Computational Models of Argument 9
H. Prakken et al. (Eds.)

© 2020 The authors and IOS Press.

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200487

A Persuasive Chatbot Using a Crowd-
Sourced Argument Graph and Concerns

Lisa A. CHALAGUINE? and Anthony HUNTER ?
4 Department of Computer Science, University College London, London, UK

Abstract. Chatbots are versatile tools that have the potential of being used for
computational persuasion where the chatbot acts as the persuader and the human
agent as the persuadee. To allow the user to type his or her arguments, as opposed
to selecting them from a menu, the chatbot needs a sufficiently large knowledge
base of arguments and counterarguments. And in order to make the user change
their current stance on a subject, the chatbot needs a method to select persuasive
counterarguments. To address this, we present a chatbot that is equipped with an
argument graph and the ability to identify the concerns of the user argument in
order to select appropriate counterarguments. We evaluate the bot in a study with
participants and show how using our method can make the chatbot more persuasive.
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1. Introduction

Chatbots have the potential of being used as agents in argumentative persuasion systems
that can engage in argumentative dialogues with users where the chatbot acts as the
persuader and the user as the persuadee. Argument graphs as proposed by Dung [11] can
be used as a knowledge base for the chatbot. Graphs are a useful representation to study
attack and support relationships of a given set of arguments. Different kinds of semantics
can be applied in order to identify the “winning” and “losing” arguments in a graph. This,
however, assumes that all the possible arguments and their relationships are present in
the graph.

Acquiring an argument graph raises several issues: most importantly where to obtain
the relevant arguments for the argument graph, but also, which arguments to include in
the knowledge base and how to justify the inclusion of some and exclusion of others (e.g.
noise and repetition of arguments), and how to establish relations between arguments (the
arcs of the graph). In our previous work [7] we presented a method and its evaluation for
the acquisition of a large argument graph with over 1200 arguments via crowd-sourcing.

An argumentative chatbot could use such a graph in order to persuade a human
agent to accept the bot’s stance by presenting arguments from the graph that support its
stance and counter user arguments that do not. One way to utilise such a graph is by
using a menu-based approach where the chatbot, after presenting an argument, gives the
user a choice of counterarguments that the user can select from a menu [13]. Taking
the argument graph shown in Figure 1 as an example, the chatbot would give argument
A and then give the user arguments B and C to choose from. Suppose the user prefers
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Figure 1. Argument graph where child nodes are attacking parent nodes.
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argument C and selects that one. The chatbot selects a counterargument based on some
criteria (or randomly) and replies with argument G and gives the user arguments H and
I as countering choices, and so on. This way, the chatbot and the user would follow the
arcs of the graph until (depending on the type of graph) all the arguments are used, or the
user chooses an argument that has no counterarguments in the graph.

The drawback of the menu-based approach is, of course, that the user is limited to the
choice of possible counterarguments presented by the chatbot, which might not include
the user’s preferred choice. This might limit the persuasive effect of the argumentative
dialogue, as well as deny the chatbot the opportunity to acquire novel arguments on
that topic which were not collected during the acquisition phase of the graph. The user
arguments from the chats could then be used to extend the existing argument graph.

An alternative to the menu-based approach would be a free-text approach that allows
using a similarity measure to find an argument in the graph that is similar to the user
argument. If an argument similar to the one used by the user is present in the graph, the
chatbot could simply reply with a counterargument from the graph. Taking the graph
from Figure 1 again as an example, the chatbot would present argument A and allow the
user to reply via free-text input. The user would counter with an argument that is similar
to H. Suppose the chatbot counters it with K and the user replies with an argument that is
similar to B. The chatbot could counter it with D or E and so on. In this case, the chatbot
can jump around the graph rather than just following a single branch.

However, this poses two questions for the free-text approach: firstly, how to deal
with a user argument that is not present in the graph. Not finding a match to the user’s
argument can be expected to be a common phenomenon given that it cannot be assumed
that all arguments on that topic are contained in the graph. The versatility of natural lan-
guage with its seemingly infinite number of ways to rephrase something, is also likely to
limit the ability of the chatbot to find a similar argument in the graph. A second problem
is that, even if the user’s argument is present in the graph, a counterargument must be
chosen so as to increase the persuasive effect of the dialogue.

