and thus, plays roles in minimizing the unproduc-
tive oxygenation and improving the carboxylation of Rubisco encased by the carboxysome shell. The shell is 
also permeable to protons, leading to similar pH conditions in the carboxysome compartment lumen and the 
cytoplasm42. Here, we conducted a systematic characterization of the principles underlying the permeability of 
the major carboxysome shell protein CcmK212, using an array of computational approaches. Our study suggests 
that the mechanism of metabolite transit through the CcmK2 pore represents a combination of electrostatic 
charge-based transition and the conformational change of the pore. Our simulations results, combined with the 
recent findings which have demonstrated that the concave surfaces of shell proteins in the uniformly-oriented 
shell25 face out of the BMC34,35, allow us to propose a model for the metabolite flux across the carboxysome shell 
(Fig. 9). This may be dependent on the protonation states of both the metabolites and amino acid side chain 
residues in the pore. In different protonation states under distinct pH conditions, transition of metabolites 
through the pore may vary. It is likely that carboxysomes in the cytoplasm exist exclusively at close to neutral pH 
due to homeostasis, regardless of the external pH43. At pH =  ~ 7, the metabolites characterized here may exist as 
an ensemble of protonation states; for example, bicarbonate ions will exist as both carbonic acid and hydrogen 
carbonate. These two protonation states may bind and dock differently inside the pore of CcmK2. This is an 

Figure 7.   Comparison of docking and US MD poses of 3-PGA. (A) View from the concave side, docking poses 
(green cartoon for protein and sticks for 3-PGA) compared with 3-PGA bound structures at the free energy 
minimum from US MD simulations (3-PGA: yellow sticks, protein: purple cartoon). Note that more extended 
hydrogen bonds can form due to small rotations of the loops at the center of the pore, allowing interactions 
of 3-PGA with Ser backbones, Lys and Ser sidechains (shown as sticks). (B) Comparison between top docked 
pose (green cartoon for protein and sticks) and selected MD snapshot from the free energy minimum (purple 
cartoon and yellow sticks).
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Figure 8.   Physiology of the Syn7942 WT and CcmK2-S39A mutant. (A) Growth of WT and CcmK2-S39A 
strains under air or 4% CO2. A series of dilutions from liquid cultures with OD750 of 1 were plated on BG11 
plates and imaged after 48 h. (B) Growth curves of WT and CcmK2-S39A cells in air, 4% CO2, or with daily 
150 mM HCO3

− supplements. Growth of three biological repeats (n = 3) was recorded. CcmK2-S39A requires 
high CO2 to survive, grow slowly in air, and with HCO3

− supplements. (C) Carbon fixation activities of WT 
and CcmK2-S39A (OD750 = 1) as a function of RuBP dosage, fitted with Michaelis–Menten curves (n = 4). 
CcmK2-S39A has a lower Vmax (10.0 ± 1.5 µmol∙min−1∙OD−1) and a higher Km (1.7 ± 0.6 mM) compared with WT 
(Vmax = 28.3 ± 2.0 µmol∙min−1∙OD−1, Km = 0.7 ± 0.4 mM).

Figure 9.   Schematic model representing the selective permeability of the carboxysome shell to confine 
metabolite flux for driving the CBB cycle. CcmK2 hexamers are the major components in the icosahedral 
carboxysome shell, with the concave side facing outwards to the cytoplasm and the convex side facing inwards 
to the lumen. Based on the positive electrostatic charge of the central pore, CcmK2 acts as a tunnel for HCO3

− 
influx and a barrier to O2 and CO2, precluding O2 influx and leakage of CO2 from the carboxysome lumen to 
the cytoplasm. Larger molecules RuBP and 3-PGA can likely pass through CcmK2 but require a conformational 
change in the CcmK2 pore involving a flip of the Ser39 side chain.
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important consideration for both the result interpretation in this work and for future studies, which may require 
constant pH simulations44,45 that were outside the scope of this study.

