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Abstract

Systematic trading strategies are algorithmic procedures that allocate assets aiming to optimize a certain per-
formance criterion. To obtain an edge in a highly competitive environment, the analyst needs to proper fine-tune
its strategy, or discover how to combine weak signals in novel alpha creating manners. Both aspects, namely fine-
tuning and combination, have been extensively researched using several methods, but emerging techniques such
as Generative Adversarial Networks can have an impact into such aspects. Therefore, our work proposes the use
of Conditional Generative Adversarial Networks (cGANs) for trading strategies calibration and aggregation. To
this purpose, we provide a full methodology on: (i) the training and selection of a cGAN for time series data; (ii)
how each sample is used for strategies calibration; and (iii) how all generated samples can be used for ensemble
modelling. To provide evidence that our approach is well grounded, we have designed an experiment with multiple
trading strategies, encompassing 579 assets. We compared cGAN with an ensemble scheme and model validation
methods, both suited for time series. Our results suggest that cGANs are a suitable alternative for strategies
calibration and combination, providing outperformance when the traditional techniques fail to generate any alpha.
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1 Introduction

Systematic trading strategies are algorithmic procedures
that allocate assets aiming to optimize a certain perfor-
mance criterion. To obtain an edge in a highly competi-
tive environment, the analyst needs to proper fine-tune its
strategy, or discover how to combine weak signals in novel
alpha creating manners. Both aspects, fine-tuning and
combination, have been extensively researched in different
domains, with distinct emphasis and assumptions:

• Forecasting and Financial Econometrics: proper model
fine-tuning is also known as preventing Backtesting
Overfitting: partly due to the endemic abuse of back-
tested results, there is an increasing interest in de-
vising procedures for the assessment and comparison
of strategies [4, 20, 33]. Model/Forecasting combina-
tion is an established area of research [36], starting
with the seminar work of [5] in the 60s, and still
active [21].

• Computational Statistics and Machine Learning: model
tuning falls under the guise of Hyperparameter Op-
timization [13, 25] and Model Validation schemes [3,
24]; research on their interaction is scarce, and deal-
ing with dependent data scenarios is still an open
area of research [6,23]. Forming ensembles is a mod-
elling strategy widely adopted by this community,
being Random Forest and Gradient Boosting Trees
the two main workhorses of Bagging and Boosting
strategies [12,17].

In summary, proper model tuning and combination are
still an active area of research, in particular to depen-
dent data scenarios (e.g., time series). Emerging tech-
niques such as Conditional Generative Adversarial Net-
works [29] can have an impact into aspects of trading
strategies, specifically fine-tuning and to form ensembles.
Also, we can list a few advantages of such method, like:
(i) generating more diverse training and testing sets, com-
pared to traditional resampling techniques; (ii) able to
draw samples specifically about stressful events, ideal for
model checking and stress testing; and (iii) providing a
level of anonymization to the dataset, differently from
other techniques that (re)shuffle/resample data.

The price paid is having to fit this generative model for
a given time series. In this work we show how the training
and selection of the generator is made; overall, this part
tends to be less costly than the whole backtesting or en-
semble modelling process. Therefore, our work proposes
the use of Conditional Generative Adversarial Networks
(cGANs) for trading strategies calibration and aggrega-
tion. We provide evidence that cGANs can be used as
tools for model fine-tuning, as well as on setting up en-
semble of strategies. Hence, we can summarize the main
highlights of this work:

• We have considered 579 assets, mainly equities, but
we have also included swaps and equity indices, and
currencies data.

• Our findings suggest that cGAN can be an alterna-
tive to Bagging via Stationary Bootstrap, that is,

when bootstrap approaches have failed to outper-
form, cGAN can be employed for Stochastic Gradi-
ent Boosting or Random Forest.

• For model fine-tuning, we have evidence that cGAN
is a viable procedure, comparable to many other well
established techniques. Therefore, it should be con-
sidered part of the quantitative strategist toolkit of
validation schemes for time series modelling.

• A side outcome of our work is the wealth of results
and comparisons: to the best of our knowledge most
of the applied model validation strategies have not
yet been cross compared using real datasets and dif-
ferent models.

Therefore, in addition to this introductory section, we
structured this paper with other four sections. Next sec-
tion provides background information about GANs and
cGANs, how the training and selection of cGANs for time
series was performed, as well as their application to fine-
tuning and ensemble modelling of trading strategies. Third
section outlines the experimental setting (scenario, param-
eters, etc.) used for two case studies: fine-tuning and
combination of trading strategies. After this, section IV
presents the results and discussion of both case studies,
with section V exhibiting our concluding remarks and po-
tential future works.

2 Generative Adversarial Networks

2.1 Background

Generative Adversarial Networks (GANs) [18] is a mod-
elling strategy that employ two Neural Networks: a Gen-
erator (G) and a Discriminator (D). The Generator is
responsible to produce a rich, high dimensional vector at-
tempting to replicate a given data generation process; the
Discriminator acts to separate the input created by the
Generator and of the real/observed data generation pro-
cess. They are trained jointly, with G benefiting from D
incapability to recognise true from generated data, whilst
D loss is minimized when it is able to classify correctly
inputs coming from G as fake and the dataset as true.
Competition drive both Networks to improve their perfor-
mance until the genuine data is indistinguishable from the
generated one.

From a mathematical perspective, we start by defining
a prior pz(z) on input noise variables z, which will be used
by the Generator, denoted as a neural network G(z,ΘG)
with parameters ΘG, that maps noise to the data/input
space G : z → x. We also need to set the Discrimi-
nator, represented as a neural network D(x∗,ΘD), that
scores how likely is that x∗ was sampled from the dataset
(pdata(x) – D : x∗ → [0, 1]). As outlined before, D is
trained to maximize correct labelling, whilstG, in the orig-
inal formulation, is trained to minimize log(1−D(G(z))).
It follows from [18] that D and G play the following two-
player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] +

Ez∼pz(z)[log(1−D(G(z)))] (1)
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Overall, GANs have been successfully applied to image
and text generation [9]. However, some issues linked to
its training and applications to special cases [19, 34] have
fostered a substantial amount of research in newer archi-
tectures, loss functions, training, etc. We can classify and
summarise these new methods as of belonging to:

• Ensemble Strategies: train multiple GANs, with dif-
ferent initial conditions, slices of data and tasks to
attain; orchestrate the generator output by employ-
ing an aggregation operator (summing, weighted av-
eraging, etc.), from multiple checkpoints or at the
end of the training. Notorious instantiations of these
steps are the Stacked GANs [22], Ensembles of GANs
[39] and AdaGANs [37].

• Loss Function Reshaping: reshape the original loss
function (a lower-bound on the Jensen-Shannon di-
vergence) so that issues linked to training instability
can be circumvented. Typical examples are: employ-
ing Wasserstein-1 Distance with a Gradient Penalty
[2,19]; using a quantile regression loss function to im-
plicitly push G to learn the inverse of a cumulative
density function [30]; rewriting the objective func-
tion with a mean squared error form – now minimiz-
ing the χ2-distance [28]; or even view the discrimina-
tor as an energy function that assigned low energy
values to the regions of high data density, guiding
the generator to sample from those regions [41].

• Adjusting Architecture and Training Process: we
can mention Deep Convolutional GAN [32], in which
a set of constraints on the architectural topology of
Convolutional GANs are put in place to make the
training more stable. Also, Evolutionary GANs [38]
that adds to the training loop of a GAN different
metrics to jointly optimize the generator, as well as
employing a population of Generators, created by
introducing novel mutation operators.

