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We propose a novel way of modelling time-varying networks by inducing
two-way sparsity on local models of node connectivity. This two-way sparsity
separately promotes sparsity across time and sparsity across variables (within
time). Separation of these two types of sparsity is achieved through a novel
prior structure which draws on ideas from the Bayesian lasso and from copula
modelling. We provide an efficient implementation of the proposed model via
a Gibbs sampler, and we apply the model to data from neural development. In
doing so, we demonstrate that the proposed model is able to identify changes
in genomic network structure that match current biological knowledge. Such
changes in genomic network structure can then be used by neurobiologists to
identify potential targets for further experimental investigation.

1. Introduction. Network models have become an important topic in modern statistics,
and the evolution of network structure over time (illustrated in Figure 1) is an important area
of study. Network structures that evolve over time naturally occur in a range of applications.
Examples of recent applications include evolving patterns of human interaction (Durante
and Dunson (2016)), such as in social networks (Sekara, Stopczynski and Lehmann (2016)),
time-varying patterns of interaction between genes and their protein-products in biological
networks (Alexander et al. (2009), Lèbre et al. (2010)) and time-varying patterns of connec-
tivity in the brain (Schaefer et al. (2014)). However, network models with temporal structure
have only recently begun to be studied in detail in statistical research.

An important application area of statistical network models is genomics. Network models
are a natural way to describe and analyse patterns of interactions (represented by network
edges) between genes and their protein-products (represented by network nodes). An im-
portant interaction of this type is gene regulation, in which the protein-product of one gene
influences the output level of the protein-product of another gene. Much gene regulation is
characteristic of a particular cell type so that a cell knows its role within the organism. These
specific regulatory network structures that are characteristic of particular cell-types are estab-
lished during embryonic development. Changes in normal gene regulation are also inherent
to cancer progression so that cells “forget” how they should act, taking on pathological roles
(regulatory network re-wiring) (Suvà et al. (2014)). However, whilst network models are
well established in genomics, historically, these models have typically been static, ignoring
the fact that genomic processes are inherently time-varying.

There are many examples of recent work on models of time-varying networks. In statistics,
this work covers methods based on Markov processes (Crane (2016)), on dynamic Erdős-
Rényi graphs (Rosengren and Trapman (2019)) and on sparse regression methods (Kolar et al.
(2010)). It also includes work on time-varying community structure (Zhang, Zhao and Zhang
(2012)), on methods extending the stochastic block model (Xu and Hero III (2013), Matias
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FIG. 1. Model of time-varying network structure. Each xt,i represents a class label or continuous variable for
node i (e.g., the expression level of gene i) at time t . The links represent network interactions or dependencies
between x1,1, x1,2, . . . (e.g., due to gene regulation) which may be different to those between x2,1, x2,2, . . . and
x3,1, x3,2, . . . . Hence, these network interactions may vary with time.

and Miele (2017)) and related nonparametric graphon-based methods (Pensky (2019)) as
well as nonparametric methods for dynamic link prediction (Sarkar, Chakrabarti and Jordan
(2014)) and methods from Bayesian nonparametrics (Palla, Caron and Teh (2016)). Other
related work includes sparse graphical models that can take account of different time points
(Kalaitzis et al. (2013)).

Motivated by genomics applications, we propose a novel framework for modelling time-
varying networks by inducing two-way sparsity on local models of the connectivity of each
node to all the others. This is achieved as follows. We start with a regression likelihood func-
tion that assumes that observations are mutually independent over time. Dependence is then
induced through a novel prior structure that promotes sparsity in a two ways, across time and
within time. This decoupling of the induced sparsity is achieved through a copula specifica-
tion for the parameters in the likelihood function. Specifically, the regression coefficients for
one node across different time points are jointly distributed according to a Gaussian copula
with Laplace marginal distributions. The correlation matrix of the Gaussian copula is formed
by assuming that the correlation between time points decays with time in a structured, par-
simonious way that also ensures its positive definiteness. In this correlation matrix the only
free parameter is the correlation between consecutive time points which is given a reverse-
exponential prior distribution with support in [0,1). This prior on the correlation across time
discourages large differences in the regression coefficients between consecutive time points
and, as a consequence, also discourages large changes in the inferred structure of the network.

The decoupling of the marginal and dependence structure that is facilitated by the copula
specification and the particular form of the correlation matrix allows for precise control of
marginal priors. This decoupling also makes the adoption of generalisations of the Bayesian
lasso, such as the horseshoe (Carvalho, Polson and Scott (2010)), easy to implement in place
of the marginal Bayesian lasso prior that we use. The prior dependence among parameters
across time can also be viewed as a Bayesian version of the fused lasso (Tibshirani et al.
(2005)), while, within each time slice, we directly utilise existing work on the Bayesian lasso
(Park and Casella (2008)). In fact, the proposed modelling framework has the Bayesian lasso
as a special case, when the correlation between time points is set to zero. From a frequentist
point of view the sparsity structure we propose would fall within the remit of the generalised
lasso (Tibshirani and Taylor (2011)) which has the fused lasso as a special case (Tibshirani
et al. (2005)). Bayesian versions of the fused lasso have also been proposed (Kyung et al.
(2010), Shimamura et al. (2019)). However, a key difference, between those methods and the
modelling framework we propose, is the formal decoupling of sparsity across time (which
the fused lasso induces) from sparsity within time. Importantly, we are able to apply this
proposed modelling framework locally to each network node, as previous authors have done
(Kolar et al. (2010)). Because these local model fits are mutually independent, they can easily
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be carried out sequentially or in parallel, meaning that, in practice, we are able to work with
large networks of tens of thousands of nodes. The novel prior structure proposed, which
enables the time-varying network inference, is also of interest more generally beyond the
context of network science. This novel prior structure is relevant in any context where sparse
regression with time-varying regression parameters is desirable.

The rest of the paper is structured as follows. In Section 2 we set up notation and specify
the model. Then, in Section 3 we present the results of fitting the model to simulated data,
and in Section 4 we present the results of fitting the model to single-cell transcriptome data.
Finally, in Section 5 we summarise our findings and discuss their broader context. The Sup-
plementary Material (Bartlett, Kosmidis and Silva (2021)) includes all proofs and derivations,
data preprocessing details, and supplementary figures, as well as a freely available software
implementation of our proposed model and algorithm.