We show that the selective permeability of CcmK2 is dependent on the electrostatic charges of molecules. 
It is energetically favorable for the negatively charged HCO3

− to move through the pore, but less favorable for 
CO2 and O2 to pass through the pore, akin to the experimental findings41,46. This is of physiological significance 
for improving carbon fixation. Bicarbonate represents the dominant fraction of carbon dioxide in the aqueous 
cyanobacteria-growing environment and the cytoplasm. It is pumped across the cytoplasmic membranes of 
cyanobacteria into the cytoplasm by HCO3

− transporters, resulting in a great accumulation of bicarbonate within 
the cell to a level up to 1000-fold higher than exogenous bicarbonate47. The cytosolic HCO3

− then passes across 
the shell and is converted to CO2 by CA that is co-encapsulated with Rubisco within the carboxysome (Fig. 9), 
leading to elevated levels of CO2 close to Rubisco to favor the carboxylation activities of Rubisco. Although free-
energy simulations could not define explicitly the preferable direction of HCO3

− transit through the pore (Fig. 3), 
the HCO3

− gradient across the shell (a high level of HCO3
− outside the shell and a falloff of the HCO3

− level 
within the compartment in the presence of CA) may play the decisive role in driving the flow of HCO3

− into 
the carboxysome. In addition, both transits of CO2 and O2 through the pore were revealed to be energetically 
unfavorable (Fig. 3). This suggests that the shell predominately composed of CcmK2 may act as a barrier to CO2 
leakage from the carboxysome into the cytosol, as well as O2 influx into the carboxysome, therefore facilitating 
the CO2-fixing activities and diminishing the oxygenation of Rubisco. From the present computational data alone, 
it is hard to conclude to what extent the transition of O2 and CO2 through CcmK2 is blocked. Further simulation 
data and validation of the force field with particular respect to hydration free energies and partition coefficients 
are required to investigate the extent of the exclusion of O2 and the retention of CO2.

This mechanism of metabolite transit through the pore described in this study may be applicable to not only 
β-carboxysomes but also α-carboxysomes, based on the recent simulations study on the α-carboxysome shell 
protein CsoS1A and the β-carboxysome shell protein CcmK436. Moreover, experimental studies have suggested 
that the α-carboxysome shell could impede the entrance of CO2 into the carboxysome41 and obviate its loss from 
the carboxysome lumen46.

Transit of the relatively large metabolites, such as 3-PGA and RuBP, through the pore of CcmK2 is potentially 
challenging. It remains to be tested whether it is possible for small molecules, or larger metabolites, or both, to 
move through the space between adjoining CcmK hexamers. Though the 3-PGA transit is energetically favora-
ble (Fig. 3), it could induce a detectable conformational change of CcmK2 (Fig. 5). Given that RuBP is larger 
than 3-PGA, the RuBP transit through the CcmK2 pore is presumably more difficult. By contrast, the pseudo-
hexamer CcmP, another shell protein in the β-carboxysome, bears a larger central pore (~ 13 Å) compared with 
CcmK248,49. It may act as a conduit for large metabolites, as a 3-PGA molecule may fit the pore of CcmP49 and 
a glycerol molecule has been observed in a binding pocket of the CcmP open structure48. The mechanism that 
controls RuBP and 3-PGA transit through the shell awaits further investigation. Moreover, cations, like Mg2+ 
that are required in the active site of Rubisco, may not be able to pass through the central pore of CcmK2 as eas-
ily as these large metabolites. It remains to be tested whether cations could transit through the CcmK2 pore or 
the pores of other shell proteins i.e. CcmK3, CcmK4 and CcmL, or through the gaps surrounding shell proteins 
generated by specific protein arrangement34 and dynamic self-assembly and interactions25,50.

