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Abstract—Novel approaches to switching ultra-fast
semiconductor optical amplifiers using artificial intelligence
algorithms (particle swarm optimisation, ant colony
optimisation, and a genetic algorithm) are developed and
applied both in simulation and experiment. Effective off-on
switching (settling) times of 542 ps are demonstrated with just
4.8% overshoot, achieving an order of magnitude improvement
over previous attempts described in the literature and standard
dampening techniques from control theory.
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interconnects, optical switching, semiconductor optical
amplifiers, artificial intelligence, particle swarm optimisation,
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I. INTRODUCTION

BY 2021, annual global data centre network (DCN)
traffic will reach 20.6 × 1021 bytes, 90% of which will

be intra-DCN [1]. Additionally, the proportion of requests
being serviced by central processing units (CPUs) is
expected to decrease from 75% today to 50% in 2025 as
specialised bandwidth-hungry hardware is installed to enable
new machine learning applications [2]. Furthermore, the
increasingly common approach of clustering compute
resources for large-scale data processing is requiring more
network-intensive server-server communication [3]. These
trends are exerting a growing strain on internal DCNs, in
which many of the interconnects are electronic switches.
Electronic switches have limited scalability, limited
bandwidth, high latency and high power consumption [4],
[5]. As such, switching is presenting a problematic
bottleneck for DCN performance, and current network
architectures are unfit to meet next-generation DCN
requirements.

Optical switches offer the potential to alleviate many of
these network performance issues. With an optical circuit
switch (OCS) implementation, there is no packet inspection,
buffering, or optical-electrical-optical (OEO) conversion
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overhead, therefore latency times are significantly lower [6].
They also have much higher bandwidth, allowing more
servers to be connected to the same switch without
increasing oversubscription-related buffering, thus improving
scalability. Furthermore, the lack of OEO conversion, the
transparency to signal modulation format, and the lower heat
generation reduces the number of expensive transceiver
components needed, the hardware changes required when
new transmission protocols are adopted, and the overall
network power consumption respectively. The latter is
particularly important since networking can account for
>50% of the $20 bn annual DCN power costs, with CO2

emissions equal in volume to the entire aviation industry [7].
In addition, optical switches have a more compact physical
design than their electronic counterparts, allowing for a
smaller footprint in DCs.

The difficulty of implementing all-optical DCN switching
derives from the bursty nature of most DCN traffic and the
lack of an all-optical memory alternative. Since no all-optical
memory or processor architectures exist, current DCN
packet-switched protocols cannot be implemented with an
exclusively optical network architecture based on all-optical
switches since header information must be processed and
payload information stored on a per-hop basis. An alternative
to packet switching is circuit switching, which is possible
with an all-optical architecture. However, current
state-of-the-art commercial optical switches have slow (100s
µs) switching times. Such long switching times are not
compatible with the small data packets that dominate DCN
traffic (90% < 576 bytes) [4] since the switching time would
be comparable or greater in size than the forwarding time
making for an inefficient network.

For optical circuit switching (OCS) to be compatible with
current DCN demands, it must be possible to switch circuits at
the packet timescale [4], [8]. This requires minimal switching
overhead when switching for epochs of the order of 10s-100s
of ns.

A promising candidate for realising such a high-speed
switch is the semiconductor optical amplifier (SOA). SOAs
can be used for either space switching or wavelength
switching due to their high and relatively flat optical gain
bandwidth. Further benefits of SOAs over other potential
optical switching technologies such as MEMS or holograms
include fast inherent switching times (theoretically limited
only by their ≈ 100 ps carrier recombination lifetimes [9]),
high extinction/optical contrast ratio, and relatively compact
design, making them ideal for low latency-, scalability-, and
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footprint-constrained DCN applications [10].
The sub-ns off-on time of SOAs allows for an SOA-based

optical switch architecture that avoids the issues presented
by the lack of all-optical memory/processor alternatives
discussed above. This SOA-based OCS solution is generally
more simple and better performing than others suggested by
the literature such as optical loop memory [11], optical burst
switching (OBS) [12], [13], [14] and hybrid optical packet
switching (OPS) [15], [5]. However, SOAs have an intrinsic
optical overshoot and oscillatory response to electronic drive
currents due to exciton density variations and spontaneous
emission in the gain region [16]. As demonstrated in this
paper, the overshoot and oscillatory optical output result in
the key advantage of SOA switching (rapid switching times)
being negated, preventing sub-ns switching.

A previous attempt to optimise SOA output applied a ‘pre-
impulse step injection current’ (PISIC) driving signal to the
SOA [17]. This PISIC signal pre-excited carriers in the SOA’s
gain region, increasing the charge carrier density and the initial
rate of stimulated emission to reduce the 10% to 90% rise time
from 2 ns to 500 ps. However, this technique only considered
rise time when evaluating SOA off-on switching times. A more
accurate off-on time is given by the settling time, which is the
time taken for the signal to settle within ±5% of the ‘on’
steady state. Before settling, bits experience variable signal
to noise ratio, which impacts the bit error rate (BER) and
makes the signal unusable until settled, therefore the switch is
effectively ‘off’ during this period.

A later paper looked at applying a ‘multi-impulse step
injection current’ (MISIC) driving signal to remedy the SOA
oscillatory and overshoot behaviour [18]. As well as a
pre-impulse, the MISIC signal included a series of
subsequent impulses to balance the oscillations, reducing the
rise time to 115 ps and the overshoot by 50%. However, the
method for generating an appropriate pulse format was
trial-and-error. Since each SOA has slightly different
properties and parasitic elements, the same MISIC format
cannot be applied to different SOAs, therefore a different
format must be generated through this inefficient manual
process for each SOA, of which there will be thousands in a
real DC. As such, MISIC is not scalable. Critically, the
MISIC technique did not consider the settling time, therefore
the effective off-on switching time was still several ns.