2. Proposed methodology.

2.1. Data description. The two-way sparsity that is induced by the proposed modelling
framework is motivated by the problem of inferring time-varying structure in genomic net-
works. In these networks, nodes represent genes: for each node there are observations or
measurements of the activity level of the corresponding gene (the “gene-expression level”).
These node-specific observations make up the data set. The expression level of a gene is
generally influenced by the expression level of several other genes (in a process called “gene
regulation”). Hence, a natural application for models of time-varying networks is understand-
ing dynamic patterns of gene regulation in biological processes, such as neural development.
Measurements of gene-transcript counts are often used as a surrogate for gene-expression
level in RNA sequencing data, and, hence, we base our real-data example on single-cell
transcriptomic data. We note that single-cell transcriptomic data is a type of single-cell gene-
expression data.

Single-cell gene-expression data are ideal for this application, because data from a study
of this type will typically be obtained from a heterogeneous mixture of cells, each of which
may be at a different point on a trajectory through the biological process under investigation.
For example, in the context of neural development, some of these cells may be stem cells,
whereas some may be fully differentiated cells (e.g., neurons) with a whole spectrum of cells
in between. Each cell can be thought of as an independent sample from the underlying latent
biological process, in this example that process is neural development. Thus, we can think of
the progression of a cell through this process of neural development in terms of a “develop-
mental trajectory.” The progression along such a developmental trajectory can be quantified in
terms of “developmental time” which is simply a measure of a temporally-ordered progres-
sion through the process of cellular development. For each of the cell-samples in the data,
no information is available other than its high-dimensional gene-expression measurements.
Hence, it is necessary to first infer the “developmental time” of the cell samples before fit-
ting any time-varying network model. This leads to an ordered sequence of pseudo-temporal
measurements x1,i , x2,i , . . . , xt,i , . . . , xT ,i of the log-expression level for gene i. Importantly,
the x1,i , x2,i , . . . , etc are taken from different cell samples for each pseudo-time point and are
hence independent. Inference like this is more generally referred to as “pseudo-time” infer-
ence, and several methods exist to carry it out; see, for example, work by Qiu et al. (2011)
and Trapnell et al. (2014).

2.2. Model overview. We develop a model for each target-node conditional on all the
other nodes, and then we apply this model to several target nodes of interest. This is different
from, for example, the work of Friedman, Hastie and Tibshirani (2008) and Fan, Feng and



TWO-WAY SPARSITY, FOR TIME-VARYING NETWORKS 859

Wu (2009) who consider the modelling of all nodes jointly. Such a target-node approach has
been used previously by Kolar et al. (2010), and it allows the network structure to be inferred
independently around each target node i ∈ {1, . . . , p}. This strategy has several advantages.
First, variable screening can be applied before model fitting. This allows the dimensionality
of the problem to be reduced from p, of the order of tens of thousands, down to p′, of the or-
der of a few hundred, for each parallel model fit around a target node whilst still allowing the
global network structure to be estimated over tens of thousands of target nodes, if required.
Our modelling strategy also allows the local network structure to be estimated around only
a small number of target nodes, if required, controlling computational expense whilst still
inferring the connected node sets from tens of thousands of nodes. Inference is carried out
with a sparse linear model, taking the observations for node i at time t as the response and
the observations for all nodes j �= i at time t as potential predictors. From these potential
predictors the set of predictors “chosen” by the sparse model fit are then used to infer the
network structure. Specifically, we want to infer the network structure around a fixed set of
nodes with a set of edges that varies with time. In this scenario, only the patterns of inter-
connectivity change as the network evolves (Figure 1) which is the scenario most relevant
to genomics applications. Such a network can be represented with a time-varying adjacency
matrix A, where Ai,j,t denotes the absence (Ai,j,t = 0) or presence (Ai,j,t > 0) of an edge
between nodes i and j at time t . We note that, under this scheme, the local model fit (which
is responsible for the computational load) does not depend on the network estimation (which
takes place subsequently). The inferred network is a particular summary of the posteriors that
are obtained from several of our model fits. We propose a model for nodewise regression, and
we suggest how to summarise these models over several nodes of a network.

2.3. Model likelihood. We assume a likelihood function where observations are mutually
independent over time. This is an assumption that is compatible with high-dimensional gene-
expression data, where no single cell can be measured at more than one time point. We note
that this implies that observations are independent at different time points. Let X represent
the full data set for the nodes shown in Figure 1, with time varying down the rows and with
each node corresponding to a different column. Then, xt,i denotes the value for some node
in the system at time t ∈ {1, . . . , T } for i ∈ {1, . . . , p}, and the row-vector xt,\i denotes the
values for the other p − 1 nodes at time t . We model the dependence of xt,i on xt,\i as

(1) xt,i = ai + b(i)
t,: x�

t,\i + εt,i ,

where b(i)
t,: is a vector of linear model parameters and εt,i ∼N (0, τ−1

i ).
The response variable xt,i corresponds to the observations for a “target” node, around

which we are modelling the local network structure, whereas the variables represented by
xt,\i correspond to the observations for all the other nodes of the network. To model the whole
network, we must fit model (1) around each target node in turn. We note that here we make
an assumption about the existence of a global undirected Markov network (Lauritzen (1996))
that explains the independence constraints in the model. This assumption has also been used
previously by Kolar et al. (2010) in an equivalent context. We note that our approach does not
enforce hard constraints, such as b(i)

t,j = b(j)
t,i . However, it is computationally very expensive

to work with a global, coherent model, where such constraints can be enforced. In this work
we have opted to sacrifice some coherence for the sake of computational efficiency. This
enables us to estimate quantities of interest in a computationally-efficient manner through an
overparameterized representation of a joint model. It also enables us to focus on a particular
subset of nodes of interest without having to go through an overly-expensive computation for
the estimation of a global, coherent model.
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Using b(i)
:,j to denote the column vector of model parameters for covariate j for t ∈

{1, . . . , T }, we collect parameters in matrix B(i) = [b(i)
:,1,b(i)

:,2, . . . ,b(i)
:,p−1]. In the next sec-

tion we postulate a prior for dependencies within each column j of B(i) whilst noting that
the columns of B(i) (each corresponding to a different node as covariate) are independent of
each other. We also introduce the notation xt,i,k and xt,\i,k to represent observations of xt,i

and xt,\i for sample k ∈ {1, . . . , nt } at time t .
We denote x:,i = [x1,i,1, . . . , x1,i,n1, . . . , xt,i,1, . . . , xt,i,nt , . . . , xT ,i,1, . . . , xT ,i,nT

]� and
X:,\i = [x�

1,\i,1,x�
1,\i,n1

, . . . ,x�
t,\i,1, . . . ,x�

t,\i,nt
, . . . ,x�

T ,\i,1, . . . ,x�
T ,\i,nT

]�, where x:,i is col-
umn i of data matrix X and X:,\i is data matrix X without column i. Hence, we can write the
model likelihood for the target node i as

(2) P
(
x:,i |X:,\i ,B(i), ai, τi

) =
T∏

t=1

nt∏
k=1

√
τi

2π
e
−τi (xt,i,k−b(i)

t,: ·x�
t,\i,k−ai)

2/2
.