Simulations revealed a 1–6 Å variation in the pore size of CcmK2 during metabolite passage (Fig. 5). This 
conformational change consists primarily of the loops forming the central pore region twisting, and the rotation 
of the Ser39 side chains into and away from the center of the pore. Greater variations in the pore size of shell 
proteins have been characterized in the open and closed forms of the pseudo-hexamers CcmP48, CsoS1D51, and 
EutL52. This suggests that pore conformational change could provide a means for selective metabolite transport 
(especially for large metabolite molecules) of shell proteins in the BMC counterparts. There was a distinct 
phenotype for each knockout mutant (Fig. 8, Supplementary Figure 7). This may also suggest that there may be 
distinct roles for each shell protein or at least each class of BMC-T, BMC-P and BMC-H proteins, including the 
transit of the larger metabolites.

The rise of synthetic biology has spurred bioinspired engineering of BMC-based organelles for biotech-
nological applications, such as novel metabolic factories and molecule scaffolds, in light of the self-assembly, 
encapsulation and modular nature of BMC structures. Manipulating shell permeability is a pivotal strategy for 
design and construction of new BMCs to direct molecular transport and favor specific metabolic reactions. This 
study indicates that the mechanism controlling the permeability of the shell is complex and may be different 
between the different types of BMC as well as between the alpha and beta carboxysomes. The conserved residues 
of shell proteins that are vital for tuning the pore permeability, especially Ser39 of CcmK2, could be important 
targets in bioengineering to fine-tune molecular passage through beta-carboxysome shell structures. This study 
provides a predictive methodology to gain a more complete biophysical understanding of the mechanistic basis 
underlying molecular passage through the carboxysome shell. A deeper knowledge of the permeability of BMC 
shell proteins will inform strategies for the design and construction of new BMC-based nanoreactors to improve 
cell metabolism.

Materials and methods
Cell culture and construction of genetic mutants.  Syn7942 cultures were grown at 30 °C under con-
stant white light illumination of 30 μE∙m−2 s−1, in BG11 medium53. Cultures were under one of three condi-
tions, “Air”—atmospheric condition, “HCO3

−”—BG11 supplied with NaHCO3 in every 24 h to reach a final 
concentration of 150 mM, and “CO2”—4% CO2 supplied in air. Cell growth was monitored at OD = 750 nm by 
a spectrophotometer (Jenway 6300). BG11 was supplemented with 10 mM TES buffer to increase its buffering 
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capacity and minimize pH changes due to NaHCO3 addition54. E. coli cultures were grown at 37 °C with constant 
shaking in Luria-Broth (LB).

Point mutation of CcmK2 (CcmK2-S39A) from Syn7942 was generated using the In-Fusion® approach in 
DH5α E. coli. Plasmids containing ccmK2-S39A and a kanamycin resistance cassette were transformed into 
Syn7942 cells to replace the native ccmK2 gene in the genome, using Lambda RED Recombination55 as described 
previously56–59. Syn7942 knockout mutants ΔccmK3, ΔccmK4, ΔccmK3K4 and ΔccmP were generated in a simi-
lar fashion by replacing the gene with a spectinomycin resistance cassette. Segregation of recombinant genes 
was verified by PCR and agarose gel electrophoresis. Mutants were selected for by the addition of 100 µg mL−1 
kanamycin or spectinomycin where appropriate.

Rubisco activity assays.  In vivo carbon fixation from NaH14CO3 to 14C 3-PGA was monitored as previ-
ously described11,59. In brief, Syn7942 cells were incubated at 30 °C with 25 mM NaH14CO3 for 2 min before per-
meabilization with 0.03% (w/v) mixed alkyltrimethylammonium bromide (Sigma-Aldrich) and RuBP (Sigma-
Aldrich) was then added to initiate the reaction. The reaction was terminated after 5  min and radioactivity 
measurements were carried out using a scintillation counter (Tri-Carb; Perkin-Elmer). Four biological repeats 
were prepared for each strain used in the kinetic analysis. Data processing was performed using SigmaPlot and 
figures were prepared using Origin.