More recent work expands on the driving signal
modification shown in [18]. [19] applies the MISIC signal
detailed in [18], but in addition applies a Wiener filter, where
the filter is determined by the steady state value of the SOA
response and the mean squared error (MSE) between the
output and the filter is minimised by means of finding
optimal weight-coefficients of the filter. The work
accomplishes a roughly 60% reduction in guard time, with
the goal of reducing guard time as much as possible such
that the BER of the output does not exceed a particular
level. While the objective of the work (reduce guard time
with respect to BER guarantees) is different to that of this
work (minimise the settling time of the SOA output), and
thus direct comparison is difficult, it is interesting to
acknowledge this analogous approach of MSE & weight

optimisation to optimising the output of an SOA.
Similarly, [20] explores the optimisation of an SOA by

means of both modification of the driving signal and
optimisation of the SOA’s microwave mounting. A best case
of 33% reduction in guard time is accomplished with an
improved microwave mounting architecture and a step
driving signal, where various MISIC and PISIC driving
signals were also tested. This work demonstrates that
significant improvements in guard time can be derived
exclusively from improvements being made to the
microwave mounting of the SOA - something that is not
dealt with in this paper - and that the improvement of the
SOA’s output by optimisation of the driving signal does not
preclude the simultaneous improvement by optimisation of
the microwave mounting. The results therefore are
complementary to those presented in this work, which
improves the SOA output purely by means of driving signal
optimisation. It is speculated here that the optimisation of
the SOA’s driving signal by the methods presented in this
work combined with the optimisation of its microwave
mounting could achieve greater improvements in its output
than seen in either [20] or this work.

The previous solutions discussed so far have had a design
flow of first manually coming up with a heuristic for a
simplified model of an SOA, followed by meticulous testing
and tuning of the heuristic until good real-world performance
is achieved. If some aspect of the problem is changed such
as the SOA type used or the desired shape of the output
signal, this process must be repeated.

This paper presents a novel and scalable approach to
optimising the SOA driving signal in an automated fashion
with artificial intelligence (AI) techniques, namely ‘Particle
Swarm Optimisation’ (PSO), ‘Ant Colony Optimisation’
(ACO) and ‘Genetic Algorithms’ (GA) [21]. These
algorithms were chosen on the basis that they had previously
been applied to proportional-integral-derivative (PID) tuning
in control theory [22]. Moreover, AI techniques propose the
benefit of not requiring prior knowledge of the SOA and
therefore provide a means of developing an optimisation
method that is generalisable to any SOA-based switch. All
algorithms were shown to reduce the settling and rise times
to the O(100 ps) scale. The algorithms’ hyperparameters
were tuned in an SOA equivalent circuit (EC) simulation
environment and their efficacy was demonstrated in an
experimental setup. AI performance was compared to that of
step, PISIC and MISIC driving signals as well as the popular
raised cosine and PID control approaches to optimising
oscillating and overshooting systems, all of which the AI
algorithms outperformed. Of the AI algorithms, PSO was
found to have both the best performance and generalisability
due to the additional hyperparameters and search space
restrictions that were required for GA and ACO. All code
and plotted data are freely available at [23] and [24]
respectively.

II. SIMULATION

SOAs are typically modelled using simple rate equations.
However, as shown in [25], the electrical parasitics of an
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Figure 1. Semi-logarithmic I-V plot for the SOA used to calculate η and Is.

SOA and its surrounding packaging degrade optical signals
by broadening the output optical pulse width, reducing the
peak optical power (thereby reducing optical contrast), and
causing a slight time delay in the emitted optical pulse.
Additionally, they alter the relaxation frequency of the SOA
output oscillations. As such, modelling the electrical
parasitics was crucial to building a simulation environment in
which to optimise switching. As described in [25], [26], and
[27], assuming a small circuit model, microwave ECs can be
used to more accurately simulate semiconductor diodes by
accounting for these electrical parasitics. Therefore, ECs
were the chosen approach to SOA modelling for this paper.

Since at low voltages (< 0.8V ) the current (I) - voltage
(V ) relationship can be described by (1) (q = charge,
Kb = Boltzmann constant, T = temperature), the ideality
factor η and the saturation current Is could be calculated as
1.59 and 3.48 × 10−11 A respectively using the
semi-logarithmic I-V curve of the SOA in Fig. 1. Using η,
Is and the internal and external SOA constants taken from
the literature for a typical silicon laser diode [25], [26], the
SOA was modelled below the current threshold ITR (2-50
mA) and above ITR (70-110 mA).

ln
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= ln
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Is
)

+
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1

η

)(
qV

KbT

)
(1)

The SOA in the experimental setup had the optimum
trade-off between gain and signal noise at a bias current of
70 mA, therefore the simulated SOA was biased at this
current. Using Matlab’s Simulink tool, a transfer function
(TF) for the SOA EC was obtained and simplified as shown
in (2) with the constants defined in Table I. This allowed for
custom drive signals to be generated, sent to the biased SOA
EC and an optical output measured.

TF =
2.01× 1085∑9

i=0 ais
i

(2)

In the experimental setup (described later), an arbitrary
waveform generator (AWG) with 12 GSPS sampling
frequency was used allowing for signal bit windows of 83.3
ps, therefore for 20 ns time periods each signal had 240
points. As such, the optimisation algorithms were searching
for a solution in a 240-dimensional search space.
Additionally, the oscilloscope had 8-bit resolution, therefore

Table I
CONSTANTS USED IN EC TRANSFER FUNCTION.

a9 1.65 a4 1.37× 1052

a8 4.56× 1010 a3 2.82× 1062

a7 3.05× 1021 a2 9.20× 1071

a6 4.76× 1031 a1 1.69× 1081

a5 1.70× 1042 a0 2.40× 1090

Table II
FACTOR(S) USED ON THE EC TRANSFER FUNCTION COEFFICIENTS TO

SIMULATE DIFFERENT SOAS (FACTOR = 1 UNLESS STATED OTHERWISE).