Another issue, more associated to our work, is the han-
dling of time series since learning an unconditional model,
similar to the original formulation, works for image and
text creation/discovery. However, when the goal is to use
it for time series modelling, a sampling process that can
take into account the previous state space is required to
preserve the time series statistical properties (autocorre-
lation structure, trends, seasonality, etc.). In this sense,
next subsection deals with Conditional GANs [29], a more
appropriate modelling strategy to handle dependent data
generation.

2.2 Conditional GANs

As the name implies, Conditional GANs (cGANs) are an
extension of a traditional GAN, when both G and D de-
cision is based not only in noise or generated inputs, but
include an additional information set v. For example, v
can represent a class label, a certain categorical feature, or
even a current/expected market condition; hence, cGAN
attempts to learn an implicit conditional generative model.
Such application is more appropriate in cases where the

data follows a sequence (time series, text, etc.) or when
the user wants to build ”what-if” scenarios (given that
S&P 500 has fallen 1%, how much should I expect in basis
points change of a US 10 year treasury?).

Most of the applications of cGANs related to our work
have centred in synthesizing data to improve supervised
learning models. The only exception is [42], where the au-
thors use a cGAN to perform direction prediction in stock
markets. Works [11, 16] deal with the problem of imbal-
anced classification, in particular to fraud detection; they
are able to show that cGANs compare favourably to other
traditional techniques for oversampling. In [15], the one
that is closest to our work, the authors propose to use
cGANs for medical time series generation and anonymiza-
tion. They used cGANs to generate realistic synthetic
medical data, so that this data could be shared and pub-
lished without privacy concerns, or even used to augment
or enrich similar datasets collected in different or smaller
cohorts of patients.

Formally, we can define a cGAN by including the con-
ditional variable v in the original formulation. Therefore,
now G : z × v → x and D : x∗ × v → [0, 1], as before
D is trained to maximize correct labelling, whilst G, in
the original formulation, is trained to minimize log(1 −
D(G(z|v))). Similarly, it follows from [29] that D and G
play the following two-player minimax game with value
function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|v)] +

Ez∼pz(z)[log(1−D(G(z|v)))] (2)

in our case, given a time series y1, y2, ..., yt, ..., yT , our
conditional set is v = (yt−1, yt−2, ..., yt−p) and what we
are aiming to sample/discriminate is x = yt (with pdata
(yt|yt−1, ..., yt−p)). In this sense, p sets the amount of past
information that is considered in the implicit conditional
generative model. If p = 0, then a traditional GAN will
be trained; if p is large, than the Neural Network have a
larger memory, but it will need bigger capacity to model
and deal with selecting the right past values and dealing
with noise vector z; experimental setting section outline
the values we have used during our experiments.

2.3 Training and Selecting Generators for
Time Series

With the addition of the conditional vector v, training
cGANs is akin to GANs; what substantially change is how
the right architecture is chosen across the training. Al-
gorithm 1 detail a minibatch stochastic gradient descent
Training and Selecting of cGANs.

params represents a set of hyperparameters that the user
has to define before running cGAN Training. It mainly
encompasses: G and D architectures, number of lags p,
noise vector size and prior distribution, minibatch size L,
number of epochs, snapshot frequency (snap), number of
samples C, and parameters associated to the stochastic
gradient optimizer; all of them are specified in the Exper-
imental Setting section (see Table 2).

Selecting the right cGAN during the training is a dif-
ficult task, since it is computationally expensive to every
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Algorithm 1 cGAN Training and Selection

1: procedure cGAN([y1, ..., yT ], params)
2: for number of epochs do
3: Sample minibatch of L noise samples {z(1), ..., z(L)} from noise prior pz(z)
4: Sample minibatch of L examples {(yt; yt−1, ..., yt−p)

(1), ..., (yt; yt−1, ..., yt−p)
(L)} from pdata(yt|yt−1, ..., yt−p)

5: Update the discriminator by ascending its stochastic gradient:

∇ΘD

1

L

L∑
l=1

[
logD(y

(l)
t |y

(l)
t−1, ..., y

(l)
t−p) + log(1−D(G(z(l)|y(l)

t−1, ..., y
(l)
t−p)))

]
6: Sample minibatch of L noise samples {z(1), ..., z(L)} from noise prior pz(z)
7: Update the generator by ascending its stochastic gradient:

∇ΘG

1

L

L∑
l=1

[
log(D(G(z(l)|y(l)

t−1, ..., y
(l)
t−p)))

]
8: if rem(epoch, snap) == 0 then
9: Gk ← G, Dk ← D . store current G, D as Gk, Dk

10: for c← 1, C do . draw C samples from Gk
11: for t← p+ 1, T do . generate time series
12: sample noise vector z ∼ pz(z)
13: draw y∗t = Gk(z|yt−1...., yt−p)
14: end for
15: Measure cGAN sample goodness-of-fit (akin to chi-square distance):

RMSEc =

√√√√ 1

T − p− 1

T∑
p+1

(yt − y∗t )2

16: end for
17: Average of all samples: RMSE(Gk) = 1

C

∑C
c=1RMSEc

18: end if
19: end for
20: return G := argminGk RMSE(Gk), D := argminGk RMSE(Gk)
21: end procedure

(a) (b) (c)

Figure 1: RMSE curves, considering a range of snapshot frequencies and number of samples.

iteration draw multiple samples and evaluate them. An
approximation that we considered was to add a snapshot
frequency in which every snap iterations G and D weights
are store. This parameter plays a relevant role in regu-
lating the available number of cGANs to draw samples,
evaluate and select. To illustrate the selection part of Al-
gorithm 1, Figure 1 presents a sensibility analysis of it to
SPX Index.

Overall, after a sharp decrease in the first 2000 epochs
we observe a stabilization of RMSE to the 0.018 level.
Drawing more samples improve estimation, but the gain
is almost imperceptible from 20 to 100 samples. Snapshot
frequency is an important parameter, with a noticeable
difference between 100 to 2500, but without much change
moving from 100 to 500. Number of samples draw from G
and the snapshot frequency are also reported in the Ex-
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(a) (b) (c)

(d) (e) (f)

Figure 2: SPX Index log-returns (a-c) from cGAN in different epochs, with their respective cumulative returns (d-e).

perimental Setting section. Figure 2 presents SPX Index
samples (a-c) from cGAN and their respective cumulative
returns (d-e)1 in different stages of training: 200, 1000 and
5000 epochs.

Clearly, with just a 200 epochs the samples generated
do not resemble well the index, whilst with 1000 the results
are closer. For SPX Index, not much improvement was ob-
served after 1000-2000 epochs. Although the samples still
appear similar to the index, some issues related to scal-
ing and presence of overshoots in the prediction damaged
the RMSE values. Figure 3 look into the estimated auto-
correlations (ACF) and partial autocorrelations (PACF)
functions using samples of cGAN with 1000 epochs. With
few exceptions, most of the observed ACF and PACF val-
ues were in the neighbourhood of the average of several
cGAN samples, with the confidence interval (CI) cover-
ing most of the 63 lags; this anecdotal evidence suggest
that our cGAN Training and Selection Algorithm is able
to replicate to a certain extent some statistical properties
of a time series, in particular its ACF and PACF. The
proper evidence toward this last assertion are provided in
our case studies.

A final note: we have adopted the Root Mean Square
Error as the loss function between the generator samples
and the actual data, however nothing limits the user to use
another type of loss function. In the next two subsections
we outline new applications that can be made using the
cGAN generator: fine-tuning and combination of trading
strategies.