We note that we consider likelihoods in the form of equation (2) for each target node i.

2.4. Priors with decoupled two-way sparsity. We model the regression coefficients b(i)
:,j

across time points t = 1, . . . , T with a Gaussian copula with Laplace marginal distribu-
tions, as follows. The elements of b(i)

t,: (t = 1, . . . , T ) are marginally distributed as b
(i)
t,j ∼

Laplace(1/λ), with probability density function λ
2e−λ|·| and cumulative distribution function

FL[b(i)
t,j ], for t ∈ {1, . . . , T } and j ∈ {1, . . . , p−1}. Hence, �−1{FL[b(i)

t,j ]} follows a Gaussian
distribution for t ∈ {1, . . . , T } and j ∈ {1, . . . , p − 1}, where � is the standard-normal cumu-
lative distribution function. The dependencies between �−1{FL[b(i)

t,j ]} and �−1{FL[b(i)
t+1,j ]}

are then modelled through their joint distribution as⎡⎢⎢⎢⎢⎢⎣
�−1{

FL
[
b

(i)
1,j

]}
�−1{

FL
[
b

(i)
2,j

]}
...

�−1{
FL

[
b

(i)
T ,j

]}

⎤⎥⎥⎥⎥⎥⎦ ∼ N
(
0,�

(i)
j

)
,

with �
(i)
j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ
(i)
j

(
ρ

(i)
j

)2 · · · (
ρ

(i)
j

)T
ρ

(i)
j 1 ρ

(i)
j · · · (

ρ
(i)
j

)T −1(
ρ

(i)
j

)2
ρ

(i)
j 1 · · · (

ρ
(i)
j

)T −2

...
...

...
. . .

...(
ρ

(i)
j

)T (
ρ

(i)
j

)T −1 (
ρ

(i)
j

)T −2 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(3)

and, hence, the regression coefficients are modelled as a Gaussian copula,

F
[
b(i)

:,j
] = �p

[
�−1{

FL
[
b

(i)
1,j

]}
,�−1{

FL
[
b

(i)
2,j

]}
, . . . ,�−1{

FL
[
b

(i)
T ,j

]};�(i)
j

]
.

The correlation parameter ρ
(i)
j is assumed to have a reverse-exponential distribution with

support [0,1) and density

(4) frexp
[
ρ

(i)
j

] ∼ ke
kρ

(i)
j /

(
ek − 1

)
.

The structure of �
(i)
j is such that transformed model parameters at adjacent points in time,

such as �−1{FL[b(i)
t,j ]} and �−1{FL[b(i)

t+1,j ]}, have correlation ρ
(i)
j (Figure 2). Then, the

transformed parameters separated by two time points have correlation (ρ
(i)
j )2, etc. Thus, also
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FIG. 2. Chain graphical model (Lauritzen (1996)). The diagram shows the dependence of xt,i (the value of
the target node at time t) on xt,\i (which represents the values of two other nodes j and j ′ at time t) and

on the corresponding model parameters b
(i)
t,j and b

(i)
t,j ′ . Model parameters are correlated across time such that

�−1{FL[b(i)
t,j ]} and �−1{FL[b(i)

t+1,j ]} have correlation ρ
(i)
j .

denoting the sequence of transformed model parameters �−1{FL[b(i)
1,j ]},�−1{FL[b(i)

2,j ]}, . . . ,
�−1{FL[b(i)

t,j ]} forms a Markov chain, meaning that �
(i)
j is guaranteed to be positive-definite

for ρ
(i)
j ∈ [0,1) and, by construction,

(5) b
(i)
t+1,j ⊥ b

(i)
t−1,j , b

(i)
t−2,j , . . . |b(i)

t,j .

Such a construction for �
(i)
j discourages differences in the regression coefficients for

the same covariate between adjacent time points and hence also discourages changes in
the network structure over time, resulting in sparsity across time. Then, transforming the
�−1{FL[b(i)

t,j ]} back to b
(i)
t,j , where the b

(i)
t,j are marginally Laplace distributed, achieves spar-

sity within time by discouraging regression coefficients from taking nonzero values, hence
also encouraging discovery of sparse network structures. Figure 3 shows 10 samples from our
proposed prior on b

(i)
t,j plotted against t and demonstrates the correlation structure enforced

by the prior over time. We again note that while b
(i)
t,j and b

(i)
t+1,j are correlated, b

(i)
t,j and b

(i)
t,j ′

are independent.
Recent work by Shimamura et al. (2019) that takes a Bayesian approach to generalising

the fused lasso could be used similarly to the approach we propose by modelling the same
set of covariates at multiple time points whilst enforcing smooth changes across time as
well as sparsity overall. However, Shimamura et al. (2019) achieve their result by simply
multiplying together separate frequentist-inspired priors for smoothness across time and for
sparsity. Specifically, they multiply together a Laplace prior to penalise individual nonzero
model parameters with the ultra-sparse, negative-exponential-gamma (NEG) prior to penalise
nonzero differences in parameters. The Laplace-NEG prior is defined (choosing notation to
be consistent with that of our model) as

(6) P
(
b(i)

:,j
) ∝

T∏
t=1

Laplace
(
b

(i)
t,j |λ

) T∏
t=2

NEG
(
b

(i)
t,j − b

(i)
t−1,j |λ†, γ

)
,

where the Laplace density is defined as λ
2e−λ|·| and

NEG
(·|λ†, γ

) =
∫ ∞

0

∫ ∞
0

fN
(·|0, τ 2)

fγ

(
τ 2|1,1/ψ

)
fγ

(
ψ |λ†,1/γ 2)

dτ 2 dψ,

where fN and fγ are the Normal and Gamma densities, respectively. Sampling from the
distribution of equation (6) is done by simulating exponential and gamma random variables
which are then used to form the precision matrix of a multivariate normal distribution, as
specified by Shimamura et al. (2019). In contrast to the Laplace-NEG prior, the model we
propose retains the property that, marginally, each parameter still follows the Bayesian lasso
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FIG. 3. Samples from the prior on bt,j plotted against t , illustrating their correlation structure over time. These
results are with T = 8, λ = 20 and k = 1.

prior (Park and Casella (2008)). In particular, if we set ρ
(i)
j = 0 (for j = 1,2, . . . , p−1), then

the model we propose is exactly the same as the Bayesian lasso. This is important because it
makes it easier to set priors, including variants of the Bayesian lasso that avoid its well-known
shortcomings (see, e.g., the work by Castillo, Schmidt-Hieber and van der Vaart (2015) and
van der Pas, Salomond and Schmidt-Hieber (2016)). Although we will not consider such
variants here, they follow directly by mimicking the construction using the Bayesian lasso.
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FIG. 4. (a) Density function of the reverse-exponential prior. (b) Heatmaps of the bivariate log-densities of prior

samples for b(i)
:,j = [b(i)

1,j , b
(i)
2,j ]�.