TF Component: Numerator a0 a1 a2
Factor(s): 1.0, 1.2, 1.4 0.8 0.7, 0.8, 1.2 1.05, 1.1, 1.2

each dimension in the solution could take one of 256 values.
The EC simulation environment enabled different driving
signals to be rapidly tested.

The constants used for the EC model were taken from the
literature ( [25], [26], and [27]). The difficulty with SOA
modelling, and subsequently also SOA switching, is that
there are many variables whose values are difficult to
experimentally measure, and which vary significantly even
for same-specification SOAs due to parasitics introduced
during manufacturing and packaging. Re-measuring these
constants for a new SOA would be cumbersome, difficult,
and unfruitful since broad assumptions would still need to be
made. Furthermore, scaling this bespoke-modelling to 1,000s
of SOAs in a single DC would be unrealistic. As such,
analytical solutions to SOA switching are not beneficial.
Additionally, different driving circuit setups with different
amplifiers, bias tees, cabling etc. influence the shape of the
driving signal that arrives at the SOA, thereby (if the
methods described before this paper are used) requiring more
manual tuning every time the equipment surrounding the
SOA is changed. This highlights the need for the partially
‘model-free’ AI approaches proposed in this paper, which
neither make or require any assumptions about the SOA or
the surrounding driving circuit they are optimising, resulting
in their optimised driving signals being superior both in
terms of performance and scalability relative to traditional
analytical and/or manual methods. Here, we borrow the term
‘model-free’ from the field of reinforcement learning,
meaning an algorithm that does not initially know anything
about the environment in which it must perform its
optimisation [28].

Fig. 2 compares the frequency response of the theoretical
TF with the experimental SOA. The TF had a -3dB
bandwidth of 0.5 GHz (around 700 ps rise time) compared
to the experimental SOA’s 0.6 GHz (around 550 ps rise
time). These values were similar to one-another and
consistent with both the theoretical and experimental optical
responses. The differences between the responses were due
to the use of EC parameters from the literature which do not
exactly match those of our SOA.

III. OPTIMISATION ALGORITHMS

All AI algorithms had the goal of minimising the MSE
between the actual SOA output and an ideal SOA step
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Figure 2. Frequency responses of the theoretical transfer function (TF) and
the experimental SOA (Exp).

output with 0 rise time, settling time and overshoot. The
closer the driving signal’s corresponding output ‘process
variable’ (PV) was to achieving this ideal ‘set point’ (SP),
the lower its MSE (defined in (3)).

MSE =
1

m

m∑
g=0

(PV − SP )
2 (3)

A. Particle Swarm Optimisation (PSO)

1) Implementation: An overview of PSO is given in [29],
[30]. PSO is a population-based AI metaheuristic for
optimising continuous nonlinear functions. First proposed in
1995 by [31], it combines swarm theory by observing
natural phenomena such as bird flocks and fish schools with
evolutionary programming. In this paper, PSO is adapted to
be applicable to SOA drive signal optimisation.

To apply PSO to SOA optimisation, n particles (driving
signals) were initialised at random positions in a
hyper-dimensional search space with m = 240 dimensions
(number of points in the signal). Since experimental results
showed spurious overshoots after the rising edge and
therefore an increase in the settling time, the PSO search
space was bounded by a PISIC-shaped ‘shell’ beyond which
the particle dimensions could not assume values. An added
benefit of the shell was a reduction in the complexity of the
problem and therefore also the convergence time. The shell
area was a PISIC signal with a leading edge whose width
was defined as some fraction of the ‘on’ period of the signal.
At each generation, in order to evaluate a given particle
position, the MSE in (3) was used to calculate the fitness
(which was to be minimised). As discussed in [32], the
particle inertia weights (w) and personal and social cognitive
acceleration constants (c1 and c2) can be dynamically
adapted as the PSO population evolves. This was done using
the update rules in (4), (5), and (6) [32] at the start of each
generation, where pbestj was the historic personal best
position of particle j, xj was the position (amplitude taken)
of particle j, w(0) was the initial inertia weight constant
(0 ≤ w(0) < 1), w(nt) was the final inertia weight
constant (w(0) > w(nt)), mj(t) was the relative fitness

improvement of particle j at time t, and cmax and cmin

were the maximum and minimum values for the acceleration
constants. So long as these values satisfied (7), PSO was
guaranteed to converge on some driving signal [33]. Using
dynamic PSO significantly improved the algorithm’s
performance (see the ‘Hyperparameter Tuning’ section
below).

wj(t+ 1) = w(0) +

[
(w(nt)− w(0)) ·

(
emj(t) − 1

emj(t) + 1

)]
(4)

mj(t) =
pbestj (t)− xj(t)
pbestj (t) + xj(t)

(5)

c1,2(t) =
cmin + cmax

2
+
cmax − cmin

2
+
e−mj(t) − 1

e−mj(t) + 1
(6)

0 ≤ 1

2
(c1 + c2)− 1 < w < 1 (7)

This PSO process could be repeated until the particles
converged on a position with the best fitness (i.e. the
optimum SOA driving signal). To help with convergence
time and performance, some additional constants were
defined:

• itermax = Maximum number of iterations that PSO
could evolve through before termination. Higher gives
more time for convergence but longer total optimisation
time.

• max v f = Factor controlling the maximum velocity a
particle could move with at each iteration. Higher can
improve convergence time but, if too high, particles may
oscillate around the optimum and never converge.

• on s f and off s f = ‘On’ and ‘off’ suppression
factors used to set the minimum and maximum driving
signal amplitudes the particle positions could take when
the step signal was ‘on’ and ‘off’ respectively. Lower
will restrict the particle search space to make the
problem tractable for the algorithm, but too low will
impact the generalisability of the algorithm to any SOA.

• shell w f = Factor by which to multiply the ‘on’ time
of the signal to get the width of the leading edge of the
PISIC shell. Higher (wider) value will give the
algorithm more freedom to rise over a longer period at
the leading edge of the signal and improve
generalisability, but will also increase the size of the
search space and impact convergence.