A potential answer to address the first question is for the chatbot to present an ar-
gument that is not necessarily a counterargument to the user’s argument. This way the
dialogue would resemble argumentation as it would happen in real life between two peo-
ple: if two human agents engage in an argumentative dialogue, just because one presents
an argument the other cannot counter, the dialogue is not necessarily ended prematurely.
The other agent might switch topics and present a new argument he or she believes in,
without referencing and directly countering the previous argument. Another example
would be product reviews where reviewers present a range of pro and con arguments. The
judgement is not about whether all counterarguments were answered or not, but whether
the pro arguments outweigh the con arguments.

An answer to the second question could come from taking the concerns of the user
into account [8,14,13], a concern being a matter of interest or importance to the user.
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Figure 2. Simple argument graph with arguments B and C attacking argument A and argument D attacking
argument B.
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The notion of a concern seems to be similar to the notion of a value. Values have been
used in a version of abstract argumentation called value-based argumentation frame-
works (VAFs) [3]. For this, when selecting the counterargument, the chatbot could se-
lect the counterargument that addresses the more important concerns of the user. In our
previous works, however, the concerns of the user were either known in advance [8] or
the chatbot did not allow free-text input and the concerns that were addressed by each
argument in the graph were known [14,13]. During the chat with a chatbot that allows
free-text input, however, the concerns that are addressed by the user arguments need to
be classified during the chat in order to choose a suitable counterargument accordingly.

In this paper, we present a free-text chatbot that can engage in an argumentative di-
alogue in order to persuade the user to accept the bots stance. The chatbot is equipped
with a crowd-sourced argument graph with automatically assigned concerns to each ar-
gument and a concern classifier that can assign concerns to the user arguments during the
chat. With the help of this chatbot, we show that it is not necessary to follow the arcs of
a graph during each dialogue move in order to create reasonable and relevant dialogues,
and that concerns can be automatically detected and used in order to choose appropriate
counterarguments to increase the persuasiveness of the dialogue.

The rest of the paper is structured as follows: Section 2 presents our previous work
that the current study builds upon; Section 3 gives the aim of the paper and the hypothe-
ses; Section 4 describes the chatbot architecture that was used for the experiments; Sec-
tion 5 describes the experiments that were conducted with the chatbot including their
results, and in Section 6 we discuss and conclude our findings.

2. Previous work
2.1. Crowd Sourced Argument Graph

The purpose of argumentation is to exchange different viewpoints or opinions, handle
conflicting information and make informed decisions. A situation involving argumenta-
tion can be represented by a directed graph, as proposed by Dung [11]. Each node rep-
resents an argument, and each arc denotes an attack by one argument on another. Such
a graph can then be analysed to determine which arguments are acceptable according
to some general criteria [4,2]. Figure 2 shows such an argument graph and the attack
relationships between the arguments.
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Argument graphs are extensively studied in the computational argumentation liter-
ature. Their acquisition, however, tends to be neglected. In [7] we present a method of
automatically acquiring a large argument graph via crowd-sourcing!. We evaluated that
method in a case study on the topic of UK university fees. The graph contains 5 levels
of depth, starting with the root statement “University fees in the UK should be kept at 9k
pounds” (Depth 0). The next level of depth (Depth 1) contains arguments that counter
the root statement. The arguments in Depth 2 counter the arguments in Depth 1 and so
on. Our graph contains 1288 arguments with each argument on average having 3 coun-
terarguments, apart from the last level of depth. Depths 1-4 of the acquired argument
graph are used as the knowledge base of the chatbot presented in this paper.

2.2. Concerns

We have confirmed the long-held view that taking the concerns of the user into consider-
ation increases the persuasiveness of the dialogue in our previous works [8,14,13]. Argu-
ments can raise or address various concerns for the persuadee that need to be accounted
for. A persuader might present a perfectly valid argument to a university student (per-
suadee), e.g. “If someone decides to go into higher education, the general public should
not be expected to pay for it via taxes.”. The persuadee might not even disagree with
this argument, however, she is very likely to be concerned about her finances due to her
personal debt and therefore this argument may have no impact on her stance. If, however,
the persuader presents an argument that addresses her concern like “If you have a stu-
dent loan in the UK, it will not appear on your credit report. So, when you are applying
for a credit card, loan or mortgage your student loan will not make an appearance.” it
is more likely to change her stance. This is not surprising, however, concerns are often
ignored when judging the effectiveness of arguments or choosing a strategy. Some stud-
ies that make use of different personality traits of the user attributes in order to evaluate
what sort of argument might be more effective for this particular person (for examples
see [16,10,21,18]). However, computational argumentation largely focuses on sentimen-
tal [9], rhetorical [12] and structural [5] attributes of the argument, rather than attributes
about the user.