The novel prior we use on ρ
(i)
j is a “reverse-exponential prior” (equation (4)). Figure 4(a)

shows the probability density function of the reverse-exponential prior for different values
of hyperparameter k. Figure 4(b) then shows heatmaps of the bivariate density distributions
of samples from the decoupled-sparsity prior for a parameter j over two time points, that is,
b(i)

:,j = [b(i)
1,j , b

(i)
2,j ]�, for a range of values of λ and k (the corresponding marginal densities

are shown in Figures S6 and S7 in the Supplementary Material). For comparison, Figures
S3–S5 in Supplement D show samples from the Laplace-NEG prior, as defined in equation
(6), for various values of λ (which acts equivalently to λ in our model, controlling sparsity
of individual model parameters) and various values of λ† and γ (which both act equivalently
to k in our model, controlling sparsity of differences between model parameters). The main
difference between these priors is that our decoupled-sparsity prior still marginally follows
the Bayesian lasso prior and is hence a direct generalisation of the Bayesian lasso to this
setting with time-varying model parameters. In other words, our prior does what the Laplace-
NEG does but with the added benefit that we generalise the Bayesian lasso.

2.5. Posterior inference. The order-1 Markovian relations, specified by equation (5), are
also computationally attractive, because they result in models with banded precision matrices.
From equation (5) and denoting θ

(i)
t,j = �−1{FL[b(i)

t,j ]}, it follows that the partial correlation

of θ
(i)
t+m,j with θ

(i)
t+l,j will be zero for all |m − l| > 1. Hence, all entries of the precision

matrix [�(i)
j ]−1 will be zero, except the diagonal and the elements immediately adjacent to it

(i.e., the sub- and super-diagonals). These relationships allow all the entries of this precision
matrix to be found easily in terms of ρ

(i)
j by solving [�(i)

j ]−1�
(i)
j = I, which gives

(7)
([

�
(i)
j

]−1)
t,t ′ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1/

(
1 − [

ρ
(i)
j

]2)
if t ′ = t = 1 or t ′ = t = T ,(

1 + [
ρ

(i)
j

]2)
/
(
1 − [

ρ
(i)
j

]2)
if t ′ = t > 1 and t ′ = t < T ,

−ρ
(i)
j /

(
1 − [

ρ
(i)
j

]2)
if t ′ = t + 1 or t ′ = t − 1,

0 otherwise,

where ([�(i)
j ]−1)t,t ′ represents the (t, t ′) element of the precision matrix [�(i)

j ]−1. A full
derivation of equation (7) is given in Supplement A.
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The model parameters B(i) can be sampled directly from multivariate Normal distributions,
without needing the intermediate transformation to the marginally Laplace-distributed vari-
ables described in Section 2.4. This can be achieved with an algebraic manipulation, which is
an extension from the Bayesian lasso, as follows. The Laplace distribution can be written as
an uncountable mixture of zero-mean Normal distributions, with the variances of the mixture
components distributed as Exp(λ2

2 ) (Andrews and Mallows (1974), Park and Casella (2008)).
Specifically,

P
(
b

(i)
t,j |λ

) = λ

2
e
−λ|b(i)

t,j | =
∫ ∞

0
P

(
b

(i)
t,j , s

(i)
j |λ)

ds
(i)
j ,

where

P
(
b

(i)
t,j , s

(i)
j |λ) = 1√

2πs
(i)
j

e
−[b(i)

t,j ]2/[2s
(i)
j ] λ2

2
e
−λ2s

(i)
j /2

for s
(i)
j ∼ Exp( 2

λ2 ). This says that we will achieve b
(i)
t,j being marginally Laplace distributed

by sampling these s
(i)
j from the Exp( 2

λ2 ) prior and then sampling the b
(i)
t,j from zero-mean

Normal distributions with variances s
(i)
j . Hence,

P
(
b

(i)
t,j |s(i)

j

) = 1√
2πs

(i)
j

e
−[b(i)

t,j ]2/[2s
(i)
j ]

,

and so b(i)
:,j has the same Normal distribution as �−1{FL[b(i)

t,j ]} but with the variances and

covariances scaled up by s
(i)
j , with s

(i)
j ∼ Exp( 2

λ2 ). Therefore, also referring back to equation
(3), it follows that

P
(
b(i)

:,j , s
(i)
j |ρ(i)

j , λ
) =λ2

2
e
−λ2s

(i)
j /2 1

(2π)T/2[s(i)
j ]1/2|�(i)

j |1/2
e
−b(i)

:,j
�[s(i)

j ]−1[�(i)
j ]−1b(i)

:,j /2
.

To make sampling easier, at this stage we let s
(i)
j = [ν(i)

j ]−1, leading to the density

P
(
b(i)

:,j , ν
(i)
j |ρ(i)

j , λ
) = 1

[ν(i)
j ]2

λ2

2
e
−λ2/(2ν

(i)
j )

[ν(i)
j ]1/2

(2π)T/2|�(i)
j |1/2

e
−b(i)

:,j
�

ν
(i)
j [�(i)

j ]−1b(i)
:,j /2

= λ2

2
e
−λ2/(2ν

(i)
j )

[ν(i)
j ]−3/2

(2π)T/2|�(i)
j |1/2

e
−b(i)

:,j
�[�(i)

j ]−1b(i)
:,j ν

(i)
j /2

,

(8)

where the extra factor of 1/[ν(i)
j ]2 is the factor |d{[ν(i)

j ]−1}/dν
(i)
j | due to the change of vari-

able. Assuming that the model will be fit to data standardised to have unit variance, we set
the prior on the intercept as a ∼ N (0,1), and we set the prior on the model precision as
τi ∼ Gamma(1,1) (which has prior mean 1 with 95% of the prior mass between 0.025 and
3.7, which we believe is reasonable for these data). Now, combining equation (8) with these

prior specifications and P(ρ
(i)
j |k) = k

ek−1
e
kρ

(i)
j (for 0 ≤ ρ

(i)
j ≤ 1) as well as with the model

likelihood (equation (2)), we get

P
(
x:,i ,B(i),ρ(i), ν(i), ai, τi |X:,\i , λ, k

)
=

{
T∏

t=1

nt∏
k=1

√
τi

2π
e
−τi (xt,i,k−b(i)

t,: ·x�
t,\i,k−ai)

2/2

}
(9)
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× 1√
2π

e−{τi+a2
i /2}

p−1∏
j=1

{
k

ek − 1
e
kρ

(i)
j

λ2

2
e
−λ2/(2ν

(i)
j )

× [ν(i)
j ]−3/2

(2π)T/2|�(i)
j |1/2

e
−b(i)

:,j
�[�(i)

j ]−1b(i)
:,j ν

(i)
j /2

}
.