2) Hyperparameter Tuning: The simulation environment
enabled the PSO hyperparameters to be rapidly tuned by
plotting the PSO learning curve (MSE vs. number of
iterations). Since the same PSO algorithm ran multiple times
may converge on different minima, each PSO version with
its unique hyperparameters was ran 10 times and the 10
corresponding learning curves plotted on the same graph to
get a ‘cost spread’ (i.e. how much the converged solution’s
MSE varied between PSO runs). A lower cost spread gave
greater reliability that PSO had converged on the best
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solution that it could find rather than getting stuck in a local
minimum.

To begin with, it was found that using dynamic PSO
whereby w, c1 and c2 were adapted at the beginning of each
generation led to multiple advantages. Firstly, the solution
found by 10 dynamic particles had the same MSE as that
found by 2,560 static particles, reducing the computation
time by a factor of 256. Secondly, the final driving signal
found by adaptive PSO was significantly less noisy since it
was less prone to local minima. Thirdly, the final MSE found
was 63% lower. Fourthly, although the relative cost spread of
dynamic PSO was 72% compared to 50% due to the lower
MSE, the absolute cost spread was just 8.7 × 10−13

compared to 140 × 10−13. Pursuing with dynamic PSO, it
was found that placing a ‘PISIC shell’ on the search space
(with shell w f = 0.1) beyond which the particles could
not travel led to an absolute cost spread of 6.9 × 10−13 and
a further 14% reduction in the final cost (despite initial costs
being higher due to the fact that PISIC signals lead to
greater overshoot and subsequently also greater oscillations).
Finally, it was also found that initialising one of the n
particle positions as a step driving signal improved the
convergence time by a factor of two. Using dynamic PSO, a
PISIC shell and an embedded step, the following
hyperparameter values were found to give the best spread,
final cost and convergence time: itermax = 150, n = 160,
max v f = 0.05, w(0) = 0.9, w(nt) = 0.5, cmin = 0.1,
cmax = 2.5, on s f = 2.0, and off s f = 0.2. This final
tuning resulted in a cost spread of just 1.8%. The evolution
of this PSO tuning process is summarised in Fig. 3, where
the learning curves for the above sets of hyperparameters
have been plotted in red, orange, blue and green respectively.
The final PSO SOA output, shown in Fig. 3, had a rise time,
settling time and overshoot of 669 ps, 669 ps and 3.7%
respectively. Fig. 3 also shows the optical response to a step
driving signal, showing a rise time, settling time and
overshoot of 669 ps, 4.85 ns and 31.1% respectively. Thus,
the simulations indicated that the settling time (and therefore
the effective off-on switching time) could be reduced by a
factor of 7.2 and the overshoot by a factor of 8.4 compared
to a step. Although rise time remained unimproved, the
experimental results section shows that, for a real SOA with
optical drift, PSO improves all three parameters.

B. Ant Colony Optimisation (ACO)

1) Implementation: ACO is primarily a path-finding
evolutionary algorithm modelled on observations of how ant
colonies find food sources in nature. As such, it optimises to
find an optimum path along nodes in a graph, G = {gi} by
means of probabilistic exploration, and colony exploitation
across generations of ants. A more comprehensive
explanation of ACO can be found in [34]. Of several ACO
variants, the ‘Ant Colony System’ algorithm was used in this
work.

Since ACO is typically applied to routing problems,
considerations must be made as to how to represent
parameter selection as such a problem. A system with N

parameters each having M possible values can be modelled
as a graph with |N | clusters of |M | nodes, where each node
maps to a possible value of a particular parameter. A path
can then be found that visits one node in each cluster,
defining a set of parameter values after each cluster has been
visited once and only once.

For example, consider an N = 3 parameter (a, b, c) system
where each parameter can take 1 of M = 2 possible values
which are selected in the order a→ b→ c. A (N×N)×(M×
M) matrix representing the probability of choosing a value for
one parameter, given a previous value choice for another, can
be written as in (8) where αxy

ij is the probability of choosing
value j for parameter y, given that value i for parameter x was
just chosen. Zeroing the matrix entries appropriately ensures
that parameter values are selected in order.

0 0 αab
00 αab

01 0 0
0 0 αab

10 αab
11 0 0

0 0 0 0 αbc
00 αbc

01

0 0 0 0 αbc
10 αbc

11

0 0 0 0 0 0
0 0 0 0 0 0

 (8)

2) Hyperparameter Tuning: The important
hyperparameters with respect to ACO (specifically the Ant
Colony System algorithm used here) are the pheromone
exponent (where higher values encourage more exploitation
of previously found paths), the evaporation exponent (where
higher values discourage exploitation of previously found
paths) and the probability of an ant travelling along a
randomly selected path. Additionally, the number of ants and
generations must be selected.

Parameters were tuned by means of running optimisation
routines with one hyperparameter varying across a range of
values and the rest kept constant. For each MSE value, the
learning curve from 10 different runs were plotted against
each other. Just as with PSO, parameter values were selected
to prioritise the minimisation of cost spread to ensure that
the optimisation technique could give consistent results when
used on different occasions. Firstly, it was found that beyond
200 ants, the cost spread did not improve significantly.
Similarly, regardless of the spread, the ACO routine was
typically converging after between 60 and 75 generations, so
a generation cap of 100 was imposed since this was
sufficient to guarantee convergence. The values for the other
parameters were the pheromone constant α = 0.25, the
evaporation constant ρ = 0.5 and the exploration probability
p = 0.1. It was also found that minimising the search space
by reducing the dynamic range of the signal to ±25%
centred at 50% of the maximum shortened convergence time
without degradation of the final signal, which had the
advantage of making matrices memory sizes manageable. No
further hyperparameters, such as the PISIC shell applied
with the PSO method, were utilised, which is more desirable
since fewer hyperparameters simplify the tuning process.