In the following sections, we outline our hypotheses and describe how we utilise the
argument graph and the notion of concerns in order to build a chatbot that can engage in
persuasive dialogues, and the experiments conducted with the chatbot.

3. Hypotheses

In this paper, we chose UK university Fees as a case study. We have developed a chatbot
that utilises a crowd-sourced argument graph, described in [7], as the knowledge base.
The chatbot uses concerns to make strategic moves in order to engage in argumentative
dialogues with users to persuade them to accept that chatbot’s stance (that university fees
should be kept).

Given this setting, we want to test two questions: Firstly, whether the crowd-sourced
argument graph can be used as a chatbot knowledge base that allows free-text input. This
means that the graph contains at least some common arguments that the user might use,

Thttps://github.com/lisanka93/Argument_Graph_Corpus
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and the resulting dialogues are therefore of an appropriate length and quality, and that the
users perceive the chatbot arguments as relevant. And secondly, whether the chatbot can
automatically identify the concerns addressed by the user argument and whether replying
with counterarguments that address the same concern, increases the persuasiveness of
the chat. We summarise these points in the following two hypotheses:

H1 A crowd-sourced argument graph can be used as a knowledge base for a persuasive
chatbot allowing free text input by the users. The resulting chats are of appropriate
length and quality, and the chatbot arguments perceived as relevant by the users.

H2 A concern raised or addressed by a given user argument can be automatically iden-
tified in order to give appropriate counterarguments that address the same concern
and thereby increase the persuasiveness of the dialogue.

In the remainder of this paper we describe the design of our chatbot that was used
for the argumentative dialogues and explain the experiments conducted with the chatbot
in order to test our hypotheses.

4. Chatbot Design

We developed two versions of our chatbot, one that classifies the concern of the user
argument and takes it into account when presenting counterarguments (strategic), and
one that did not (baseline).

4.1. Argument Graph

The argument graph described in Section 2.1 is used as the chatbot’s knowledge base.
We only use the depths 1-4, since depth 5 does not have any counterarguments. Depths 1
and 3 contain arguments against keeping university fees, while depth 2 (attacking depth
1 arguments) and 4 (attacking depth 3 arguments) contain arguments that support the
stance of keeping university fees.

When the user types in an argument (source argument), the chatbot uses a similarity
measure in order to find the closest match of the user argument in the graph (target
argument). We used cosine-similarity as a similarity measure [19]. Cosine similarity is a
metric used to measure how similar the vector representation of two texts are. It measures
the cosine of the angle between two vectors. The smaller the angle, the higher the cosine
similarity. We used a threshold of 0.9 for measuring the similarity of two arguments. If
the chatbot finds an argument in the graph that has a similarity of 0.9 or above compared
with the source argument, the chatbot chooses one of the counterarguments that attack
the target argument in the graph as a response. This happens at every dialogue turn,
meaning that the target argument can be either in depth 1 or depth 3 of the graph.

4.2. Default Arguments

In case no target argument is found, we also acquired arguments for keeping university
fees, where the root statement is the opposite to our main argument graph “University
fees in the UK should be abolished”. 1t is therefore a very shallow graph with only one
level of depth where the arguments that attack the root argument are for keeping the
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Table 1. Types of concern for the topic of charging university tuition fees

Concern Description of what concern deals with

Student Finance Finances of students, including tuition fees, student debts, life costs etc.

Government Finance | Government finances, including general taxation, government spending etc.

Employment Careers and employability of students and the general job market.

Free Education Whether higher education is a human right and should be free or not.