Crystal structure preparation.  The full-length CcmK2 structures (PDB: 2A1B, 4OX7)22,28 and the 
CcmK2 C-terminal deletion structure (PDB: 3CIM)27 were obtained from the Protein Data Bank. Atoms in the 
unassigned regions of electron density maps of PDB structures were assigned manually and potential rotamers 
were fixed to a single conformation manually. Coot60,61 was used to view the electron density map and replace 
missing atoms and rotamers with our inferred most likely conformation.

NAMD MD and US simulations.  Umbrella sampling (US) molecular dynamics (MD) simulations were 
performed with the NAMD 2.12 program62 using the CHARMM36 force field (FF)63, to explore the passage of 
metabolites across the narrow central pore. Each system was built up using the CHARMM-GUI webserver64 
and the ligands (HCO3

−, CO2, O2 and 3-PGA) were automatically parameterized with CGenFF using their equi-
librium structures obtained with the Gaussian 09 program package65 at the B3LYP/Def2-TZVP + GD3 level of 
theory. The protonation state of 3-PGA was chosen according to the microspecies distribution at pH = 7 pre-
dicted by the MarvinSketch software of ChemAxon. CcmK2-∆C cyclic hexamer and the ligands were solvated in 
a hexagonal prism TIP3 water box of height 70 Å, then chloride ions were added to 0.15 M, and potassium ions 
were added to neutralize the system. For each system, corresponding to the four different types of metabolites, 
10 molecules were randomly placed in the simulation box.

The MD protocol consisted of the following steps: (a) energy minimization over 2500 steps; (b) equilibra-
tion over 2 ns at constant pressure and temperature (p = 1.01325 bar, T = 303.15 K) with a root-mean-square 
deviation (RMSD) constraint of 1.0 kcal∙mol−1∙Å−2 applied on the protein backbone atoms; (c) 2 ns run in the 
NPT ensemble without constraints; (d) steered molecular dynamics (SMD) simulation—to obtain the starting 
positions for the subsequent umbrella sampling (US) simulations—with a pulling velocity of 10 Å ns−1, and SMD 
force of 7 kcal∙mol−1∙Å−2 applied on all heavy atoms of the small molecule; (e) 10 ns US production runs for each 
umbrella window in the NPT ensemble. Trajectories were run with a time step of 2 fs and the collective vari-
ables employed in US simulations were printed out in each step and used for the analysis. Constant temperature 
was set by a Langevin thermostat with a thermostat damping coefficient of 1 ps−1 with a collision frequency of 
5 ps−165. All of the bonds and angles involving hydrogen atoms were constrained by the SHAKE algorithm65. We 
used the particle mesh Ewald method66 for the long-range electrostatics in combination with a 12 Å cutoff for 
the evaluation of the non-bonded interactions.

The collective variable used as reaction coordinate (z) to describe the passage of ligands is defined as the 
projection of the molecule’s center of mass to the z-axis passing through the center of the pore (the positive z 
values correspond to the concave side of the protein). For each small molecule, 105 umbrella windows were 
run at steps of 0.5 Å (− 26.0 ⩽ z ⩽ 26.0 Å) using a spring constant of 5.0 kcal∙mol−1 Å−2. Moreover, the motion 
of the small molecule was constrained to the interior of a cylinder centered to the z-axis with zmin = − 28 Å and 
zmax = 28 Å, whereas the maximum of the radial distance (b) from the z axis set to 15 Å. In case of Cl− and K+ ions, 
4 and 7 ions were selected in the cylinder, respectively by taking into account the Vcylinder/Vsimulation box ratio and 
concentration of ions. Their motion was completely free inside the cylinder (i.e. no umbrella bias applied) defined 
above and their trajectories interpreted as independent simulations during analysis. The free energy profiles 
and surfaces of substrate passage through the BMC pore, 1D(z) and 2D(z,b), were obtained using the weighted 
histogram analysis method (WHAM)67,68, and the dynamic histogram analysis method (DHAM)68, respectively. 
The mean and standard error for the 1D(z) free energy profiles were obtained by dividing the simulations for 
each US window into 5 equal-length segments, and analyzed these independently.