1We are highlighting this period in particular because our analy-
ses and results concentrated on taking samples from 2001-2013.

(a)

(b)

Figure 3: Autocorrelations (a) and partial autocorrela-
tions (b) for SPX Index using a cGAN with 1000 epochs.
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2.4 cGAN: Fine-Tuning of Trading Strate-
gies

Fine-tuning of trading strategies consists of identifying a
suitable set of hyperparameters such that a desired goal
is attained. This goal depends on what is the utility func-
tion P that the quantitative analyst is targeting: outper-
formance during active trading, hedging a specific risk,
reaching a certain level of risk-adjusted returns, and so
on. This problem can be decomposed into two tasks –
model validation and hyperparameter optimization – that
are strongly connected. Using [7] as the initial step, given
a(n):

• finite set of examples X(train) draw from a probabil-
ity distribution px(x)

• set of hyperparameters λ ∈ Λ, such as number of
neurons, activation function of layer j, etc.

• utility function P to measure a trading strategy Sλ
performance in face of new samples from px(x)

• trading strategy Mλ with parameters θ identifiable
by an optimization of a training criterion, but only
spotted after a certain λ is fixed

mathematically, a trading strategy is fine-tuned prop-
erly if we are able to identify:

λ∗ = argmax
λ∈Λ

Ex∼px [P (x;Mλ(X(train)))] (3)

that is, the optimal configuration for Mλ∗ that maximizes
the generalization of utility P . In reality, since drawing
new examples from px is hard, and Λ could be extremely
large, most of the work in hyperparameter optimization
and model validation is done by a double approximation:

λ∗ = argmax
λ∈Λ

Ex∼px [P (x;Mλ(X(train)))] ≈

arg max
λ∈{λ1,λ2,...,λm}

Ex∼px [P (x;Mλ(X(train)))] ≈ (4)

arg max
λ∈{λ1,λ2,...,λn}

meanx∈X(val) [P (x;Mλ(X(train)))] (5)

the first approximation (eq. 4) is discretizing the search
space of λ (hopefully including λ∗) due to finite amount of
computation. There are better ways to do this search, such
as using Evolution Strategies [25] or Bayesian Optimiza-
tion [13], but this is not the focus of our work. The second
approximation (eq. 4) replaces the expectation over sam-
pling from px, by an average over validation sets X(val).
Creating proper validation sets have been the focus of a
substantial amount of research:

• when x1, ...,xn are sampled independently and iden-
tically distributed (iid), techniques such as k-fold-
cross-validation [6] and iid bootstrap [3] can be em-
ployed to create both X(train) and X(val).

• when x1, ...,xn are not iid, then modifications have
to be employed in order to create X(train) and X(val)

adequately. In itself, it is an ongoing research topic,
but we can mention the block-cross-validation and
hv-block-cross-validation [31], sliding window [3], one-
split (single holdout) [3], stationary bootstrap [24],
as potential candidates.

in this work we follow a different thread: we attempt to
build an approximation of drawing new examples from px
using a cGAN. Algorithm 2 outlines the steps followed to
fine-tune a trading strategy using a cGAN generator.

Algorithm 2 Fine-tuning trading strategies using cGAN

1: procedure cGAN([y1, ..., yT ], params)
2: . train and select a cGAN for a time series y1, ..., yT
3: return G,D
4: end procedure
5: procedure cGAN-Fine-tuning(G, [y1, ..., yT ], B)
6: for λ← λ1, ..., λm do
7: for b← 1, B do
8: for t← p+ 1, T do
9: sample noise vector z ∼ pz(z)

10: draw y∗t = G(z|yt−1...., yt−p)
11: end for
12: train data: X(train) := (y∗p+1, ..., y

∗
T−h)

13: fit trading strategy: M
(b)
λ (X(train))

14: val data: X(val) := (y∗T−h+1, ..., y
∗
T )

15: perf: s
(b)
λ = P (X(val);M

(b)
λ (X(train)))

16: end for
17: average: perf(λ) = (1/B)

∑B
b=1 s

(b)
λ

18: end for
19: return argmaxλ∈{λ1,λ2,...,λm} perf(λ)
20: end procedure

Hence, we train a cGAN and use the generator G to
draw B samples from the time series. For every sample, we
perform an one-split to create X(train) and X(val), so that
we are able to identify Mλ parameters λ and assess a set of
hyperparameters λ. Following eq. (5), we return the hy-
perparameter λ∗ that maximize the average performance
across the cGAN samples. The one-split method has one
parameter h which sets the holdout set size; its value is
specified in the experimental setting section. We com-
pared our methodology results with other schemes that
produce X(train) and X(val) from a given dataset. Next
subsection outline another use of the cGAN generator: en-
semble modelling.

2.5 cGAN: Sampling and Aggregation

Another potential use of cGAN is to build an ensem-
ble of trading strategies, that is, using base learners that
are individually ”weak” (e.g. Classification and Regres-
sion Tree), but when aggregated can outcompete other
”strong” learners (e.g., Support Vector Machines). Noto-
rious instantiations of this principle are Random Forest,
Gradient Boosting Trees, etc., techniques that make use
of Bagging, Boosting or Stacking [12,17]. In our case, the
closest parallel we can draw to cGAN Sampling and Aggre-
gation is Bagging. Algorithm 3 shows this method. After
have trained and selected a cGAN, we repeatedly draw a
cGAN sample and train a base learner; having proceed
this way for b = 1, ..., B steps we return the whole set of
base models as an ensemble.

An argument that is often used to show why this scheme
work is the variance reduction lemma [17]: let Ŷ1, ..., ŶB
be a set of base learners, each one trained using distinct
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Algorithm 3 cGAN Sampling and Aggregation

1: procedure cGAN([y1, ..., yT ], params)
2: . train and select a cGAN for a time series y1, ..., yT
3: return G,D
4: end procedure
5: procedure cGAN-Sample-Agg(G, [y1, ..., yT ], B)
6: for b← 1, B do
7: for t← p+ 1, T do
8: sample noise vector z ∼ pz(z)
9: draw y∗t = G(z|yt−1...., yt−p)

10: end for
11: train base learner: M

(b)
λ (y∗p+1, ..., y

∗
T )

12: end for
13: return ensemble M

(1)
λ , ...,M

(B)
λ

14: end procedure

samples draw repeatedly from the cGAN generator. Then,
if we average their predictions and analyse its variance we
have:

V
[ 1

B

B∑
b=1

Ŷb

]
=

1

B2

( B∑
b=1

V[Ŷb] + 2

B∑
1≤b≤j≤B

C[Ŷb, Ŷj ]
)

(6)

if we assume, for analytical purpose, that V[Ŷb] = σ2 and
C[Yb, Yj ] = ρσ2 for all b, that is, equal variance σ2 and
average correlation ρ, this expression simplifies to:

V
[ 1

B

B∑
b=1

Ŷb

]
= σ2

( 1

B
+
B − 1

B
ρ
)
≤ σ2 (7)

hence, we are able to reduce a base learner variance by
averaging many slightly correlated predictors. By Bias-
Variance trade-off [12, 17], the ensemble Mean Squared
Error tend to be minimized, particularly when low bias
and high variance base learners are used, such as deep De-
cision Trees. Diversification in the pool of predictors is
the key factor; commonly it is implemented by taking B
iid bootstrap samples from a dataset. When dealing with
time series, iid bootstrap can corrupt its autocorrelation
structure, and taking B stationary bootstrap samples [24]
is preferred. Bagging predictors using stationary boot-
strap is, therefore, the appropriate benchmark to compare
cGAN Sampling and Aggregation. The method that is
able to produce Ŷb and Ŷj with low σ2 and as slightly cor-
related as possible, will tend to outperform out-of-sample.
A final note: one potential risk is that cGAN is unable to
replicate well pdata. Therefore, thought the samples are
more diverse they are also more ”biased”. This can make
the base learners to miss patterns displayed in the real
dataset, or even spot ones that did not existed in the first
place.