Fai Whether something is fair or not (using a general understanding of fairness),
airness

including equal and just treatment of individuals.

fees. We also used crowd-sourcing for the acquisition and voting in order to select the
best arguments. The best 7 arguments were used as default arguments, which the chatbot
can use if no match is found. These arguments are therefore not counterarguments in
the traditional sense, as they do not refer to or address the source argument but instead
“change topic” and present a new issue in the debate. We also added phrases like “Ok
but”, “I still think” and “Don’t you think that” to the beginning of the default arguments
to indicate a deviation from the topic occurs.

4.3. Concern Labelling and Classification

The baseline chatbot uses the argument graph and default arguments during the chat with
the user and does not make use of concerns. The strategic chatbot, however, classifies the
concern of the source argument and chooses one of the attackers of the target argument
that addresses the same concern.

During the acquisition of the argument graph described in [7], only arguments were
included in the graph that contained fopic words. These are words that we considered
meaningful in the given context. The choice of suitable topic words depends entirely on
the domain and their choice is left to the researchers’ discretion and their knowledge of
the domain. The topic words in the argument graph were: loan, debt, job, tax, free, acces-
sible, affordable, government, scholarship, interest, career and background. We grouped
topic words that address the same or similar issues into 5 concerns: Student Finance
(loan, debt, scholarship, interest), Government Finance (government, tax), Employ-
ment (job, career), Free Education (free) and Fairness (affordable, accessible, back-
ground). Apart from the concern free, the concerns were taken from [14]. The definitions
are given in Table 1.

We took the arguments from the argument graph, as well as the user arguments from
the chats with the baseline chatbot that contained any of the topic words, to train a con-
cern classifier using the Python Scikit-learn library®. The classifier uses logistic regres-
sion and a tf-idf feature representation in order to predict the concern of the incoming
user argument. We extract the top two concern predictions. If the top prediction is over
0.7 the argument is labeled with one concern, otherwise with two. If a target argument
in the graph is found, the chatbot chooses one of the attackers of the target argument that
addresses the same concern as counterargument. If a user argument is labeled with two
concerns, an attacker is chosen that addresses one of the concerns, with priority given to
the concern with the higher predicted value.

’https://scikit-learn.org
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It could be argued that since the arguments in the graph are labelled with concerns,
the source argument addresses the same concerns as the target argument in the graph
and hence no classifier is needed as one could take the concerns of the target argument.
However, the concerns of the target argument are not necessarily the same as the user’s
free-text argument, despite being similar. For example, the target argument in the graph
“Universities should be accessible to all, not just those that can afford it, or are not
scared away from the high debt after their studies” would be labeled with both concerns
fairness and student finance. A similar source argument “Universities should be acces-
sible to everyone who wants a higher education, not just those that can afford it” does
not address the concern student finance and would be labeled with fairness only by the
classifier.

If no match in the graph is found or none of the counterarguments of the target
argument address the same concern, the chatbot replies with a default argument.

5. Evaluation of the Chatbot

The purpose of the chatbots was to test both of our hypotheses. The chatbots were de-
ployed on Facebook via the Messenger Send/Receive API. For more on the implementa-
tion of such chatbots see [6]. For each chatbot we recruited 50 participants via Prolific?,
which is an online recruiting platform for scientific research studies. Before the chat
the users were directed to a Google Form and asked whether they strongly disagreed,
disagreed, neutral, agreed or strongly agreed that university fees should be kept?.

After submitting their answers they were redirected to the Facebook page where they
could begin the chat. The chatbot started the chat by asking why the user believed that
university fees should be abolished. The user, therefore, presented their first argument.
The chatbot then replied with either a counterargument from the argument graph or a
default counterargument, depending on whether a similar argument was found in the
graph or not. If a similar match was found, the baseline chatbot replied with a randomly
selected counterargument from the direct attackers of the target argument in the graph.
The strategic chatbot, however, selected an attacker from the graph that addressed the
same concern as the user argument (if such an argument exists). If no match was found,
both chatbots replied with a default argument.

If the user response was shorter than 6 words, the chatbot queried the user to expand
on their answer. However, if the user agreed with an argument the chatbot gave, for
example by sending “I agree”, the chatbot would not ask to expand despite the message
being shorter than 6 words, and instead replied with a default argument.