As seen in Fig. 3, the spread of the ACO routine was
reduced from 23% to 14.9% through tuning, but was still
less consistent than the 1.8% spread of the PSO algorithm.
Fig. 3 shows the convergence of the Ant Colony System
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(a) (b) (c)

(d) (e) (f)

Figure 3. Simulated SOA optical response to (a) PSO, (b) ACO, and (c) GA driving signals relative to a standard step input. For reference, the target SPs
used have also been plotted. Learning curves showing how both the cost spread and the optimum solution improved as the (d) PSO, (e) ACO, and (f) GA
algorithms were tuned, showing 10 learning curves for each set of hyperparameters. The curves for the optimum hyperparameters have been plotted in green.
For PSO in (d), some additional information has been plotted: i) No dynamic PSO, PISIC shell, or embedded step (red), ii) no PISIC shell or embedded step
(blue), iii) no embedded step (orange), and iv) the final PSO algorithm (green, also plotted on separate graph (inserted)). For GA, the i) default DEAP (red)
and ii) optimised (green) hyperparameter learning curves have been plotted. For ACO, the blue curve is for a run with a larger pheromone exponent (0.5)
value than the optimum, and the red is for a larger dynamic range on the signal search space (±50%).

algorithm for various hyperparameter combinations
(described in the figure’s caption). While the spread in the
early iterations of the routine is explained by the embedding
of a square signal in the PSO routine described above (since
it is very unlikely to randomly initialise a signal better than
a square and the ACO does not use any sort of initial signal
embedding), the spread in the later stages is thought to be
due to some practical limitations of the ACO optimisation
method. For N parameters with M values each, the ACO
routine requires 2 (N2 × M2) matrices (point-wise
multiplied to make a third). A 100 point signal with 100
possible values per point gives a matrix with 100, 000, 000
elements. Implemented with the popular NumPy Python
library, a minimum of 8 bytes per floating point means such
a matrix is on the order of gigabytes. Given the relatively
low power PC used in the experiment, restrictions on the
state space had to be imposed due to memory limitations.
This meant that rather than optimising each point on the
signal (240) with the maximum resolution allowed by the
AWG (8 bit = 256 points), only 180 points (those in the
HIGH state of the initial driving step signal) were optimised
with a resolution of 50 points. This means that the state
space viewed by the ACO routine was more strongly
discretised than that viewed by a method (such as PSO) with
lower memory requirements, limiting how optimum the
generated signal can be and how well ACO could generalise
to other SOAs. Nevertheless, as will be seen, the ACO still
produced driving signals that improved upon previous
methods. The final ACO tuning output, shown in Fig. 3, had

a rise time, settling time and overshoot of 753 ps, 1.58 ns
and 9.1% respectively.

C. Genetic Algorithm (GA)

1) Implementation: GAs are a group of nature-inspired
population-based metaheuristics. The term ‘Genetic
Algorithm’ relates to the model proposed by John Holland in
1975 [35]. A detailed explanation of GAs can be found in
[36].

The DEAP Python library [37] was used to implement the
canonical GA. Each optimisation started with an initial
population of 100 individuals with random positions in order
to span as much of the search space as possible. Each
individual was represented by an array of 240 points with
values within the 7V range, therefore representing a driving
signal.

During the evolutionary process, the mutation stage was
performed by applying Gaussian noise to some points of
each individual. Any individuals with points which went
beyond the supported 7V range were discarded.

2) Hyperparameter Tuning: As described in [36], there
are three parts to the evolutionary process: selection,
crossover, and mutation. Each of these can be implemented
in a few different ways (e.g. Proportionate, Ranking or
Tournament for selection [38]), and each of these
implementations use different hyperparameters (e.g.
tournsize for Tournament Selection; or µ, σ, and indpb for
Gaussian Mutation). This results in an overall high number
of hyperparameters which might significantly impact the
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probability of the GA getting stuck in a local minimum as
well as the speed of convergence. The high number of
hyperparameters also meant that there were more values to
fine-tune, which made tuning both more complex and time
consuming, thereby reducing its generalisability. Since the
high number of hyperparameters already impacted
generalisability, we refrained from restricting the search
space (as done with ACO and with the PSO PISIC shell) to
try to still allow for as much generalisability as possible, but
this would have the knock-on effect of poorer convergence
and a lesser settled signal. However, as demonstrated in Fig.
4, GA was still able to generalise fairly well to 10 different
SOAs.

The DEAP library documentation came with a set of
suggested default hyperparameter values. These were varied
using grid search over 61 optimisations. A limit on the
number of generations was set to 500, which was found to
be sufficient for convergence.

Mutation was implemented using Gaussian Mutation,
which has a probability indpb (mutation rate) of changing
each of an individual’s points by applying normally
distributed noise of mean µ and standard deviation σ. Using
a negative µ led to a solution with lower values, while a
positive µ did the opposite - each leading to a lower overall
performance, so µ was set to 0. Decreasing indpb or σ
slowed down the process as it reduced the overall mutation
speed, but increasing either one too much led to the GA
getting stuck at local minima. By performing grid search on
the hyperparameters, the optimal values were found to be
0.06 and 0.15 respectively. A population size of 60 led to the
fastest initial convergence speed (per number of fitness
function evaluations), however, the higher number of 100
individuals in a population led to a better overall solution
after many generations. Additionally, both cxpb (the
probability of mating two individuals), and mutpb (the
probability of mutating an individual), were increased
significantly from 0.6 to 0.9 and from 0.05 to 0.3
respectively. Increasing tournsize (which controls the
number of randomly selected individuals from which to
choose the best one for the next generation [39]) above 4 did
not have an impact on the convergence, whereas using the
values of 2 and 3 significantly slowed down the process.
Most hyperparameters did not change by much from the
DEAP library’s default values since the initial values were
almost optimal and changing them led to a slower
convergence.

Fig. 3 shows the 10 learning curves for the default hyper
parameters (red) and the optimised parameters (green), where
the cost spread was reduced from 58.6% to 10.8%. Fig. 3 also
shows the simulated SOA output of the tuned GA algorithm
with a rise time, settling time and overshoot of 799 ps, 2.55
ns, and 9.0% respectively.