Following equation (9), posterior sampling for the model described in Sections 2.3 and 2.4
can be implemented through a Gibbs sampler with the steps given in Algorithm 1. We note
that Algorithm 1 has a relatively low computational cost, because each of the steps (with the
exception of step 4) involves sampling from a known distribution for which the parameters
can be easily calculated. Then, for step 4 we can simply use a slice-sampler to sample ρ

(i)
j

which has finite support ρ
(i)
j ∈ [0,1). The full derivations of each step of Algorithm 1 appear

in Supplement B.

ALGORITHM 1. A Gibbs sampler with the following steps:

(1) Sample: ai from: P(ai |x:,i ,X:,\i , . . .) ∝ fN (ai |μa,σa) = ga(ai),

where fN is the Normal density, σ−2
a = 1 + nτi and μa = σ 2

a τi

∑T
t=1

∑nt

k=1{xt,i,k − b(i)
t,: ·

x�
t,\i,k}.

(2) Sample: τi from: P(τi |x:,i ,X:,\i , . . .) ∝ fγ (τi |kτ , θτ ) = gτ (τi),

where fγ is the density of the gamma distribution with kτ = 1 +
T∑

t=1
nt

2 and

θτ = 1
/{

1 +
T∑

t=1

nt∑
k=1

(
xt,i,k − b(i)

t,: · x�
t,\i,k − ai

)2
/2

}
.

(3) Sample: ν
(i)
j from: P(ν

(i)
j |x:,i ,X:,\i , . . .) ∝ fIG(ν

(i)
j |μν,λν) = gνj

(ν
(i)
j ),

where fIG is the density of the inverse Gaussian distribution with parameters

λν = λ2 and μν = λ/

√
b(i)

:,j
�[�(i)

j ]−1b(i)
:,j .

(4) Sample: ρ
(i)
j from

P
(
ρ

(i)
j |x:,i ,X:,\i , . . .

) ∝ e
kρ

(i)
j

1

|�(i)
j |1/2

e
−b(i)

:,j
�

ν
(i)
j [�(i)

j ]−1b(i)
:,j /2 = gρj

(
ρ

(i)
j

)
.

(5) Sample: b(i)
:,j from: P

(
b(i)

:,j |x:,i ,X:,\i , . . .) ∝ fN (b(i)
:,j |m̃(i)

j , �̃j ) = g̃bj
(b(i)

:,j ),

where fN is the multivariate Normal density, [�̃(i)
j ]−1 = ν

(i)
j [�(i)

j ]−1 + [V(i)
j ]−1,

and m̃(i)
j = �̃

(i)
j [V(i)

j ]−1m(i)
j , where the t th element of the vector m(i)

j is

m
(i)
t,j =

T∑
t=1

nt∑
k=1

xt,j,k

{
xt,i,k − b(i)

t,\j (xt,\i,k)�\j − ai

}
/

T∑
t=1

nt∑
k=1

x2
t,j,k,
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FIG. 5. Simulated time series of sampled observations at four types of network nodes.

where b(i)
t,\j and (xt,\i,k)\j represent b(i)

t,: and xt,\i,k without the j th elements, re-

spectively, and V(i)
j is a diagonal matrix with the t th diagonal element equal to

1/{τi

∑T
t=1

∑nt

k=1 x2
t,j,k}.

3. Simulation study. In this section we present the results from a simulation study to
test how accurately our model can recover network structure, which we know in advance. We
generate simulated data with structure that we expect to be typical of real data (Nowakowski
et al. (2017), Mayer et al. (2019)) and then fit the proposed model to the simulated data. To
generate the data, the observations xt,i for each node i are generated such that they follow a
mean time series of one of four types (illustrated in Figure 5), as follows:

(a) Monotonic: Decreasing to no signal.
(b) Monotonic: Increasing from no signal.
(c) Maximum: Increasing from and decreasing to no signal.
(d) Null: Random noise.

Types (a) and (b) represent node types of interest to the biological setting, as follows. Type (a)
corresponds to genes that are activated (i.e., xt,i > 0) early in the time series before becoming
deactivated (as we would expect of genes which are important for stem-like cell identity).
Type (b) corresponds to genes which only become activated later in the time-series (as we
would expect of genes which are important for the identity of mature cells, such as neurons).
Types (c) and (d) make the simulated data closer to what we would expect of the real data by
mixing in nodes with other sorts of signals, type (c) corresponds to genes which are active in
the middle of the time-series only and type (d) are null nodes (with random activation).

After generating each characteristic mean time series according to fixed types (a)–(d), we
then time-stretch the particular characteristic mean time series chosen for each node i by a
random amount. We do this to reflect the fact that developmental events (as represented by
gene-expression measurements) occur at different times in different cells. We achieve this
effect by changing the length of the time series to have a random but uniformly-distributed
period, T ′ ∼ U[T − 3, T ], before zero-padding to return the time series to its original period
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T . This gives a mean profile xt,i , t = 1, . . . , T for each node that is distinct from all other
nodes of the same type. We then generate observations xt,i,k for each node according to
equation (1) based on these mean profiles, also setting the intercept parameter ai to 0 and
sampling via the Markov chain described in Algorithm 2.

ALGORITHM 2. A Markov chain:
Loop: t in 1 : T

Xt,:,1 ← 0 // Initialize Markov chain at 0
Loop: r in 2 : R

S ← Xt,:,r−−1
Loop: i in 1 : p

Sample: Si ∼ N(S\i .b(i)
t,: , σ 2)

end loop
Xt,:,r ← s

end loop
end loop,

where X is a T ×p ×R array containing the sampled data, S is a vector of length p which
temporarily stores intermediate results and the elements of b(i) are specified as

b
(i)
t,j =

{
1/p′ if nodes i and j are of the same type,

0 otherwise,

where p′ is the number of nodes j of the same type as i. The number of MCMC samples
in the Markov chain specified in Algorithm 2 is given by the variable R: we use R = 104,
and, after thinning to take one sample in every 100, we choose the final 25 (thinned) samples
to pass forward to the model fitting after adding the mean characteristic profiles. That is,
we have 25 samples per time point, that is, nt = 25, where autocorrelation analysis and an
experimentation with burn-in times show no evidence against them being independently and
identically distributed at each time-point group. We note that in the simulation we specify
means that vary with time, but our model has constant mean. In practice, this does not make
any difference, as the data are always standardised before model fitting, but the user can
easily make the intercept time varying if this is a concern. The procedure for generating the
simulated data is also illustrated in Figure 6.