3 Experimental Setting

3.1 Datasets and Holdout Set

Table 1 presents aggregated statistics associated to the
datasets used, whilst Figure 4 illustrates the cumulative
returns per asset pool. We have considered three main as-
set classes during our evaluation: equities, currencies, and

fixed income. The data was obtained from Bloomberg,
with the full list of 579 assets tickers and period available
at https://www.dropbox.com/s/08mjq7z49ybftqg/cgan_
data_list.csv?dl=0. The typical time series started on
03/01/2000 and finished at 02/03/2018, with an average
length of 4565 data points. We converted the raw prices
in excess log returns, using a 3-month Libor rate as the
benchmark rate.

Figure 4: Cumulative returns aggregated across asset
pool. Before being averaged, each individual asset was
volatility scaled to 10%

We have established a testing procedure to assess all
the different approaches spanned in this research. Fig-
ure 5 summarize the whole procedure. The process start
by splitting a sequence of returns r1, ..., rT in a single
in-sample/training (IS) and out-sample/testing/holdout
(OS) set, with both sets sizes being determined by the
trading horizon h. During our experiments we have fixed
h = 1260 days ≈ 5 years. Every method used or cGAN
trained tap only into the IS data. Some methods, such
as the other Model Validation schemes will create training
and validation sequences, but all of them only based on
IS set. However, the data used to measure their success
is the same: by computing a set of metrics using the fixed
OS set.

Figure 5: One-split/single holdout approach to assess all
approaches in this work. During our experiments we have
fixed h = 1260 days ≈ 5 years.
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Table 1: Aggregated statistics of the assets used during our empirical evaluation.

Asset Pool* N Avg Return Volatility Sharpe ratio Calmar ratio Monthly skewness VaR 95%

All Assets 579 0.0220 0.0453 0.4854 0.1051 -1.2169 -0.9443
World Equity Indices 18 0.0152 0.0717 0.2114 0.0504 -0.8170 -1.0048
S&P 500, FTSE 100
and DJIA Equities

491 0.0251 0.0525 0.4785 0.1127 -1.1133 -0.9517

World Swaps Indices 48 -0.0191 0.0446 -0.4295 -0.0458 0.0275 -0.9753
Rates Aggregate In-
dices

16 0.1220 0.0637 1.9135 0.5504 -0.8227 -0.9440

World Currencies 24 -0.0025 0.0315 -0.0798 -0.0157 -1.0052 -0.8856

* Before being averaged, each individual asset was volatility scaled to 10%

3.2 Performance Metrics

This subsection outline the utility function employed. We
opted for a financial performance metric, instead of a generic
metric based in prediction error. Low prediction error is
a necessary, but not a sufficient condition to construct
alpha-generating trading strategies [1]. In this sense, we
mainly reported Sharpe and Calmar ratios: metrics that
combine risk and reward measures, and make different in-
vestment strategies comparable [14,35,40]. These metrics
can be defined as:

SR =
R̄(M)

σ
(M)
R

and CR =
R̄(M)

−MDD(R(M))
(8)

where R̄(M) is the strategy average annualized excess re-

turns, σ
(M)
R is it volatility, and MDD(R(M)) is the strat-

egy maximum drawdown. All of them are calculated using

the strategy instantaneous returns r
(M)
t = rt · f(r̂t) as the

building block. In this case, f(r̂t) is our trading signal,
a transformation f of the estimated returns r̂t outputted
by a predictive model. We opted to use an identity func-
tion for f(r̂t) = r̂t so we can avoid having another layer
of hyperparameters; in practice an user can select another
transformation.

Finally, it should be mentioned that most of our re-
ported results are aggregated across all 579 assets. Al-
though the ratios provide a common basis to compare
strategies with different risk profiles, still, the asset pool
is quite diverse and is affected by outliers. Hence, we
opted for robust statistics (median, mean absolute devia-
tion, quantiles, ranks, etc.) to compare and statistically
test the different hypothesis2.

3.3 cGAN Configuration

Table 2 outlines the three different architectures used forG
and D of a cGAN. Since the main variation is the number
of neurons used, we abbreviated their names across the
cases as cGAN-Small, cGAN-Medium and cGAN-Large.
This variation will allow us to check how different archi-
tecture sizes perform across the benchmarks.

After a few initial runs, we opted for Stochastic Gradi-
ent Descent with learning rate of 0.01 and batch size of 252
as the optimization algorithm. Input features and target

2The readers interested to understand more about the nonpara-
metric statistical tests used in this work – Friedman, Holm Correc-
tion and Wilcoxon rank-sum test – should consult this reference [10].

Table 2: Configurations used to train and select the
cGANs.

Abbreviation Individual Configuration
cGAN-Small (G, D) number of neurons = (5, 5)
cGAN-Medium (G, D) number of neurons = (100,

100)
cGAN-Large (G, D) number of neurons = (500,

500)

Other Configuration Values
Architecture Multilayer Perceptron
Number of hidden layers 1
Hidden layer activation func-
tion

rectified linear

G Output layer activation
function

linear

D Output layer activation
function

sigmoid

Epochs 20000
Batch Size 252
Solver Stochastic Gradient Descent
Solver Parameters learning rate = 0.01
Conditional info rt−1, rt−2, ..., rt−252 (p = 252)
Noise prior pz(z) N(0, 1)
Noise dimension dim(z) 252
Snapshot frequency (snap) 200
Number of samples for evalua-
tion

C = 50

Input features scaling function Z-score (standardization)
Target scaling function Z-score (standardization)

were scaled using a z-score function to ease the training
process. We selected the right cGAN to use by taking
snapshots every 200 iterations (snap = 200), drawing and
evaluating 50 samples per generator along 20000 epochs.
Finally, we used 252 consecutive lags as conditional infor-
mation (around one year) with the noise prior (Standard
Normal - N(0, 1)) wielding the same dimension of the con-
ditional input; we did it to increase the chance to create
a more diverse pool of examples, as well as to make it
harder for the generator to omit/nullify the weights asso-
ciated with this part of the input layer.

3.4 Case I: Combination of Trading Strate-
gies

3.4.1 Overview

This case evaluates the success of different combination
of trading strategies. In this sense, Algorithm 4 presents
the main loop used for cGANs and Stationary Bootstrap.
First step is to resample the actual returnsRS(r1, ..., rT−h)
using Stationary Bootstrap or cGAN, creating a new se-
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quence of returns {r∗1 , ..., r∗T−h} = X(train) set. We then

proceed as usual: use X(train) to train a base learner M
(b)
λ ,

and add it to the ensemble set ES All of these steps are re-
peated B times. Finally, we can propagate the OS feature
set through the ensemble ES, get the aggregated predic-
tion, and compute its performance within this holdout set.