The chatbot would eventually end the chat as soon as all default arguments were
used up and no match in the graph was found. The users were, however, advised that they
could end the chat anytime by sending the word “stop”. At the end of the chat the chatbot
presented the user with a link that redirected them to a second Google Form where they
were asked a series of questions”:

*https://prolific.co

4For the baseline chatbot only 2 people selected agree and none for the strategic one. 98% of participants
therefore did not share the chatbots stance before the chat.

SFurther questions were asked but analysis of the answers is left to future work
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Table 2. Answers to first three questions for baseline and strategic groups

Chatbot Understood (Q1) Relevant Args (Q2) | Points addresses (Q3)
Yes | No | Sometimes | Yes | No | Some | Yes | No Some

Baseline 16 4 30 21 3 26 13 15 22

Strategic 15 6 29 31 1 18 10 14 26

1. Did you feel understood by the chatbot? (Yes/No/Sometimes)

2. Did you feel that the chatbot’s arguments were relevant? (Yes/No/Sometimes)

3. Do you feel like all your points were addressed? (Yes/No/Some of them)

4. How much do you agree that fees in the UK should be kept as they are? (Strongly
disagree - strongly agree)

Questions 1-3 were used to test our first hypothesis and judge the relevance, length
and quality of the chats, and question 4 was to test our second hypothesis and compare the
persuasiveness of the baseline chatbot to the strategic chatbot. Table 2 shows the results
for the first three questions for the baseline and the strategic groups. One can see that
the majority of the participants considered the chatbot’s arguments as relevant in most
cases, and answered the first three questions with either yes or sometimes. Interestingly
there is a 50% increase in the perception of relevance for the strategic chatbot, while the
numbers for questions 1 and 3 remained almost the same. This is a statistically significant
difference with a p-value of 0.045 using Chi-Square. Using concerns, therefore, makes
the arguments more relevant.

Regarding questions 1 and 3, given that the chatbot does not use natural language
generation and only relies on finding matches in an argument graph, it is not able to
address novel arguments or expand on existing ones by giving more information. It is
therefore not surprising that the numbers for these questions remained approximately the
same. The given results, however, are promising given that the chatbot solely relies on a
similarity measure in order to pick counterarguments from a crowd-sourced graph or to
pick default arguments in case no match is found.

Regarding the length of the chats, chats with the chatbots on average lasted 24 turns
(disregarding the chatbot querying the user to expand). This means that the chatbot, on
average, gave 12 arguments, 7 of which were default arguments and 5 from the graph.
This supports our first hypothesis that a crowd-sourced argument graph can be used as
a chatbot knowledge base and that the resulting argumentation dialogues are of satis-
factory length and quality, with perceived relevance of the arguments being 50% higher
during chats with the strategic chatbot. An example of a chat can be seen in Figure 3. All
chatlogs and the code for the chatbot can be found in [1].

Using the replies for question 4 we calculated the change in stance for both groups
in order to evaluate the persuasiveness of the strategic chatbot. The persuasion goal of
the chatbot was that UK university fees should be kept. Since participants were given the
choice of 5 stances (“strongly disagree” to “strongly agree”) before and after the chat,
they could either change their stance to the better, to the worse or not at all. The change
in stance is the final stance minus the original stance. We call the units of this measure
change in stance (CS) points. For example, “strongly disagree” being 1 and “strongly
agree” being 5, if a participant changed her stance from “disagree” (2) to “neutral” (3)
after chatting with the bot this counts as 1 CS point, whereas changing from “neutral”
to “disagree” counts as -1 CS point. Persuasion means that a person who was against
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Figure 3. Example chat between a participant and the strategic chatbot. Chatbot arguments are in the dark
boxes and user arguments in the light boxes. Default arguments are indicated with an *. The chat begins in the

left column and continues in the right one.

So tell me Why do you think university fees in the UK should be
abolished?

It means students do not have to come from a privileged back-
ground in order to study. Everyone will have an equal opportunity

They all go to school and get equal knowledge and opportunities,

it is got nothing to do with the family background. Whilst at high
school, student get all the information they need to go further

But someone who leaves school without going to university will
have lower work opportunities as most jobs require a degree or

We have to give everyone equal chance to succeed and end up with

the best job they can, naturally there will be those who reach the
top, and those who don't.