We generate each time series with T = 8, nt = 25 (constant for all values of t), and p′ =
10, adding noise with standard deviations τ

−1/2
i = τ−1/2 ∈ {0.1,0.2,0.3}. Then, we apply

Algorithm 1 and calculate each b̂
(i)
t,j from the median of the corresponding posterior. We infer

an edge between nodes i and j , if b̂
(i)
t,j �= 0, after thresholding the b̂

(i)
t,j to remove trivially

small values, that is, if |b̂(i)
t,j | ≥ φ. We generate ROC (receiver-operator characteristic) curves

as this threshold φ is decreased to 0 from max |b̂(i)
t,j | (for t ∈ {1, . . . , T } and all j ). We generate

these curves from the true positives (TP) and false positives (FP), which we calculate from
the ground-truth network edges b

(i)
t,j and estimated network edges b̂

(i)
t,j as follows:∣∣b̂(i)

t,j

∣∣ > 0 for
∣∣b(i)

t,j

∣∣ > 0 =⇒ TP, and∣∣b̂(i)
t,j

∣∣ > 0 for
∣∣b(i)

t,j

∣∣ = 0 =⇒ FP .

We generate an average ROC curve over 1000 repetitions of this procedure and then calculate
an AUC (area under curve) statistic for this average ROC curve.
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FIG. 6. Overview of the procedure for generating the simulated data.

We assess the performance of our full model using both sparsity within and sparsity across
time, compared with the scenarios when one of these priors is excluded from the model.
To exclude sparsity across time, we enforce ρ = 0, and, to exclude sparsity within time, we
use λ → 0: these results are shown in Figure 7. With ρ = 0, there is no correlation of the
model parameters across time, and so we see the effect of inferring the networks separately
for each time point; that is, sparsity across time is removed: in this case, AUC = 0.5 indicates
that none of the intended structure in the data is being detected. Alternatively, as λ → 0,
the prior becomes flat or uninformative, and so in this case we see the effect of fitting the
model without the sparsity within time. We again note that decoupling these types of sparsity
is made possible by design with the model structure we propose, unlike alternatives such
as Laplace-NEG (Shimamura et al. (2019)). Then, for the full model (which includes the
priors to enforce both the sparsity within time and across time) we repeated the simulation
for various values of sparsity parameter λ: Figure 8 shows the results (with hyperparameter
k = 20, equivalent results with k = 10 and k = 50 are shown in Figures S10 and S11 in
Supplement D). When we include the priors for both sparsity within and across time, we can
achieve AUC of 0.9 or more as long as the sparsity parameter λ is large enough. This result
demonstrates that our priors are responsible for good detection of network edges with respect
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FIG. 7. Accuracy of network inference by the model without either sparsity within, or across, time. (a) Model
performance when sparsity across time is removed. (b) Model performance when sparsity within time is removed.
Abbreviations: TP, true positives; FP, false positives.

to the ground truth in these simulated data. We also found that these results were not very
sensitive to p′, the number of covariates included in the simulated data. Figure S12 shows
equivalent results to Figure 8, except with the number of covariates halved to p′ = 5. In this
case we found that the network inference is a bit more accurate, as would be expected with
a smaller number of variables to predict, although the difference is minimal as long as the
sparsity is great enough.

Dropouts, or missing values, are a well-known source of technical noise in single-cell
transcriptome data. These missing values are replaced by zeros, leading to “zero inflation.”

FIG. 8. Accuracy of network inference by the model with both sparsity within and across time. Abbreviations:
TP, true positives; FP, false positives.
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FIG. 9. Accuracy of network inference in the simulation study with 60% dropouts (with k = 20). Abbreviations:
TP, true positives; FP, false positives.

A characteristic of this dropout effect is that data values, which are already small, are more
likely to drop out (i.e., get missed out) than values which are larger in magnitude. This is data
missing not-at-random, an effect that can be challenging to model (Kharchenko, Silberstein
and Scadden (2014)). Dropout rates (i.e., the proportion of data values missing from the data
set) are often over 60% in typical single-cell transcriptome data sets that we have seen, such
as the one analysed in Section 4. To test the robustness of our method to dropouts, we used
a well-known and effective model of the dropout effect, published previously by Pierson
and Yau (2015). This model of dropouts specifies the probability of an observed data value
dropping out as

(10) pt,i,k = exp
(−ωx̃2

t,i,k

)
,

where the parameter ω controls the dropout rate (decreasing ω increases the number of
dropouts) and x̃t,i,k is the data value that would have been present without the dropout ef-
fect. This is essentially a hurdle model, with ht,i,k ∼ Bernoulli(pt,i,k), so that the observed
data xt,i,k (i.e., with dropouts included) is modelled as xt,i,k = ht,i,k · x̃t,i,k . We found that,
under this model, ω = 2 leads to a dropout rate of around 66% in data sets generated ac-
cording to the data-simulation procedure presented earlier in this section. We used this value
of ω = 2 and repeated our simulation study, now with the addition of this dropout effect,
carrying out out the same ROC-curve analysis as before. The results of this analysis (again
with λ = 50 and k = 20) are shown in Figure 9: we found that our method is quite resilient
to dropouts, with only a moderate decrease in performance compared to the results shown
in Figure 8. The time-varying aspect of the model apparently helps to maintain performance
when many dropouts are present, because, when some values in the time series are missing,
sparsity across time encourages interpolation over the missing values. Interestingly, in very
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FIG. 10. Inferred model parameters b̂
(i)
t,j , for genes characteristic of: (a) stem-cells; (b) mature cells (neurons).

Nonzero parameters b̂
(i)
t,j infer the local network structure around gene/node i. Parameters which are zero for

every time point are not plotted.

sparse cases the dropout effect may even be helpful, possibly via a denoising mechanism,
as follows. Referring to the generative model of equation (10), it’s clear that the dropouts
mostly take place for small values of xt,i,k . As these are much more likely to correspond to
noise than larger values do, this leads to a strong denoising effect. Finally, we note that to
include a hurdle model or dropout effect in a model likelihood, such as the one proposed in
Section 2.3, would result in a much more computationally intensive model fitting procedure
than the one we propose in our Algorithm 1 of Section 2.5.

4. Single-cell gene-expression data. In this section we present an example application
of our proposed methodology to single-cell gene-expression data. These data have been pub-
lished previously by Nowakowski et al. (2017), and are publicly available from the NCBI
database of genotypes and phenotypes (dbGaP) under accession number phs000989.v3.