The hyperparameters of the AI algorithms can be used to
address the general problem of ‘SOA optimisation’. This is
because the hyperparameters are only for restricting the
search space to reduce the size of the problem, and
restricting how much the algorithm can change its solution
between iterations; they are specific to the general SOA

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 4. Simulated SOA optical responses of 10 different SOAs (each with
a different transfer function) to (a) step, (c) PSO, (e) ACO, and (g) GA, and
the corresponding driving signals for (b) PSO, (d) ACO, and (f) GA. All AI
optimisations were done with the same hyperparameters and a common target
SP.

optimisation problem, but not to a specific SOA. The EC
simulation environment provided a useful test bed in which
to tune the algorithm hyperparameters and allow optimisation
of any SOA (even though drive signal solutions derived from
simulations are not directly transferable to experiment).

To test the above claim that these algorithms can in theory
be generalised to any SOA, we generate 10 different transfer
functions each modelling a different SOA. These were
generated by multiplying the coefficients in Table I by
various factors (summarised in Table II so as to be
reproducible), thereby simulating SOAs with different
characteristics. The optical outputs of these different SOAs
in response to the same step driving signal are shown in
Fig. 4. Using the PSO and GA algorithms with the same
hyperparameters, all 10 of these SOAs are able to be
optimised with no changes to the algorithms, as shown in
Fig. 4 (where the AI electrical drive signals have been
included for reference). Due to search space restrictions,
ACO could not generalise. For all 10 SOAs, a common
target set point was chosen. The set point was defined as a
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Table III
PERFORMANCE SUMMARY FOR THE TECHNIQUES APPLIED TO THE 10
DIFFERENT SIMULATED SOAS, GIVEN IN THE FORMAT MIN — MAX —

MEAN — STANDARD DEVIATION (BEST IN BOLD).

• Signals marked ‘-’ never settled.
Technique Rise Time (ps) Settling Time (ns) Overshoot (%)

Step 502, 753, 653, 86.4 3.1, -, 5.8, 3.0 16.5, 70.4, 39.2, 14.1
PSO 669, 837, 703, 58.5 0.67, 1.3, 0.87, 0.20 2.51, 6.01, 4.46, 1.22
ACO 502, 753, 644, 79.4 1.6, -, 2.6, 0.82 11.1, 70.4, 32.6, 17.0
GA 760, 930, 793, 58.5 1.0, 1.5, 1.3, 1.5 4.31, 9.36, 7.04, 1.54

perfect 0 overshoot, rise time and settling time step response
based on the steady states of the initial step response of one
of the simulated SOA’s. However, the target can be
arbitrarily defined by the user if a different optical response
is required, demonstrating the flexibility of the AI algorithms
to optimise optical outputs with respect to specific problem
requirements. Relative to this target set point, the
performances are summarised in Table III. Signals that did
not settle have been marked as ‘-’ and excluded from
performance summary metrics. PSO had the greatest
generalisability to optimising the settling times of different
SOAs. Researchers in our field should therefore be able to
black box our PSO AI approach and optimise their SOAs
even though they will have different equivalent circuit
components from the specific device(s) optimised in this
paper.

IV. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 5. An
INPhenix-IPSAD1513C-5113 SOA with a 3dB bandwidth of
69 nm, a small signal gain of 20.8 dB, a 0-140 mA bias
current range, a saturation output power of 10 dBm, a
response frequency of 0.6 GHz, and a noise figure of 7.0 dB
was used. An SHF 100 BP RF amplifier was selected by
calculating the amplified MSE relative to the direct signal for
different amplifiers, enabling a full dynamic range
peak-to-peak voltage of 7V. A 50Ω resistor was placed
before the SOA, allowing for the maximum allowed dynamic
current range of 140 mA to be applied across the SOA.

The 70 mA optimum SOA bias current was found by
measuring how MSE, optical signal-to-noise ratio (OSNR),
rise time, overshoot, and optical gain varied with current. A
70 mA bias using a -2.5 dBm SOA input laser power
produced the lowest rise time and MSE. The SOA was
therefore driven between 0 and 140 mA centred at 70 mA.
The other equipment used included a Lightwave 7900b
lasing system, an Agilent 8156A optical attenuator, an
LDX-3200 Series bias current source, a Tektronix 7122B
AWG with 12 GSPS sampling frequency, an Anritsu
M59740A optical spectrum analyser (OSA), and an Agilent
86100C oscilloscope (OSC) with an embedded photodiode.
The RF signal going into the SOA had a rise time of 180 ps,
therefore this was the best possible rise time (and settling
time) that the SOA could have achieved. Throughout the
experiments, a wavelength of 1,545 nm was used.

Figure 5. Diagram of the SOA experimental setup used.

Figure 6. Experimental SOA responses to the step, PISIC, MISIC1, raised
cosine and PID driving signals.

V. EXPERIMENTAL RESULTS

In this section the experimental results for the SOA
responses to step, PISIC, MISIC, raised cosine, PID and AI
driving signals have been compared. The objective was to
reduce the off-on switching time and power oscillations
(measured by the settling time and overshoot metrics).

A step driving signal was the simplest format used to drive
the SOA. Fig. 6 (which has been normalised with respect to the
steady state value as done in [18] for easy comparison) shows
the SOA optical response to a step driving signal, resulting in
a rise time, settling time and overshoot of 697 ps, 3.72 ns and
0.0% (since it undershot the steady state) respectively.

The PISIC format proposed by [17] was applied to the SOA
with 2.95V step + 4.05V impulse, and the response is shown in
Fig. 6 with a rise time, settling time and overshoot of 502 ps,
4.35 ns and 40.5% respectively. The form of the PISIC pulse
used was optimised for the SOA in use, where different step-
impulse voltage combinations (as done in [18]) were tested, as
well as varying widths of the pre-impulse section of the PISIC
signal as a percentage of the total signal length centered at the
percentage used in [18]. It was found that a 500ps pulse width
gave the best results.
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Table IV
COMPARISON OF SOA OPTIMISATION TECHNIQUES. (BEST IN BOLD).