Algorithm 4 Generic loop for combination of strategies

1: for b← 1, B do
2: X(train) := {r∗1 , ..., r∗T−h} = RS(r1, ..., rT−h)

3: fit trading strategy: M
(b)
λ (X(train))

4: add to ensemble: ES ←M
(b)
λ (X(train))

5: end for
6: test ensemble: P (rT−h, ..., rT ;Agg(ES))

3.4.2 Methods and Parameters

Table 3 presents the instantiations of RS, Mλ, and Agg of
Algorithm 4. The main competing method is the Station-
ary Bootstrap; for all RS schemes, we have taken different
number of resamples B, so that we could compare the ef-
ficiency for different sizes of the ensemble. We used two
main base learners: a deep Regression Tree and a large
Multilayer Perceptron. The main idea was to follow the
usual principle of using low bias and high variance base
learners. We employed a fixed feature set of 252 consec-
utive lags, and averaged the prediction of all members.
Therefore, we can describe the main hypothesis as: which
resampling scheme RS is able to create a set of trading

strategies ES = {M (1)
λ , ...,M

(B)
λ } that in aggregate man-

age to outcompete during the OS period?

Table 3: Main configuration used for Case I: Combination
of Trading Strategies.

Resampling Scheme (RS) Parameters
Stationary Bootstrap [24] B = {20, 100, 500} samples

and block
size = 20

cGAN-Small B = {20, 100, 500} samples
cGAN-Medium B = {20, 100, 500} samples
cGAN-Large B = {20, 100, 500} samples

Trading Strategy (Mλ) Hyperparameters (λ)
Regression Tree (Reg Tree) [12] unlimited depth, with mini-

mum number of samples re-
quired to split an internal node
of 2

Multilayer Perceptron (MLP)
[12]

number of neurons = {200},
weight decay = {0.00001} and
activation function = {tanh}

Other details Values
Number of lags used as features rt−1, rt−2, ..., rt−252

Aggregation function (Agg) Mean

3.5 Case II: Fine-tuning of Trading Strate-
gies

3.5.1 Overview

This case evaluates the success of different fine-tuning
strategies, in particular those that create X(train) and

X(val) sets for time series. In this sense, Algorithm 5
presents an unified loop used regardless of the method-
ology employed: from data splitting, hyperparameter se-
lection, and performance calculation.

Algorithm 5 Generic loop for fine-tuning of trading
strategies

1: for b← 1, B do . All training and validation folds
2: X(train),X(val) := MV (r1, ..., rT−h)
3: for λ← λ1, ..., λm do

4: fit trading strategy: M
(b)
λ (X(train))

5: check strategy: s
(b)
λ =

P (X(val);M
(b)
λ (X(train)))

6: end for
7: end for
8: for λ← λ1, ..., λm do

9: average across sets: perf(λ) = (1/B)
∑B
b=1 s

(b)
λ

10: end for
11: opt hyperparam: λ∗ :=

argmaxλ∈{λ1,λ2,...,λm} perf(λ)

12: fit trading strategy: Mλ∗(X(train) := r1, ..., rT−h)
13: test trading strategy:

P (rT−h, ..., rT ;M
(b)
λ (X(train)))

It start by splitting the IS = {r1, ..., rT−h} set in
X(train) and X(val) using a Model Validation methodology
MV – one-split, stationary bootstrap, cGAN, etc. Then,
for every hyperparameter λ1, ..., λm, we fit a trading strat-

egy (e.g., Multi-layer Perceptron - M
(b)
λ ) that aims to pre-

dict rt using lagged information rt−1, ..., rt−p as the feature

set. We check the strategy performance s
(b)
λ using a val-

idation set X(val) and an utility function P (e.g., Sharpe
ratio). This process is repeated for all training and val-
idation sets (B). Then, we measure the worthiness of a
hyperparameter λ (e.g., (number of neurons, weight de-
cay) = (20, 0.05)) by averaging its performance across the
validation folds perf(λ); the optimal configuration is the
one that maximizes the expected utility. Using this hy-
perparameter, a final model is fitted and tested using OS
set.

3.5.2 Methods and Parameters

Table 4 presents the instantiations of MV , Mλ, λ and P
of Algorithm 5.

Apart from the three different architectures of cGANs,
the competing methods to cGAN for fine-tuning trad-
ing strategies are: naive (training and validation sets are
equal), one-split and sliding window; block, hv-block and
k-fold cross-validation; stationary bootstrap. Hence, the
main hypothesis is: given a trading strategy Mλ, which
MV mechanism is able to uncover the best configuration
λ to apply during the OS period? We search for an an-
swer to this hypothesis using linear and nonlinear trading
strategies (Ridge Regression, Gradient Boosting Trees and
Multilayer Perceptron). We used the Sharpe ratio as the
utility function, grid-search as the hyperparameter search
method, and a fixed feature set consisting of 252 consecu-
tive lags.
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Table 4: Main configuration used for Case II: Fine-tuning
of trading strategies.

Model Validation (MV ) Parameters

Naive (X(val) = X(train)) -
Sliding window [3] stride and window sizes = 252

days
Block cross-validation [31] block size = 252 days
hv-Block cross-validation [31] block size = 252 days and

gap size = 10 days

One-split/Holdout/Single split
[3]

X(val) = last 1260 days

k-fold cross-validation [6] k = 10 folds
Stationary Bootstrap [24] B = 100 samples and

block size = 20
cGAN-Small B = 100 samples
cGAN-Medium B = 100 samples
cGAN-Large B = 100 samples

Trading Strategy (Mλ) Hyperparameters (λ)
Gradient Boosting Trees
(GBT) [12]

number of trees =
{50, 100, 200}, learning rate =
{0.0001, 0.001, 0.01, 0.1, 1.0}
and maximum depth =
{1, 3, 5}

Multilayer Perceptron (MLP)
[12]

neurons = {20, 50, 100, 200},
weight decay = {0.001, 0.01,
0.1, 1.0} and activation func-
tion = {tanh}

Ridge Regression (Ridge) [12] shrinkage = {0.00001, 0.00005,
0.0001, 0.0005, 0.001, 0.005,
0.01, 0.05, 0.1, 0.5, 1.0}

Other details Values
Number of lags used as features rt−1, rt−2, ..., rt−252

Hyperparameter search Grid-search or Exhaustive
search

Utility function P Sharpe ratio

4 Case Studies

4.1 Case I: Combination of Trading Strate-
gies

Table 5 presents the median and mean absolute devia-
tion (MAD - in brackets) results of ensemble strategies in
the OS set. Starting with Regression Tree (Reg Tree),
we observe that the median Sharpe and Calmar ratios of
cGAN-Large was higher across distinct number of base
learners (B = 20, 100, 500). In fact, it was already twice
as much of Stationary Bootstrap (Stat Boot), even when
the number of samples was smaller (B = 20); after this
point some gain can still be obtained, but it seems that
most of the diversification effect had already been realised.
A different picture can be draw for Multilayer Perceptron
(MLP): in this case Stat Boot produced better median
Sharpe and Calmar ratios across the assets, with some
exceptions when B = 20.

Looking into cGAN results, often the configuration
cGAN-Large performed better, whilst in the other side
of the spectrum cGAN-Small underperforming. Overall,
our results suggest that using a high capacity MLP as the
Generator/Discriminator helps to produce a Resampling
Strategy that favours the training of base learners. We
also reported the Root Mean Square Error (RMSE) since
it is usual to report it for Ensemble Strategy. Numeri-
cally, they were very similar, nevertheless cGAN-Medium
obtained the best values across B and trading strategies.

(a)

(b)

Figure 6: Scatterplot of Sharpe ratio (a) and RMSE (b)
values obtained using cGAN-Large and Stat Boot across
579 assets.