In this context, xt,i,k represents the log-expression of gene i, defined as log(transcript
counts + 1), in sample k from time t . For the pseudo-time assignments for each cell, we
use cell-type classifications provided with the data, together with an ordering for these cell
types, according to the developmental lineage (for full details, see Supplement C). We fitted
the model to n = 1557 cell samples, and p = 22,988 genes/nodes, reduced to p = 212 for
each individual model fit by variable screening. For the fitting we used values of λ = 20 and
k = 1: these values were chosen by grid-search stochastic EM (Figure S13 in Supplement D).
Fitting the model as described, we obtained posterior distributions for each model parameter
b

(i)
t,j , and we used the posterior medians as posterior summaries, b̂

(i)
t,j . To fit each model, we

ran the Gibbs’ sampler proposed in Algorithm 1 for 1 × 104 samples (after 1 × 103 samples
burn-in) which took 1.4 hours for each target node on one core of a Macbook Pro laptop (mid
2015, 2.8 GHz, 16GB RAM).

The model was fitted initially to a panel of 25 genes as target nodes: these genes were
chosen in an unbiased way by searching the biological sciences literature for genes that are
important in this biological setting and then analysing those that were present in this data
set after quality control. Estimated model parameters b̂

(i)
t,j for a selection of these genes are

shown in Figure 10, and the full panel is shown in Figures S14 and S15.
We carried out Geweke (Geweke et al. (1991)) and Heidel (Heidelberger and Welch

(1981)) convergence tests, using the R package CODA (Plummer et al. (2006)), for the sam-
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FIG. 11. Convergence-test results, for the parameters b
(i)
t,j which appear in Figures 10 and S14 and S15.

pler outputs for all the parameters b
(i)
t,j shown in Figures 10, S14 and S15. These convergence

test results appear in Figure 11. In convergence tests such as these, if an individual p-value is
significantly small, it can be taken as evidence that the chain has not yet converged. Hence,
the uniform distributions of p-values shown in Figure 11, in which these p-values are aggre-
gated over all the test results, indicate that the MCMC sampler has converged for these target
nodes. Then, to give an indication of how “stiff” or “sloppy” these parameters are, we esti-
mated the standard deviations of these posterior distributions for this panel of genes: these are
plotted against the corresponding posterior averages in Figure 12. These posterior standard
deviations are typically much smaller in magnitude than the posterior averages, demonstrat-
ing that the posteriors are not “sloppy” and indicating that the estimates from our model are
reliable. We also wanted to make sure that our results are not driven by a few outlier cells. So,
we repeated the inference for this same panel of genes but now using only a random sample
of 50% of the cells originally used, that is, n = 779. The results of this analysis are plotted in
Figure S16, for the same genes as are shown in Figure 10. The results shown in these figures
are clearly very similar, and, therefore, we conclude that our results here are not driven by
outliers.

Figure 10(a) shows inferred model parameters b̂
(i)
t,j , for a selection of nodes/genes, which

are characteristic of stem cells, and of neurons (i.e., mature cells) selected from the full panel
of 25 genes. We expect stem cells to predominate at earlier times, and, hence, we expect
to see decreasing time series for genes which are characteristic of this type of cell. On the
other hand, we expect mature cells, such as neurons, to predominate at later times, and so we
expect to see increasing time-series for genes characteristic of this type of cell. As would be
expected for stem-cell genes, important model parameters b

(i)
t,j tend to decrease in magnitude

FIG. 12. Estimates of the spread of the posterior distributions for the parameters b
(i)
t,j which appear in Fig-

ures 10 and S14 and S15.
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during the developmental trajectory as cells go from stem cell to mature cell types (e.g.,
gene transcript MOXD1). Figure 10(b) then shows, as would be expected, that important
model parameters b̂

(i)
t,j become nonzero (corresponding to network edges appearing) late in

the developmental trajectory, when the cells become neurons and hence their characteristic
gene regulatory program is activated (e.g., for SATB2). Equivalent results to Figure 10(a)–
(b), for the full panel of 25 genes analysed, then appear in Figures S14 and S15, respectively,
in Supplement D. In these figures, we also see similar results: for genes that tend to be active
in stem cells, model parameters b

(i)
t,j tend to decrease in magnitude during the developmental

trajectory as cells go from stem cell to mature cell types (Figure S14) and vice-versa for genes
which are important to mature cells such as neurons (Figure S15).

We wish to infer a network edge between nodes i and j , if |b̂(i)
t,j | > 0. We estimate these

b̂
(i)
t,j from the posterior medians, but, because we find that many of these medians are close to

but not exactly zero, we set b̂
(i)
t,j to zero in such cases by thresholding. Therefore, we infer “no

edge” between nodes i and j when the posterior median is close to zero. Hence, if (and only
if) |b̂(i)

t,j | > φ, where φ is the threshold parameter, we would infer a network edge between
nodes i and j at time t (for the model fit around node i). We note that the local model
fitting (equation (1)) does not depend on this network estimation. Hence, this thresholding
can take place independently of the computationally-intensive MCMC sampling. Thus, we
leave φ as a tuning parameter, which can be varied by the user in real time to interpret results,
equivalently to changing the resolution or granularity in a visualisation. We recommend the
user does a full sweep through φ ∈ [0,∞] to interpret the results. We also note that, if |b̂(j)

t,i | >
φ (for the independent model fit around node j rather than node i), we would independently
infer an edge between nodes i and j at time t . Thus, some inconsistency may arise, due
to these independent model fits around nodes i and j . To deal with this, we use the “min-
symmetrisation” scheme of Kolar et al. (2010), inferring an edge between nodes i and j at
time t , that is, Âi,j,t �= 0, if and only if |b̂(i)

t,j | > φ and |b̂(j)
t,i | > φ.

Plots of the inferred network structure around an example of a gene shown in Figure 10(b),
namely SATB2, are shown in Figure 13, after “min symmetrisation” (Section 2.2) with
φ = 0.05. In addition to the neuronal identity gene SATB2 (Alcamo et al. (2008)), several
of the genes shown in Figure 13 are already known to be important in neuronal development,
including NEUROD1 which initiates the programme of neuronal development (Pataskar
et al. (2016)) and RUNX1T1 which regulates the differentiation of neurons from neural
stem cells (Linqing et al. (2015)) as well as the neuronal circuit-formation gene BCL11A
(John et al. (2012)). Intriguingly, this network structure also includes MIR133A1HG and
LINC00478, which are (respectively) examples of micro-RNA (miRNA) and long noncoding
RNA (lncRNA). Noncoding RNA transcripts such as these do not get translated into proteins,
as would usually be the case for a transcript from a region of DNA which codes for a gene.
Instead, noncoding RNA transcripts are known to play an important role in gene regulation
(Cech and Steitz (2014)). However, we still only understand a small amount about their func-
tion, and gene regulation involving these sorts of noncoding RNA is an important research
topic. We note that MIR133A1HG and LINC00478 are promising candidates for for further
experimental investigation which have been identified using our proposed methodology.