• a Though exact value not reported in [20], it is referred to as being ‘below 500 ps’.
• b Comparison of the ASM mounting against the commercial STF mounting.
• c Exact value not reported in [20] so percentage improvement is (approximately) inferred from a graph presented in [20]. Comparison made at bias current value corresponding

to the best case performance of the best performing ASM mount + drive combination and is compared against the STF mount + drive at the same bias and for the same
drive (step was best performing in the reported metrics).

• d Comparison is made between the best and worst cases presented in [19].
• e Several variants of the ‘MISIC’ format were tested in [18] and the best is used here for comparison.
• f Comparison made with respect to the performance of the STEP driving signal presented in [18].

Method
(Technique)

Reference Rise Time, ps
(Reduction, %)

Settling Time, ps
(Reduction, %)

Overshoot, %
(Reduction, %)

Guard Time, ps
(Reduction, %)

PSO
(Signal Optimisation)

This work 454 ps
(35%)

547 ps
(85%)

5%
-

-
-

ACO
(Signal Optimisation)

This work 413 ps
(41%)

560 ps
(85%)

4.8%
-

-
-

GA
(Signal Optimisation)

This work 340 ps
(51%)

825 ps
(78%)

10.3%
-

-
-

PISIC
(Signal Optimisation)

This work 502 ps
(28%)

4350 ps
(-17%)

40.5%
-

-
-

MISIC1
(Signal Optimisation)

This work 502 ps
(28%)

4020 ps
(-8%)

undershot
-

-
-

Raised Cosine
(Signal Optimisation)

This work 921 ps
(-32%)

4690 ps
(-26%)

undershot
-

-
-

PID Control
(Signal Optimisation)

This work 501 ps
(28%)

4020 ps
(-8%)

2.3%
-

-
-

ASM Mounting + STEP
Drive

(Microwave Mounting
Optimisation)

[20] -
-

-
-

≈ 5% [c]

(≈ 75% [b,c])
≈ 500 ps [a]

(≈ 33% [b,c])

STEP Drive + Wiener
Filtering

(Signal Optimisation +
Filtering)

[19] -
-

-
-

-
-

286 ps
(60% [d])

PISIC Drive
(Signal Optimisation)

[18] 115 ps
(34% [f ])

-
-

25%
(-56% [f ])

-
-

MISIC-6 Drive [e]

(Signal Optimisation)
[18] 115 ps

(34% [f ])
-
-

12.5%
(22% [f ])

-
-

The MISIC 1-6 bit-sequences proposed by [18] were
applied with 2.95V step + 4.05V impulse, where the same
step-impulse voltage combinations were tested as for PISIC.
The format with the best performance was MISIC1, whose
response is shown in Fig. 6 with a rise time, settling time
and overshoot of 502 ps, 4.02 ns and 0.0% (undershot)
respectively.

A popular approach to optimising oscillating systems in
control theory is the raised cosine approach, whereby the
rising step for a signal of period T is adapted to a rising
cosine defined by the frequency-domain piecewise function
in (9). As β increases (0 ≤ β ≤ 1), the rate of signal rise
decreases. The best performing raised cosine was β = 0.5,
whose response is shown in Fig. 6 and whose rise time,
settling time and overshoot were 921 ps, 4.69 ns and 0.0%
(undershot) respectively.

H(f) =


1, if f ≤ 1−β

2T
1
2

[
1 + cos

(
πT
β

[
f − 1−β

2T

])]
, if 1−β

2T
< f ≤ 1+β

2T

0, otherwise
(9)

Another popular approach in control theory is the PID
controller. The optical response of the PID control signal is
shown in Fig. 6, with a rise time, settling time and overshoot
of 501 ps, 4.02 ns and 2.3% respectively. In order to quickly
obtain values for the 3 PID parameters, Kc,Ki and Kd, a

First Order Plus Dead Time (FOPDT) model was applied to
the SOA, where the key parameters for this model
(Kp, τp and θp) can be measured directly from the step
response of the device. The PID tuning parameter, τc, which
is inversely proportional to the magnitude of the response to
offset, was tested with values between that of an ‘aggressive’
tuning regime (τc ≈ 0.1) and a ‘conservative’ one
(τc ≈ 10.0). The results shown in Fig. 6 are with τc = 5.0
which was found to be the best performing value.

The PSO algorithm used in the simulation environment was
applied to the real SOA. The SP and the PSO response are
shown in Fig. 7, with a rise time, settling time and overshoot
of 454 ps, 547 ps and 5.0% respectively.

An ACO run with 200 ants accomplished a rise time, settling
time and overshoot of 413 ps, 560 ps and 4.8% respectively,
performing similarly well to the PSO algorithm. The ACO
result is shown in Fig. 7

Similarly, the GA result shown in Fig. 7 had a rise time,
settling time, and overshoot of 340 ps, 825 ps, and 10.3%
respectively. The rise times of the AI algorithms were an order
of magnitude improvement on the step’s, and the settling times
(and therefore the effective off-on switching time) were several
factors faster than the previous MISIC1 optimum from the
literature, bringing SOA switching times truly down to the
hundred ps scale. A scatter plot comparing these data is shown
in Fig. 9.
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(a) (b) (c)

Figure 7. Experimental results showing the optimised SOA optical outputs for (a) PSO, (b) ACO, and (c) GA.

(a) (b) (c)

Figure 8. Experimental results showing the optimised SOA electrical driving signal inputs for (a) PSO, (b) ACO, and (c) GA.