Except for RMSE, MAD values were high for Sharpe
and Calmar ratios across the different combinations. Hence
in aggregate, any numerical difference can become imper-
ceptible from statistical lens. Table 6 shows if some of the
differences raised about the values in Table 5, only between
cGAN-Large and Stat Boot, are statistically significant
or not. Overall, apart from RMSE, p-values of Wilcoxon
rank-sum test were in general above 0.05 (significance level
adopted), meaning that the differences observed were not
substantial across models, number of samples, and Sharpe
or Calmar ratios.

In principle, so far it seems that there is little differ-
ence between cGAN-Large and Stat Boot, across models,
metrics and number of samples. However, this equivalence
in aggregate often do not manifest itself at the micro level.
Figure 6 presents this analysis: plotting the Sharpe ratio
and RMSE obtained for every asset using cGAN-Large and
Stat Boot (B = 500). For RMSE there is an almost perfect
correlation – when cGAN-Large thrives, Stationary Boot-
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Table 5: Median and Mean Absolute Deviation (MAD) results of Trading and Ensemble Strategies on the OS set.

Trad Strat Metric B
Ensemble Strategy

Stat Boot cGAN-Small cGAN-Medium cGAN-Large

Reg Tree

Sharpe
20 0.042560 (0.380039) 0.053867 (0.378896) 0.044741 (0.380228) 0.080540 (0.360695)
100 0.062837 (0.378920) 0.058820 (0.387749) 0.030588 (0.390575) 0.086423 (0.406171)
500 0.074116 (0.397212) 0.067905 (0.392788) 0.072071 (0.392382) 0.098094 (0.424621)

Calmar
20 0.019442 (0.230641) 0.022619 (0.201044) 0.018987 (0.200625) 0.035473 (0.191353)
100 0.027235 (0.241023) 0.024254 (0.209783) 0.011890 (0.201523) 0.036523 (0.239046)
500 0.034422 (0.266419) 0.031174 (0.212710) 0.032761 (0.221514) 0.042232 (0.251194)

RMSE
20 0.014397 (0.005570) 0.014561 (0.005604) 0.014289 (0.005414) 0.014411 (0.005432)
100 0.014096 (0.005486) 0.014281 (0.005545) 0.013988 (0.005357) 0.014099 (0.005373)
500 0.014035 (0.005470) 0.014203 (0.005531) 0.013912 (0.005346) 0.014033 (0.005361)

MLP

Sharpe
20 0.080722 (0.390515) 0.079428 (0.416847) 0.087960 (0.393913) 0.069866 (0.398197)
100 0.097576 (0.382028) 0.063012 (0.415537) 0.091344 (0.397506) 0.087216 (0.414697)
500 0.092262 (0.390161) 0.059344 (0.415700) 0.073652 (0.389588) 0.085333 (0.414096)

Calmar
20 0.035525 (0.223141) 0.030805 (0.217727) 0.037877 (0.219139) 0.031145 (0.214533)
100 0.045916 (0.227827) 0.023479 (0.223602) 0.040718 (0.217648) 0.040572 (0.223359)
500 0.038678 (0.237459) 0.024014 (0.225413) 0.035688 (0.215691) 0.035885 (0.222552)

RMSE
20 0.014030 (0.005416) 0.013999 (0.005408) 0.013910 (0.005345) 0.014055 (0.005369)
100 0.013924 (0.005399) 0.013973 (0.005403) 0.013878 (0.005339) 0.014028 (0.005363)
500 0.013924 (0.005400) 0.013974 (0.005402) 0.013887 (0.005337) 0.014033 (0.005362)

Table 6: p-values of Wilcoxon rank-sum test comparing
cGAN-Large with Stationary Bootstrap results.

Trad Strat Metric
B

20 100 500

Reg Tree
Sharpe 0.2440 0.3432 0.7832
Calmar 0.8495 0.2958 0.9106
RMSE 0.0456 < 0.0001 < 0.0001

MLP
Sharpe 0.7941 0.3994 0.4295
Calmar 0.8119 0.4805 0.4053
RMSE 0.7973 0.0043 0.0007

strap also do, with the converse also holding. However, a
different phenomena occurs for Sharpe ratio: apart from a
few outliers that skewed the correlation (0.407733), when
Stat Boot fails to deliver reasonable results, cGAN-Large
can provide a feasible alternative for combining weak sig-
nals. This complementarity, not perceived when looked in
aggregate, can be an asset for the quantitative analyst in
its pursuit to build alpha generating strategies.

To give a more concrete example of this complemen-
tarity, Figure 7 presents the main findings obtained for
SPX Index. Figures 7a and 7b show cGAN-Large as the
ensemble strategy using Regression Tree and Multilayer
Perceptron as the base learners, respectively. Regression
Trees seemed more successful, obtaining a Sharpe and
Calmar ratios of 1.00 and 0.75 approximately; but for
both methods, cGAN-Large managed to produce positive
Sharpe and Calmar ratios. Conversely, Stat Boot failed in
both cases, scoring a Sharpe ratio near to 0.0 (Figures 7c
and 7d). This outperformance manifested in a substan-
tial gap between the cumulative returns of the different
approaches (Figures 7g and 7h). Finally, although both
methods similarly minimized RMSE (Figures 7e and 7f),
this minimization manifested itself very differently from
a Sharpe/Calmar ratio points of view. As a side note,
this suggest that minimizing RMSE (a predictive metric)
is not an ideal criteria when Sharpe ratio (a financial met-
ric) is the metric that will decide which strategy to be
implemented.

4.2 Case II: Fine-tuning of Trading Strate-
gies

Table 7 presents the quantiles of Sharpe and Calmar ratios
in the OS set across the 579 assets for different trading
strategies and model validation schemes. Starting from
Ridge, we can spot that there not much differences be-
tween the model validation schemes, with Naive yield-
ing the worst median (50%) values (0.121), and hv-Block,
Block and cGAN-Medium with the best median (0.138);
same can be said with respect to Calmar ratios.

Regarding Multilayer Perceptron (MLP) Sharpe ratio
results, we can spot a bigger contrast in median terms:
Naive fared worst as expected (0.020), with Stationary
Bootstrap (Stat Boot) obtaining a median value six fold
bigger than Naive. In this case, cGAN-Large (0.067) fared
better across the cGANs, but still far from the top me-
dian values. For Gradient Boosting Trees (GBT), cGAN-
Medium was the best of all cGAN approaches, obtain-
ing better results than Sliding window scheme. However,
these figures fell short to those of Block and hv-Block
schemes, both faring 0.211 and 0.175 median Sharpe ra-
tios, respectively.

So far we have focused on mainly at the median val-
ues, and though we can spot some discrepancies across the
methods, these become small when we take into account
the average interquartile range3 of 0.4 units of Sharpe ra-
tio, around 3-5 times the size of the median values. In this
sense, to statistically assess whether some of the observed
difference is substantial, Table 8 presents a statistical anal-
ysis using the average ranks4, Friedman χ2 test and Holm
correction for multiple hypothesis testing of the different
model validation schemes for Ridge, MLP and GBT based
on the Sharpe ratio results.

For Ridge Regression, the lowest rank was obtained by
Block cross-validation (Block), whilst the worst by Naive

3A measure of dispersion calculated by taking the difference be-
tween the 3rd quartile (75%) and 25% 1st quartile.