Students would be able to focus more on their education and not
have to worry about the fees and debt they'll get into

There are loans about so no one pays fees up front anyway, only
when they have secured a job.

But when you leave university you don’t want to have to be bur-
dened with debt for the rest of your lift because they are so large

That's why the government should start giving scholarships to peo-
ple who really can’t pay university fees but still want to get a de-
gree.

But just how much would taxes have to increase to be able to afford
everyone having that equal opportunity

After graduation, many people get a much better job so they can
afford to pay for loans. This is a normal bird in many European
countries

But there is no guarantee that everyone will end up with a decent
job with their being an increase in competition for jobs

Better education does not mean it's free. But better education
actually leads to better performance and the possibility of better
jobs.

But if a student leaves without the debt from university it will mean
they spend more upon leaving by having the financial freedom to
afford housing etc

You do not need to pay straight away, the University is accessible
as never before for everyone; young, mature, from less privileged
backgrounds etc.

No but you do have to pay when you leave and that money could
be saved from their high paying job and be used to buy a home and
benefit the economy in other ways with more disposible income

It gives them an objective to accomplish, it gives value to their
degree and future career. getting free education is good and nec-

essary in some cases but that also gives people the option to slack
off and reduce their chances of getting a proper work ethic.

It doesn't stop students who wish to pay for a degree from a higher
valued institution from doing so though

University is not a right. Most people fall into university because

they think they have too. Going to university should be an impor-
tant decision and taking a loan should be part of this.

No because at school we are not taught the value of money and
throwing a student into debt should not be a lesson.

* But don't you think that if someone decides to go into higher
education, the general public should not be expected to pay for it
via taxes.

But they'd be expected to pay for it as scholarships

* Ok but | think university fees make students take the university
seriously. If it would be free, it wouldn't have the same value.

But you are taking away the freedom of choice from someone who
wants to go but cannot because they cannot afford it

It is understandable that it is a concern that people need to con-
sider if they can afford it but a student loan is an investment in
themselves and their future

So by offering free tuition they wouldn't need to have to consider
forgoeing further education

* | believe the fee is a way of selecting people that really want to
get in the better universities and invest in their future.

That doesn’t stop the 'better’ universities from charging a fee
though. If someone really wants a prestigious degree they can pay
for it and let those who wish to have an education study for free

* | think the fee is a good incentive for students to finish the degree.
We see models in several european countries where uni- versity is
free, and the result is that many either never finish their studies ,
or take an obscene number of years to finish.

If they are taught in school about the competition for jobs then
more people will take it seriously because a better education could
be the difference between a low and a high paid job

You cannot only charge fees for certain degrees as that would have
far reaching consequences. People working in lower paid jobs may
never have to repay any of the loan anyway if they do not earn
above the threshold.

But they always have that debt burden over them and know that
they will have to start paying at some point in the future

The argument that not every student will find a financial situation
to pay off the loan does not appeal to me, because in adult life you
have to manage your finances in such a way as to be a plus.

There is a huge difference in being able to manage your finances
and being given a debt worth tens of thousands to start your future

The debt doesn’t count against someone's credit score and is largely

ignored, if they started earning less they would stop paying it back.
Percentage wise there are more people going to university

stop
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Table 3. Change of stance measured by number of participants and CS points

Chatbot Baseline Strategic

Change in stance Negative | No Change | Positive | Negative | No Change | Positive
No. of participants 5 41 4 1 26 23
Change in CS points -5 0 5 -1 0 32

keeping university fees before the chat changed her stance to the positive and that her CS
points score is positive.

Table 3 shows the number of participants who changed their stance to the worse
(negative), to the better (positive), and that did not change their stance at all (no change)
for both chatbots, as well as the number of total CS points. We can see that 23 people
changed their stance to the better when chatting with the strategic chatbot with a total
of 32 CS points, meaning that some participants changed their stance by more than 1
CS point (e.g. from disagree to agree). If counting the total number of CS points, also
including the participants that changed their stance to the worse, the strategic chatbot
achieved a total change of 31 CS points whereas for the baseline the total number of CS
points is 0.