By comparison, PSO had the lowest settling time and
therefore the lowest overall switch time. We hypothesise that
this was due to the fact that PSO, being less memory-hungry
than ACO and having superior convergence properties
compared to GA as a result of having fewer hyperparameters
to fine-tune and a smaller search space with the PISIC shell,
was able to be given a better search space-hyperparameter
tuning trade-off, and therefore was able to find a more
optimum driving signal. This larger search space also
enabled PSO to explore a wider variety of drive signal
solutions without needing a large number of hyperparameters
tuned (which adds complexity), allowing PSO to generalise
to a more diverse set of SOAs than either ACO or GA were
able to. Therefore, although in theory all AI algorithms used
were powerful and generalisable, due to the number of
hyperparameters and search space restrictions that were
required in practice, PSO had both the best performance and
generalisability, although GA came close to matching PSO.

Table IV shows results (both absolute, and relative
improvement for cross-comparison) of the rise time, settling
time, overshoot and guard time for all methods implemented
in this work, as well as a variety from the literature. The
rows associated with [18] are the results for the optimised
PISIC and MISIC-6 signals defined and implemented in this
work. This is distinguished from the other two columns with
‘PISIC’ and ‘MISIC’ methods referred to as coming from
this work, which are a re-implementation of the methods
described in [18] but applied to and optimised for a different
experimental setup.

Finally, Fig. 8 shows the electrical drive signals found by
each algorithm. Whilst we stress that the main focus of this
paper is the method rather than the specific drive signal, the

Figure 9. Scatter plot comparing the experimental rise times, settling
times and overshoots of all the driving signals tested. The outlined target
region highlights the performance required for truly sub-nanosecond optical
switching.

drive signal is important for real-World implementation and
general understanding of the search space restrictions used.
As Fig. 8 shows, the derived driving signals are noisy
despite a smooth resultant optical output. This is likely
because the AWG (arbitrary waveform generator using an
8-bit digital to analogue converter) drive signal frequency
was 6 GHz offering 12 GSa/s whereas the SOA used had a
-3dB frequency response of 0.6 GHz, therefore we
over-sampled the drive signal by approximately 10x. In a
real DCN scenario, to implement our algorithms’ driving
signals in practice, we would likely use an FPGA or ASIC
with an embedded on-chip DAC for multilevel signal
generation, and there are already existing FPGAs (a.k.a. RF
System on Chip (RFSoC)) that support multiple DACs at 6



JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. X, NO. X, MARCH 2020 11

GSa/s. Therefore in practice the search space would be lower
(fewer dimensions/number of points to optimise) than
assumed in this paper, and we would expect this to improve
the AI convergence characteristics. Further experiments using
fewer points in the drive signal/a slower AWG are necessary
to see what the true effects are on the AI algorithms. This is
beyond the scope of this paper, and we intend to further
investigate it in our future work.

Within the context of a DCN implementation of the
presented methods, some considerations were made with
respect to the effect that the algorithms have on the signal to
noise ratio (SNR). Namely, it should be considered if the
oscillations caused by the algorithms (all of which are of the
order of 5%) have a negative effect on the SNR of the ON
period of the output, particularly in comparison to the output
of a step driving signal, where the ON period considered is
defined as starting when the signal enters the ±5% (with
respect to the steady state) region for a 20 ns pulse length.
Following from the model of amplifier noise given in [40]
and accounting for Shot noise, intrinsic amplifier noise (the
noise figure of the SOA) and the additional noise due to the
fluctuations in the output, we consider the penalty on the
noise figure (as defined in [40]) due to the deviations of the
output from its steady state value throughout the duration of
its ON period. Assuming (based on intrinsic and Shot noise
contributions) a base noise figure (i.e. if the driving method
caused no deviations at all) of 7.1dB, the measured noise
figure penalties for ACO, PSO, GA and step were 1.05 dB,
0.65 dB, 1.12 dB and 0.53 dB with SNR values of 28.52 dB,
28.90 dB, 28.54 dB and 29.06 dB respectively, showing that
the additional noise figure penalty due to the AI methods
ranges between 0.08 dB (PSO) and 0.59 dB (GA) compared
to a step in the case of the best performing algorithm (PSO).

VI. CONCLUSION

Simulation and experimental results of SOA off-on
switching were presented for various driving signal formats.
The paper outlined a novel approach to SOA driving signal
generation with AI algorithms which made no assumptions
about the SOA and therefore were general, required no
historic data collection and could be scaled to any
SOA-based switch, opening up the possibility of rapid
all-optical switching in real data centres. Experimental
settling times (and therefore effective off-on times) of 547 ps
were achieved using PSO, offering an order of magnitude
performance improvement with respect to settling time over
our implementation of the PISIC and MISIC techniques from
the literature. Additionally, the standard PID control and
raised cosine techniques from control theory were shown to
be inadequate for the problem of ultra-fast SOA switching.
Although ACO and GA demonstrated slightly faster rise
times than PSO, PSO had a faster settling time and also a
significantly lower 1.8% cost spread, giving greater
reliability that any given PSO run had found the optimum
solution. Furthermore, due to the fewer restrictions placed on
the search space and the lower number of fine-tuned
hyperparameters compared to ACO and GA, PSO was found

to be more easy to generalise to unseen SOAs. Future work
expanding on the presented methods could examine the
robustness of the method with respect to hardware
limitations/irregularities (e.g. temperature/bias current
variations, bit resolution of driving voltage values or the
sampling frequency of the AWG). Additionally, future work
could extend the method to a scenario consisting of multiple,
possibly cascaded, SOAs.
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C. Gagné, “Deap: Evolutionary algorithms made easy,” Journal of
Machine Learning Research, vol. 13, no. Jul, pp. 2171–2175, 2012.

[38] R. Sivaraj and T. Ravichandran, “A review of selection methods in
genetic algorithm,” International journal of engineering science and
technology, vol. 3, no. 5, pp. 3792–3797, 2011.

[39] B. L. Miller, D. E. Goldberg, et al., “Genetic algorithms, tournament
selection, and the effects of noise,” Complex systems, vol. 9, no. 3,
pp. 193–212, 1995.

[40] G. P. Agrawal, Fiber-optic communication systems. New York: Wiley-
Interscience, 2002.