4When we rank the model validation schemes for a given asset,
it means that we sort all them in such way that the best performer
is in the first place (receive value equal to 1), the second best is
positioned in the second rank (receive value equal to 2), and so on.
We can repeat this process for all assets and compute metrics, such
as the average rank (e.g., 1.35 means that a particular scheme was
placed mostly near to the first place).
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Regression Tree Multilayer Perceptron

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Main findings for SPX Index; (a-d) Sharpe and Calmar ratios per additional unit in the ensemble; (a,c)
Regression Trees built on cGAN-Large and Stat Boot samples, respectively; (b,d) Multilayer Perceptron built on
cGAN-Large and Stat Boot samples, respectively. Figures (e,f) outline the RMSE of both approaches per additional
unit in the ensemble; (e) Regression Tree, (f) Multilayer Perceptron. Figures (g,h) present the cumulative returns for
B = 500 using (g) Regression Tree and (h) Multilayer Perceptron (targeting 10 % of volatility per year).
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Table 7: Quantiles of Sharpe and Calmar ratios in the OS set across the 579 assets for different trading strategies and
model validation schemes.

Trad Strat Metric Quant
Model Validation Scheme

Naive One-Split Sliding hv-Block Block k-Fold Stat Boot cGAN-Small cGAN-Medium cGAN-Large

Ridge

Sharpe

0% -1.594 -1.594 -1.594 -1.594 -1.594 -1.493 -1.594 -1.493 -1.493 -1.493
25% -0.215 -0.212 -0.213 -0.201 -0.201 -0.214 -0.213 -0.197 -0.197 -0.197
50% 0.121 0.134 0.122 0.138 0.138 0.135 0.135 0.135 0.138 0.136
75% 0.403 0.418 0.409 0.409 0.409 0.424 0.410 0.424 0.419 0.419
100% 3.156 3.177 3.238 3.226 3.226 3.177 3.203 3.226 3.226 3.226

Calmar

0% -0.290 -0.290 -0.218 -0.290 -0.290 -0.290 -0.209 -0.218 -0.203 -0.203
25% -0.075 -0.071 -0.071 -0.071 -0.071 -0.071 -0.071 -0.071 -0.071 -0.071
50% 0.055 0.063 0.060 0.064 0.064 0.063 0.064 0.063 0.064 0.064
75% 0.236 0.251 0.232 0.239 0.241 0.241 0.241 0.241 0.244 0.244
100% 5.074 4.561 4.561 4.561 4.561 4.561 4.561 4.561 4.561 4.561

MLP

Sharpe

0% -1.362 -1.583 -1.554 -1.291 -1.297 -1.389 -1.062 -1.150 -1.212 -1.176
25% -0.310 -0.280 -0.263 -0.246 -0.254 -0.207 -0.226 -0.290 -0.241 -0.247
50% 0.020 0.061 0.073 0.086 0.097 0.112 0.115 0.059 0.061 0.067
75% 0.352 0.390 0.400 0.396 0.416 0.406 0.429 0.380 0.396 0.416
100% 1.249 1.579 1.390 1.564 1.903 1.663 1.896 1.733 1.757 1.464

Calmar

0% -0.330 -0.324 -0.254 -0.264 -0.266 -0.328 -0.213 -0.286 -0.238 -0.276
25% -0.099 -0.095 -0.089 -0.081 -0.090 -0.073 -0.073 -0.093 -0.087 -0.093
50% 0.008 0.026 0.031 0.039 0.046 0.050 0.056 0.022 0.028 0.032
75% 0.194 0.213 0.212 0.214 0.242 0.229 0.235 0.211 0.229 0.224
100% 1.565 1.981 1.738 2.399 2.381 1.724 1.586 2.209 1.554 1.579

GBT

Sharpe

0% -1.197 -1.171 -1.155 -1.289 -1.143 -1.038 -1.073 -1.157 -1.275 -1.157
25% -0.233 -0.192 -0.208 -0.167 -0.143 -0.212 -0.214 -0.239 -0.209 -0.224
50% 0.088 0.159 0.142 0.175 0.211 0.174 0.162 0.123 0.150 0.133
75% 0.391 0.503 0.488 0.537 0.546 0.534 0.527 0.446 0.531 0.473
100% 5.174 5.174 4.411 5.174 5.174 5.174 5.174 3.443 1.929 5.174

Calmar

0% -0.665 -0.218 -0.251 -0.300 -0.346 -0.393 -0.198 -0.246 -0.471 -0.222
25% -0.080 -0.070 -0.078 -0.058 -0.060 -0.076 -0.077 -0.084 -0.076 -0.084
50% 0.038 0.071 0.066 0.081 0.105 0.077 0.072 0.053 0.067 0.064
75% 0.232 0.325 0.299 0.348 0.385 0.331 0.333 0.295 0.325 0.306
100% 7.492 7.492 6.454 7.492 7.492 7.492 7.492 3.782 2.845 7.492

Table 8: Average ranks, Friedman and Holm post-hoc statistical tests of the Sharpe ratio for Ridge, MLP and GBT.
Ridge-Sharpe MLP-Sharpe GBT-Sharpe

Method Avg Rank p-value Method Avg Rank p-value Method Avg Rank p-value Holm Correction

Naive 5.700 0.0022 Naive 5.900 < 0.0001 Naive 6.074 < 0.0001 0.0055
Sliding 5.630 0.0081 One-Split 5.718 0.0004 cGAN-Large 5.642 < 0.0001 0.0062

Stat Boot 5.605 0.0121 cGAN-Small 5.549 0.0114 Sliding 5.628 < 0.0001 0.0071
k-Fold 5.592 0.0148 cGAN-Medium 5.497 0.0254 cGAN-Small 5.597 < 0.0001 0.0083

One-Split 5.510 0.0481 Sliding 5.489 0.0287 cGAN-Medium 5.431 0.0032 0.0100
cGAN-Small 5.503 0.0531 hv-Block 5.449 0.0492 k-Fold 5.427 0.0034 0.0125
cGAN-Large 5.487 0.0644 Block 5.444 0.0525 Stat Boot 5.427 0.0034 0.0167

cGAN-Medium 5.477 0.0729 cGAN-Large 5.411 0.0783 One-Split 5.415 0.0043 0.0250
hv-Block 5.253 0.4743 k-Fold 5.359 0.1368 Block 5.359 0.0112 0.0500
Block 5.243 - Stat Boot 5.183 - hv-Block 4.992 - -

Friedman χ2 5715.01 <0.0001 Friedman χ2 2040.8 <0.0001 Friedman χ2 2865.34 <0.0001

(5.700). cGANs methods were consecutively in the third,
fourth and fifth places, beating other methods, such as
Stat Boot, k-fold cross-validation, etc. The Friedman χ2

statistics of 5715.01 signal that the hypothesis of equal av-
erage rank across the approaches is not statistically credi-
ble (p-value < 0.0001). By running a pairwise comparison
between Block and the remaining approaches, we can spot
that only Naive has stand out as a substantially worst ap-
proach, even when we control for multiple hypothesis test-
ing (check Holm Correction column for the adjusted level
of significance).

In respect to MLP ranking results, Naive performed
worst as well (5.900), with Stat Boot being the top scheme
in this case (5.183); cGAN-Large in the third position,
comparing favourably to the other cGAN configurations,
as well as hv-Block, Sliding window, etc. Apart from Naive
and One-Split/Single holdout scheme, all the remaining
approaches were not statistically different from Stat Boot.
On the GBT case, we can spot that hv-Block outperformed
all approaches, with the cGANs do not delivering reason-
able results in this case.