Molecular dynamics and molecular docking simulations.  Gromacs69 was used to perform 200 ns 
MDs of CcmK2-∆C and CcmK2-full (PDB: 2A1B and 4OX7). All atom simulations were carried out in the 
GROMACS v2018.1 package with the CHARMM36 force field63 and the TIP3P model for the explicit solvent 
model. The leapfrog integrator was used to integrate the equations of motion every 2 fs. To restrict bond lengths 
the LINCS algorithm and PME with a real space cut-off at 14 Å were applied. RMSD was calculated by least 
square fitting of the protein to the crystal structure and then calculating the pairwise RMSD at each time step. 
RMSD was calculated for the entire hexamer assembly to take structural drift of the assembly in whole into con-
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sideration. Per residue RMSF were calculated for each chain and plotted as boxplots, to compare the flexibility 
of the three CcmK2 structures.

Two sets of independent docking simulations were carried out in SwissDock38 and Glide39, to characterize the 
binding poses of RuBP and 3-PGA with the 3CIM structure. Binding poses were scored using their FullFitness 
and clustered. Clusters were then ranked according to the average FullFitness of their elements70.

The acidic dissociation constants of the 3-PGA molecule were obtained with (1) the Epik method, based on 
the Hammett and Taft equations, as performed in the Schrödinger 2020-3 software (https​://www.schro​dinge​
r.com/), and (2) based on empirically calculated physico-chemical parameters obtained from ionization site-
specific regression equations, as performed in the Marvin 17.21.0 software ChemAxon (https​://www.chema​
xon.com). The structures of RuBP and 3-PGA molecules were prepared using Pymol (https​://www.pymol​.org).

Determining the pore diameter during metabolite flux.  CPPTRAJ71 from Amber72 was used to align 
the trajectory files to the reference structure of CcmK2 (PDB: 3CIM) using the RMSD of alpha carbon atoms. 
The trajectories were then split into individual PDB files for each time frame. HOLE37 was used to measure the 
radius of the pore and given as an output of the diameter. This procedure was run for every timeframe that was 
split from the trajectory. These diameter measurements were made at the region corresponding to the minimum 
constriction along the pore axis z. VMD was used to find all the contacts, within a cutoff distance of 3.5 Å and 
angle of 30°, between each metabolite and the residues Arg11, Ser39 and Lys36. The number of contacts with 
each residue in each time frame was recorded. The pore diameter data was split into two categories, “no contact” 
when the metabolite did not fall within the cutoff of the specified residue, and “contact” when 1 or more contacts 
occurred. P values were calculated using the Wilcoxon rank-sum test from the SciPy python library, and violin 
plots were produced using Matplotlib.

Autocorrelation analysis.  To estimate the 2D-surface area of the pore, we defined a hexagon via the Ser39 
CA atoms of the 6 loops defining the pore entrance that lie approximately on a plane (Supplementary Figure 5A). 
We triangulated the hexagon via its vertices using a Delaunay Triangulation, and estimated the surface area as 
the sum of the areas of the triangles. We considered representative configurations from 3 US windows along the 
z axis when the metabolite is located at z = − 20 Å, z = − 5 Å, and z = 20 Å. The autocorrelation time, τ, associated 
with the temporal evolution of the pore surface area of CcmK2 from the US trajectories for the metabolites was 
measured for the selected US windows (Supplementary Figure 5B).

Protein sequence alignment.  The protein sequences of shell hexamer homologs were taken from KEGG 
(https​://www.genom​e.jp/kegg/) and the alignment was conducted using Clustal Omega.

Computational resources.  The computational work for this article was partially performed on resources 
of the National Supercomputing Centre, Singapore, the Chadwick Cluster, Advanced Research Computing, the 
University of Liverpool and ARCHER, the UK National Supercomputing Service.
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