It could be argued that a change from strongly disagree to disagree is not a remark-
able change in stance despite resulting in the change of 1 CS point, whereas changing
someone’s stance from disagree to neutral or even better, agree is a much stronger shift
in stance. However, for the strategic chatbot, only 2 participants changed their stance
from strongly disagree to disagree, while the remaining 21 participants changed their
stance from disagreement (strongly or not) to neutral (16 participants), from neutral to
agreement (3 participants) and from disagreement to agreement (2 participants).

We used the number of participants who changed their stance to the positive in or-
der to calculate the statistical significance of the difference between the control group
that chatted with the baseline chatbot and the group that chatted with the strategic chat-
bot using the Chi-Square test. All results were statistically significant with a p-value of
0.00017. The results support our second hypothesis, that concerns can be automatically
classified based on the use of topic key words which can be seen as a good indicator
of the concerns being addressed or raised by the arguments. Presenting arguments that
address the user’s concern is more likely to have a positive impact on their stance, than
presenting arguments that ignore the user’s concern.

6. Discussion

Our contribution in this paper is twofold. Firstly, we have shown that a crowd-sourced ar-
gument graph can be utilised as a knowledge base for a chatbot that engages in argumen-
tative dialogues. The resulting chats are of good length and quality and are perceived as
relevant by the users. And secondly, we have shown that concerns can be automatically
identified in order to give suitable counterarguments that address the same concern and
thereby significantly increase the persuasiveness of the dialogue. Additionally, we have
shown that the chatbot can jump around in the graph, without systematically following
each arc and only use arguments that are connected via an attack relationship.

To date, at least two arguing chatbots have been presented in the literature: a chat-
bot Debbie, that uses a similarity algorithm to retrieve counterarguments [17] and Dave
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that used retrieval- and generative-based models [15]. Debbie’s knowledge base consists
of a subset of the qualitatively best arguments from the corpus created by Swanson et
al [20] which is a combination of online political debates, Internet Argument Corpus
(IAC), [22] and dialogues from online debate forums. Dave’s knowledge base consists
only of the IAC. Our chatbot, however, is different in several ways: firstly, our knowl-
edge base consists of a previously crowd-sourced argument graph. And secondly, the
aim of Dave/Debbie was to keep the conversation going, whereas we were interested in
persuading the user to accept our chatbot’s stance.

This study can be seen as a partial extension of the work in [14] where a chatbot was
used to persuade the user to accept the chatbot’s stance on the topic of university fees
in the UK. The argument graphs that were used as the chatbot’s knowledge base were
hand-crafted and manually labeled. The chatbot also did not allow free-text input and
was strictly following the arcs of the argument graph. The chatbot presented in this paper
allows free-text input and uses a similarity measure to extract similar arguments from
the graph and does not restrict the selection of arguments to a single path in the graph.
If a match is not found, the chatbot replies with an argument that is not contained in the
original graph. Our evaluation showed this approach performed well and shows that it is
not necessary to and, in fact, often impossible to establish all possible relationships in
a big argument graph. Therefore, instead of following a single path through the graph
and only allowing the user to choose arguments that are present in the graph, one can
search for a similar argument at each dialogue step without relying on a connecting arc
between the new user argument and the previously given chatbot argument. And to avoid
ending the chat prematurely if no similar user argument is found, default arguments can
be introduced to keep the chat going.

We faced the additional challenge of having to automatically identify the concern
of the user arguments during the chat. We showed that by grouping the most common
meaningful words of the argument graph (topic words) into concerns, one can train a
concern classifier on the graph arguments that can be used by the chatbot in order to
improve its persuasive effect.

The advantage of using a crowd-sourced argument graph as a knowledge base is that
it does not require professional research but solely relies on the input of participants and
can be acquired quickly. This method also scales easily which allows obtaining many
arguments from different people, and thereby create large and comprehensive argument
graphs. There are, however, also potential risks to consider. For example, the spread
of invalid arguments which, despite being popular, might contain wrong information.
Therefore, in the future, we want to investigate methods on how to utilise the argument
graph to improve the quality and persuasive effect of the chats even further. The chatbot
could, for example, identify invalid or unpopular arguments and delete them from the
graph. The bot could also learn which are the more persuasive arguments and use those
more often in the future.
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