Next, we compared our method with alternative network inference method for single-cell
transcriptome data. Methods for inferring time-varying network structure in data of this type
include alternatives designed for many fewer nodes than our method can handle, such as
the work of Matsumoto et al. (2017), which is designed to infer structure in networks with
fewer than 100 nodes. However, there is also a static network inference method available for
single-cell transcriptome data called ‘SCENIC’ (Aibar et al. (2017)) that can be used to infer
structure in large networks of 20,000 or more nodes and that is, therefore, also appropriate
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FIG. 13. Time-varying network structure inferred around the gene SATB2. This gene is characteristic of certain
types of neuron, and, hence, we would expect network structure to appear at later times, when the cell type-specific
gene regulatory program becomes activated.

for the data set analysed here. For comparison with our proposed methodology, we ran the
SCENIC method on the same single-cell gene-expression data set already analysed. Equiv-
alently to our proposed method, SCENIC returns fitted model parameters that indicate the
strength of the network connection between a pair of nodes or genes: maintaining equivalent
notation, we label these SCENIC model parameters b

′(i)
j . Thus, by again choosing a threshold

φ′, it is possible to infer network structure by inferring edges between the pair of nodes i and
j if the corresponding fitted model parameter |b̂′(i)

j | > φ′. We choose φ′ so as to maintain the
same number of connections to each target in the network inferred by the SCENIC method,
as compared with our method. Table 1 shows the genes inferred in the network structure
around the neuronal identity gene SATB2 (summarised from Figure 13), together with the
genes equivalently found from the SCENIC method (setting φ′ to maintain the same number
of connections).

Of the genes shown in Table 1, just as with those found by our method, those found by
the SCENIC method are mostly already known to be involved in neural development, as
follows. ARPP21 is involved with branching of dendrites (Rehfeld et al. (2018)), CHL1 and
KIAA1598 are thought to be involved in neuronal migration and axon formation (Alsanie
et al. (2017), Toriyama et al. (2006)) and MEF2C and NFIA are known to be important for
neural stem and progenitor cell differentiation (Li et al. (2008), Piper et al. (2010)). However,
we note that the SCENIC method is not able to infer time-varying network structure, as our
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TABLE 1
Comparison of nodes inferred in static network structure by our

method and the SCENIC method

Our method SCENIC

BCL11A ARPP21
DDX1 CHL1
LINC00478 KIAA1598
MIR133A1HG MEF2C
NEUROD1 NFIA
RUNX1T1 RUNX1T1

method can: to make the comparison shown Table 1, the time-varying aspect of the network
structure inferred by our method had to be “flattened out.”

It is challenging to visualise in a meaningful way the entire structure of a large network,
such as the full genome-wide network inferred here, if it is inferred for all 22,989 nodes.
This challenge becomes even larger when the dimension of time is added. After fitting the
model to all 22,989 target nodes on a high-performance computing cluster, we inferred the
structure of this network and found the fully-connected component (11,133 nodes) which is
shown in Figure 14. As a minimum, it can be seen from this figure that the network structure

FIG. 14. Time-varying network structure of the fully-connected component (11,133 nodes) of the inferred ge-
nomic network.
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changes gradually rather than suddenly with time, as we would expect from our proposed
methodology.

5. Discussion. In this paper we have proposed a new model to infer time-varying net-
work structure. This model makes use of a novel prior structure we introduce here which
extends the Bayesian lasso to the time-varying case. The novel structure of this prior allows
for effective modelling of time-varying network structure, even in situations where there are
very few time points, as is typical in cell-biological (i.e., ‘omics) data. We also found that
the model fitting and inference procedure we have proposed works well, even with large net-
works of over 20,000 nodes, which compares very well with alternatives (see, e.g., the work
by Matsumoto et al. (2017)).

We used simulated data to assess the ability of the proposed model to accurately infer
time-varying network structure, and we showed that the model is effective in inferring time-
varying genomic network structure from single-cell gene-expression data. However, we note
that genomic network structure, which is inferred from only gene-expression data (as we do
here), is not guaranteed to correspond to true gene regulatory patterns. To strengthen any be-
lief that the inferred genomic network structure corresponds to true gene regulatory patterns
rather than simply gene co-expression patterns, evidence from, for example, chromatin bind-
ing and epigenomic data could also be incorporated into the model (Novershtern, Regev and
Friedman (2011)). We intend to incorporate such data as the next stage of the development of
this model. Specifically, we will do this by allowing the sparsity parameter λ to vary for each
pair of nodes i and j , depending on any prior evidence of a physical interaction between the
protein product of gene j with the DNA or surrounding chromatin of gene i.

Another characteristic of the single-cell transcriptome data analysed here is that the data
are zero inflated. This is a case of data missing-not-at-random, because the dropout events,
which lead to the extra zeros in the data, are more likely to occur when the true transcriptome
level is low (Kharchenko, Silberstein and Scadden (2014)). As part of the next stage of the
development of this model, we intend to account for dropouts as other authors have done
(van Dijk et al. (2017)), for example, by explicitly including the dropout events in the model
likelihood (Pierson and Yau (2015)). We also note that existing time-inference methods for
data, such as those presented here, are algorithmic rather than model based. Hence, it is not
easy to obtain uncertainties on the inferred times when using these methods. Thus, we would
like to develop a model-based time-inference method that will provide such uncertainties and
then feed these uncertainties directly into the time-varying network model we have proposed.
We also note that, in other contexts, it could complicate the analysis if there is uneven time
sampling. For example, if we expect highly deterministic behaviour with little noise but have
data with time-sampling at known but uneven time points, the method might need to be
adapted. Specifically, in that context we would expect to see larger changes in parameters
over larger time intervals: this structure is not explicitly captured by our model in its current
form.

Understanding interactions between genes and their transcriptional regulators is a funda-
mental question in genomics, and network models are a natural way to represent and analyse
groups of interactions between genes and their regulators. Biomedical science in the high-
throughput genomic age has been developing ever more innovative ways to collect increas-
ingly vast quantities of data. However, the statistical techniques to represent, analyse and in-
terpret such data still lag behind the means to generate them. In particular, there is currently a
lack of good computational statistical methodology to represent and analyse changes in gene-
regulatory interactions as cells are specified and change state—an issue we address with the
time-varying network model that we propose here. The computational-statistical tools that
we are developing allow novel characterisation of genomic interactions in important settings,
adding to knowledge of fundamental biological principles and motivating further investiga-
tion by targeted experiments.
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