Overall, apart from a few analyses and cases (e.g.,
GBT and Naive method), in aggregate the model vali-
dation schemes do not appear to be significantly distinct
from each other. This can be interpreted that cGAN is
a viable procedure to be part of the fine-tuning pipeline,
since its results are statistically indistinguishable to well
established methodologies. When we drill down into the
results, in particular to the Sharpe ratios of the different
approaches, we can spot a low correlation among the val-

idation schemes; Figure 85 presents correlation matrices
based on Sharpe ratios of model validation schemes for
MLP (a) and GBT (b).

Though in median and rank terms the strategies look
similar, at the micro-level they appear quite the opposite,
in particular to the MLP case. Even the cGANs provide
distinct Sharpe ratios, showing the importance of the un-
derlying configuration of the Generator/Discriminator. In
general, this outline that distinct model validation schemes
are arriving with different hyperparameter combinations,
incurring in distinct values for Sharpe and Calmar ratios
in the OS set. Hence, it may be that in some assets cGAN
outcompeted the remaining model validation schemes. To
exemplify that, Table 9 presents a sample of Sharpe ratio
results in the OS set for cases where cGAN-Large outcom-
peted the other methods.

Table 9: A sample of Sharpe ratio results in the OS set for
cases where cGAN-Large outcompeted the other methods.

MV Scheme
ADSWAP2Q CADJPY ED UN NKY NZDUSD

CMPN BGN Equity Index BGN
Curncy Curncy Curncy

Naive -0.3477 0.2009 -0.0343 -0.5785 0.4503
One-Split -0.0184 -0.4218 0.0108 0.0520 -0.0809
Sliding 0.5600 -0.8328 -0.227 0.1083 0.1034
k-Fold 0.0505 -0.2861 0.4068 -0.3347 -0.3104
Block 0.4344 0.2219 -0.0971 -0.8870 0.1215

hv-Block 0.1120 -0.3932 0.5364 -0.0244 -0.272
Stat Boot 0.4296 -0.19498 0.3107 -0.3068 -0.2616

cGAN-Small 0.5146 -0.6222 -0.0980 0.1095 0.3059
cGAN-Medium 0.84 -0.0901 0.3443 0.0884 0.0582
cGAN-Large 1.4207 0.5885 1.1224 0.2263 0.6703

5We decided to omit Ridge since all of the correlations were above
0.8.
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(a) MLP

(b) GBT

Figure 8: Correlation matrices based on Sharpe ratios of
model validation schemes for MLP (a) and GBT (b).

We can spot a few instances that cGAN-Large sub-
stantially fared better results, such as in a 2y Australian
Dollar Swap, New Zealand Dollar vs US Dollar Currency,
and Consolidated Edison Inc. Equity. This set of results
suggest that cGAN-Large is a viable alternative for fine-
tuning machine learning models when other methodolo-
gies provide poor results, and it should be considered in
the portfolio of different validation schemes aside of the
distinct trading strategies models.

Finally, Figure 9 outlines the cumulative returns for
SPX Index for a few of the different model validation
schemes using MLP as the trading strategy. In this case,
Stat Boot and One-Split were unable to produce a profit
after five years of trading, whilst cGAN-Large and hv-
Block produced around 10% of return for a given initial
amount of investment (they both found out the same hy-
perparameters, therefore obtaining similar profiles). This
is another example that demonstrate the relevance of hav-
ing a set of model assessment schemes, as similar as the
more common defensive posture of having a portfolio of
trading strategies/models and hyperparameter optimiza-

Figure 9: SPX Index cumulative returns in the OS set
for different model validation schemes using MLP as the
trading strategy. cGAN-Large and hv-Block found out the
same hyperparameters, therefore obtaining similar pro-
files.

tion schemes.

5 Conclusion

This work has proposed the use of Conditional Genera-
tive Adversarial Networks (cGANs) for trading strategies
calibration and aggregation. This emerging technique can
have an impact into aspects of trading strategies, specifi-
cally fine-tuning and to form ensembles. Also, we can list
a few advantages of such method, like: (i) generating more
diverse training and testing sets, compared to traditional
resampling techniques; (ii) able to draw samples specifi-
cally about stressful events, ideal for model checking and
stress testing; and (iii) providing a level of anonymiza-
tion to the dataset, differently from other techniques that
(re)shuffle/resample data.

The price paid is having to fit this generative model
for a given time series. To this purpose, we provided a
full methodology on: (i) the training and selection of a
cGAN for time series generation; (ii) how each sample is
used for strategies calibration; and (iii) how all generated
samples can be used for ensemble modelling. To provide
evidence that our approach is well grounded, we have de-
signed an experiment encompassing 579 assets, tested mul-
tiple trading strategies, and analysed different capacities
for Generator/Discriminator. In summary, our main con-
tributions were to show that our procedure to train and
select cGANs is sound, as well as able to obtain competi-
tive results against traditional methods for fine-tuning and
ensemble modelling.

Being more specific, in the Case Study I: Combina-
tion of Trading Strategies, we compared cGAN Sampling
and Aggregation with Stationary Bootstrap. Our results
suggest that both approaches are equivalent in aggregate,
with non-statistically significant advantage for cGAN when
using Regression Trees, and for Stationary Bootstrap when
using a shallow Multilayer Perceptron. But when Bagging
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via Stationary Bootstrap fails to perform properly, it is
possible to use cGAN Sampling and Aggregation as a tool
to combine weak signals in alpha generating strategies;
SPX Index was an example where cGAN outcompeted
Stationary Bootstrap by a wide margin.

In relation to the Case Study II: Fine-tuning of trading
Strategies, we compared cGAN with a wide range of model
validation strategies. All of these were techniques designed
to handle time series scenarios: these ranged from window-
based methods, to shuffling and reshuffling of a time se-
ries. We have evidence that cGANs can be used for model
tuning, bearing better results in cases where traditional
schemes fail. A side outcome of our work is the wealth
of results and comparisons: to the best of our knowledge
most of the applied model validation strategies have not
yet been cross compared using real datasets and different
models.

Finally, our work also open new avenues to future in-
vestigations. We list a few potential extensions and direc-
tions for further research:

• cGANs for stress testing: a stress test examines the
potential impact of a hypothetical adverse scenario
on the health of a financial institution, or even a
trading strategy. In doing so, stress tests allow the
quantitative strategist to assess a strategy resilience
to a range of adverse shocks and ensure they are
sufficiently hedged to withstand those shocks. A
proper benchmark can be model-based bootstrap,
since it allows conditional variables which facilitates
the process of generating resamples of crisis events.

• Selection metrics for cGANs: we have adopted the
Root Mean Square Error as the loss function be-
tween the generator samples and the actual data,
however nothing limits the user to use another type
of loss function. It could be a metric that take into
account several moments and cross-moments of a
time series. With financial time series, taking into
account stylized facts [8] can be a feasible alterna-
tive to produce samples that are more meaningful
and resemble more a financial asset return.

• Combining cGAN with Stationary Bootstrap: in our
results section, in particular to Figure 6, we observed
the low correlation between the Sharpe ratios ob-
tained in both approaches. This imply that a mixed
approach, that is, combining resamples from cGAN
and Stationary Bootstrap, can yield better results
than opting for a single approach.

• Extensions and other applications: a natural exten-
sion is to consider predicting directly multiple steps
ahead, or considering modelling multiple financial
time series. Both can improve our results, as well
as, may reduce the time to train and select a cGAN.
Another extension is to consider other architectures,
such as AdaGANs [37] or Ensemble of GANs [39].
Also, other applications such as fine-tuning and com-
bination of time series forecasting methods; a good
benchmark are the M3 and M4 competitions [26,27]
that involve a large number of time series as well as
results from a wide array of forecasting methods.
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